功能基因组学的研究方法

功能基因组学的研究方法
功能基因组学的研究方法

功能基因组学的研究方法

基因组学(genomics),研究生物基因组和如何利用基因的一门学问。它的研究包括两方面的内容:以全基因组测序为目标的结构基因组学(structural genomics)和以功能鉴定为目标的功能基因组学(functional genomics)。随着测序的完成,功能基因组学成为研究的热门。由于本人的SRT项目是做关于水稻突变方面的,故本文将围绕功能基因组学的研究方法及水稻突变体展开。

功能基因组学,往往又被称为后基因组学(postgenome)。它是利用结构基因组学提供的信息和产物,力图从基因组和系统水平上全面分析基因的功能。目前,大规模、高通量分析基因功能主要借助表达序列标签、cDNA微阵列和DNA 芯片、蛋白质组学、生物信息学以及反向遗传学等方法来实现:

1 表达序列标签(EST)

表达序列标签(Expfessed Sequence Tag,EST)是指从不同组织来源的cDNA 文库中随机挑取克隆,对其进行大规模测序所获得的部分cDNA的5’或3'端序列。一个EST对应于某一种mRNA的cDNA克隆的一段序列,长度一般为300~500bp。建立这些序列的数据库即为EST文库。将测序所得到的ESTs与dbEST等数据库中的数据进行相似性分析,根据核酸或蛋白质序列的同源性比较,即可鉴定出哪些EST代表已知基因,哪些EST代表未知基因,并对所得各基因的EST进行基因表达情况和表达丰度分析。这也是近几年来分离与克隆新基因及基因功能研究的一个行之有效的手段。

2 cDNA微阵列和DNA芯片

cDNA微阵列(cDNA micro-array)和DNA芯片(DNA chip)都是基于Revese Northern杂交以检测基因表达差异的技术。二者的基本原理是利用光导化学合成,照相平板印刷以及固相表面化学合成等技术,在固相支持物上固定成千上万个cDNA、EST或基因特异的寡核苷酸探针,并与放射性同位素或荧光标记的靶DNA进行杂交,然后用相应的检测系统进行检测。根据杂交信号强弱及探针的位置和序列,即可确定靶DNA的表达情况以及突变和多态性的存在。

3 蛋白质组学(Proteomics)

蛋白质组学是以蛋白质组为研究对象,分析细胞内动态变化的蛋白质组成成分、表达水平与修饰状态,了解蛋白质之间的相互作用与联系,在整体水平上研究蛋白质的组成与调控活动规律的一门新兴学科。基因是遗传信息的携带者,而生命活动的执行者却是蛋白质,即基因表达产物。因此对基因功能的研究就离不开对蛋白质功能的研究。随着后基因组学时代的到来,对蛋白质功能的研究必将会从对特定蛋白质的研究上升到对生物体全部蛋白质的表达模式及功能模式的研究,即蛋白质组学的研究。

4 生物信息学(Bioinformatics)

生物信息学是将分子生物学和数学、计算机信息处理技术相结合,用数理和信息科学的观点、理论和方法研究生命现象、组织和分析呈指数增长的生物学数据的一门新兴学科,即以DNA和蛋白质为研究对象,以计算机为主要工具,发展各种软件,对日益增长的海量的DNA和蛋白质的序列结构进行收集、整理、储存、加工、分析和研究,目的是通过这样的分析认识生命的起源、进化、遗传和发育的本质,破译隐藏在DNA序列中的生物信息。它由数据库、计算机网络和应用软件三大部分组成。

5 反向遗传学(Reverse genetics)

传统的遗传学或称为正向遗传学,主要研究自发或诱变突变体中某一突变形状的遗传行为,如控制突变形状的基因的数目及其在染色体上的位置、突变体性状在后代中的传递规律等。而反向遗传学是相对正向遗传学而言的,是在基因功能序列已知的基础上分析基因研究基因功能,一般通过创造功能丧失突变体来研究突变体所造成的表型效应,并推测在生物体内基因的作用。

各种方法各有优缺点,往往结合使用能很好的分析基因组,取得很好的结果。

了解了分析基因组的方法,我们还要有好的材料才能有效地研究水稻。突变体是某个性状发生可遗传变异的材料,或某个基因发生突变的材料。长期以来,水稻育种家尽力地发现和分离有价值的自然突变和变异材料。突变的本质就是DNA序列的改变,包括单个碱基或大的片段发生突变、插入、缺失或结构重排,从而导致遗传信息的改变。突变的目前,水稻突变体的创制常有以下方法:1自发突变

自发突变即在自然环境下发生的遗传信息的变异或突变,但突变率低,一般少于%。水稻的单蘖突变体mocl就属于自发突变。

2 物理、化学诱变

用物理、化学方法可快速获得较广的突变谱及稳定的遗传变异,可导致多位点的变异,比较容易得到饱和突变体库,且具随机突变优点,突变率可达3%左右。

物理方法主要应用辐射产生水稻突变体,电离辐射主要是X射线、y射线、紫外线、α粒子及?粒子、质子及中子等。一般水稻大部分以处理干种子为主,也可处理幼穗分化的植株。化学诱变剂的种类很多,可分为4类:(1)碱基类似物及有关的化合物,5-溴-尿嘧啶、5-溴去氧尿核苷、2-氨基-嘌呤和8-乙氧基咖啡碱;(2)抗生素,重氮丝氨酸、丝裂霉素C和链霉黑素;(3)烷化剂,甲基磺酸乙酯、甲基-N-亚硝基脲烯亚胺、亚硝基乙基尿烷和亚硝基乙基尿;(4)其他种类的诱变剂,亚硝酸和吖啶。

