环境水体中多环芳烃类污染物及其分析方法

环境水体中多环芳烃类污染物及其分析方法
环境水体中多环芳烃类污染物及其分析方法

环境水体中多环芳烃类污染物及其分析方法

裴秀

(西北师范大学化学化工学院兰州730070)

摘要:随着科学技术和经济的高速发展,环境问题日益受到人们的关注。我国水资源严重短缺,水资源的安全问题尤其重要。为了有效控制水污染,水体质量的检测任务也就很艰巨。有机污染物分布广、组成复杂,分离和测定是研究的难点。多环芳烃(PAHs)是水体中持久性有机污染物的主要成分之一,PAHs类污染物不仅污染最广,致癌性强,而且持久稳定,因此常被作为水中污染物的典型代表。多环芳烃的检测方法主要有气相色谱法、高效液相色谱法以及荧光法等。

关键词:多环芳烃,气相色谱,高效液相色谱,荧光

Pollutants and their analysis methods of polycyclic aromatic

hydrocarbons in environmental water

Pei Xiu

(College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou

730070)

Abstract:With the rapid development of science and technology and economy, environmental issues have become an increasing concern. Serious water shortage and security issues of water resources are particularly important in China. In order to effectively control water pollution, water quality monitoring will be very difficult because of widely distribution, complex composition, difficult separation and determination of organic pollutants. Polycyclic aromatic hydrocarbons (PAHs) are the main components of the persistent organic pollutants in water body. They are widely spread and carcinogenic, long-lasting and stable. Thus they are typical representative contaminants in water. Gas chromatography, high performance liquid chromatography and fluorescence spectrometry are usually employed for the detection of PAHs.

Keywords:Polycyclic aromatic hydrocarbons, gas chromatography, high performance liquid chromatography, fluorescence

1. 多环芳烃化合物

多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)是煤、石油、木材、烟草、有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物,是重要的环境和食品污染物。迄今已发现有200多种PAHs,其中有相当部分具有致癌性,如苯并[a]芘、苯并[a]蒽等。PAHs广泛分布于环境中,可以在我们生活的每一个角落发现,任何有有机物加工废弃,然烧或使用的地方都有可能产生PAHs,例如炼油厂、炼焦厂、橡胶厂和火电厂等任何一家排放烟尘的工厂,各种交通车辆排放的尾气中、煤气及其他取暖设施甚至居民的炊烟中等,据美国对八个洲大气成分的分析显示工业区大气中的PAHs比农业业区高10多倍,PAHs污染物已成为环境污染物中极重要的物质。PAHs 是一种高致癌的物质。现在德国政府强制规定所以在德国政府出售的电动工具必须经过检验其中不含有过量的PAHs,要进入德国市场的电动工具必须通过专业的检验机构的检测。

1.1 PAHs化合物的种类

1、NAP—Naphthalene萘

2、ANY—Acenaphthylene苊烯

3、ANA—Acenaphthene苊

4、FLU—Fluorene芴

5、PHE—Phenanthrene菲

6、ANT—Anthracene蒽

7、FLT—Fluoranthene荧蒽

8、PYR—Pyrene芘

9、B[a]A—Benzo[a]anthracene苯并[a]蒽

10、CHR—Chrysene屈

11、B[b]F—Benzo[b]fluoranthene苯并[b]荧蒽

12、B[K]F—Benzo[k]fluoranthene苯并[k]荧蒽

13、B[a]P—Benzo[a]pyrene苯并[a]芘

14、IPY—Indeno[1,2,3-cd]pyrene茚苯[1,2,3-cd]芘

15、DBA—Dibenzo[a,h]anthracene二苯并[a,n]蒽

16、BPE—Benzo[g,h,i]perylene苯并[g,h,i]北(二萘嵌苯)

1.2 PAHs的特性

1.2.1 持久性

PAHs通过各种环境介质(大气、水、生物体等)能够长距离迁移并长期存在于环境中, 进而对人类健康和环境带来严重的危害。由于PAHs的水溶性极小,它们在土壤中的降解和生物可利用性受到严重限制,由于其具有较高的辛醇-水分配系数, 易于分配到环境中疏水性有机物中, 因此在生物体脂类中易于富集浓缩, 有较高的生物富集因子(BCF)。

1.2.2 “三致”作用

PAHs类化合物具有强烈的致突变作用(mutagenesis)、致癌作用(carcinogenesis) 和致畸作用(teratogenesis), 简称“三致”作用。PAHs对动植物的生长都有明显的影响。多PAHs落在植物叶片上, 使其变色、萎缩、卷曲、直至脱落, 影响植物的正常生长和结果。PAHs对动物的影响也较严重,对小白鼠有全身反应。当PAHs质量浓度为0.01mg/L 时, 小白鼠条件反射活动有显著变化。

PAHs的致癌性已被人们研究了200多年。早在1775年,英国医生波特就确认烟囱清洁工阴囊癌的高发病率与他们频繁接触烟灰(煤焦油)有关,然而直到1932年,最重要的PAHs—苯并芘才从煤矿焦油和矿物油中被分离出来,并在实验动物中发现有高度致癌性。PAHs的种类很多,其致癌活性各有差异。

