铝合金焊接缺陷的发现、分析与研究参考文本

铝合金焊接缺陷的发现、分析与研究参考文本
铝合金焊接缺陷的发现、分析与研究参考文本

铝合金焊接缺陷的发现、分析与研究参考文本

In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each

Link To Achieve Risk Control And Planning

某某管理中心

XX年XX月

铝合金焊接缺陷的发现、分析与研究参

考文本

使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。

铝合金焊接具有密度低、耐腐蚀以及良好的导热性和

导电性等特点,在机械、航空以及电子产业中都有广泛的

应用。但是,铝合金焊接也存在着裂纹和气孔等多种缺

陷。本文针对这些缺陷产生的原因进行了分析和探讨,并

针对特定的缺陷提出了具体的防止对策。

在机械制造行业中,焊接加工是一种应用广泛的加工

方式,它不仅强度可靠,节省材料,还能加工出其它加工

方式难以完成的产品。在焊接中,铝合金焊接具有耐腐

蚀、比强度高以及良好的导热性和导电性。这些特点使铝

合金焊接在机械、电力以及轨道车辆等多个领域中得到了

广泛的应用。但是在铝合金焊接中也存在着裂纹、气孔以

及咬边等各种缺陷,这对焊接产品的质量产生了严重的威胁。本文从铝合金的性能和焊接特性出发,对铝合金焊接存在的缺陷进行分析和介绍,并针对性的提出防止对策。

铝合金的性能及其焊接特性

铝合金中的铝是一种轻金属,它的密度非常小,利用它来焊接成的产品重量低,这在航天航空以及交通轨道等领域具有重要的意义。铝合金的耐腐蚀非常好,不容易受到环境的侵蚀,同时它的比强度也高,焊接成的产品质量好。铝合金的导电导热性能好,在低温下也能保持良好的机械性能。

目前焊接所用铝合金用的比较多的是铝锰合金和铝镁合金两类。在航天航空等重要领域也会用到比强度和比刚度高的铝铜合金和铝锂合金。这些铝合金主要具有以下一些焊接特性。第一,铝合金的氧化能力特别强,在焊接过程中会生成氧化薄膜。第二,铝合金具有高导电性和导热

率,不会因局部过热产生内应力,但也因此所需能量更多。第三,线膨胀系数和凝固体积收缩率比较大,容易形成热裂纹。第四,焊接时铝合金没有具体的颜色变化,这给焊接者的观察工作带来困难。第五,铝合金在高温中容易吸入气体,在焊接过程中会形成气孔。

铝合金焊接常见缺陷分析及研究

因为铝合金自身存在的一些焊接特性,以及其它各种原因,在铝合金焊接中容易出现裂纹、气孔、焊缝成型不良以及咬边等多种缺陷。下面本文将针对各个缺陷产生的原因进行分析,再提出具体的防止对策。

2.1.裂纹

形成的原因有很多种,对于某些含共晶相及杂质相比较多的铝合金,在焊后冷却过程中,容易形成裂纹。因为铝合金的线膨胀系数和凝固体积收缩率比较大,在焊缝冷却时容易产生拉伸变形。此外,铝合金在冷却凝固的过程

中,在一定的温度范围内存在液态和固态金属,此时的铝合金强度和塑性都很低。在这个温度范围内,容易产生裂纹,特别是在这几种情况共同存在的情况下,裂纹发生情况更加严重。裂纹的存在会产生应力集中,降低了整个焊接结构的强度。对于裂纹的检验方法,有经验的工作人员可以直接凭视觉进行评估。为了保险起见,还可以采用量尺或者X光进行检测。

针对裂纹缺陷,我们可以采取以下措施:第一,选取合适的焊接铝合金,避免使用那些含共晶相及杂质相比较多的铝合金,铝合金中含有少量细化晶粒的变质剂可以有效防止产生热裂纹。第二,采用熔化极自动氩弧焊等加热集中的焊接方法,该焊接方法有效防止裂纹产生。第三,在焊接时可以将焊缝开坡口或者采用双面焊,还可以采取分段焊以及焊前预热等,这都可以降低焊缝产生裂纹的可能性。

2.2. 气孔

铝合金焊接中容易产生气孔,因为在铝合金焊缝中存在着氢,它的溶解度随着温度的下降会不断减少。当焊缝凝固时间短时,焊缝中的气泡就来不及排出,最终会形成气孔。气孔的存在降低了焊缝的强度和塑性,也降低了焊缝的冲击韧性。跟气孔形成相关的因素有很多,比如平均电弧电压、焊嘴高度以及焊接环境等。当平均电弧电压较低时,容易引起电弧失稳飞溅,从而破坏焊缝平衡,带入更多的氢进入焊缝中。焊嘴高度越大,焊丝端部温度越高,保护区域效果减弱,从而增加焊缝中氢的含量,易形成气孔。此外,外界环境湿度也会影响气孔的形成。对于气孔的检验方法,表面的气孔可以借助放大镜等工具进行外观检验。对于焊缝内的气孔则需要借助致密性检验或者X 光检验。

针对气孔缺陷,我们可以采取以下措施:第一,选择

高的输入热量或者增加熔池的搅动,能够延长焊接时间,使氢气尽可能完全的排出焊缝。第二,可以采用钨极双面同步氩弧焊法。一方面能够增加保护气体的保护效果,另一方面也能搅拌熔池,避免氢气的进入,同时排出焊缝中的氢气。第三,保持焊接环境干燥,对焊接坡口进行清洗烘干,可以有效避免气孔的产生。

2.3.焊缝成型不良、咬边以及夹渣

焊接成型不良的主要表现是焊缝中心高于两边,整个焊缝面凹凸不平,比较粗糙。咬边会使焊缝的实际工作面积减小,容易产生应力集中,降低焊缝强度。焊接成型和咬边缺陷都是由于焊工操作不当造成的。比如焊接电压过高、焊接速度过快等都会引起上述缺陷。针对焊接成型和咬边缺陷,企业应当提高焊工的焊接技能和工作素质,对焊接产品要严格把关。焊接中出现夹渣缺陷主要是因为焊缝坡口清除不干净或者焊丝产生的氧化物污染物。针对夹

渣缺陷,应当对焊接坡口进行及时清理,控制焊接环境,避免杂质进入焊缝。在对咬边进行检测时,先用主尺靠紧焊缝的一边,然后将高度尺移动到刚好接触焊缝的另一边。这个测量出来的高度值就是咬边量,要根据标准和实际需要对咬边量进行控制。

具有密度低、耐腐蚀以及高强度的铝合金焊接在各个领域中具有广泛的应用,但是也存在着一些缺陷。本文针对裂纹、气孔、焊缝成型不良以及咬边等缺陷产生的原因进行了分析,并提出了防止对策。如何进一步的改进铝合金焊接,保证焊接的质量,仍是一个重要的研究方向。