3 插入突变法

插入突变法主要包括T-DNA插入法和转座子法。

T-DNA插入法:T—DNA是来自根癌农杆菌Ti质粒,约20 kb,包含专化冠瘿碱生物合成和冠瘿瘤生长的基因,随机地整合到植物染色体上。自Hiei等(1994)首次报道用农杆菌介导法对水稻成功地实现遗传转化以来,该方法在水稻遗传转化中得到广泛应用并不断完善,并被广泛应用于水稻T—DNA插入突变体库的构建。

转座子法:转座子(transposon)是染色体上一段可移动的DNA片段,它可从染色体的一个位置跳到另一个位置。当转座子跳跃而插入到某个功能基因时,就会引起该基因的失活,并诱导产生突变型,而当转座子再次转座或切离这一位点时,失活基因的功能又可得到恢复。遗传分析可确定某基因的突变是否由转座子引起。用转座子引起的突变的转座子DNA为探针,从突变株的基因组文库中钓出含该转座子的DNA片段,并获得含有部分突变株DNA序列的克隆,进而以该DNA 为探针,筛选野生型的基因组文库,最终得到完整的基因。

不同的研究方法利用了不同的突变机制,突变的本质就是DNA序列的改变,包括单个碱基或大的片段发生突变、插入、缺失或结构重排,从而导致遗传信息的改变。突变的机制主要有以下几种:

1直接作用于DNA模板

亚硝酸和烷化剂等化学诱变剂可直接作用于DNA,改变模板的性质或干扰复制,使错误的碱基插入而产生突变。如最常用的EMS化学诱变所导致的DNA突变。

2 碱基类似物诱变

DNA复制时渗透入并且与互补链上的碱基生成氢键而配对,从而抵抗DNA酶的3’外切核酸酶活性的校对功能,如5一溴一尿嘧啶、5一溴去氧尿核苷、2一氨基一嘌呤、8-乙氧基咖啡碱所导致的DNA突变。

3 移码突变

吖啶橙、原黄素和吖黄素等吖啶类染料分子均含有吖啶稠环。这种三环分子的大小与DNA的碱基对大小差不多,可以嵌合到DNA的碱基对之间,于是原来相邻的两个碱基对分开一定的距离,含有这种染料分子的DNA在复制时,由于某种目前尚不知晓的原因,可以插入一个碱基,偶尔也有两个。这样就出现一个或几个碱基对的插入突变。有时也有很低频率的单碱基缺失突变。所有这些突变,都引起阅读框的改变。

4 转座成分的致突变作用

生物体内含有许多转座成分,它们一般长数百至数千bp,可以通过一种复杂的转座机制将其一个复制拷贝插入到基因组的另一个位点。如果这个位点处于一个基因内部,这种大片段的插入常常造成基因失活。

5 紫外线等的致突变作用

紫外线照射DNA,由于高能粒子的直接作用和自由基的间接作用,引起DNA 分子的各种损伤,嘧啶二聚体是其中一种重要的损伤。这些损伤诱发了错误潜伏的SOS修复系统,从而导致很高的突变率。

我国功能基因组学研究虽然启动时间较短,但也取得了一定的进展,我以后进入实验室应该会更多的接触到相关知识。这次的论文在一定程度上扩充了我的知识面,增长了我的见识,虽然完成它用了不少时间,我觉得还是值得的。

麻醉药物基因组学进展

麻醉药物基因组学进展 本文对药物基因组学的基本概念和常用麻醉药的药物基因组学研究进 展实行综述。 药物基因组学是伴随人类基因组学研究的迅猛发展而开辟的药物遗传 学研究的新领域,主要阐明药物代谢、药物转运和药物靶分子的基因 多态性及药物作用包括疗效和毒副作用之间关系的学科。 基因多态性是药物基因组学的研究基础。药物效应基因所编码的酶、 受体、离子通道作为药物作用的靶,是药物基因组学研究的关键所在。基因多态性可通过药物代谢动力学和药物效应动力学改变来影响麻醉 药物的作用。 基因多态性对药代动力学的影响主要是通过相对应编码的药物代谢酶 及药物转运蛋白等的改变而影响药物的吸收、分布、转运、代谢和生 物转化等方面。与麻醉药物代谢相关的酶有很多,其中对细胞色素- P450家族与丁酰胆碱酯酶的研究较多。基因多态性对药效动力学的影 响主要是受体蛋白编码基因的多态性使个体对药物敏感性发生差异。 苯二氮卓类药与基因多态性:咪唑安定由CYP3A代谢,不同个体对咪 唑安定的清除率可有五倍的差异。地西泮是由CYP2C19和CYP2D6代谢,基因的差异在临床上可表现为用药后镇静时间的延长。 吸入麻醉药与基因多态性:RYR1基因变异与MH密切相关,现在已知 至少有23种不同的RYR1基因多态性与MH相关。氟烷性肝炎可能源于 机体对在CYP2E1作用下产生的氟烷代谢产物的一种免疫反应。 神经肌肉阻滞药与基因多态性:丁酰胆碱酯酶是水解琥珀酰胆碱和美 维库铵的酶,已发现该酶超过40种的基因多态性,其中最常见的是被 称为非典型的(A)变异体,与用药后长时间窒息相关。 镇痛药物与基因多态性:μ-阿片受体是阿片类药的主要作用部位, 常见的基因多态性是A118G和G2172T。可待因和曲马多通过CYP2D6代