苯并芘是一种较强的致癌物,主要导致上皮组织产生肿瘤,如皮肤癌、肺癌、胃癌和消化道癌。用含25μg/kg苯并芘的饲料饲喂小鼠140d,除使小鼠产生胃癌外还可诱导其白血球增多和产生肺腺瘤;每周三次摄入100mg的苯并芘,有超过60%的大鼠发生皮肤肿瘤;当剂量降为3mg时,大鼠皮肤肿瘤的发生率下降到约20%;当剂量恢复到10mg后,皮肤肿瘤的发生率又可急剧上升至近100%。因此,大鼠皮肤肿瘤与苯并芘有明显的量效关系。1973年,沙巴特等人的研究表明,苯并芘除诱导胃癌和皮肤癌外,还可引起食管癌、上呼吸道癌和白血病,并可通过母体使胎儿致畸。随食物摄入人体内的苯并[α]芘大部分可被人体吸收,经过消化道吸收后,经过血液很快遍布人体,人体乳腺和脂肪组织可蓄积苯并芘。人体吸收的苯并芘一部分与蛋白

质结合,另一部分则参与代谢分解,与蛋白质结合的苯并芘可与亲电子的细胞受体结合,使制细胞生长的酶发生变异,使细胞失去控制生长的能力而发生癌变。参与代谢分解的苯并芘在肝组织氧化酶系中的芳烃羟化酶(Arylhydrocarbonhydroxylase,AHH)介导下生成其活化产物—7,8-苯并[a]芘环氧化物,该物质可在葡萄糖醛酸和谷胱甘肽结合,或在环氧化物水化酶催化下生成二羟二醇衍生物随尿排出,但苯并芘二羟二醇衍生物经细胞色素P450进一步氧化可产生最终的致癌物—苯并芘二醇环氧化物(Benzopyrenediolepoxide),该物质不可被转化且具有极强的致突变性,可以直接和细胞中不同成分(包括DNA)反应,形成基因突变,从而导致癌的发生。鉴于种种原因,FAO/WHO对食品中的PAHs允许含量未作出规定。有人估计,成年人每年从食物中摄取的PAHs总量为1~2mg,如果累积摄入PAHs超过80mg即可能诱发癌症,因此建议每人每天的摄入总量不可超过10μg。

1.2.3 生物蓄积性

PAHs进入环境后以通过环境蓄积、生物蓄积、生物转化或化学反应等方式损害健康和环境, PAHs并不是直接致癌物, 它在体内经过酶的作用后生成终致癌物。经致癌物与DNA或RNA等结合后产生不可修复的损害而导致癌症。

2. PAHs的来源

PAHs的来源既有天然源, 也有人为源。

2.1 天然源

陆地和水生植物、微生物的生物合成, 森林、草原的天然火灾以及火山活动所形成的PAHs构成了PAHs的天然本底值。由于细菌活动和植物腐烂所形成的土壤PAHs 本底值为100~1000μg/kg。地下水中PAHs的本底值为0.001~0.01μg/L。淡水湖泊中的本底值为0.01~0.25μg/L。

2.2 人为源

PAHs的污染源很多, 它主要是由各种矿物燃料(如煤、石油、天然气等)、木材、纸以及其他含碳氢化合物的不完全燃烧或在还原气氛下热解形成的。

3.PAHs类污染物的分析方法

对于提取和纯化得到的试样,需要借助一些高精仪器进行分析。目前,PAH的检测方法为高效液相色谱法、气相色谱法、色质联用分析方法、二阶激光质谱法和酶

联免疫分析方法等。

3.1 高效液相色谱法

高效液相色谱法(highperformanceliquidchromatography,HPLC)是PAHs的常规检测方法,其分离方法大多为梯度淋洗法,国家标准为甲醇和水的梯度淋洗,而国外的方法为乙腈和水的梯度淋洗。上述两种方法尽管能够实现PAHs的分离,但其缺点是分析时间长(国家标准为60min),并存在基线漂移的问题,很多研究者在PAHs 的富集方面进行了方法的探索和创新。液-液萃取的方法需要耗费大量的超纯试剂,并且萃取液有时会出现乳化现象,既浪费试剂又容易导致误差。郁建栓采用固相萃取流动相进行等梯度洗脱,用荧光检测器进行检测,实现了试样中痕量PAHs化合物的分离分析,富集和分离效果好,分析时间短,无基线漂移,同时节省了试剂,每个样品的分析时间小于15min,利用荧光检测技术实现了试样中7种PAHs的痕量分析。7种PAHs的检出限(ng/L)分别为:荧蒽1.17,苯并(a)蒽0.68,苯并(b)荧蒽1.02,苯并(k)荧蒽0.26,苯并(a)芘0.46,二苯并(ah)0.70,苯并(ghi)北1.29。试样过柱流速为2ml/min时,7种PAHs的吸附回收率分别为:荧蒽125.5%,苯并(a)蒽98.5%,苯并(b)荧蒽95%,苯并(k)荧蒽73.7%,苯并(a)芘72.4%,二苯并(ah)78.5%,苯并(ghi)北78%。Liu Yu等人[5]采用多孔层的固相微萃取技术(SPME)对试样中的PAHs化合物进行富集,再联合HPLC进行测定。多孔覆盖层是通过5μm的硅石颗粒连接苯基、C8及单性和多性的C18固相以进行HPLC分析。该法也有几个因素影响到PAHs 物质的萃取,如连接相的官能团、链的长短以及相的性质(单性或多性)。Garica等人考察了采用SPE(固相萃取)、SPME(固相微萃取)技术联合HPLC以及荧光监测器测定饮用水中的PAHs物质的可行性。研究了纤维性质、萃取化合物的量以及有机溶剂、盐的投加量、取样温度、取样时间对SPME萃取效果的影响。对SPE技术考察了试样投加乙腈的量、试样存放的条件如温度和时间以及萃取溶剂的类型、体积对萃取效果的影响。试验结果表明,两种萃取技术联合HPLC都可以用于饮用水中PAHs物质的测定。相比之下,SPE技术比SPME技术在回收、准确性以及测定范围上更有优越性。Yang等人采用临界水的萃取方法,并采用HPLC技术进行测定PAH 物质,也具有一定的可行性。