请在此位置输入品牌名/标语/slogan

Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

铝合金钎焊缺陷

焊接金相 铝合金钎焊缺 陷 哈尔滨焊接研究所金相室(150080) 于 捷 孙秀芳 郭力力 山东省淄博学院机电系(255091)姜 英 焊接方法 钎焊 母 材 L F3铝合金 焊 材 铝硅及铝硅镁钎料 图1 钎缝中各种缺陷 (50×)2/3图2 钎缝发生轻微溶蚀现象 400× 会)已在2000年1月巴黎会议上取消。两者原有职能 全部移交给IAB B组(实施与授权)。 EWF Committee2,3和IIW Commission今后只能 从事IIW IAB还没有的项目开发工作。 被IIW接受的培训规程在大约五年内将同时印制 EWF和IIW文件号。培训规程中规定了IIW和EWF 证书等效。同时,由于EWF人员资格仍被许多欧洲标 准采用,EWF证书在一定时期有很高的市场价值,所 以EWF证书仍将继续发放约五年。 1.4 授权的国家团体Authorised National Body(ANB) ANB是Authorised National Body(授权的国家团 体)的缩写,是指由IIW授权的在某一IIW成员国实施 IIW人员资格认证体系的唯一合法机构。其作用是: (1)评估和验收培训机构,批准授权的培训机构 (A TB)按照IIW规程举办各类培训课程; (2)进行考试; (3)颁发各类焊接人员的资格证书并管理焊接人 员档案。 一个IIW成员国只能有一个ANB。某个成员国 的ANB如果要在其它无ANB国家开展IIW课程,应 受到代表该国的国家焊接学会的邀请,在课程培训中, 必须解决语言障碍的问题。 根据EWF和IIW之间的协议,1999年,19个 EWF的ANB自动成为IIW的ANB。我国于2000年 1月取得欧洲以外的第一个ANB资格,美国、日本和澳 大利亚已于2001年1月召开的IAB B组巴黎工作会 通过,成为正式的ANB。到2001年1月底为止,已正 式授权下列国家的ANB组织:奥地利、比利时、中国、 克罗地亚、捷克、丹麦、芬兰、法国、德国、匈牙利、意大 利、荷兰、挪威、波兰、葡萄牙、罗马尼亚、斯洛伐克、斯 洛维尼亚、西班牙、瑞典、瑞士、英国、美国、澳大利亚和 日本,共计25个。 加拿大计划在2002年末进行验收,俄罗斯、乌克 兰和南斯拉夫已向IIW提出了申请。(未完待续) ? 5 4 ?焊接 2001(6)

焊接缺陷分析及处理

焊接缺陷分析及处理 1.焊接缺陷分析及处理 机器人焊接采用的是富氩混合气体保护焊,焊接过程中出现的焊接缺陷一般有焊偏、咬边、气孔等几种,具体分析如下:(1)出现焊偏可能为焊接的位置不正确或焊枪寻找时出现问题。这时,要考虑TCP(焊枪中心点位置)是否准确,并加以调整。如果频繁出现这种情况就要检查一下机器人各轴的零位置,重新校零予以修正。(2)出现咬边可能为焊接参数选择不当、焊枪角度或焊枪位置不对,可适当调整功率的大小来改变焊接参数,调整焊枪的姿态以及焊枪与工件的相对位置。(3)出现气孔可能为气体保护差、工件的底漆太厚或者保护气不够干燥,进行相应的调整就可以处理。(4)飞溅过多可能为焊接参数选择不当、气体组分原因或焊丝外伸长度太长,可适当调整功率的大小来改变焊接参数,调节气体配比仪来调整混合气体比例,调整焊枪与工件的相对位置。(5)焊缝结尾处冷却后形成一弧坑,编程时在工作步中添加埋弧坑功能,可以将其填满。 2.机器人故障分析与处理 在焊接过程中机器人系统遇到一些故障,常见的有以下几种: (1)发生撞枪。可能是由于工件组装发生偏差或焊枪的TCP不准确,可检查装配情况或修正焊枪TCP。(2)出现电弧故障,不能引弧。可能是由于焊丝没有接触到工件或工艺参数太小,可手动送丝,调整焊枪与焊缝的距离,或者适当调节工艺参数。 (3)保护气监控报警。冷却水或保护气供给存有故障,检查冷却水或保护气管路。 3.焊接机器人应用经验工件质量 作为示教一再现式机器人,要求工件的装配质量和精度必须有较好的一致性。应用焊接机器人应严格控制零件的制备质量,提高焊件装配精度。零件表面质量、坡口尺寸和装配精度将影响焊缝跟踪效果。可以从以下几方面来提高零件制备质量和焊件装配精度。(1)编制焊接机器人专用的焊接工艺,对零件尺寸、焊缝坡口、装配尺寸进行严格的工艺规定。一