基因组学研究的应用前景

基因组学研究的应用前景摘要:基因组学是一门研究基因组的结构,功能及表达产物的学科,基因组的结构不仅是蛋白质,还有许多复杂功能的RNA,包括三个不同的亚领域,及结构基因组学,功能基因组学和比较基因组学。近几年,基因组学在微生物药物,细菌,病毒基因,营养基因方面都有进展,其前景是光明的。 关键词:基因研究未来结构 一、微生物药物产生菌功能基因组学研究进展 微生物药物是一类化学结构和生物活性多样的次级代谢产物,近年来多个产生菌基因组序列已经被测定完成,在此基础上开展的功能基因组研究方兴未艾,并在抗生素生物合成,形态分化,调控,发育与进化及此生代谢产物挖掘等方面有着新的发现,展现出广阔的研究前景,青霉素及其衍生的《》内酰胺类抗生素极大地改善了人类的卫生保健和生活质量,并促进研究人员不断对其工业生产菌株类黄青霉进行遗传改良和提高其产量,从而降低生产成本。经过60年的随机诱变筛选,当前青霉素产量至少提高了三个数量级,同时,青霉素的生物合成机理也得到了较为清晰的阐述,其pcbAB编码的非核糖体肽合酶ACVS~DPcbc编码的异青霉素N合成酶IPNS位于细胞质中,而苯乙酸COA连接酶PenDE编码的IPN酰基转移酶位于特殊细胞器一微体中。 研究发现,青霉素合成基因区域串联扩增,产黄青细霉胞中微体含量增加都可显著提高青霉素产量。然而随机诱变筛选得到的黄青霉工业菌株高产的分子机制尚不明确。为此,2008年荷兰研究人员联合国美国venter基因组研究所对黄青霉wisconsin54—1225进行了基因组测试和分析,并进一步利用DNA芯片技术研究了wisconsin54—1255及其高产菌株DS17690在培养基中是否添加侧链前体苯乙酸情况下的转录组变化,四组数据的比较分析发现,有2470个基因至少在其中一个条件下是差异表达的,根据更为严格的筛选标准,在PPA存在的条件下,高产菌相比测序菌株有307个基因转录是上调的,和生长代谢,青霉素前体合成及其初级代谢和转运等功能相关,另有271个基因显著下调,主要是与生长代谢及发育分化相关的功能基因。 二、乳酸菌基因组学的研究进展

基因组学的研究内容

基因组学的研究内容 结构基因组学: 基因定位;基因组作图;测定核苷酸序列 功能基因组学:又称后基因组学(postgenomics基因的识别、鉴定、克隆;基因结构、功能及其相互关系;基因表达调控的研究 蛋白质组学: 鉴定蛋白质的产生过程、结构、功能和相互作用方式 遗传图谱 (genetic map)采用遗传分析的方法将基因或其它dNA序列标定在染色体上构建连锁图。 遗传标记: 有可以识别的标记,才能确定目标的方位及彼此之间的相对位置。 构建遗传图谱 就是寻找基因组不同位置上的特征标记。包括: 形态标记; 细胞学标记; 生化标记;DNA 分子标记 所有的标记都必须具有多态性!所有多态性都是基因突变的结果! 形态标记: 形态性状:株高、颜色、白化症等,又称表型标记。 数量少,很多突变是致死的,受环境、生育期等因素的影响 控制性状的其实是基因,所以形态标记实质上就是基因标记。

细胞学标记 明确显示遗传多态性的染色体结构特征和数量特征 :染色体的核型、染色体的带型、染色 体的结构变异、染色体的数目变异。优点:不受环境影响。缺点:数量少、费力、费时、对生物体的生长发育不利 生化标记 又称蛋白质标记 就是利用蛋白质的多态性作为遗传标记。 如:同工酶、贮藏蛋白 优点: 数量较多,受环境影响小 ?

缺点: 受发育时间的影响、有组织特异性、只反映基因编码区的信息 DNA 分子标记: 简称分子标记以 DNA 序列的多态性作为遗传标记 优点: ? 不受时间和环境的限制 ? 遍布整个基因组,数量无限 ?

不影响性状表达 ? 自然存在的变异丰富,多态性好 ? 共显性,能鉴别纯合体和杂合体 限制性片段长度多态性(restriction fragment length polymorphism , RFLP ) DNA 序列能或不能被某一酶酶切,