3.2、气相色谱法

王丹华等人采用溶胶-凝胶技术,加入自制的新化合物端羟基冠醚,成功地涂制了固相微萃取涂层,用半挥发性的有机污染物多环芳烃评价了涂层的基本性能,并对

实际水样中的PAHs采用气相色谱法(GC)方法进行了分析。该方法的线性范围在0.1~10μg/L,检出限在0.001~0.03μg/L,8种PAHs测定的相对标准偏差在2.05%~9.80%,回收率在85%以上。其微萃取涂层是由4,5-二羟(丙基)甲醚基-苯并15冠-5合成。涂层主要由端羟基硅油、二端羟基冠醚、四乙氧基硅烷、含氢硅油组成,冠醚在涂层中的含量为9%(g/g),经三氟乙酸(含5%水)催化水解,发生缩聚反应形成三维空间网络结构。该方法重现性好,涂层厚度易控制,本实验采用自制80μm聚硅氧烷冠醚的萃取头,萃取头长度1cm。

3.3、色质联用分析方法

潘海洋等人参照美国EPA525.1方法,C18-固相萃取膜萃取饮用水中的有机物,利用GC/MS法鉴定多环芳烃(PAH),使用16种多环芳烃混合标准样绘制标准曲线,以内标法对PAHs进行定量分析。采用本方法研究某水样中的7种多环芳烃的含量,PAHs的平均回收率为94.0%~97.7%,检测限为0.001g/L。Veronica等人研究了固相微萃取技术(SPME)对水中的多环芳烃化合物进行富集并联合GC-MS进行测定的情况,考察了PAHs物质在离子和非离子胶束影响下的分离情况。使用85μm聚丙烯酸和100μm二甲基硅氧烷聚合物涂层的纤维和阴离子(十二烷基硫酸,S DS)、阳离子(十六烷基三甲基色氨酸,CTAB)、非离子(聚乙氧基-10-月桂醇,POLE)表面活性剂进行了PAHs物质的萃取,结果表明SPME技术是一个可行的处理手段S teven 等人采用SPME萃取和GC-MS测定空隙水(porewater,沉淀物中的空隙水)中的PAHs 物质(测定范围ng/L~mg/L)。这种方法可以达到测定范围的要求,同时要求的水样体积小,可以减少水样的收集、运输以及贮存等程序。四种污染程度不同的沉积物(50mg/kg34PAHs~10000mg/kg总PAHs)用SPME技术进行预处理,每次用1.5ml 的空隙水进行分析测定34种PAHs。水样通过离心这些沉淀物,并进行絮凝沉淀后获得。定量校准通过向标准水样中和空隙水中加入15种2~6环的、全氘化的PAHs 进行。SPME联合GC-MS的响应因子可以进行22烷基的PAHs的测定,也可以用来校准18组烷基PAHs物质。DOC(4mg/L~7mg/L)不影响2~3环的PAHs物质的测定;而4~6环的PAHs的测定受DOC的浓度影响,其与DOC/水的分配系数有关(K DOC),logK DOC的范围为4.1(荧蒽)~5.6(苯并[ghi]芘)。但是DOC的影响对EPA规定的34中PAHs物质并没有很大的影响,因为86%~99%的PAHs物质是2环和3环的PAH

3.4、二阶激光质谱法

Thomas等人采用二阶激光质谱仪(two-steplasermassspectrometry,L2MS)测定PAH。采用自制的L2MS系统进行测定,用多模式的CO2激光仪(Alltec853MS,

Lübeck,德国。λ=10.6μm,,0.6J/cm2,107.5ns)与样品表面形成45℃的倾角进行消融。采用远端机械控制方式使样品能够进行自动旋转到新的角度以进行激光消融。通过光参振荡器(OPO)(MOPO-730D10,SpectraPhysicsLasersInc.,MountainView,CA)提供离子化的激光辐射,并通过应用Nd:YAG激发的激光调谐技

(GCR-230,SpectraPhysicsLasersInc。进行三次谐波输出。在波长225~280nm范围内进行离子化效率的研究,脉冲幅长为8ns。对水样进行分析时,激光波长为250nm。Emmenegger等人[12]采用二阶激光质谱法进行定量分析水中的痕量PAH物质

(ng/L)。30ml水样经过PVC膜进行萃取后,直接进行L2MS的测定。该方法可以进行3环到6环的PAH物质的定量测定,测定的范围为2~125ng/L。此方法的萃取效率为75%~90%。

