液压系统-外文翻译

液压系统-外文翻译
液压系统-外文翻译

Hydraulic System

There are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical types. However, fluid systems are restricted to shorter distances than are electrical systems.

Hydraulic power transmission system are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include:

1.Pumps which convert available power from the prime mover to hydraulic power at the actuator.

2.Valves which control the direction of pump-flow, the level of power produced, and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level.

3.Actuators which convert hydraulic power to usable mechanical power output at the point required.

4.The medium, which is a liquid, provides rigid transmission and control as well as lubrication of components, sealing in valves, and cooling of the system.

5.Connectors which link the various system components, provide power conductors for the fluid under pressure, and fluid flow return to tank (reservoir).

6.Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.

Hydraulic systems are used in industrial applications such as stamping presses, steel mills , and general manufacturing , agricultural machines , mining industry , aviation , space technology , deep-sea exploration ,transportation , marine

technology , and offshore gas petroleum exploration . In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics.

The secret of hydraulic system’s success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.

Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.

Ease and accuracy of control. By the use of simple levers and push buttons, the operator of a fluid power systems can readily start, stop, speed up or slow down, and position force which provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch.

Multiplication of force. A fluid power system (without using cumbersome gears, pulleys, and levers) can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output.

Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute, a few revolutions per hour, or thousands of revolutions per minute.

Simplicity, safety, economy. In general, fluid power systems use fewer moving

parts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, compactness, and reliability. For example, a new power steering control designed has made all other kinds of power systems obsolete on many off-highway vehicles. The steering unit consists of a manually operated directional control valve and meter in a single body. Because the sterring unit is fully fluid-linked, mechanical linkages, universal joints, bearings, reduction gears, ect . are eliminated. This provides a simple,compact systems.In addition, very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of control space require a small sterring wheel and it becomes necessary to reduce operator fatigue.

Additional benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely. Also, most hydraulic oils can cause fires if an oil leak occurs in area of hot equipment. There are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical types. However, fluid systems are restricted to shorter distances than are electrical systems.

Hydraulic power transmission system are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include:

Pumps which convert available power from the prime mover to hydraulic power at the actuator.

Valves which control the direction of pump-flow, the level of power produced, and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level.

Actuators which convert hydraulic power to usable mechanical power output at the point required.

The medium, which is a liquid, provides rigid transmission and control as well as lubrication of components, sealing in valves, and cooling of the system.

Connectors which link the various system components, provide power conductors for the fluid under pressure, and fluid flow return to tank (reservoir).

Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.

Hydraulic systems are used in industrial applications such as stamping presses, steel mills , and general manufacturing , agricultural machines , mining industry , aviation , space technology , deep-sea exploration ,transportation , marine technology , and offshore gas petroleum exploration . In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics.

The secret of hydraulic system’s success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.

Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.

1. Ease and accuracy of control. By the use of simple levers and push buttons, the operator of a fluid power systems can readily start, stop, speed up or slow down, and position force which provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch.

2. Multiplication of force. A fluid power system (without using cumbersome gears, pulleys, and levers) can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output.

3. Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute, a few revolutions per hour, or thousands of revolutions per minute.

4. Simplicity, safety, economy. In general, fluid power systems use fewer moving parts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, compactness, and reliability. For example, a new power steering control designed has made all other kinds of power systems obsolete on many off-highway vehicles. The steering unit consists of a manually operated directional control valve and meter in a single body. Because the sterring unit is fully fluid-linked, mechanical linkages, universal joints, bearings, reduction gears, ect . are eliminated. This provides a simple,compact systems.In addition, very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of control

space require a small sterring wheel and it becomes necessary to reduce operator fatigue.

Additional benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely. Also, most hydraulic oils can cause fires if an oil leak occurs in area of hot equipment.

液压系统

仅有以下三种基本方法传递动力:电气,机械和流体。大多数应用系统实际上是将三种方法组合起来而得到最有效的最全面的系。为了合理的确定采取哪种方法,重要的是了解各种方法的显著特征。例如液压系统在长距离上比机械系统更能经济的传递动力。然而液压系统与电气系统相比,传递动力的距离较短。

液压动力传递系统涉及电动机,调节装置和压力和流量控制,总的来说,该系统包括:

泵:将原动机的能量转换成作用在执行部件上所谓液压能。

阀:控制泵产生流体的运动方向,产生的功率的大小,以及到达执行部件液体的流量。功率大小取决与对流量和压力大小的控制。

执行部件:将液压能转换成可用的机械能。

介质即油液:可进行无压缩传递和控制,同时可以润滑部件,使阀体密封和系统冷却。

联结件:联结各个系统部件,为压力流体提供功率传输通路,将液体返回油箱(贮油器)。

油液贮存和调节装置:用来确保提供足够质量和数量并冷却的液体。

液压系统在工业中应用广泛,例如冲压,钢类工件的磨削及一般加工业,农业,矿业,航天技术,深海勘探,运输,海洋技术,近海天然气和石油勘探等行业,简而言之,在日常生活中很少有人不从液压技术中得到某种益处。