氯吡格雷药物基因组学及个体化治疗研究进展与展望

·944· 中华老年多器官疾病杂志 2013年12月28日 第12卷 第12期 Chin J Mult Organ Dis Elderly, Vol.12, No.12, Dec 28, 2013 收稿日期: 2013?06?18; 修回日期: 2013?07?18 基金项目: 国家自然科学基金面上项目(30971259,30570736/C03030201); 解放军总医院临床扶持基金(2012FC-TSYS-3042) 通信作者: 卢才义, E-mail: cylu2000@https://www.360docs.net/doc/de16997721.html,; 尹 彤, E-mail: yintong2000@https://www.360docs.net/doc/de16997721.html, ·综 述· 氯吡格雷药物基因组学及个体化治疗研究进展与展望 张蓝宁,卢才义*,尹 彤* (解放军总医院老年心血管病研究所,北京 100853) 【摘 要】通过与阿司匹林联合应用,氯吡格雷已经成为治疗急性冠脉综合征和预防经皮冠状动脉介入术后支架内 血栓形成和再发缺血事件的经典口服抗血小板药物。尽管如此,氯吡格雷抗血小板的反应性和疗效存在显著的个体间差异。近年来的研究证实,除临床环境因素外,遗传变异是导致氯吡格雷抗血小板反应性个体间差异的重要因素之一。多项大规模临床药物基因组学研究发现,参与氯吡格雷代谢的关键酶——CYP2C19功能缺失型等位基因与氯吡格雷治疗期间高血小板反应性及心血管一级缺血终点事件的发生密切相关。另外,与氯吡格雷代谢相关的其他基因变异型也被证实可能与氯吡格雷抗血小板反应性及不良心血管事件相关。在此基础上,利用药物基因组学基因型检测指导氯吡格雷个体化抗血小板治疗,可能部分克服氯吡格雷治疗期间的高血小板反应性,但研究结果之间仍存在争议,尚需深入研究以提供更有力的证据。除此之外,未来有必要进一步深入研究基因型检测联合血小板功能监测共同指导氯吡格雷抗血小板个体化治疗的效果。 【关键词】氯吡格雷;遗传药理学;CYP2C19;血小板反应性;心血管缺血事件;个体化医学 【中图分类号】 R541.4 【文献标识码】 A 【DOI 】 10.3724/SP.J.1264.2013.00239 Pharmacogenomics and individualized therapy of clopidogrel: evidence and perspectives ZHANG Lan-Ning, LU Cai-Yi *, YIN Tong * (Institute of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China) 【Abstract 】 Dual antiplatelet therapy with aspirin and clopidogrel is the standard care to prevent stent thrombosis and recurrent ischemic events after acute coronary syndrome or stent placement. However, there is a large inter-individual variability in biological anti-platelet responsiveness and clinical outcomes in patients after clopidogrel treatment. Apart from clinical and environmental factors, recently accumulated evidence strongly confirms the pivotal role of genetic factors for the variability of clopidogrel responsiveness. Several large-scale pharmacogenomic studies found that the loss-of-function alleles of CYP2C19 and the key enzyme in clopidogrel metabolism are the predominant genetic mediators of low clopidogrel responsiveness and recurrent cardiovascular events. Other genetic polymorphisms related with clopidogrel metabolism may also contribute to the variability of clopidogrel efficacy. On the basis of these observations, it is still in controversy whether CYP2C19-genotype-guided individualized clopidogrel therapy could overcome the high on-treatment platelet reactivity to clopidogrel. In the future, it is necessary to combine genotyping and platelet function testing to guide the individualized clopidogrel therapy. 【Key words 】 clopidogrel; pharmacogenetics; CYP2C19; platelet function; cardiovascular ischemic events; individualized medicine This work was supported by the General Program of National Natural Science Foundation of China (30971259, 30570736/C03030201) and the Supporting Fund of People’s Liberation Army General Hospital (2012FC-TSYS-3042). Corresponding author: LU Cai-Yi, E-mail: cylu2000@https://www.360docs.net/doc/de16997721.html,; YIN Tong, E-mail: yintong2000@https://www.360docs.net/doc/de16997721.html, 通过与阿司匹林联合应用,氯吡格雷(clopidogrel )已经成为治疗急性冠脉综合征(acute coronary syndrome ,ACS )和预防经皮冠状动脉介入(percutaneous coronary intervention , PCI )术后支架内血栓形成和再发缺血事件的经典口服抗血小板药物[1,2], 但氯吡格雷抗血小板反应性和疗效存在显著的个体差异。除临床环境因素外,基因多态性在其中起了重要作用。多项大

癌症基因组学研究概要

医脉通2013-08-27分享 人们对于肿瘤治疗的关注越来越多的集中于以特定分子突变为基础的更加精确的治疗。 在2013年的ASCO会议上,一些振奋人心的摘要展示了这种向分子靶向治疗的转变如何改变了抗肿瘤药物的应用范围。尽管这些摘要也许并不是本次会议上最独特、最重要的分子方面的研究,但它们清晰的阐述了这个快速发展的领域的范围和复杂性。 从黑色素瘤到肺癌 在近50%的黑色素瘤患者中,BRAF的激活突变被证明是一个重要的肿瘤进展的驱动因素[1],但这种突变在非小细胞肺癌中极为少见(发生率小于2%)。 为了评估在非小细胞肺癌中进行BRAF抑制的生物学和临床有效性,研究人员用达拉菲尼对17例BRAF阳性的非小细胞肺癌进行了治疗。达拉菲尼是一种用来治疗BRAF突变阳性的黑色素瘤的抗肿瘤药物[2]。截止至报道时,研究人员对13例之前接受过化疗的患者进行了疗效评估,其中7例获得部分缓解,1例为疾病稳定状态。这种反应在1例患者身上持续了49周。至报道时大部分患者还在进行积极的化疗。 从肺癌到结直肠癌 在2%-5%肺腺癌患者中可以找到ROS1和ALK重排,且这些患者对于特定酪氨酸激酶抑制剂十分敏感[3-4]。研究者评估了236例转移性结直肠癌患者,发现其中3例(占整体的1%)存在ALK重排或ROS1突变[5]。研究者们将进行更多的试验来明确这些分子突变是否对特定的靶向抗肿瘤药物有临床反应,如同在肺癌中观察到的那样。 重新定义PARP抑制剂的治疗对象 之前报道的一项2期临床试验显示了在对铂类为基础的化疗方案有二次反应的晚期浆液性卵巢癌患者中使用PARP抑制剂奥拉帕尼作为支持治疗时可延迟疾病进展时间[6]。更早期的数据显示PARP抑制剂可能对5%-10%的存在BRCA突变的卵巢癌患者有效[7],研究者对这项入组了265例患者的临床试验中能获得BRCA突变状态的218例患者进行了重新分析[8]。在这218例患者中,与安慰剂组相比,使用奥拉帕尼治疗的患者疾病进展中位时间增加了近3倍(11.2月vs 4.1月)。 重新评估未知来源肿瘤的定义 通过现代技术,大部分被诊断为未知来源肿瘤的患者可最终确定原发肿瘤的位置[9]。然而,也有一小部分低分化的未知来源肿瘤的患者目前仍无法确定原发肿瘤的位置,且这部