3.5、酶联免疫分析方法

免疫分析法是近几年发展起来以抗原与抗体的特异性、可逆性结合反应为基础的新型分析技术。免疫反应具有很高的选择性和灵敏性。作为相对独立的检测方法,即基于竞争结合分析原理的免疫测定法,包括酶联免疫吸附测定(ELISA)、放射免疫测定法(RIA)、固相免疫传感器等方法。目前使用最普遍的是酶联免疫法(ELISA),具有操作简便、灵敏度高、样品容量大、仪器化程度和分析成本低的优点,是目前理想的残留筛选性分析方法之一,该方法在美国已经得到了很大程度的接受和应用。Barcelo 等人[14]采用ELISA的方法测定和水中的PAH,同时将测定结果与GC-MS方法进行对比。其采用的预处理程序同Manuel等人的方法相同,水样放置于经过

Mucasol(Merz+Co)试剂洗涤和二氯甲烷浸洗的棕色玻璃瓶中(容积2.5l)。水样经过玻璃纤维过滤,同时加入80mg/L的Na2S2O3(通过精加工的饮用水配置)作为脱氯剂。为了进一步抑制生物活性,所有的水样通过加入6N HCl调节pH值为2。然后通过C18Emporedisks(商品型号及产地:JTBaker,Deventer,NL)进行萃取,PAH的回收率为70%~95%。Dietmar等人研究了采用ELISA方法测定PAH的可行性,并与HPLC 测定的结果进行了对比。采用HPLC方法测定的水中主要含有2环和3环的PAH物质(萘、苊、芴、菲、蒽),也包含芘和荧蒽这些化合物。采用ELISA方法没有发现假阴性(falsenegative)的样品(即测定浓度小于0.2μg/L),但是存在18%假阳性(falsepositive)样品存在(即测定浓度大于0.2μg/L)。

综上所述,尽管目前已发展了多种分离和检测PAH物质的方法,HPLC方法和GC-MS方法是具有普遍应用价值的方法。它们的测量精度高,适于标准化,但往往需要进行复杂的样品处理,检测灵敏度也受限于配套的检测器,对设备的要求较高,随着技术的发展可革新。酶联免疫分析方法也会引起较大的关注,免疫法对样品处理要求低、设备和操作简单,比现行的方法灵敏度更高,特别适合于基层单位进行简单快速的检测使用以及大批量样品的普检初筛,但因其自身的局限性,重现性和准确定量方面不及HPLC等方法,在实际工作中可将两者结合,实现从初筛到定量的快速准确检测。

4.结束语

我国研究环境水体中的多环芳烃类污染物及其分析方法方面所作的工作还很少,还没有建立各类污染物的完整的系统的处理方法。我们目前只列举了一些多环芳烃类污染物及其分析的方法,要为以后更为完善的处理污水资源,我们还有待进一步研究。

致谢

感谢杜新贞老师对于做论文期间给予的帮助,以及其认真的科学的严谨的工作态度,给予我们更为深远的影响。

参考文献

[1] 郭炜锋, 戴树桂. 水环境多环芳烃源解析研究进展[J]. 环境污染治理技术与设备,

2005, 6(10): 8-12.

Guo Weifeng, Dai Shugui. Reviews on source apportionment of PAHs in aquatic environment[J]. Techniques and Equipment for Environmental Pollution Control, 2005, 6(10): 8-12.

[2] 郭炜峰. 黄河兰州段沉积物多环芳烃源解析研究[D]. 天津: 南开大学, 2005: 1-59. Guo Weifeng. Source apportionment of Polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Lanzhou reach of Y ellow River[D]. Tianjin: Nankai University, 2005: 1-59.

[3]罗雪梅,刘昌明,何孟常.黄河沉积物中多环芳烃的分布特征及来源分析[J].环境科学研究,2005,18(2):48-50.

[4]杨玉霞,徐晓琳.黄河兰州段水环境中多环芳烃来源解析[J].地下水,2007,29(1):20-23.

[5]冯承莲,夏星辉,周追,等.长江武汉段水体中多环芳烃的分布及来源分析[J].环境科学学报,2007,27(11):1900-1908.

[6]石璇,杨宇,徐福留,等.天津地区地表水中多环芳烃的生态风险[J].环境科学学报,2004,24(4):619-624.

[7] 林秀梅, 刘文新, 陈江麟, 等. 渤海表层沉积物中多环芳烃的分布与生态风险评

价[J]. 环境科学学报, 2005, 25(1): 70-75.

Lin Xiumei, Liu Wenxin, Chen Jianglin, et al. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from Bohai Sea, China[J]. Acta Scientiae Circumstantiae, 2005, 25 (1): 70-75.