铝合金焊接技术要点及注意事项

铝及铝合金焊接特点及焊接工艺 铝合金由于重量轻、强度高、耐腐蚀性能好、无磁性、成形性好及低温性能好等特点而被广泛地应用于各种焊接结构产品中,采用铝合金代替钢板材料焊接,结构重量可减轻50 %以上。因此,铝及铝合金除广泛的应用于航空、航天和电工等领域外,同时还越来越多的应用于石油化学工业。但是铝及铝合金在焊接过程中,易出现氧化、气孔、热裂纹、烧穿和塌陷等问题。此类材质是被公认为焊接难度较大的被焊接材料,特别是小径薄壁管的焊接更难掌握。因此,解决铝及铝合金的这些焊接缺陷是施工过程中必须解决的问题。 1铝及铝合金的焊接特点 铝材及铝合金焊接时由固态转变为液态时,没有明显的颜色变化,因此在焊接过程中给操作者带来不少困难。因此,要求焊工掌握好焊接时的加热温度,尽量采用平焊,在引(熄)弧板上引(熄)弧等。特别注意以下几点: 1.1强的氧化能力 铝与氧的亲和力很强,在空气中极易与氧结合生成致密而结实的AL2O3薄膜,厚度约为0.1μm,熔点高达2050℃,远远超过铝及铝合金的熔点,而且密度很大,约为铝的1.4倍。在焊接过程中,氧化铝薄膜会阻碍金属之间的良好结合,并易造成夹渣。氧化膜还会吸附水分,焊接时会促使焊缝生成气孔。这些缺陷,都会降低焊接接头的性能。为了保证焊接质量,焊前必须严格清理焊件表面的氧化物,并防止在焊接过程中再氧化,对熔化金属和处于高温下的金属进行有效的保护,这是铝及铝合金焊接的一个重要特点。具体的保护措施是: a焊前用机械或化学方法清除工件坡口及周围部分和焊丝表面的氧化物; b焊接过程中要采用合格的保护气体进行保护; c在气焊时,采用熔剂,在焊接过程中不断用焊丝挑破熔池表面的氧化膜。 1.2铝的热导率和比热大,导热快 尽管铝及铝合金的熔点远比钢低,但是铝及铝合金的导热系数、比热容都很大,比钢大一倍多,在焊接过程中大量的热能被迅速传导到基体金属内部,为了获得高质量的焊接接头,必须采用能量集中、功率大的热源,有时需采用预热等工艺措施,才能实现熔焊过程。 1.3线膨胀系数大 铝及铝合金的线膨胀系数约为钢的2倍,凝固时体积收缩率达6.5%-6.6%,因此易产生焊接变形。防止变形的有效措施是除了选择合理的工艺参数和焊接顺序外,采用适宜的焊接工装也是非常重要的,焊接薄板时尤其如此。另外,某些铝及铝合金焊接时,在焊缝金属中形成结晶裂纹的倾向性和在热影响区形成液化裂纹的倾向性均较大,往往由于过大的内应力而在脆性温度区间内产生热裂纹。这是铝合金,尤其是高强铝合金焊接时最常见的严重缺陷之一。在实际焊接现场中防止这类裂纹的措施主要是改进接头设计,选择合理的焊接工艺参数和焊接顺序,采用适应母材特点的焊接填充材料等。 1.4容易形成气孔 焊接接头中的气孔是铝及铝合金焊接时极易产生的缺陷,尤其是纯铝和防锈铝的焊接。氢是铝及铝合金焊接时产生气孔的主要原因,这已为实践所证明。氢的来源,主要是弧柱气氛中的水分、焊接材料及母材所吸附的水分,其中焊丝及母材表面氧化膜的吸附水分,以焊缝气孔的产生,常常占有突出的地位。 铝及铝合金的液体熔池很容易吸收气体,在高温下溶入的大量气体,在由液态凝固时,溶解度急剧下降,在焊后冷却凝固过程中来不及析出,而聚集在焊缝中形成气孔。为了防止气孔的产生,以获得良好的焊接接头,对氢的来源要加以严格控制,焊前必须严格限制所使用焊接材料(包括焊丝、焊条、熔剂、保护气体)的含水量,使用前要进行干燥处理。清理后的母材及焊丝最好在2-3小时内焊接完毕,最多不超过24小时。TIG焊时,选用大的焊

铝合金焊接缺陷分析及预防

铝合金焊接缺陷分析及预防 1、焊缝尺寸不符合要求 主要是指焊缝宽窄不一、高低不平、余高不足或过高等。焊缝尺寸过小会降低焊接接头的强度;尺寸过大将增加结构的应力和变形,造成应力集中,还增加焊接工作量。焊接坡口角度不当或装配间隙不均匀,焊接电流过大或过小,运条方式或速度及焊角角度不当等均会造成焊缝尺寸不符合要求。 2、咬边 由于焊接参数选择不当,或操作工艺不正确,沿焊趾的母材部位产生的沟槽或凹陷即为咬边。咬边使母材金属的有效截面减小,减弱了焊接接头的强度,而且在咬边处易引起应力集中,承载后有可能造成在咬边处产生裂纹,甚至引起结构的破坏。产生咬边的原因主要有操作方式不当,焊接规范选择不正确,如焊接电流过大、电弧过长、焊条角度不当等。咬边超过允许值应予以补焊。 3、焊瘤 焊接过程中,熔化的金属流淌到焊缝之外未熔化的母材上,所形成的金属瘤即为焊瘤。焊瘤不仅影响焊缝外表的美观,而且焊瘤下面常有未焊透缺陷,易造成应力集中。对于管道接头来说,管道内部的焊瘤还会使管内的有效面积减小,严重时使管内产生堵塞。焊瘤常在立焊和仰焊时产生,焊缝间隙过大,焊条角度和运条方法不正确、焊条质量不好、焊接电流过大或焊接速度太慢等均可引起焊瘤的产生。 4、烧穿 焊接过程中,熔化的金属自坡口背面流出,形成穿孔的缺陷称为烧穿。烧穿常发生于打底焊道的焊接过程中。发生烧穿,焊接过程不能继续进行,是一种不能允许存在的焊接缺陷。造成烧穿的主要原因是焊接电流太大焊接速度过低、坡口和间隙太大或钝边太薄以及操作不当等。为了防止烧穿,要正确设计焊接坡口尺寸,确保装配质量,选用适当的焊接工艺参数。单面焊接可采用加铜板或焊剂垫等办法防止熔化金属下塌及烧穿。手工电弧焊接薄板时,可采用跳弧焊接法或续灭弧焊接法。 5、未焊透 焊接时接头根部未完全熔透的现象称为未焊透,未焊透常出现在单面焊的根部和双面焊的中部。未焊透不仅使焊接接头的机械性能降低,而且在未焊透处的缺口和端部形成应力集中点,承载后会引起裂纹。未焊透的原因是焊接电流过小,焊接速度太快、焊条角度不当或电弧发生偏吹、坡口角度或对口间隙太小、焊件散热太快、氧化物或焊渣等阻碍了金属间充分的熔合等。凡是造成焊条金属和基本金属不能充分熔合的因素都会引起未焊透的发生。 防止未焊透的措施包括:1)正确选择坡口形式和装配间隙,并清除掉坡口两侧和焊层间的污物及熔渣;2)选用适当的焊接电流和焊接速度;3)运条时应随时注意调整焊条的角度,特别是遇到磁偏吹和焊条偏心时,更要调整焊条角度,以使焊缝金属和母材金属得到充分熔合;4)对导热快、散热面积大的焊件,应采取焊前预热或焊接过程中加热的措施。 6、未熔合 未熔合指焊接时,焊道与母材之间或焊道之间未完全熔化结合的部分;或指点焊时母材与母材之间未完全熔化结合的部分。 未熔合的最大危害大致与未焊透相同。产生未熔合的原因有:焊接线能量太低、电弧发生偏吹、坡口侧壁有锈垢和污物、焊层间清渣不彻底等。 7、凹坑、塌陷及未焊满