药物基因组学相关数据库

药物基因组学数据库 1、Drugbank 2、dgidb 3、pharmGKB 4、cancercommon 5、ChEMBL 6、mycancergenome 7、TTD 8、guidetopharmcology 9、clearityfoundation 10、CIViC https://https://www.360docs.net/doc/de16997721.html,/#/home 11、DoCM https://www.360docs.net/doc/de16997721.html,/ 1 Drugbank 药物和药物靶标资源库。DrugBank是一个独特的生物信息学/化学信息学资源,它结合了详细的药物(例如化学制品)数据和综合的药物靶点(即:蛋白质)信息。该数据库包含了超过4100个药物条目,包括超过800个FDA认可的小分子和生物技术药物,以及超过3200个试验性药物。此外,超过1.4万条蛋白质或药物靶序列被链接到这些药物条目。每个DrugCard条目包含超过80个数据域,其中一半信息致力于药物/化学制品数据,另一半致力于药物靶点和蛋白质数据。许多数据域超链接到其他数据库(KEGG、PubChem、ChEBI、Swiss-Prot和GenBank)和各种结构查看小应用程序。该数据库是完全可搜索的,支持大量的文本、序列、化学结构和关系查询搜索。DrugBank的潜在应用包括模拟药物靶点发现、药物设计、药物对接或筛选、药物代谢预测、药物

相互作用预测和普通药学教育。DrugBank可以在http://www.drugbank.ca 使用。广泛应用于计算机辅助的药物靶标的发现、药物设计、药物分子对接或筛选、药物活性和作用预测等。 在查询中,每一种药物对应1个DrugCard,即我们所得到的检索结果。每一个DrugCard都包含的数据信息分为药物、靶标和酶三部分。 药物信息包括了该药物的CAS号、商品名、分子式、分子量、SMILES、2D 和3D结构、logP、logS、pKa、熔点、吸收性、Caco-2细胞穿透性、药物类别和临床使用、性质描述、剂型与给药途径、半衰期、体内的生物转化、毒性、作用于哪些生物体、食物对服用的影响、与其它药物的相互作用、作用机理、代谢途径、药理学特征、与蛋白质的结合情况、溶解度、物质形态、同义词、关于合成的相关文献等,还与ChEBI、GenBank、PubChem等外部数据库有链接。 靶标的信息包括ID、名称、靶标基因的名称、蛋白质序列、残基数目、分子量、等电点、功能和活性、参与的代谢途径和反应、体内分布、靶标信号、跨膜区域、靶标基因序列及其在GenBank、HGNC等外部数据库中的ID和链接、参考文献,以及在GenBank和Swiss-Prot中的链接。 酶的信息包括名称、蛋白质序列、基因名称、在Swiss-Prot 等数据库中的链接。 在DrugBank的主界面上,在Browse菜单下可以浏览数据库的内容,其中PharmaBrowse为用户提供了分类浏览的功能。这为药剂师、医生以及寻找潜在药物的研究人员提供了方便。在Search下拉菜单下,就是Drug Bank的4类检索方式。ChemQuery允许用户通过绘制结构图或书写SMILES、分子式进行结构搜索。在检索过程中还可以对搜索药物类型、分子量范围、搜索结果相似度、结果数量最大值等进行设置。TextQuery则为文本检索功能。文本检索支持逻辑运算符连接及在特定领域内搜索。例如,在“dextromethorphan”中检索混合物,可以键入“mixtures:dextromethorphan”,即用分号在后面输入领域,同时可以加入逻辑运算符,例如,在“dextrome thorphan”和“doxylamine”2个领域进行检索,可以键入“mixtures:dextromethorphan AND mixtures:doxylamine”。SeqSearch为用户提供了通过序列检索蛋白质的功能。Data Extractor是1