多环芳烃类化合物污染及其预防

多环芳烃类化合物污染及其预防 一、食品中B(a)P 污染来源 1.熏烤食品污染熏烤食品时所使用的熏烟中含有多环芳烃(包括B(a)P)。烤制时,滴于火上的食物脂肪焦化产物热聚合反应,形成B(a)P,附着于食物表面,这是烤制食物中B(a)P 的主要来源。食物炭化时,脂肪因高温裂解,产生自由基,并相互结合(热聚合)生成B(a)P,例如烤焦的鱼皮,B(a)P 可高达53.6~70μg/kg。 2.油墨污染油墨中含有炭黑,炭黑含有几种致癌性多环芳烃。有些食品包装纸的油墨未干时,炭黑里的多环芳烃可以污染食品。 3.沥青污染沥青有煤焦沥青及石油沥青两种。煤焦油的蒽油以上的高沸点馏分中含有多环芳烃,石油沥青B(a)P。含量较煤焦沥青少。我国一些地方的农民常将粮食晒在用煤焦沥青铺的马路上,从而使粮食受到污染。 4.石蜡油污染通过包装纸上的不纯石蜡油,可以使食品污染多环芳烃。不纯的石蜡纸中的多环芳烃还可污染牛奶。 5.环境污染食物大气、水和土壤如果含有多环芳烃,则可污染植物。一些粮食作物、蔬菜和水果受污染较突出。 二、对人体的危害 B(a)P 主要是通过食物或饮水进入机体,在肠道被吸收,入血后很快分布于全身。乳腺和脂肪组织可蓄积B(a)P。动物实验发现,经口摄入B(a)P 可通过胎盘进入胎仔体内,引起毒性及致癌作用。B(a)P 主要经过肝脏、胆道从粪便排出体外。 B(a)P 对兔、豚鼠、大鼠、小鼠、鸭、猴等多种动物,均能引起胃癌,并可经胎盘使子代发生肿瘤,造成胚胎死亡及仔鼠免疫功能下降。B(a)P 是许多短期致突变实验的阳性物,但它是间接致突变物,在Ames 试验及其他细菌突变、细菌DNA 修复、姐妹染色单体交换、染色体畸变、哺乳类细胞培养及哺乳类动物精子畸变等实验中均呈阳性反应。 关于B(a)P 致癌的机制与其代谢活化过程有关。B(a)P 在体外并不能与DNA、RNA 或蛋白质以共价结合,但是进入体内后,即被微粒体混合功能氧化

持久性有机污染物多环芳烃对地下水污染分析

持久性有机污染物多环芳烃对地下水污染分析 1 引言 多环芳烃(PAHs)是一类持久性有机污染物,具有较强的致癌、致畸、致突变性,普遍存在于大气、土壤、水体、沉积物等环境介质中.多环芳烃具有半挥发性,它们以“全球蒸馏”和“蚱蜢跳效应”的模式,通过长距离迁移和大气干湿沉降在全球或区域范围内进行大气远距离传输,到达地球的绝大多数地区,导致全球范围的污染.水体是PAHs迁移传输的重要介质,PAHs一般通过大气干湿沉降、地表径流、水-土、水-气界面交换或石油泄漏直接输入等方式进入到水中,在迁移过程中水体中的悬浮颗粒物对PAHs具有强烈的表面吸附作用,而且PAHs能够在沉积物中不断富集,造成对水体多相介质的污染.PAHs最终可通过食物链在动物和人体中发生生物蓄积,对生态系统和人类健康造成潜在的威胁. 岩溶地下水是一种重要的生活饮用水源,在有的地区甚至是唯一的生产生活水源,然而研究发现岩溶区地下水正遭受到PAHs的污染.在岩溶区,土层浅薄,土被不连续,土层对污染物的缓冲、净化作用降低,岩溶天坑、漏斗、落水洞、裂隙等形态为污染物提供了天然通道,地表污染物可直接迁移到地下.毛海红(2012)在重庆雪玉洞上覆土壤、洞穴滴水和地下河中检测到有机氯农药(OCPs),发现在土壤中迁移能力较强的化合物,在地下河水和滴水中含量也较高,证明了岩溶管道或裂隙对污染物的运输成为地下河水遭受有机污染的潜在威胁.基于此,本文以重庆青木关地下河流域水体为研究对象,探讨PAHs在不同类型水中的含量、组成、来源和迁移特征,并对污染水平进行评价,以期为该区地下水资源的保护提供科学依据. 2 研究区概况 青木关地下河流域位于重庆境内川东平行岭谷区华蓥山帚状褶皱束温塘峡背斜中段,构造上,下三叠统嘉陵江组(T1j)碳酸盐岩出露于背斜轴部,在裂隙发育和溶蚀作用下形成典型槽谷(图 1).两翼为中三叠统雷口坡组(T2l)碳酸盐岩和上三叠统须家河组(T3xj)长石石英砂岩、泥质粉砂岩、泥岩并夹有煤系,受轴冀转折处挤压应力作用,形成两侧的岭脊,表现为“一山二岭一槽”的典型岩溶槽谷地貌,背斜轴部经过强烈的挤压还形成了两条近似平行的复式次一级背斜.槽谷呈狭长带状,NNE向展布,南北长约12 km,青木关地下河在区内发育,流向与槽谷走向基本一致,长约7.4 km,为单一岩溶管道型地下河.地下河流域边界和地表分水岭一致,流域面积约13.4 km2,地下河最北端的入口为岩口落水洞,出口为位于流域最南端的姜家泉,出露后流入青木溪并最终汇入嘉陵江.研究区气候为亚热带季风性湿润气候,多年平均降水量为1250 mm,多年平均气温16.5 ℃,降雨主要集中在5—9月.降水为流域的主要补给来源,大部分降水沿坡面汇集到槽谷底部的洼地,通过表层裂隙以面状分散入渗和经落水洞集中注入等方式补给地下河.