液压系统成功而又广泛使用的秘密在于它的通用性和易作性。液压动力传递不会像机械系统那样受到机器几何形体的制约,另外,液压系统不会像电气系统那样受到材料物理性能的制约,它对传递功率几乎没有量的限制。例如,一个电磁体的性能受到钢的磁饱和极限的限制,相反,液压系统的功率仅仅受材料强度的限制。

企业为了提高生产率将越来越依靠自动化,这包括远程和直接控制生产操

作,加工过程和材料处理等。液压动力之所以成为自动化的重要组成分,是因为它有如下主要的四种优点:

1. 控制方便精确通过操作一个简单的操作杆和按钮,液压系统的操作者便能立即启动,停止,加减速和能提供任意功率,位置精度为万分之一英寸的位置控制力。

2. 增力一个液压系统(没有使用笨重的齿轮,滑轮和杠杆)

能简单有效地将不到一盎司的力放大产生几百吨力的输出。

3.恒力和恒扭矩只有液压系统能提供不随速度变化的恒力或恒扭矩,它可以驱动对象从每小时移动几英寸到每分钟几百英寸,从每小时几百转到每分钟几千转。

4. 简单,安全,经济总的来说,液压系统比机械或电气系统使用更少的运动部件,因此,它们运行与维护简单。这使的系统结构紧凑,安全可靠。例如一种用于车辆上的新型动力转向控制装置已淘汰其他类型的转向动力装置,该转向部件中包含有人力操作方向控制阀和分配器。因为转向部件是全液压的,没有万向节,轴承,减速齿轮等机械连接,这使得系统简单紧凑。

另外,只需输入很小的扭矩就能产生满足极恶劣工作条件所需的控制力,这对于因操作空间限制而需要方向盘的场合很重要,这也是减轻司机疲劳度所必需的。

液压系统的其他优点包括双向运动,过载保护和无级变速控制,在已有的任何动力系统中液压系统亦具有最大的单位质量功率比。

尽管液压系统具有如此高性能,但它不是可以解决所有动力传递问题的灵丹妙药。液压系统也有些缺点,液压油有污染,并且泄露不可能完全避免,另外如果油液渗漏发生在灼热设备附近,大多数液压油能引起火灾。

气压系统

气压系统是用压力气体传递和控制动力,正如名称所表明的那样,气压系统通常用空气(不用其它的气体)作为流体介质,因为空气是安全、成本低而

又随处可得的流体,在系统部件中产生电弧有可能点燃泄露物的的场合下(使用空气作为介质)尤其安全。

在气压系统中,压缩机用来压缩并供应所需的空气。压缩机一般有活塞式、叶片式和螺旋式等类型。压缩机基本上是根据理想气体法则,通过减小气体体积来增加气体压力的。气压系统通常考虑采用大的中央空气压缩机作为一个无限量的气源,这类似于电力系统中只要将插头插入插座便可获得电能。用这种方法,压力气体可以从气源输送到整个工厂的各个角落,压力气体可通过空气气滤器除去污物,这些污物可能会损坏气动组件的精密配合部件如阀和气缸等,随后输送到各个回路中,接着空气流经减压阀以减小气压值适合某一回路使用。因为空气

不是好的润滑剂(包括20%的氧气),气压系统需要一个油雾器将细小的油雾注射到经过减压阀减压的空气中,这有助于减少气动组件精密配合运动件的磨损。

由于来自大气中的空气含不同数量的水分,这些水分是有害的,它可以带走润滑剂引起过分磨损和腐蚀,因此,在一些使用场合中,要用空气干燥器来除去这些有害的水分。由于气压系统直接向大气排气,会产生过大噪音,因此可在气阀和执行组件排气口安装消声器来降低噪音,以防止操作人员因接触噪声及高速空气粒子有可能引发的危害。

用气动系统代替液压系统有以下几条理由:液体的惯性远比气体大,因此,液压系统中,当执行组件加速和减速和阀突然开启关闭时,油液的质量便是一个潜在的问题,根据牛顿运动定律(力等于质量乘以加速度),产生加速运动油液所需的力要比加速同等体积空气的力高出许多倍4。液体比气体具有更大的粘性,这会因为内摩擦而引起更大的压力和功率损失:另外,由于液压系统使用的液体要与大气隔绝,故他们需要特殊的油箱和无泄露系统设计。气压系统使用可以直接排到周围环境中的空气,一般来说气压系统没有液体系统昂贵。

然而,由于空气的可压缩性,使得气压系统执行组件不可能得到精确的速度控制和位置控制。气压系统由于压缩机局限,其系统压力相当低(地于250psi),而液压力可达1000psi之高,因此液压系统可以是大功率系统,而气动系统仅用于小功率系统,典型例子有冲压、钻孔、提升、冲孔、夹紧、组装、镏接、材料处理和逻辑控制操作等。