高频焊管焊接缺陷及其分析

高频焊管焊接缺陷及其分析 焊接缺陷及其分析 高频直缝焊接钢管的焊接质量缺陷有裂缝、搭焊、漏水、划伤等等。下面仅对裂缝、搭焊这两个主要缺陷进行分析: 一、裂缝 裂缝是焊管的主要缺陷,其表现形式可以由通常的裂缝,局部的周期性裂缝,不规则出现的断续裂缝。也有的钢管焊后表面未见裂缝,但经压扁、矫直或水压试验后出现裂缝。裂缝严重时便漏水。产生裂缝的原因很多。消除裂缝是焊接调整操作中最困难的问题之一。 下面分别从原料方面、成型焊接孔型方面和工艺参数选择方面进行分析。 1. 原料方面 (1)钢种,即钢的化学成分对焊接性能有明显的影响,钢中所含的化学元素都或多或少、或好或坏地影响着焊接性能。高频焊由于焊接温度高,挤压力大等原因,比低频焊允许的化学范围要广些,可以焊接碳素钢、低合金钢等。碳素钢主要含有碳、硅、锰、磷、硫五种元素。低合金钢还可以含有锰、钛、钒、铝、镍等各种元素。 下面分述各种元素对焊接性能的影响。 1)碳碳含量增加,是焊接性能降低,硬度升高,容易脆裂。低碳钢容易焊接。2)硅硅降低钢的焊接性,主要是容易生成低镕点的SiO2夹杂物;增加了熔渣和溶化金属的流动性,引起严重的喷溅现象,从而影响质量。 3)锰锰使钢的强度、硬度增加,焊接性能降低,容易造成脆裂。 4)磷磷对钢的焊接性不利。磷是造成蓝脆的主要原因。 5)铜含量小于%时,不影响钢的焊接性。含量再高时,使钢的流动性增加,不利于焊接。 6) 镍镍对钢的焊接性没有显著的不利影响。7)铬铬使钢的焊接性能降低,高熔点氧化物很难从焊缝中排除。 8) 钛钛能细化晶粒,钛增加钢的焊接性能,钛能使钢的流动性变差,粘度大。9)硫硫导致焊缝的热裂。在焊接过程中硫易于氧化,生成气体逸出,以致在焊缝中产生很多气孔和疏松。硫不利于焊接并且降低钢的机械性能,通常钢中硫被限制在规定的微量以下。 10)钒钒能显著改善普通低合金钢的焊接性能。钒能细化晶粒、防止热影响区的晶粒长大和粗化,并能固定钢中一部分碳,降低钢的淬透性。 11)铝铝对钢的焊接性能的影响使钢中铝含量的不同而不同,一般说来,脱氧后残留在钢中的铝,对焊接性能影响不大,如果作为合金元素加的量较大时,则和硅的作用相似,降低钢的焊接性能。 12)氧氧在钢中是作为有害元素来看待的,较高的含氧量在焊接时形成较多的FeO 残留在焊缝处,从而降低了焊接性能。 13)氢氢是造成发裂的原因。 14)铌钢中加入~%的铌,能提高屈服强度和冲击韧性,改善焊接性能。 15)镐锆能改善焊接金属的致密性。 16)铅铅对钢的焊接性能没有显著影响。 某个钢中里面所行各种元素对该钢中综合的焊接性能的影响,以碳当量来衡量。碳当量上限为~%。超过该上限,则焊缝易脆裂,硬度上升,焊接质量不好,飞锯切断和切断困难。

铝合金焊接通用工艺规范

铝合金焊接工艺规范 技术部 编制 审核 批准 ××工业有限公司

前言 本规范根据××工业有限公司,定制与实施设计规范、工艺规范、试验规范的要求,按《企业标准编写的一般规定》,为明确铝合金焊接的工艺要求而制定。 本规范是公司在铝合金焊接中的经验总结,对于生产起指导作用。 本规范编制部门:技术部 本规范制定日期:2012-6-26。 一、目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本规范。 二、编制依据 1. GB/T 《铝及铝合金气体保护焊推荐坡口》 2. GB/T10858-2008《铝及铝合金焊丝》 3. GB/T24598-2009《铝及铝合金熔化焊焊工技能评定》 4. GBT3199-2007 《铝及铝合金加工产品贮存及包装》 5. GBT22087-2008《铝及铝合金弧焊接头缺欠质量》 6.有关产品设计图纸 三、焊前准备 焊接材料 铝板3A21(原LF21)及铝合金型材。 焊丝:S311铝硅焊丝ER4043 直径φ2,φ3,焊丝应有制造长的质量合格证,领取 和 发放由管理员统一管理。铝硅焊丝抗裂性好,通用性大。 氩气

氩气瓶上应贴有出厂合格标签,其纯度≥%,所用流量8-16升/分钟,气瓶中的氩 气不能用尽,瓶内余压不得低于,以保证充氩纯度。氩气应符合GB/T4842-1995。 焊接工具 ①采用交流电焊机,本厂用WSME-315(J19)。 ②选用的氩气减压流量计应开闭自如,没有漏气现象。切记不可先开流量计、后开气 瓶,造成高压气流直冲低压,损坏流量计;关时先关流量计而后关氩气瓶。 ③输送氩气的胶皮管,不得与输送其它气体的胶皮管互相串用,可用新的氧气胶皮管 代用,长度不超过30米。 其它工器具 焊工应备有:手锤、砂纸、扁铲、钢丝刷、电磨工具等,以备清渣和消除缺陷。 焊前清理 ①化学清理:效率高,清理质量稳定,焊件清理范围一般为坡口及其两边各100mm 区域,用干净棉纱蘸丙酮溶液擦拭或用8%-10%的NaOH溶液浸泡,去除油污并干燥。 ②机械清理:适用于多层焊层间的清理,先用汽油、丙酮等有机溶剂进行表面脱脂, 再用直径不大于的铜丝或不锈钢丝刷刷至露出铝本色为止,也可用刮刀清理,效果 良好。 焊前预热和使用垫板 ①预热要求薄板一般可不预热。壁厚5mm以上的焊件则应进行100~300℃预热。 ②垫板使用由于铝及铝合金高温强度低,铝液流动性很好,焊接时易引起熔池塌陷, 故使用垫板承托熔池。垫板材料可为石墨、不锈钢或者普通碳钢。 焊接坡口 焊缝的坡口形式和尺寸应应符合本规范附录1的规定。切割后的坡口表面应进行清理,并达到平整光滑、无毛刺和飞边。 焊接场所与焊接环境 装配焊接应尽量在车间内干净的工作台上进行,氩气保护焊时风速应小于2m/s,风大时 作业场所要围上挡板进行焊接,其相对湿度≤90%。 四、焊接工艺要求 手工钨极氩弧焊应采用交流电源,熔化极氩弧焊应采用直流电源,焊丝接正极。 焊接前焊件表面应保持干燥,无特殊要求时可不预热。 焊接前应在试焊板上试焊,当确认无气孔后再进行正式焊接。

埋弧焊常见焊接缺陷的成因分析及对策

1. 影响焊接缺陷的因素 (1)材料因素: 所谓材料因素是指被焊的母材和所使用的焊接材料,如焊丝、焊条、焊剂、以及保护气体等。所有这些材料在焊接时都直接参与熔池或熔合区的物理化学反应,其中母材本身的材质对热影双区好性能起音决定性的影响。显然所采用的焊接材料对焊缝金属的成份和性能也是关键的因素。好果焊接材料与母材匹配不当,则不仅可以引起焊接区内的至纹、气孔等各种缺陷,而且也可能可起脆化、软化或耐腐蚀等性能变化。所以,为保证获得良好的焊接接头,必须对材料因素予以充分的重视。 (2)工艺因素: 大量的实践证明,同一种母材在采用不同的焊接方法和工艺措施的条件下,其焊接质量会表现出很大的差别。焊接方法对焊接质量的影响主要可能在两方面:首先是焊接热源的特点,也就是功率密度、加热最高温度、功率大小等,它们可直接改变焊接热循环的各项参数,如线能量大小、高温停留时间、相变温度区间的冷却速度等。这些当然会影响接头的组织和性能;其次是对熔池和附近区域的保护方式,如熔渣保护、气体保护、气-渣联合保护或是在真空中焊接等,这些都会影响焊接冶金过程。显然,焊接热过程和冶金过程必然对接头的质量和性能会有决定性的影响。 2.常见焊接缺陷的原因分析 (1)结晶裂纹 从金属结晶理论知道,先结晶的金属纯度比较高,后结晶的金属杂质较多,