多环芳烃污染环境的控制与生物修复研究进展

?综 论? 多环芳烃污染环境的控制与生物修复研究进展 3 T he Po llution Contro l of Po lycyclic A rom atic H ydrocarbons and the R esearch P ro spect of B io rem ediation 张金丽(集美大学生物工程学院,厦门361021)郑天凌(厦门大学生命科学学院,厦门361005) 摘要 该文介绍了多环芳烃的形成机理和在环境中的污染现状;讨论了多环芳烃环境污染的控制途径、微生物降解机理和生物修复的方法,并对其它生物在多环芳烃生物修复中的作用进行了讨论。 关键词:多环芳烃;生物降解;生物修复;污染控制 Abstract T he paper introduces the fo r m ing m echanis m of PA H s and the current status of po lluti on in the environm ent ,and discusses the pathw ay of contro lling the PA H s po lluti on ,the m echanis m of m icrobial degradati on and the m ethod of bi o re 2m ediati on ,and also app roaches the ro le of o ther bi o logy in the bi o rem ediati on repair of PA H s .Key words :Polycyclic aro matic hydrocarbon s ;B iodegradation ;B iolog ical repa ir ;Polluti ng con trol 3 本研究承国家自然科学基金(30070157)及教育部科学技术研究 重点项目基金(99180)资助。 多环芳烃(Po lycyclic A rom atic H ydrocarbon s ,PA H s )是一类广泛分布于天然环境中的有毒有机污染物,其主要来源于有机物的不完全燃烧或热解过程。通常指含有两个或两个以上苯环以线状、角状或簇状排列的稠环化合物。多环芳烃具有疏水性、蒸气压小及辛醇—水分配系数高的特点。随着苯环数量的增加,其脂溶性越强,水溶性越小,在环境中存在时间越长,遗传毒性越高,其致癌性随着苯环数的增加而增强。在世界范围内每年有约43000吨PA H s 释放到大气中,同时有230000吨进入海洋环境。由于其较高的亲脂性,进入海洋环境中的PA H s 易分配到生物体和沉积物中,并通过食物链进入人体,对人类健康和生态环境具有很大的潜在危害,已引起各国环境科学家的极大重视。因此,探讨环境中多环芳烃的形成机理和污染状况,并进一步研究其污染的控制与修复问题对当前全球性环境保护具有重要的意义。 1 多环芳烃的形成机理 多环芳烃的形成可分为人为和天然两种,前者是污染的主要来源。多环芳烃的形成机理很复杂。一般认为多环芳烃主要是由石油、煤炭、木材等含碳氢化合物的不完全燃烧以及在还原气氛中热分解而产生的。有机物在高温缺氧条件下,热裂解产生碳氢自由基或碎片,这些极为活泼的微粒,在高温下又立即热合成热力学稳定的非取代的多环芳烃。如苯并[a ] 芘(B ap )是一切含碳、 氢燃料和有机物热解过程中的产物,由于性质稳定、毒性大、易于测定,常被用作PA H s 总量的代表,其合成的最适宜温度为600—900℃,整个形成过程为一系列自由基反应。2 环境中多环芳烃的污染与分布 有机物不完全燃烧产生的多环芳烃广泛地散布在环境中,目前在多种的环境介质中都检出了 PA H s ,包括空气、 水、土壤、沉积物、石油、焦油类和食品等。自然界中一些生物如细菌、藻类等可以合成PA H s ,火山活动及森林火灾也可以产生PA H s ,但这些自然过程产生的PA H s 量少,构成环境中多环芳烃的天然本底。而人类活动,如石油、煤等化石燃料的不完全燃烧、石油炼制中废物排放、海上石油开发和石油运输中的溢漏等是环境中PA H s 高浓度污染的主要来源。2.1 大气中的PA H s 有机物不完全燃烧产生的PA H s 有150多种,它们主要吸附在烟尘颗粒物上,随着颗粒物的飘动发散在环境各处。经研究测定多环芳烃中95%是吸附在<7Λm 的颗粒物上,其中60%—70%集中在1.1Λm 以下的颗粒物中。而粒径在0.5—5Λm 的颗粒物可直达肺泡而沉积,在人体内器官组织微粒中混合功能氧化酶系统存在下,生成多种代谢衍生物,有的是重要的致癌物,严重危害人体健康。 大气监测表明,空气中PA H s 的浓度通常只是 几ng m 3 ,但其大小随地理位置、 季节变化和气象条件的不同而变化很大。工业区上方空气中B aP 的浓