液压系统及液压缸-外文翻译

液压传动 第十讲 制动器 力流体动力系统的优秀的特性之一是由电源产生,通过适当的控制和指导,并通过电线传输,就可以轻松转换到几乎任何类型的机械运动所需要用到的地方。使用一个合适的驱动装置,可以获得线性(直线)或者是旋转运动。驱动器是一种转换流体动力机械力和运动的装置。缸、马达和涡轮机是最常见的将流体动力系统应用于驱动设备的类型。这一章描述了各种类型的动作汽缸和他们的应用程序、不同类型的流体汽车和使用流体动力系统的涡轮机。 汽缸 制动汽缸是一种将流体动力转换成线性或直线、力和运动的装置。因为线性运动是沿着一条直线前后移动的往复运动。这种类型的制动器有时被称为一个往复、或线性、电动机。由ram或活塞组成的汽缸在一个圆柱孔内操作。制动汽缸可以安装,以便汽缸被固定在一个固定的结构,ram或活塞被连接到该机制来操作,或者是活塞和ram可能被固定到固定结构,汽缸附加到机械装置来操作。制动汽缸气动和液压系统的设计和操作是类似的。一些变化的ram和活塞式制动汽缸的内容将在后面的段落中描述。 冲压式缸 术语ram和活塞通常可以互换使用。然而,一个冲压式缸通常被认为是一个截面积活塞杆超过一半的截面积活动元件。在大多数这种类型的制动汽缸中,杆和活动元件各占一半。这种类型的活动元件经常被称为柱塞。冲压式缸主要是用来推动而不是拉。一些应用程序需要ram的一部分在平坦的外部来推动或升降单位操作。其他应用程序需要一些机械装置的附件,如一个U型夹或有眼螺栓。冲压式缸的设计在很多其他方面不同,以满足不同应用程序的要求。 单作用千斤顶 单作用千斤顶(如图:10-1)试用力只在一个方向。流体定向的汽缸取代ram 和他外部的弹性元件,将物体举起放在上面。

ZigBee技术外文翻译

ZigBee:无线技术,低功耗传感器网络 加里莱格 美国东部时间2004年5月6日上午12:00 技师(工程师)们在发掘无线传感器的潜在应用方面从未感到任何困难。例如,在家庭安全系统方面,无线传感器相对于有线传感器更易安装。而在有线传感器的装置通常占无线传感器安装的费用80%的工业环境方面同样正确(适用)。而且相比于有线传感器的不切实际甚至是不肯能而言,无线传感器更具应用性。虽然,无线传感器需要消耗更多能量,也就是说所需电池的数量会随之增加或改变过于频繁。再加上对无线传感器由空气传送的数据可靠性的怀疑论,所以无线传感器看起来并不是那么吸引人。 一个低功率无线技术被称为ZigBee,它是无线传感器方程重写,但是。一个安全的网络技术,对最近通过的IEEE 802.15.4无线标准(图1)的顶部游戏机,ZigBee的承诺,把无线传感器的一切从工厂自动化系统到家庭安全系统,消费电子产品。与802.15.4的合作下,ZigBee提供具有电池寿命可比普通小型电池的长几年。ZigBee设备预计也便宜,有人估计销售价格最终不到3美元每节点,。由于价格低,他们应该是一个自然适应于在光线如无线交换机,无线自动调温器,烟雾探测器和家用产品。 (图1)

虽然还没有正式的规范的ZigBee存在(由ZigBee联盟是一个贸易集团,批准应该在今年年底),但ZigBee的前景似乎一片光明。技术研究公司 In-Stat/MDR在它所谓的“谨慎进取”的预测中预测,802.15.4节点和芯片销售将从今天基本上为零,增加到2010年的165万台。不是所有这些单位都将与ZigBee结合,但大多数可能会。世界研究公司预测的到2010年射频模块无线传感器出货量4.65亿美量,其中77%是ZigBee的相关。 从某种意义上说,ZigBee的光明前途在很大程度上是由于其较低的数据速率20 kbps到250 kbps的,用于取决于频段频率(图2),比标称1 Mbps的蓝牙和54的802.11g Mbps的Wi - Fi的技术。但ZigBee的不能发送电子邮件和大型文件,如Wi - Fi功能,或文件和音频,蓝牙一样。对于发送传感器的读数,这是典型的数万字节数,高带宽是没有必要,ZigBee的低带宽有助于它实现其目标和鲁棒性的低功耗,低成本。 由于ZigBee应用的是低带宽要求,ZigBee节点大部分时间可以睡眠模式,从而节省电池电源,然后醒来,快速发送数据,回去睡眠模式。而且,由于ZigBee 可以从睡眠模式过渡到15毫秒或更少主动模式下,即使是睡眠节点也可以达到适当的低延迟。有人扳动支持ZigBee的无线光开关,例如,将不会是一个唤醒延迟知道前灯亮起。与此相反,支持蓝牙唤醒延迟通常大约三秒钟。 一个ZigBee的功耗节省很大一部分来自802.15.4无线电技术,它本身是为低功耗设计的。 802.15.4采用DSSS(直接序列扩频)技术,例如,因为(跳频扩频)另类医疗及社会科学院将在保持一样使用它的频率过大的权力同步。 ZigBee节点,使用802.15.4,是几个不同的沟通方式之一,然而,某些方面比别人拥有更多的使用权力。因此,ZigBee的用户不一定能够实现传感器网络上的任何方式选择和他们仍然期望多年的电池寿命是ZigBee的标志。事实