环境基因组学的研究进展及其应用

环境基因组学的研究进展及其应用 贾海鹰 张徐祥 孙石磊 赵大勇 程树培* (南京大学,环境学院,南京,210093) E-mail(jhy194@https://www.360docs.net/doc/de16997721.html,) 摘 要:本文系统地介绍了环境基因组学的基本概念、研究的主流技术平台及其在环境污染控制、健康风险检测与评价等方面地应用,并阐明了环境基因组学与生物信息学两者之间的关系。环境基因组学在分子水平上揭示了环境污染物与生物之间的相互作用,为检测、控制环境污染维护环境健康注入了新的活力。 关键词:环境基因组学 生物信息学 健康风险评价 环境污染 环境健康 1.引言 2003年4月14日,人类基因组计划(Human Genome Project)顺利完成。HGP成功地绘制出了遗传图谱、物理图谱、序列图谱和转录图谱4张图谱。这标志着人类基因组计划的所有目标全部实现。至此,HGP的研究发生了翻天覆地的变化,已从结构基因组学研究时代进入了功能基因组(后基因组)时代[1-2],因此也就有了“人类后基因组计划”。HGP正朝着生物信息科学、计算机生物技术、数据处理、知识产权及社会伦理学研究等多方面发展,对生命科学、环境科学、医疗卫生、食品制药、人文科学各领域产生了广泛而深远的影响。环境基因组学(environmental genomics)是在人类基因组基础上发展的功能基因组内容之一,由基因组学和环境科学交叉融合而成,是一个近期发展起来的新型边缘学科,是基因组学技术和成果在环境污染保护与控制和生态风险评价中的应用,在其发展的短短的几年时间内已渗透到环境科学研究的各个研究领域并发挥着日益重要的作用。 2.环境基因组学的概念与定义 至今,国内外学者对环境基因组学还没有统一明确的定义。但是,大多数学者认为,环境基因组学(environmental genomics)的概念与毒理基因组学(toxicogenomics)密切相关。自从1999年Nuwaysir等[3]首次提出毒理基因组学概念至今,在短短的八年的时间里这一概念不断地发展和完善着。目前人们普遍采纳的定义有两种,一种是美国国家毒理学规划机构给出的定义[3]:毒物基因组学是研究外来化学物对基因活性和基因产物的影响及相互作用的科学;另一种是由世界卫生组织给出的定义[3],认为毒物基因组学是一门与遗传学、基因组水平上RNA表达(转录组学) 、细胞和组织范围的蛋白表达(蛋白质组学)、代谢谱(代谢组学) 、生物信息学和常规毒理学结合,以阐明化学物作用模式和基因-环境相互作用的潜在意义的科学。1998年4月4日,美国国会顾问环境卫生科学委员会正式投资专项基金进行环境基因组计划研究,其目的是专门研究与环境相关疾病的遗传易感性,寻找对化学损伤易感的基因,鉴定对环境发生反应基因中有重要功能的多态性,并确定它们在环境暴露引起疾病的危险度方面的差异;在疾病流行病学中研究基因与环境的相互作用,从而改善遗传分析技术,优化研究设计,建立样品资源库,把公用的多态性应用于社会、法律和伦理学[4-7]。2001年,Miller 提出环境基因组(Environmental Genomics)是在人类基因组(HGP)基础上发展起来的后 - 1 -

麻醉领域的个体化用药,药物基因组学(Evan Kharasch)

Pharmacogenetics in Anesthesia Evan D. Kharasch, M.D., Ph.D. St. Louis, Missouri 302 Page 1 Pharmacogenetics (or pharmacogenomics) aims to understand the inherited basis for variability in drug response. The promise of pharmacogenetics has been a change from “one drug and dose fits all” to individualized predictive medicine, or “the right drug at the right dose in the right patient”. Anesthesiology as a specialty played a key role in developing pharmacogenetics. Prolonged apnea after succinylcholine, thiopental-induced acute porphyria, and malignant hyperthermia were clinical problems of the 1960’s whose investigation helped craft the new science of pharmacogenetics. Today we perhaps take for granted the knowledge that they are genetically-based problems, due to variants in pseudocholinesterase, heme synthesis and the ryanodine receptor, respectively. This review will address basic principles of pharmacogenetics and their application to drugs used in anesthetic practice. The term pharmacogenetics was originally defined (1959) as “the role of genetics in drug response”. Since the science of pharmacokinetics (drug absorption, distribution, metabolism, excretion) evolved earlier than pharmacodynamics, early pharmacogenetic studies addressed mainly pharmaco-kinetics. Application (fusion) of the genomic revolution and associated technologies to pharmaco-genetics spawned pharmacogenomics. Pharmacogenetics has been used by some in a more narrow sense, to refer only to genetic factors which influence drug kinetics and dynamics (drug receptor actions), while pharmacogenomics has been used more broadly to refer to the application of genomic technologies (whole-genome or individual gene changes) to drug discovery, pharmacokinetics and pharmacodynamics, pharmacologic response, and therapeutic outcome. Nonetheless, many consider this distinction unimportant and use the two terms interchangeably, as will this review. BASIC CONCEPTS A polymorphism is a discontinuous variation in a population (a bimodal or trimodal distribution). It is different than simple continuous variability (i.e. a unimodal population distribution, even if quite wide). A genetic polymorphism is the presence of multiple discrete states (i.e. for a particular trait) within a population, which has an inherited difference. The complete human genome consists of approximately 3 billion base pairs, which encode approximately 30,000 genes. A single nucleotide polymorphism (SNP) is a variation in the DNA sequence which occurs at a specific base. Polymorphisms are relatively common, occurring by definition in ≥1% of the population, while mutations are less common, occurring in <1%. Only 3% of DNA consists of sequences which code for protein (exons). Other portions of the DNA include promoter regions (near the transcription initiation site), enhancer regions (which bind regulatory transcription factors), and introns (DNA sequences which do not code for protein). After exons and introns are transcribed, the intronic mRNA is excised and the exonic mRNA is spliced together to form the final mature mRNA, which then undergoes translation into protein. SNPs are frequent, occurring in approximately 1:100-1:1000 bases. SNPs and mutations may occur in the coding or noncoding regions of the DNA. Since most occur in the latter, they are usually synonymous (or silent, having no effect on proteins), although intronic changes and promoter variants can change protein expression. Non-synonymous SNPs result in a change in an amino acid. A conservative change results in a similar amino acid that does not alter protein function, while a non-conservative change yields an amino acid which alters protein structure or function. These latter SNPs may be clinically significant. SNPs are not the only events which can cause RNA and protein changes; others are deletions, insertions, duplications, and splice variants, however these are not inherited. Multiple SNPs can occur in the DNA which encodes a particular protein. A haplotype is a set of closely linked alleles or DNA polymorphisms which are inherited together. While SNPs are important, haplotypes are more clinically relevant. Polymorphisms can be classified at the DNA locus (which depicts the normal “wild-type” and the altered base pair; for example the mu opioid receptor gene polymorphism at base pair 118 which codes for changing an adenine nucleotide to a guanine is abbreviated as A118G, or 118 A>G); at polymorphism changes the amino acid at position 40