并富集在晶粒周界,而且这些杂质具有较低的熔点,例如,一般碳钢和低合金钢的焊缝含硫量较高时,能形成FeS,而FeS与Fe发生作用形成熔点只有988℃的低熔点共晶。在焊缝金属凝固过程中,低熔点共晶被排挤在晶界上,形成“液态薄膜”由于液态薄膜的存在减弱了晶间之间的结合力,晶粒间界的液态薄膜便成了薄弱地带。又因为焊缝金属在结晶的同时,体积在减小,周围金属的约束引起它的收缩而引起焊缝金属受到拉伸应力的作用下,于是相应地产生了拉伸变形。若此时产生的变形量超过了晶粒边界具有的变形塑性时,即可沿这个薄弱地带开裂而形成结晶裂纹。 可见,产生结晶裂纹的原因就在于焊缝中存在液态薄膜和在焊缝凝固过程中受到拉伸应力共同作用的结果。因此,液态薄膜是产生结晶裂纹的根源,而拉伸应力是产生结晶裂纹的必要条件。 至于近缝区的结晶裂纹,原则上与焊缝上的结晶裂纹时一致的。在焊接条件下,近缝区金属被加热到很高的温度,在熔合区附近达到半熔化状态。当母材金属含有易熔杂质时,那么在近缝区金属的晶界上,同样也会有低熔共晶存在。这时在焊接热的作用下,将会发生熔化,相当于晶粒间的液态薄膜,与此同时,在拉伸应力的作用下就会开裂。 焊缝上的结晶裂纹和近缝区的结晶有着相互依赖和相互影响的关系。近缝区的结晶裂纹可能是焊缝结晶裂纹的起源。 结晶裂纹的影响因素:通过以上分析可知,结晶裂纹的产生取决于焊缝金属在脆性温度区间的塑性和应变,前者取决于冶金因素,后者取决于力的因素。力的主作用是产生结晶裂纹的的必要条件,只有在力的作用下产生的应变超过材料的最大变形能力时,才会开裂。首先需要分析冶金因素。

铝焊接的工艺和注意要点

铝焊接的工艺和注意要点 铝焊接的工艺和注意要点 1.铝及铝合金的焊接特点 (1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,{TodayHot}清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。气焊时,采用去除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。 (2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显著,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。{HotTag} (3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显著提高,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi條(硅含量4.5%~6%)焊丝会有更好的抗裂性。 (4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。高温铝强度很低,支撑熔池困难,容易焊穿。 (5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。 (6)合金元素易蒸发、烧损,使焊缝 性能下降。 (7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。 (8)铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。 2铝合金焊接有几大难点:

焊接质量缺陷统计与分析

焊接质量缺陷统计与分析 摘要:本文通过对以往工地特别是惠来工地焊接缺陷数据的统计,对焊接过程中出现的焊接缺陷进行了总结分析,指出在以后的焊接过程中应注意的事项,有效防止不合格焊口的产生。 焊接是大型安装工程建设中的一项关键工作,其质量的好坏、效率的高低直接影响工程的安全运行和制造工期。针对发电项目,也直接关系到发电机组的安全、稳定运行。随着火电机组设计参数的不断更新与提高,以及项目监理和业主对在建项目的介入深化,对焊接质量提出了更高的要求。对焊接过程中出现的焊接缺陷进行总结分析,预先防止不合格焊口的产生是提高焊接质量的有效手段。 一、焊接质量缺陷的分析统计 焊接质量的缺陷分内部缺陷与表面缺陷,内部缺陷主要有未焊透、未熔合、气孔、裂纹、内凹、夹渣等缺陷;表面缺陷主要有烧穿、咬边、焊缝成型差、焊缝宽窄不合格、焊缝余高超标或不足、错折口等缺陷。经初步统计,针对惠来工地在焊接过程中所产生的主要内外部缺陷有以下几种,数据和比例分析如下下表1所示: 表1 此图所示焊接缺陷出现的几率因特殊情况又有不同。合金含量的高低也会影响产生焊接缺陷的几率,如高合金材质焊口出现焊接裂纹、过烧的缺陷较多;施工环境也会影响焊接质量,在沿海潮湿多风的地方,出现气孔、条孔等焊接缺陷相对较多。 二、常见焊接缺陷出现的原因及预防措施 内部缺陷 (一)气孔、条孔:气孔属于体积性缺陷,它主要是削弱焊缝的有效截面积,降低焊缝的机械性能和强度,尤其是焊缝的弯曲强度和冲击韧性,也破坏了金属的致密性。 原因:(1) 被焊工件或母材未彻底清楚干净,焊接过程中,本身产生的气体或外部气体进入熔池,在熔池凝固前未及时溢出熔池而残留在焊缝中;(2) 在空气相对湿度较大情况下也有微小的水珠,在熔池冶金过程中,非金属元素形成非金属氧化物,由于气体在金属中的溶解度随温度降低而减少,在结晶过程中部分气体来不及逸出,气泡残留在金属内形成了气孔。 预防措施: (1) 焊条按照材质证明书进行烘焙,装在专用保温筒内,随用随取; (2) 焊缝坡口符合要求,彻底清除焊口及母材表面的油污和铁锈等杂质,直至发出金属光泽; (3) 注意周围焊接施工环境,搭设防风防雨设施,焊接管子时无穿堂风; (4) 氩弧焊时,氩气纯度不低于99.95%,并注意氩气保护效果,氩气流量合适; (5) 焊前对工机具进行仔细检查,防止焊枪、皮管等漏气;