液压系统外文资料翻译

外文资料译文 液压系统 绪论 液压站又称液压泵站,是独立的液压装置。 它按逐级要求供油。并控制液压油流的方向、压力和流量,适用于主机与液压装置可分离的各种液压机械上。 用户购后只要将液压站与主机上的执行机构(油缸或油马达)用油管相连,液压机械即可实现各种规定的动作和工作循环。 液压站是由泵装置、集成块或阀组合、油箱、电气盒组合而成。各部件功能为: 泵装置--上装有电机和油泵,是液压站的动力源,将机械能转化为液压油的压力能。 集成块--由液压阀及通道体组装而成。对液压油实行方向、压力和流量调节。 阀组合--板式阀装在立板上,板后管连接,与集成块功能相同。 油箱--板焊的半封闭容器,上还装有滤油网、空气滤清器等,用来储油、油的冷却及过滤。 电气盒--分两种型式。一种设置外接引线的端子板;一种配置了全套控制电器。 液压站的工作原理:电机带动油泵转动,泵从油箱中吸油供油,将机械能转化为液压站的压力能,液压油通过集成块(或阀组合)实现了方向、压力、流量调节后经外接管路并至液压机械的油缸或油马达中,从而控制液动机方向的变换、力量的大小及速度的快慢,推动各种液压机械做功。 1.1发展历程 我国液压(含液力,下同)、气动和密封件工业发展历程,大致可分为三个阶

段,即:20世纪50年代初到60年代初为起步阶段;60~70年代为专业化生产体系成长阶段;80~90年代为快速发展阶段。其中,液压工业于50年代初从机床行业生产仿苏的磨床、拉床、仿形车床等液压传动起步,液压元件由机床厂的液压车间生产,自产自用。进入60年代后,液压技术的应用从机床逐渐推广到农业机械和工程机械等领域,原来附属于主机厂的液压车间有的独立出来,成为液压件专业生产厂。到了60年代末、70年代初,随着生产机械化的发展,特别是在为第二汽车制造厂等提供高效、自动化设备的带动下,液压元件制造业出现了迅速发展的局面,一批中小企业也成为液压件专业制造厂。1968年中国液压元件年产量已接近20万件;1973年在机床、农机、工程机械等行业,生产液压件的专业厂已发展到100余家,年产量超过100万件,一个独立的液压件制造业已初步形成。这时,液压件产品已从仿苏产品发展为引进技术与自行设计相结合的产品,压力向中、高压发展,并开发了电液伺服阀及系统,液压应用领域进一步扩大。气动工业的起步比液压稍晚几年,到1967年开始建立气动元件专业厂,气动元件才作为商品生产和销售。含橡塑密封、机械密封和柔性石墨密封的密封件工业,50年代初从生产普通O型圈、油封等挤压橡塑密封和石棉密封制品起步,到60年代初,开始研制生产机械密封和柔性石墨密封等制品。70年代,在原燃化部、一机部、农机部所属系统内,一批专业生产厂相继成立,并正式形成行业,为密封件工业的发展成长奠定了基础。 进入80年代,在国家改革开放的方针指引下,随着机械工业的发展,基础件滞后于主机的矛盾日益突出,并引起各有关部门的重视。为此,原一机部于1982年组建了通用基础件工业局,将原有分散在机床、农业机械、工程机械等行业归口的液压、气动和密封件专业厂,统一划归通用基础件局管理,从而使该行业在规划、投资、引进技术和科研开发等方面得到基础件局的指导和支持。从此进入了快速发展期,先后引进了60余项国外先进技术,其中液压40余项、气动7项,经消化吸收和技术改造,现均已批量生产,并成为行业的主导产品。近年来,行业加大了技术改造力度,1991~1998年国家、地方和企业自筹资金总投入共约20多亿元,其中液压16亿多元。经过技术改造和技术攻关,一批主要企业技术水平进一步提高,工艺装备得到很大改善,为形成高起点、专业化、批量生产打下了良好基础。近几年,在国家多种所有制共同发展的方针指引下,不同所有制的中小企业迅猛崛起,呈现出

PLC外文文献翻译

Programmable logic controller A programmable logic controller (PLC) or programmable controller is a digital computer used for automation of electromechanical processes, such as control of machinery on factory assembly lines, amusement rides, or lighting fixtures. PLCs are used in many industries and machines. Unlike general-purpose computers, the PLC is designed for multiple inputs and output arrangements, extended temperature ranges, immunity to electrical noise, and resistance to vibration and impact. Programs to control machine operation are typically stored in battery-backed or non-volatile memory. A PLC is an example of a real time system since output results must be produced in response to input conditions within a bounded time, otherwise unintended operation will result. 1.History The PLC was invented in response to the needs of the American automotive manufacturing industry. Programmable logic controllers were initially adopted by the automotive industry where software revision replaced the re-wiring of hard-wired control panels when production models changed. Before the PLC, control, sequencing, and safety interlock logic for manufacturing automobiles was accomplished using hundreds or thousands of relays, cam timers, and drum sequencers and dedicated closed-loop controllers. The process for updating such facilities for the yearly model change-over was very time consuming and expensive, as electricians needed to individually rewire each and every relay. In 1968 GM Hydramatic (the automatic transmission division of General Motors) issued a request for proposal for an electronic replacement for hard-wired relay systems. The winning proposal came from Bedford Associates of Bedford, Massachusetts. The first PLC, designated the 084 because it was Bedford Associates' eighty-fourth project, was the result. Bedford Associates started a new company dedicated to developing, manufacturing, selling, and servicing this new product: Modicon, which stood for MOdular DIgital CONtroller. One of the people who worked on that project was Dick Morley, who is considered to be the "father" of the PLC. The Modicon brand was sold in 1977 to Gould Electronics, and later acquired by German Company AEG and then by French Schneider Electric, the current owner. One of the very first 084 models built is now on display at Modicon's headquarters in North Andover, Massachusetts. It was presented to Modicon by GM, when the unit was retired after nearly twenty years of uninterrupted service. Modicon used the 84