药物基因组学相关数据库

药物基因组学相关数据 库 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

药物基因组学数据库1、Drugbank 2、dgidb 3、pharmGKB 4、cancercommon 5、ChEMBL 6、mycancergenome 7、TTD 8、guidetopharmcology

9、clearityfoundation 10、CIViC https://https://www.360docs.net/doc/de16997721.html,/#/home 11、DoCM https://www.360docs.net/doc/de16997721.html,/ 1 Drugbank 药物和药物靶标资源库。DrugBank是一个独特的生物信息学/化学信息学资源,它结合了详细的药物(例如化学制品)数据和综合的药物靶点(即:蛋白质)信息。该数据库包含了超过4100个药物条目,包括超过800个FDA认可的小分子和生物技术药物,以及超过3200个试验性药物。此外,超过1.4万条蛋白质或药物靶序列被链接到这些药物条目。每个DrugCard条目包含超过80个数据域,其中一半信息致力于药物/化学制品数据,另一半致力于药物靶点和蛋白质数据。许多数据域超链接到其他数据库(KEGG、PubChem、ChEBI、Swiss-Prot和GenBank)和各种结构查看小应用程序。该数据库是完全可搜索的,支持大量的文本、序列、化学结构和关系查询搜索。DrugBank的潜在应用包括模拟药物靶点发现、药物设计、药物对接或筛选、药物代谢预测、药物相互作用预测和普通药学教育。DrugBank可以在http://www.drugbank.ca使用。广泛应用于计算机辅助的药物靶标的发现、药物设计、药物分子对接或筛选、药物活性和作用预测等。

进化基因组学研究进展

进化基因组学研究进展 刘超 (山东大学生命科学学院济南250100) 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从 基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进 化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 前言 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学(Evolutional Genomics)。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 1进化基因组学研究内容 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学 数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们 可以分析基因组数据,利用进化基因组学研究系统进化。

目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面[2](如图1)。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学[2]、基因注释的等方面;在新基因方面主要分析基因产生机制和新基因固定及其动力学研究。 图1 进化基因组学主要研究内容 目前进化基因组学的研究有力的解决了一些基础性的进化问题,但也出现了一些未来需要急需解决的挑战。例如生物进化的本质和目前重建系统进化树方法 的限制[1]。 2研究进化基因组学的方法 研究进化基因组学的方法主要包括利用基因组数据分析和研究新基因的产 生和演化两种。 2.1利用基因组数据进行系统进化分析 利用基因组数据进行系统进化分析,常有基于基因序列的方法和基于全基因特征的方法。(如图2)

药物基因组学浅析

药物基因组学浅析 药学系曾邦国陈曦 摘要:药物基因组学是以药物效应及安全性为目标,研究各种基因变异与药效及安全性的关系。它是一门研究影响药物吸收、转移、代谢、消除、效应等个体差异的基因特性,即决定药物行为和敏感性的全部基因的新学科。本文综述了药物基因组学的研究方法和手段以及在合理用药、新药开发等多方面的应用情况,并介绍了药物基因组学产品。 关键词:药物基因组学;合理用药;新药开发。 2011年11月17-18日,第一届全国药物基因组学大会暨中国药理学会药物基因组学专业委员会举行了第一次全体会议。这标志着标志着我国药物基因组学和个体化医疗的研究和应用迈入一个新的发展阶段。 1 药物基因组学的定义及其由来 药物基因组学区别于一般意义上的基因学,它不是以发现人体基因组基因为主要目的,而是相对简单地运用已知的基因理论改善病人的治疗。也可以这么说,药物基因组学是以药物效应及安全性为目标,研究各种基因变异与药效及安全性的关系。它是一门研究影响药物吸收、转移、代谢、消除、效应等个体差异的基因特性,即决定药物行为和敏感性的全部基因的新学科;主要阐明药物代谢、药物转运和药物靶分子的基因多态性与药物效应及不良反应之间的关系,并在此基础上研制新的药物或新的用药方法。 2 药物基因组学的研究方法和手段 目前药物基因组学的研究方法有:第一,构建全基因组基因多态性图谱;第二,发现各种疾病和各种药物反应表现型差异与基因多态性的统计关联;第三,根据基因多态性对人群或患者进行疾病易感性和药物反应分类,并开发这种诊断试剂盒;第四,在临床上,针对易感人群进行疾病防治,针对不同药物反应的患者进行个性化治疗。[3]药物基因组学通常采用两种研究手段。第一种即“候选基因”策略,第二种是基因组范围内遗传标志物和药物反应表型之间的关联研究。“候选基因”策略,主要是在给定某一药物的条件下,比较有反应者及无反应者靶基因多态性出现的频率。该方法的一个局限性是候选基因的选择需以给定药物的假定作用机制和(或)所治疗疾病的病理生理学为根据。因此,该方法的成功建立在上述假设的真实性上,且不能鉴定那些根据药物作用或疾病生物学难以预测的新基因。基因组范围内遗传标志物和药物反应表型之间的关联研