铝合金通用焊接工艺设计规范流程

铝合金通用焊接工艺规程 1 使用围及目的 围:本规是适用于地铁铝合金部件焊接全过程的通用工艺要求。 目的:与焊接相关的作业人员按标准规作业,同时也使焊接过程检查更具可操作性。 2 焊前准备的要求 2.1 在焊接作业前首先必须根据图纸检查来料或可见的重要尺寸、形位公差和焊接质量,来料不合格不能进行焊接作业。 2.2 在焊接作业前,必须将残留在产品表面和型腔的灰尘、飞溅、毛刺、切削液、铝屑及其它杂物清理干净。 2.3 用棉布将来料或工件上的灰尘和脏物擦干净,如果工件上有油污,使用清洗液清理干净。 2.4 使用风动不锈钢丝轮将焊缝区域的氧化膜打磨干净,以打磨处呈白亮色为标准,打磨区域为焊缝两侧至少25mm以上。 2.5 焊前确认待焊焊缝区域无打磨时断掉的钢丝等杂物。 2.6 钢焊和铝焊的打磨、清理工具禁止混用。 2.7 原则上工件打磨后在48小时没有进行焊接,酸洗部件在72小时没有进行焊接,则焊前必须重新打磨焊接区域。 2.8 为保证焊丝的质量,焊丝原则上用完后再到焊丝房领用,对于晚班需换焊丝的,可以在当天白班下班前领用,禁止现场长时间(24小时以上)存放焊丝。 2.9 在焊接作业前,必须检查焊接设备和工装处于正常工作状态。焊

前应检查焊机喷嘴的实际气流量(允差为+3L/min),自动焊焊丝在8圈以下,手工焊焊丝在5圈以上,否则需要更换气体或焊丝;检查导电嘴是否拧紧,喷嘴是否需要清理。导电嘴不能只简单的采用手动拧紧,必须采用尖嘴钳拧紧。检查工装状态是否完好,若工装有损坏,应立即通知工装管理员进行核查,并组织维修,禁止在工装异常状态下进行焊接操作。 2.10 焊接前必须检查环境的温度和湿度。作业区要求温度在5℃以上,MIG焊湿度小于65%,TIG焊湿度小于70%。环境不符合要求,不能进行焊接作业。 2.11 焊接过程中不允许有穿堂风。因此,在焊接作业前必须关闭台位附近的通道门。当焊接过程中,如果有人打开台位相近处的大门,则要立即停止施焊。如果台位附近的空调风影响到焊接作业,也必须将该处空调的排风口关闭,才能进行焊接作业。 2.12 对于厚度在8mm以上(包括8mm)的铝材,焊接要预热,预热温度80℃~120℃,层间温度控制在60℃~100℃。预热时要使用接触式测温仪进行测温,工件板厚不超过50mm时,正对着焊工的工件表面,距坡口表面4倍板厚,最多不超过50mm的距离处测量,当工件厚度超过50mm时,要求的测温点应位于至少75mm距离的母材或坡口任何方向上同一的位置,条件允许时,温度应在加热面的背面上测定,严禁凭个人感觉及经验做事。 2.13 按图纸进行组装,点焊固定,点焊要满足与焊接相同的要求,不属于焊接组成部分的点焊要尽可能在焊接时完全熔化(图纸要求的点焊

焊接缺陷原因分析

常见焊接缺陷及防止措施 (一) 未焊透 【1】产生原因: (1)由于坡口角度小,钝边过大,装配间隙小或错口;所选用的焊条直径过大,使熔敷金属送不到根部。 (2)焊接电源小,远条角度不当或焊接电弧偏向坡口一侧;气焊时,火焰能率过小或焊速过快。 (3)由于操作不当,使熔敷金属未能送到预定位置,号者未能击穿形成尺寸一定的熔孔。(4)用碱性低氢型焊条作打底焊时,在平焊接头部位也容易产生未焊透。主要是由于接头时熔池溢度低,或采用一点法以及操作不当引起的。 【2】防止措施: (1)选择合适的坡口角度,装配间隙及钝边尺寸并防止错口。 (2)选择合适的焊接电源,焊条直径,运条角度应适当;气焊时选择合适的火焰能率。如果焊条药皮厚度不均产生偏弧时,应及时更换。 (3)掌握正确的焊接操作方法,对手工电弧焊的运条和气焊,氩弧焊丝的送进应稳,准确,熟练地击穿尺寸适宜的熔孔,应把熔敷金属送至坡口根部。 (4)用碱性低氢型焊条焊接16MN尺寸钢试板,在平焊接关时,应距离焊缝收尾弧?10~15MM的焊缝金属上引弧;便于使接头处得到预热。当焊到接头部位时,将焊条轻轻向下一压,听到击穿的声音之后再灭弧,这样可消除接头处的未焊透。如果将接头处铲成缓坡状,效果更好。 (二) 未熔合 【1】产生原因: (1)手工电弧焊时,由于运条角度不当或产生偏弧,电弧不能良好地加热坡口两侧金属,导致坡口面金属未能充分熔化。 (2)在焊接时由于上侧坡口金属熔化后产生下坠,影响下侧坡口面金属的加热熔化,造成“冷接”。 (3)横接操作时,在上、下坡口面击穿顺序不对,未能先击穿下坡口后击穿上坡口,或者在上、下坡口面上击穿熔孔位置未能错开一定的距离,使上坡口熔化金属下坠产生粘接,造成未熔合。 (4)气悍时火焰能率小,氩弧焊时电弧两侧坡口的加热不均,或者坡口面存在污物等。【2】防止措施: (1)选择适宜的运条角度,焊接电弧偏弧时应及时更换焊条。 (2)操作时注意观察坡口两侧金属熔化情况,使之熔合良好。 (3)横焊操作时,掌握好上、下坡口面的击穿顺序和保持适宜的熔孔位置和尺寸大小,气焊和氩弧悍时,焊丝的送进应熟练地从熔孔上坡口拉到下坡口。 (三) 焊瘤 【1】产生原因: (1)由于钝边薄,间隙大,击穿熔孔尺寸大。 (2)由于焊接电流过大击穿焊接时电弧燃烧,加热时间过长,造成熔池温度增高,溶池体积增大,液态金属因自身重力作用下坠而形成烛瘤,焊瘤大多存在于平焊、立焊速度过慢等。【2】防止措施: (1)选择适宜的钝边尺寸和装配间隙,控制熔孔大小并均匀一致,一般熔孔直径为0.8~1.25