多环芳烃(PAHs)在淡水水体中的迁移转化规律

多环芳烃(PAHs)在淡水水体中的迁移转化规律 1 概述 多环芳烃( Polycyclic Aromatic Hydrocarbons ,简称PAHs)是指两个或两个以上苯环连在一起的一类化合物,具有高脂溶性和相对低的水溶性,具有“致癌、致畸和致基因突变”(目前已发现的致癌性多环芳烃及其衍生物超过400 种)作用的持久性有机污染物( Persistent Organic Pollutant s ,POPs) 。这一类物质由于高毒性、低流动性和难降解性使其在环境保护领域备受关注。美国EPA优先控制名单中确定了16种PAHs作为优先控制污染物,我国也将7 种多环芳烃列入“中国环境优先控制污染物”黑名单。PAHs由于化石燃料燃烧、机动车、垃圾焚烧、精炼油、焦炭和沥青生产以及铝的生产等人类活动而广泛分布于环境中。多环芳烃在环境中大多数是以吸附态和乳化态形式存在,一旦进入环境,便受到各种自然界固有过程的影响,发生变迁。通过复杂的物理迁移、化学及生物转化反应,在大气、水体、土壤、生物体等系统中不断变化,改变分布状况。处在不同状态、不同系统中的多环芳烃则表现出不同的变化行为。多环芳烃进入大气后,可通过化学反应、降尘、降雨、降雪等过程进入土壤及水体中。人们可以通过呼吸、饮食等多种途径摄入,对人类健康产生极大危害,因此研究多环芳烃在环境中的行为具有十分重要的意义。多环芳烃在环境中,特别是水环境中的迁移转化和归宿也得到广泛关注。本文着重探讨河流、湖泊等淡水水体中多环芳烃的迁移转化研究成果,并指出存在问题和今后努力的方向。 2 PAHs在淡水水体中的迁移转化规律 2.1 PAHs 在大气-水体间迁移转化 PAHs 在大气-水体间迁移转化方式有:气态湿沉降、携带PAHs 的颗粒物湿沉降与干沉降、水-气界面PAHs 交换。李军等利用双膜理论计算多环芳烃在麓湖水面上的交换通量,除萘、苊、二氢苊的通量方向是从湖水到大气外,其它多环芳烃都是从大气进入水体。每年大气向麓湖中输送约1 300 g 多环芳烃,主要以菲为主,占总量的60%以上;湖水向大气挥发约220 g多环芳烃,主要以萘为主,占总挥发量的95%,这显然是由于萘挥发性很强的缘故。Gigliotti 等自1997 年开始,研究Patapsco 河自巴尔的摩断面至北部的切萨皮克断面的大气-水交换通量,发现PAHs 中芴在刮大风时中交换通量最高,单位交换通量为14 200 ng/(m2?d),菲最低,为11 400 ng/(m2?d)。 2.2 PAHs 在水中光化学降解 光化学降解是水环境中PAHs 降解的重要方式之一,PAHs 可以吸收太阳光中的可见(400~700 nm)和紫外(290~400 nm)光,发生分解。1981 年,Mill 等

环境病理——生活环境中的多环芳烃及其致癌性

生活环境中的多环芳烃及其致癌性 摘要:多环芳烃(Polycyclic Aromatic Hydrocarbons PAHs)是煤,石油,木材,烟草,有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物,是重要的环境和食品污染物。迄今已发现有200多种PAHs,其中有相当部分具有致癌性,如苯并(a)芘,苯并(a)蒽等。PAHs广泛分布于环境中, 关键词:致癌 PAHs 污染苯并[α]芘 前言: 多环芳烃(PAHs)是指具有两个或两个以上苯环的一类有机化合物。多环芳烃是分子中含有两个以上苯环的碳氢化合物,包括萘、蒽、菲、芘等 150余种化合物。英文全称为polycyclic aromatic hydrocarbon,简称PAHs。有些多环芳烃还含有氮、硫和环戊烷,常见的具有致癌作用的多环芳烃多为四到六环的稠环化合物。国际癌研究中心(IARC)(1976年)列出的94种对实验动物致癌的化合物。其中15种属于多环芳烃,由于苯并a芘是第一个被发现的环境化学致癌物,而且致癌性很强,故常以苯并(a)芘作为多环芳的代表,它占全部致癌性多环芳烃1%-20%。可以在我们生活的每一个角落发现。 多环芳烃的来源可以简单的分为自然产生和人为活动产生,自然来源主要包括燃烧(森林大火和火山喷发)和生物合成(沉积物成岩过程、生物转化过程和焦油矿坑内气体),未开采的煤、石油中也含有大量的多环芳烃。PAHs人为源来自于工业工艺过程、缺氧燃烧、垃圾焚烧和填埋、食品制作及直接的交通排放和同时伴随的轮胎磨损、路面磨损产生的沥青颗粒以及道路扬尘中,其数量随着工业生产的发展大大增加,占环境中多环芳烃总量的绝大部分;溢油事件也成为PAHs人为源的一部分。在自然界中这类化合物存在着生物降解、水解、光作用裂解等消除方式,使得环境中的PAHs含量始终有一个动态的平衡,从而保持在一个较低的浓度水平上,但是近些年来,随着人类生产活动的加剧,破坏了其在环境中的动态平衡,使环境中的PAHs大量的增加。因此,如何加快PAHs在环境中的消除速度,减少PAHs对环境的污染等问题,日益引起人们的注意。

六溴环十二烷(HBCDs)的环境污染现状及分析方法进展(精)