信息技术英文缩写与解释

AVI 影音文件Audio Video Interleaved 声音图象交叉存取。AVI是一种微软媒体文件格式,类似于MPEG和QuickTime。在AVI中,声音和图象是交叉的存取在一个文件中的每个段的。 ADSL 非对称数字用户线路 非对称数字用户线路。这种DSL叫做非对称DSL,将成为广大家庭和小型商业客户最熟悉的一种DSL。ADSL之所以叫做非对称是因为它的两个双工通道都用来向用户传输数据。仅有很小一部分带宽用来回送用户的信息。然而,大部Internet 特别是富于图形和多媒体Web 数据需要很大的下传带宽,同时用户信息相对比较少,上传的带宽也不要很大。使用ADSL时,下传的速率可以达到6.1 Mbps,而上传速率也可以达到640 Kbps。高的下传速率意味着您的电话可以传输动画,声音和立体图形。另外,一小部分的带宽可以用来传输语音信号,您可以同时打电话而不用再使用第二条电话线。不象电视线路提供的相同的服务,使用ADSL,您不需要和您的邻居争用带宽。有时候,现有的电话线可以使用ADSL,而有时候却要升级,除非电话公司提供了无分离器的ADSL,您就必须安装一个DSL调制解调器。 ASP (Application Services Provider) 应用服务提供商 是指配置、租赁、管理应用解决方案,它是随着外包趋势、软件应用服务和相关业务的发展而逐渐形成的。ASP具有三大特点:首先,ASP向用户提供的服务应用系统本身的所有权属ASP,用户租用服务之后对应用系统拥有使用权;并且,应用系统被集中放置在ASP的IDC(Internet数据服务中心)中,具有充足的带宽、电力和空间保证以及具有专业质量的系统维护服务;ASP定期向用户收取服务费。应用服务提供商将以全新的方式推动应用服务产业的巨大发展。ATM (Asynchronous Transmission Mode) 异步传输模式 这是为满足宽带综合业务数据通信,在分组交换技术的基础上迅速发展起来的通信新技术。可以实现语音、数据、图像、视频等信号的高速传输。 AI (Artificial Intelligent) 人工智能 是计算机科学的一门研究领域。它试图赋予计算机以人类智慧的某些特点,用计算机来模拟人的推理、记忆、学习、创造等智能特征,主要方法是依靠有关知识进行逻辑推理,特别是利用经验性知识对不完全确定的事实进行的精确性推理。 AD 网上广告 指一则按规定象素尺寸或字节数设定的标语或图像,通常是以动画表现的。 Baseband 基带 在该方式中,电压脉冲直接加到电缆,并且使用电缆的整个信号频率范围。基带与宽带传输相比较,宽带传输中,来自多条信道的无线信号调制到不同的“载波”频率上,带宽被划分为不同信道,每信道上的频率范围一定。LocalTalk及以太网都是基带网络,一次仅传输一个信号,电缆上信号电平的改变表示数字值0或者1。使用电缆的整个带宽建立起两个系统间的通信对话,然后两个系统轮流传送。在此期间,共享电缆的其它系统不能传送。基带传输系统中的直流信号往往由于电阻、电容等因素而衰减。另外马达、荧光灯等电子设备产生的外部电磁干扰也会加快信号的衰减。传输率越高,信号就越容易被衰减。为此,以太网等建网标准规定了网络电缆类型、电缆屏蔽、电缆距离、传输率以及在大部分环境中提供相对无差错服务的有关细节。 BBS (Bulletin Board System) 电子公告板 这是因特网提供的一种信息服务,为用户提供一个公用环境,以使寄存函件,读取通告,参与讨论和交流信息。Bluetooth 蓝牙(一种无线通信的标准) 蓝牙技术涉及一系列软硬件技术、方法和理论,包括:无线通信与网络技术,软件工程、软件可靠性理论,协议的正确性验证、形式化描述和一致性与互联测试技术,嵌入式实时操作系统(Embedded RTOS),跨平台开发和用户界面图形化技术,软/硬件接口技术(如RS232,UART,USB等),高集成、低功耗芯片技术等。蓝牙的目标是要提供一种通用的无线接口标准,用微波取代传统网络中错综复杂的电缆,在蓝牙设备间实现方便快捷、灵活安全、低成本低功耗的数据和话音通信。因此,其载频选用在全球都可用的2.45GHz ISM(工业、科学、医学)频带。 CA (Certificate Authority)认证中心 是在线交易的监督者和担保人,主要进行电子证书管理、电子贸易伙伴关系建立和确认、密钥管理、为支付系统中的各参与方提供身份认证等。CA类似于现实生活中公证人的角色,具有权威性,是一个普遍可信的第三方。