常见焊接缺陷产生原因及处理办法

以下是焊接缺陷方面的浅析 缺陷产生原因及防止措施 一、缺陷名称:气孔(Blow Hole) 焊接方式发生原因防止措施 手工电弧焊(1)焊条不良或潮湿。 (2)焊件有水分、油污或锈。 (3)焊接速度太快。 (4)电流太强。 (5)电弧长度不适合。 (6)焊件厚度大,金属冷却过速。 (1)选用适当的焊条并注意烘干。 (2)焊接前清洁被焊部份。 (3)降低焊接速度,使内部气体容易逸出。 (4)使用厂商建议适当电流。 (5)调整适当电弧长度。 (6)施行适当的预热工作。 CO2气体保 护焊(1)母材不洁。 (2)焊丝有锈或焊药潮湿。 (3)点焊不良,焊丝选择不当。 (4)干伸长度太长,CO2气体保护不周密。 (5)风速较大,无挡风装置。 (6)焊接速度太快,冷却快速。 (7)火花飞溅粘在喷嘴,造成气体乱流。 (8)气体纯度不良,含杂物多(特别含水分)。 (1)焊接前注意清洁被焊部位。 (2)选用适当的焊丝并注意保持干燥。 (3)点焊焊道不得有缺陷,同时要清洁干净,且使用焊 丝尺寸要适当。 (4)减小干伸长度,调整适当气体流量。 (5)加装挡风设备。 (6)降低速度使内部气体逸出。 (7)注意清除喷嘴处焊渣,并涂以飞溅附着防止剂,以 延长喷嘴寿命。 (8)CO2纯度为99.98%以上,水分为0.005%以下。 埋弧焊接(1)焊缝有锈、氧化膜、油脂等有机物的杂质。 (2)焊剂潮湿。 (3)焊剂受污染。 (4)焊接速度过快。 (5)焊剂高度不足。 (6)焊剂高度过大,使气体不易逸出(特别在焊剂 粒度细的情形)。 (7)焊丝生锈或沾有油污。 (8)极性不适当(特别在对接时受污染会产生气 孔)。 (1)焊缝需研磨或以火焰烧除,再以钢丝刷清除。 (2)约需300℃干燥 (3)注意焊剂的储存及焊接部位附近地区的清洁,以免 杂物混入。 (4)降低焊接速度。 (5)焊剂出口橡皮管口要调整高些。 (6)焊剂出口橡皮管要调整低些,在自动焊接情形适当 高度30-40mm。 (7)换用清洁焊丝。 (8)将直流正接(DC-)改为直流反接(DC+). 设备不良(1)减压表冷却,气体无法流出。 (2)喷嘴被火花飞溅物堵塞。 (3)焊丝有油、锈。 (1)气体调节器无附电热器时,要加装电热器,同时检 查表之流量。 (2)经常清除喷嘴飞溅物。并且涂以飞溅附着防止剂。 (3)焊丝贮存或安装焊丝时不可触及油类。 (2)焊丝突出长度过短。(2)依各种焊丝说明使用。

铝合金焊接缺陷及检验

第八章:焊接缺陷及焊接质量检验 学习要求:掌握焊接中各种焊接缺陷,了解焊接缺陷产生的原因及预防措施,掌握各种焊接检验方法。掌握公司焊缝外观检验标准, 课时:4课时 基本内容 前言:随着科学技术的发展,焊接在工业生产中的地位更加重要。从大量结构的事故原因分析结果可以看出,很多是由于焊接质量不好造成的,而焊工的责任心和操作技能直接影响到焊接质量。为提高焊工的素质,保证焊接结构的使用安全、可靠,对焊工进行培训与考核是十分必要的。 第一节焊接缺陷 焊接缺陷:焊接接头中产生的不符合设计或工艺文件要求的缺陷 一、焊接缺陷的分类按焊接缺陷在焊缝中的位置,可分为外部缺陷与内部缺陷两大类。外部缺陷位于焊缝区的外表面,肉眼或用低倍放大镜即可观察到。例如:焊缝尺寸不符合要求、咬边、焊瘤、弧坑、烧穿、下塌、表面气孔、表面裂纹等。内部缺陷位于焊缝内部,需用破坏性实验或探伤方法来发现。例如:未焊透、未熔合、夹渣、内部气孔、内部裂纹等。 二、常见电焊缺陷 (1)焊缝尺寸不符合要求主要指焊缝宽窄不一、高低不平、余高不

足或过高等。焊缝尺寸过小会降低焊接接头强度;尺寸过大将增加结构的应力和变形,造成应力集中,还增加焊接工作量。焊接坡口角度不当或装配间隙不均匀,焊接电流过大或过小,运条方式或速度及焊角角度不当等均会造成焊缝尺寸不符合要求。 (2)咬边由于焊接参数选择不当,或操作工艺不正确,沿焊趾的母材部位产生的沟槽或凸陷即为咬边。咬边使母材金属的有效截面减小,减弱了焊接接头的强度,而且在咬边处易引起应力集中,承载后有可能在咬边处产生裂纹,甚至引起结构的破坏。产生咬边的原因 操作方式不当,焊接规范选择不正确,如焊接电流过大,电弧过长,焊条角度不当等。咬边超过允许值,应予补焊。 (3)焊瘤焊接过程中,熔化金属流淌到焊缝之外未熔化的母材上,所形成的金属瘤即为焊瘤。焊瘤不仅影响焊缝外表的美观,而且焊瘤下面常有未焊透缺陷,易造成应力集中。对于管道接头来说,管道内部的焊瘤还会使管内的有效面积减少,严重时使管内产生堵塞。焊瘤常在立焊和仰焊时发生。焊缝间隙过大,焊条角度和运条方法不正确,焊条质量不好,焊接电流过大或焊接速度太慢等均可引起焊瘤的产生。(4)烧穿焊接过程中,熔化金属自坡口背面流出,形成穿孔的缺陷称为烧穿。烧穿常发生于打底焊道的焊接过程中。发生烧穿,焊接过程难以继续进行,是一种不允许存在的焊接缺陷。造成烧穿的主要原因是焊接电流太大或焊接速度太低;坡口和间隙太大或钝边太薄以及操作不当等。为了防止烧穿,要正确设计焊接坡口尺寸,确保装配质量,选用适当的焊接工艺参数。单面焊可采用加铜垫板或焊剂垫等办法防

铝合金焊接工艺

铝合金焊接工艺 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

铝合金焊接工艺 铝合金具有较高的比强度、断裂韧度、疲劳强度和耐腐蚀稳定性,并且工艺成形性和焊接性能良好,MIG焊是铝合金焊接的主要方法之一。由于铝合金表面华丽的色泽等诸多优点而被广泛应用于航空、航天及其它运载工具的结构材料;如运载火箭的液体燃料箱,超音速飞机和汽车的结构件以及轻型战车的装甲等。本文主要研究了MIG焊接6063铝合金的工艺方法。 焊接材料 焊接所采用的母材为6063铝合金,焊接壁厚在3mm以上时,开V形坡口,夹角为60°~70°,空隙不得大于1mm,以多层焊完结;焊丝所用的材料为5356铝合金焊丝;壁厚在3mm以下时,不开坡口,不留空隙,不加填充丝;焊接薄铝件, 最好是用低温铝焊条WE53。 焊前准备 坡口加工 铝材可采用机械或等离子弧等方法切割下料。 坡口加工采用机械加工法。加工坡口表面高应平整、无毛刺和飞边。 坡口形式和尺寸根据接头型式,母材厚度、焊接位位置、焊接方法、有无垫板及使用条件。 焊接工艺参数的选择 应在焊接工艺规程规定的范围内正确选用焊接工艺参数