基因组学复习参考

基因组学复习参考(个人见解) 1、原核与真核生物基因组在结构与进化上的异同(古细菌也要留意) 2、遗传图、物理图的绘制方法 3、什么是重复序列?重复序列的种类有哪些(包括原核与真核生物)? 4、DNA测序的基本方法有酶法(桑格法)、化学法两种,描述其原理,解释两种方法的化学反应原理。(可绘图) 5、全基因组序列的测定方法有两种:散弹法和逐个克隆测定法。以细菌基因组(水稻基因组等)为例,解释测定全基因组DNA序列的基本过程和基本原理。 6、近年来蛋白质组学有哪些主要研究方法?它们的基本原理是什么? 7、表观遗传学的定义、包括哪些内容、研究方法 8、转录组的定义、研究的基本方法和实验原理 9、列举第二代测序仪的种类及基本测序原理? 10、全基因组关联性研究和研究的基本方法?(GW AS) 这些是基因组学中比较重要的十大问题。 其余还有 1、列举几种已经测定序列的生物基因组(如人类、小鼠、鸡、水稻、家蚕和果蝇等) 2、SNP、EST、LGT、VGT、RNA-Seq、酵母双杂交、SAGE、RT-PCR\GC含量、宏基因组、泛基因组等概念 3、分子生物学相关问题:RNA的剪切的几种形式,生物获得新基因的基本途径,非编码RNA的种类与功能,DNA的修复,组蛋白修饰等 4、细胞生物学相关问题:肿瘤细胞特征及肿瘤发生关键因素,线粒体、叶绿体特点及起源 5、生物信息学相关问题:常用的生物信息学数据库及序列比对常用的软件和其特点,基因识别的常用软件和原理 6、基因工程相关问题:基因组文库构建与常见载体等 下面是咱们所基因组学的考试大纲还有历年基因组学试题,大家可以参考一下,希望对大家复习有所帮助。 中国科学院北京基因组研究所研究生入学考试 《基因组学》考试大纲 一、考试内容 1.基因组导论 考试内容 ●基因组学的研究对象和发展历程 ●基因在DNA水平、RNA和蛋白质水平的定义 ●基因组的定义和基因组的分类 ●基因学研究的基本内容 ●基因组学研究的基本技术与方法 考试要求 ●了解基因组研究的基本对象、内涵和最新进展

植物基因组学的的研究进展

基因组学课程论文 题目:植物基因组学的的研究进展姓名:秦冉 学号:11316040

植物基因组学的的研究进展 摘要:随着模式植物——拟南芥和水稻基因组测序的完成,近年来关于植物基因组学的研究越来越多。本文主要对拟南芥、水稻2种重要的模式植物在结构基因组学、比较基因组学、功能基因组学等领域的研究进展以及研究所使用的技术方法进行简单介绍。 关键词:植物;基因组学;研究进展 The recent progress in plant genomics research Abstract: With the completion of genome sequencing ofthe model plant-- Arabid opsis and rice,more and more researches on plant genomics emerge in recent yea rs. The research progress of the 2 important model plant--Arabidopsis and rice in structural genomics,comparative genomics,functional genomics and technology methods used in this research are introduced briefly in this paper. Keywords:plant; genomics; research advances 前言 基因组是1924年提出用于描述生物的全部基因和染色体组成的概念。1986年由美国科学家Thomas Roderick提出的基因组学是指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录本图谱)、核苷酸序列分析、基因定位和基因功能分析的一门科学。自从1990年人类基因组计划实施以来,基因组学发生了翻天覆地的变化,已发展成了一门生命科学的前沿和热点领域。而植物基因组研究与其他真核生物和人类基因组研究有很大的不同。首先,不同植物的基因组大小即使在亲缘关系非常近的种类之间差别也很大; 其次,很多植物是异源多倍体,即便是二倍体植物中有些种类也存在较为广泛的体细胞内多倍化( endopolyp loidy)现象[1]。基因组研究主要包括三个层次:①结构基因组学,以全序列测序为目标,构建高分辨率的以染色体重组交换为基础的遗传图谱和以DNA 的核苷酸序列为基础的物理图谱。②功能基因组学,即“后基因组计划”,是结构基因组研究的延伸,利用结构基因组提供的遗传信息,利用表达序列标签,建立以转录图谱为基础的功能图谱( 基因组表达图谱),系统研究基因的功能,植物功能基因组学是当前植物学最前沿的领域之一。③蛋白质组学,是功能基因组学的深入,因为基因的功能最终将以蛋白质的形式体现。 近来,以水稻( Oryza sativa)和拟南芥(Arabadopsis thaliana)为代表的植物基因组研究取得了很大进展,如植物分子连锁遗传图谱的构建,在此基础上,已经在植物基因组的组织结构和基因组进化等方面得到了有重要价值的结论; 植物基因组物理作图和序列测定的研究集中于拟南芥和水稻上; 植物比较基因组作图证实在许多近缘植物甚至整个植物界的部分染色体区段或整个基因组中都存在着广泛的基因共线性,使得我们可以利用同源性对各种植物的基因组结构进行研究、分析和利用。本文主要对拟南芥、水稻2种重要的模

相关文档
最新文档