液压系统液压传动和气压传动毕业论文中英文资料对照外文翻译文献综述

中英文资料对照外文翻译文献综述 液压系统 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫?布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。 第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁?尼斯克(G?Constantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。 第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近 20 多年。在 1955 年前后 , 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元

通信工程外文翻译---一点多址扩频通信系统的应用

【附录】 英文文献 The Application of one point Multiple Access Spread Spectrum Communication System Liu Jiangang, Nanyang City, HenanProvince Electric Power Industry Bureau 【ABSTRACT】Spread Spectrum Digital Microwave communication as a communication, because their excellent performance have been widely used. The article in Nanyang City Power Industry Bureau one point Multiple Access Spread Spectrum Communication System as an example.briefed the spread spectrum communications, the basic concept and characteristics of the power system communication applications .KEYWORDS:one point multiple access; Spread-spectrum communication; Attenuation Nanyang City in the outskirts of Central cloth 35 to 11 kv substation farm terminals, their operation management rights belong to the Council East, Rural Power Company west (the eastern suburb of agricultural management companies -- four, the western suburbs of Rural Power Company Management 7), Scheduling of the various stations of the means of communication to the original M-150 radio and telephone posts. 2002 With the transformation of rural network, the remote station equipment into operation and communication channels to put a higher demand .As PUC Dispatch Communication Building to the east and west of farmers -- the difference between a company linked to fiber, Therefore, if 11 substations and the establishment of a transfer Link Building links Point may be the data and voice were sent to two rural power companies dispatch room, Rural Network scheduling for the implementation of automation to create the necessary conditions. Given the status and power grid substation level, nature, taking into account the carrier and optical-fiber communications to conduct multiple forwarding, increasing the instability factor, considering the cost and conditions of the urban construction, Finally decided to adopt wireless spread-spectrum technology to establish that 11

外文翻译- 液压系统概述

附录: 外文资料与中文翻译 外文资料: Hydraulic System Hydraulic presser drive and air pressure drive hydraulic fluid as the transmission is made according to the 17th century, Pascal's principle of hydrostatic pressure to drive the development of an emerging technology, the United Kingdom in 1795 ? Braman Joseph (Joseph Braman ,1749-1814), in London water as a medium to form hydraulic press used in industry, the birth of the world's first hydraulic press. Media work in 1905 will be replaced by oil-water and further improved. After the World War I (1914-1918) ,because of the extensive application of hydraulic transmission, espec- ially after 1920, more rapid development. Hydraulic components in the late 19th century about the early 20th century, 20 years, only started to enter the formal phase of industrial production. 1925 Vickers (F. Vikers) the invention of the pressure balanced vane pump, hydraulic components for the modern industrial or hydraulic transmission of the gradual establishment of the foundation. The early 20th century G ? Constantimscofluct- uations of the energy carried out by passing theoretical and practical research; in 1910 on the hydraulic trans- mission (hydraulic coupling, hydraulic torque converter, etc.) contributions, so that these two areas of develo- pment. The Second World War (1941-1945) period, in the United States 30% of machine tool applications in the hydraulic transmission. It should be noted that the development of hydraulic transmission in Japan than Europe

基于PLC相关的毕业设计外文翻译(可编辑修改word版)

毕业论文(设计)外文翻译 题目:可编程逻辑控制器技术 系部名称:信息工程系专业班级: 学生姓名:学号: 指导教师:教师职称: 2014 年3 月XX 日

译文 可编程逻辑控制器技术 引言 PLC(可编程逻辑控制器)实际是一个工业控制系统(近来我们看到更多的是用处理器来取代微控制器),在软件和硬件都配备的条件下,适合应用于工业环境。PLC 的发明是相当必要的,它代替了传统的依靠由继电接触器电路来控制电机。PLC 的工作原理是根据它的输入信号和工作状态来确定输出。用户通常是通过软件或编程输入一个程序,来输出所需要的结果。 如图 8-1 所示,PLC 是由典型的黑色构件组成。特别需要注意的是它的输入和输出, 因为在这些模块上,工业环境会给 CPU 一个输入线,所以很有必要将 CPU 模块隔离以保护其免遭有害的影响。程序单元通常是用计算机来编写程序(一般是梯形图)。 1.1CPU 的中央处理单元 中央处理单元(CPU)是一个 PLC 的主控制器。一般 CPU 本身是一个微控制器。通常这些都是 8 位微控制器,如 8051 ,现在的这些是 16 位和 32 位微控制器。潜规则是,你会发现用在 PLC 控制器上的微控制器多数是由日本生产的日立和富士通,欧洲的西门子控制器,和美国的摩托罗拉微控制器。CPU 也负责通讯,与 PLC 控制器的其它部分相互联系,如程序执行,内存操作,监督输入和设置输出。PLC 控制器拥有复杂的程序用于内存检查,以确保 PLC 内存不被损坏(内存检查是为了安全原因而作出的)。一般来说,CPU 单元多数用来检查 PLC 控制器本身,所以有可能出现的错误很早就会被发现。你可以简单地看任何 PLC 控制器,查看错误信号在发光二极管上的种种指示形式。 1.2内存 系统内存(今天主要是在 FLASH 技术上实现)用于一台 PLC 的过程控制系统。除了 这个操作系统它还包含用户程序将梯形图翻译成二进制的形式。 FLASH 存储器的内容仅在 用户程序改变下可以改变。PLC 控制器较早被用来代替闪存,EPROM 存储器代替了那些只能依靠紫外线灯等擦除内存并依靠程序员来编程的 FLASH 存储器。在 FLASH 技术的作用下这个过程被大大的缩短了。重组程序内存通过程序中的串行通讯用于应用程序开发。使用内存被划分成多个具有特殊功能的模块。存储器某些部分用来存储输入状态和输出状态。一个 输入信号的实际状态是用 1 或0 存储在一个特定的存储位。每一个输入信号和输出信号在内存里都有一个位与之相对应。内存的其他部分用来存储用户程序中使用的变量以及变量的内容。例如,定时器的值和计数器的值都将被存储在这部分内存里。 1.3PLC 控制器的编程 PLC 控制器可以通过计算机(常用的方式)进行编程,还可以通过手动编程器(控制台)编程。这实际上意味着如果你有需要的编程软件那么每个 PLC 控制器都可以通过计算机进行编程。今天的传输计算机是非常适合在工厂对 PLC 控制器进行编程的。这对工业有着非常重要的意义。一旦系统被刷新,重新读取正确的程序到 PLC 就很重要。还可以定期检查 PLC 中的程序是否改变了。这有助于避免在工厂车间发生危险状况(部分汽车制造商建立了通信网络,定期检查项目中的 PLC 控制器,以确保执行的程序是正确的)。