表1手工钨术氩弧焊接工艺参数 焊前清洗 首先,用丙酮等有机溶液除去油污,两侧坡口的清理范围不小于50mm,坡口及其附近(包括垫板)的表面应用机械法清理至露出金属光泽。焊丝去除油污后,应采用化学法除去氧化膜,可用5%~10%的NaOH溶液在70℃下浸泡30~60s,清水冲洗后,再用10%的HNO3常温下浸2min,清水冲洗干净后干燥处理。清理后的焊件、焊丝在4h内应尽快完成施焊。 焊接工艺要求 定位焊缝应符合下列规定: 1)焊件组对可在坡口处点焊定位,也可以坡口内点固。焊接定位焊缝时,选用的焊丝应与母材相匹配。 2)定位焊缝就有适当的长度,间距和高度,以保证其有足够的强度面不致在焊接过程中开裂。 3)定位焊缝如发现缺陷应及时处理。对作为正式焊缝一部分的根部定位焊缝,还应将其表面的黑料,氧化膜清除,并将两端修整成缓坡型。

常见的焊接缺陷及缺陷图片

常见的焊接缺陷(1) 常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。

某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣

波峰焊常见焊接缺陷原因分析及预防对策

波峰焊常见焊接缺陷原因分析及预防对策 A、焊料不足:焊点干瘪/不完整/有空洞,插装孔及导通孔焊料不饱满,焊料未爬到元件面的焊盘上 原因:a) P CB 预热和焊接温度过高,使焊料的黏度过低; b) 插装孔的孔径过大,焊料从孔中流岀; c) 插装元件细引线大焊盘,焊料被拉到焊盘上,使焊点干瘪; d) 金属化孔质量差或阻焊剂流入孔中; e) PCB 爬坡角度偏小,不利于焊剂排气。 对策:a) 预热温度90-130 C,元件较多时取上限,锡波温度250+/-5 C,焊接时间3?5S。 b) 插装孔的孔径比引脚直径大0.15?0.4m m,细引线取下限,粗引线取上线。 c) 焊盘尺寸与引脚直径应匹配,要有利于形成弯月面; d) 反映给PCB加工厂,提高加工质量; e) PCB的爬坡角度为3?7Co B、焊料过多:元件焊端和引脚有过多的焊料包围,润湿角大于90 原因:a) 焊接温度过低或传送带速度过快,使熔融焊料的黏度过大; b) PCB 预热温度过低,焊接时元件与PCB 吸热,使实际焊接温度降低; c) 助焊剂的活性差或比重过小; d) 焊盘、插装孔或引脚可焊性差,不能充分浸润,产生的气泡裹在焊点中; e) 焊料中锡的比例减少,或焊料中杂质Cu的成份高,使焊料黏度增加、流动性变差。 f) 焊料残渣太多。 对策:a) 锡波温度250+/-5 C,焊接时间3?5S。 b) 根据PCB 尺寸、板层、元件多少、有无贴装元件等设置预热温度,PCB 底面温度在90-130o c) 更换焊剂或调整适当的比例; d) 提高PCB 板的加工质量,元器件先到先用,不要存放在潮湿的环境中; e) 锡的比例<61.4%时,可适量添加一些纯锡,杂质过高时应更换焊料; f) 每天结束工作时应清理残渣。 C、焊点桥接或短路 原因:a) PCB设计不合理,焊盘间距过窄; b) 插装元件引脚不规则或插装歪斜,焊接前引脚之间已经接近或已经碰上; c) PCB 预热温度过低,焊接时元件与PCB 吸热,使实际焊接温度降低; d) 焊接温度过低或传送带速度过快,使熔融焊料的黏度降低; e) 阻焊剂活性差。 对策:a) 按照PCB设计规范进行设计。两个端头Chip元件的长轴应尽量与焊接时PCB运行方向垂直,SOT、SOP的长轴应与PCB运行方向平行。将SOP最后一个引脚的焊盘加宽(设计一个窃锡焊盘)。 b) 插装元件引脚应根据PCB 的孔距及装配要求成型,如采用短插一次焊工艺,焊接面元件引 脚露岀PCB表面0.8?3mm,插装时要求元件体端正。 c) 根据PCB尺寸、板层、元件多少、有无 贴装元件等设置预热温度,PCB底面温度在90-130 o D、润湿不良、漏焊、虚焊 原因: a) 元件焊端、引脚、印制板基板的焊盘氧化或污染,或PCB受潮。 b) Chip元件端头金属电极附着力差或采用单层电极,在焊接温度下产生脱帽现象。 c) PCB设计不合理,波峰焊时阴影效应造成漏焊。 d) PCB翘曲,使PCB翘起位置与波峰焊接触不良。 e) 传送带两侧不平行(尤其使用PCB传输架时),使PCB与波峰接触不平行。 f) 波峰不平滑,波峰两侧高度不平行,尤其电磁泵波峰焊机的锡波喷口,如果被氧化物堵塞时,会使波峰岀现锯齿形,容 易造成漏焊、虚焊。 g) 助焊剂活性差,造成润湿不良。

常见的焊接缺陷及产生原因

常见的焊接缺陷及产生原因,非常重要的经验!金属加工 焊接是大型安装工程建设中的一项关键工作,其质量的好坏、效率的高低直接影响工程的安全运行和制造工期。由于技术工人的水准不同,焊接工艺良莠不齐,容易存在很多的缺陷。现整理缺陷的种类及成因,以减少或防止焊接缺陷的产生, 提高工程完成的质量。 一、焊缝尺寸不合要求 焊波粗、外形高低不平、焊缝加强高度过低或过高、焊波宽度不一及 角焊缝单边或下陷量过大等均为焊缝尺寸不合要求,其原因是: 1. 焊件坡口角度不当或装配间隙不均匀。 2. 焊接电流过大或过小,焊接规范选用不当。 3. 运条速度不均匀,焊条(或焊把)角度不当。 二、裂纹 裂纹端部形状尖锐,应力集中严重,对承受交变和冲击载荷、静拉力影响较大,是焊缝中最危险的缺陷。按产生的原因可分为冷裂纹、热裂纹和再热裂纹等。(冷裂纹)指在200℃以下产生的裂纹,它与氢有密切的关系,其产生的主要原因是: 1. 对大厚工件选用预热温度和焊后缓冷措施不合适。 2. 焊材选用不合适。 3. 焊接接头刚性大,工艺不合理。 4. 焊缝及其附近产生脆硬组织。 5. 焊接规范选择不当。 (热裂纹)指在300℃以上产生的裂纹(主要是凝固裂纹),其产生的主要原因是: 1. 成分的影响。焊接纯奥氏体钢、某些高镍合金钢和有色金属时易出现。 2. 焊缝中含有较多的硫等有害杂质元素。 3. 焊接条件及接头形式选择不当。 (再热裂纹)即消除应力退火裂纹。指在高强度的焊接区,由于焊后热处理或高温下使用,在热影响区产生的晶间裂纹,其产生的主要原因是: 1. 消除应力退火的热处理条件不当。 2. 合金成分的影响。如铬钼钒硼等元素具有增大再热裂纹的倾向。

相关文档
最新文档