液压传动系统外文文献翻译、中英文翻译、外文翻译

中国地质大学长城学院 本科毕业设计外文资料翻译 系别工程技术系 专业机械设计制造及其自动化 学生姓名彭江鹤 学号 05211534 指导教师王泽河 职称教授 2015 年 5 月 4 日

液压传动系统 作者:Hopmans, ArthurH. 摘要 液压传动是由液压泵、液压控制阀、液压执行元件和液压辅件组成的液压系统。液压泵把机械能转换成液体的压力能,液压控制阀和液压辅件控制液压介质的压力、流量和流动方向,将液压泵输出的压力能传给执行元件,执行元件将液体压力能转换为机械能,以完成要求的动作。 关键词:液压传动;气压传动;传动系统; 许多液压传动先前已经设计出允许操作者无限变化输出的变速器,或甚至逆转的传动装置的输出作为相对于输入。通常情况下,这已经通过使用一个旋转斜盘是要么由操作者手动或操作液压动机来改变通过旋转泵头部具有轴向移动的活塞流动的液压流体的。液压流体从泵头活塞的流动,依次转动的马达头通过激励相应的一组活塞在其中违背一固定凸轮的,因此,旋转安装在电动机头的输出轴。 通常情况下,在现有技术的变速器已被被设置有各种功能,例如齿轮减速,刹车设定装置等。不幸的是,这些功能通常是提供外部发送的和显著增加整个装置的体积和质量。申请人确定,这是很期望具有其中基本上所有的这些需要或希望的功能,可以在内部提供的发送,同时还产生一个非常有效的和非常有效的传输的综合传输。 特别是,这种类型的变速器上经常使用的设备,如“零转动半径”剪草机之类的其中一个潜在的危险情况面对操作者,旁观者和设备本身,如果设备我们允许继续被推进应的操作者释放控制,由于当操作者无意中从装置抛出或变得受伤。因此,“故障自动刹车”机制经常被设置为传输自动地返回到中立配置在这种情况下,使得该装置不会继续供电,如果控制被释放。 先前传输这种类型的一般依靠某种外部设备,比如其目的是为了在操作者控制轴返回到中立位置应操作者释放所述轴的反操作偏压弹簧。这种类型的外部设备,可以容易地由用户或篡改损坏。这种回归函数中性到传输本身的整合允许在外部零件的减少可被损坏或不适当取出并大大降低,以支持传输的各种功能所需的外部结构。 在这种类型的用于割草机的使用和类似的传输经常遇到的另一个问题是,操作时会略生涩或有弹性,因为操作者通常无法顺利地控制从一个速度到另一个的过渡,往往试图使突然变化。从这些生涩的操作震动有一种倾向,穿更重的机器和操作上也是如此。因此,理想的是抑制这种传输的输出,以防止这种不平稳的运动。 不仅是它是期望能够有一个返回到中立的功能,如desribed以上,但还希望为操作者有积极的感觉为中立位置时,不论操作者从空档移动到前进或从中立扭转。此功能在本文中称为积极中性功能,并且在一般情况下,该功能需要操作者在从发送到任何一个正向或反向方向的中立姿势变换扩展更多的能量或运动相比,量能量消耗或运动需从一个速度转移到另一个在一个特定的方向。与上面提到的其它特征,最好是需要提供此功能的结构的发送本身内掺入。

基于m序列的扩频通信系统的仿真设计外文翻译

扩频技术 摘要 扩频技术是信号(例如一个电气、电磁,或声信号)生成的特定带宽频率域中特意传播,从而导致更大带宽的信号的方法。这些技术用于各种原因包括增加抗自然干扰和干扰,以防止检测,并限制功率流密度(如在卫星下行链路)的安全通信设立的。频率跳变的历史: 跳频的概念最早是归档在1903年美国专利723188和美国专利725605由尼古拉特斯拉在1900年7月提出的。特斯拉想出了这个想法后,在1898年时展示了世界上第一个无线电遥控潜水船,却从“受到干扰,拦截,或者以任何方式干涉”发现无线信号控制船是安全的需要。他的专利涉及两个实现抗干扰能力根本不同的技术,实现这两个功能通过改变载波频率或其他专用特征的干扰免疫。第一次在为使控制电路发射机的工作,同时在两个或多个独立的频率和一个接收器,其中的每一个人发送频率调整,必须在作出回应。第二个技术使用由预定的方式更改传输的频率的一个编码轮控制的变频发送器。这些专利描述频率跳变和频分多路复用,以及电子与门逻辑电路的基本原则。 跳频在无线电报中也被无线电先驱约翰内斯Zenneck提及(1908,德语,英语翻译麦克劳希尔,1915年),虽然Zenneck自己指出德律风根在早几年已经试过它。Zenneck 的书是当时领先的文本,很可能后来的许多工程师已经注意到这个问题。一名波兰的工程师(Leonard Danilewicz),在1929年提出了这个想法。其他几个专利被带到了20世纪30年代包括威廉贝尔特耶斯(德国1929年,美国专利1869695,1932)。在第二次世界大战中,美国陆军通信兵发明一种称为SIGSALY的通信系统,使得罗斯福和丘吉尔之间能相互通信,这种系统称为扩频,但由于其高的机密性,SIGSALY的存在直到20世纪80年代才知道。 最著名的跳频发明是女演员海蒂拉玛和作曲家乔治安太尔,他们的“秘密通信系统”1942年获美国第2,292,387专利。拉玛与前夫弗里德里希汀曼德这位奥地利武器制造商在国防会议上了解到这一问题。安太尔-拉马尔版本的跳频用钢琴卷88个频率发生变化,其旨在使无线电导向鱼雷,让敌人很难来检测或干扰。该专利来自五零年代ITT公司和其他私人公司开始时发展码分多址(CDMA),一个民间形式扩频,尽管拉马尔专利有没对后续技术有直接影响。它其实是在麻省理工学院林肯实验室、乐华政府和电子工业公司、国际电话电报公司及万年电子系统导致早期扩频技术在20世纪50年代的长期军事研究。雷达系统的并行研究和一个称为“相位编码”的技术类似概念对扩频发展造成影响。

液压系统外文文献翻译、中英文翻译、外文文献翻译

附录 Hydraulic System Hydraulic presser drive and air pressure drive hydraulic fluid as the transmission is made according to the 17th century, Pascal's principle of hydrostatic pressure to drive the development of an emerging technology, the United Kingdom in 1795 ?Barman Joseph (Joseph Barman, 1749-1814), in London water as a medium to form hydraulic press used in industry, the birth of the world's first hydraulic press. Media work in 1905 will be replaced by oil-water and further improved. After the World War I (1914-1918) ,because of the extensive application of hydraulic transmission, especially after 1920, more rapid development. Hydraulic components in the late 19th century about the early 20th century, 20 years, only started to enter the formal phase of industrial production. 1925 Vickers (F. Vickers) the invention of the pressure balanced vane pump, hydraulic components for the modern industrial or hydraulic transmission of the gradual establishment of the foundation. The early 20th century G ? Constantia scofluctuations of the energy carried out by passing theoretical and practical research; in 1910 on the hydraulic trans- mission (hydraulic coupling, hydraulic torque converter, etc.) contributions, so that these two areas of development. The Second World War (1941-1945) period, in the United States 30% of machine tool applications in the hydraulic transmission. It should be noted that the development of hydraulic transmission in Japan than Europe and the United States and other countries for

plc外文翻译

1 Bit Logic In structi ons 1.1 Overview of Bit Logic In structi ons 1.1.1 Description Bit logic in structi ons work with two digits, 1 and 0. These two digits form the base of a nu mber system called the binary system. The two digits 1 and 0 are called binary digits or bits. In the world of con tacts and coils, a 1 in dicates activated or en ergized, and a 0 in dicates not activated or not en ergized. The bit logic in struct ions in terpret sig nal states of 1 and 0 and comb ine them accord ing to Boolea n logic. These comb in ati ons produce a result of 1 or 0 that is called the “result of logic operati on ” (RLO). The logic operations that are triggered by the bit logic instructions perform a variety of fun cti ons. There are bit logic in structio ns to perform the followi ng fun cti ons: ---| |--- Normally Ope n Co ntact (Address) ---| / |--- Normally Closed Con tact (Address) ---(SAVE) Save RLO into BR Memory XOR Bit Exclusive OR ---()Output Coil ---(# )--- Midli ne Output ---|NOT|--- In vert Power Flow The followi ng in structio ns react to an RLO of 1: ---(S ) Set Coil ---(R ) Reset Coil SR Set-Reset Flip Flop RS Reset-Set Flip Flop Other in structi ons react to a positive or n egative edge tran siti on to perform the followi ng functions: ---(N)--- Negative RLO Edge Detectio n ---(P)--- Positive RLO Edge Detectio n NEG Address Negative Edge Detectio n POS Address Positive Edge Detectio n

相关文档
最新文档