六溴环十二烷(HBCDs)的环境污染现状及分析方法进展 李红华,王亚韡,王璞,李晓敏,张庆华* 中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室,100085,北京 E-mail: qhzhang@https://www.360docs.net/doc/df14092023.html, 六溴环十二烷(HBCDs)是一种高溴脂环族添加型阻燃剂,是多溴联苯醚(PBDEs)、四溴双酚A(TBBPA)之外的世界第三大溴代阻燃剂。HBCDs可以通过多种途径释放到环境中,其污染已经成为全球性的环境问题。作为斯德哥尔摩公约持久性有机污染物(POPs)候选名单中的一类化合物,2009年10月在瑞士日内瓦举行的POPs公约审查委员会通过了HBCD关于公约附件D的审核。本文依据近几年国内外学者对HBCDs的研究进展,系统分析了HBCDs在大气、土壤、沉积物、水生生物、鸟类、食品中的污染水平和分布特征,同时对HBCDs的毒理、暴露、生物转化、代谢等进行了简要的总结,对分析HBCDs所应用的GC-MS、HPLC-MS、HPLC-MS/MS等方法进行了对比和评价。我国的HBCDs研究尚处于起步阶段,目前仅有广州大气中HBCDs的污染水平和经食品暴露的人体HBCDs污染水平等有报导,对全国范围内HBCDs的污染状况、环境行为研究以及环境健康风险评估尚无系统的数据。 关键词:六溴环十二烷;环境污染 Environmental pollution and Progress of method study on HBCDs Hong-Hua Li, Ya-wei Wang, Pu Wang, Xiao-Min Li, *Qing-Hua Zhang State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing Hexabromocyclododecanes (HBCDs), known as the third important brominated flame retardants after polybrominated diphenyl ethers (PBDEs) and tetrabromobisphenol A (TBBPA), are high brominated aliphatic cyclic hydrocarbons. HBCDs can enter the environment through several pathways, causing great attention in recent years. As a group of candidate POPs to the Stockholm Convention (SC), HBCDs have been evaluated against the criteria of Annex D of SC by POP review committee (POPRC) in 2009. This review concluded the recent researches on distribution and concentration levels of HBCDs in atmosphere, soil, sediment, aquatic organism, birds, and foods. Their toxicity, exposure, biotransformation, and metabolites, analytical methods such as GC-MS, HPLC-MS, HPLC-MS/MS are also discussed. In China, as we know, the related studies are only reported in the atmosphere of Guangzhou, dietary exposure assessment of Chinese adults and infants to HBCDs. Further works should be focused on the concentration levels, environmental behavior of HBCDs and risk to the environment and human health in a large scare.

16种常见多环芳烃的物理性质

16种常见多环芳烃的 物理性质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

萘英文名称NAP Naphthalene分子量 128.18 物理性质;密度1.162 熔点80.5℃,沸点217.9℃,凝固点,80.5℃,闪点78.89℃,折射率1.58212(100℃)恒压燃烧热:40264.1J/g(标准大气压,298.15K)恒压燃烧热:40205J/g(标准大气压,298.15K)。不溶于水,溶于乙醇和乙醚等。易挥发,易升华溶于乙醇后,将其滴入水中,会出现白色浑浊。化学性质(1)萘的氧化温和氧化剂得醌,强烈氧化剂得酸酐。萘环比侧链更易氧化,所以不能用侧链氧化法制萘甲酸。电子云密度高的环易被氧化。(2)萘的还原(3)萘的加成(4)萘的亲电取代反应萘的a-位比b-位更易发生亲电取代反应。a-位取代两个共振式都有完整的苯环。b-位取代只有一个共振式有完整的苯环。在萘环上主要发生亲电取代,同苯环一样,但活性比苯环强从中间对称的两个C旁边的C开始标,其中1,4,5,8号碳活性完全一样(称为阿尔法碳),2,3,6,7号碳性质完全一样(称为贝塔碳)。一般情况下,阿尔法碳活性大于贝塔碳,取代基在阿尔法位上,这是由动力学控制,温度较高时,阿尔法碳[1]上取代基会转移到贝塔碳上。但在萘的弗瑞德-克来福特酰基化反应,不加热却生成了阿尔法位和贝塔位的混合物。如用硝基甲烷为溶剂,则主要生成贝塔酰化产物。 苊烯ANY Acenaphthylene 分子量:152.200 性质:黄色棱柱状或板状结晶。熔点92-93℃,沸点265-275℃(部分分解),156-160℃(3.73千帕),相对密度0.8988(16/2℃),易溶于乙醇、甲醇、丙醇、乙醚、石油醚、苯,不溶于水。能在强酸中聚合。 苊ANA Acenaphthene 英文别名:1,8-Ethylenenaphthalene 分子量:154.21性状描述:白色或略带黄色斜方针状结晶。物理参数:密 度:1.0242(99/4°C) 熔点:96.2°C 沸点:279°C 闪点:125°C 折射率:1.6048(95°C) 芴FLU Fluorene分子量:166.22 性状描述:白色叶状至小片状结晶物理参数:密度:1.202 g/mL 熔点:116-117°C 沸点:295°C 闪点:151°C

食品环境学__多环芳烃的危害

多环芳烃及其衍生物对食品安全性的影响 多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)是指两个以上苯环以稠环形式相连的化合物,是目前环境中普遍存在的污染物质。此类化合物对生物及人类的毒害主要是参与机体的代谢作用,具有致 癌、致畸、致突变和生物难降解的特性。多环芳烃按 照芳环的连接方式可分为两类:第一类为稠环芳烃, 即相邻的苯环至少有2 个共用碳原子的多环芳烃, 其性质介于苯和烯烃之间,如萘、蒽、菲、丁省、 苯并[a]芘等;第二类是苯环直接通过单键联合,或 通过一个或几个碳原子连接的碳氢化合物,称为孤立多环芳烃,如联苯、1,2 - 二苯基乙烷等。 目前已知的PAHs约有200多种,它们广泛存在于人类生活的自然环境如大气、水体、土壤中。据研究[1],我国主要城市的大气中BaP的含量较高,北京、天津、上海、太原、抚顺等城市工业区大气中BaP的含量分别高达 11.45μg/1000m3、29.3μg/1000m、5.8μg/1000m3、36.7μg/1000m3、10.63μg/1000m3,我国主要河流中也都不同程度地受到PAHs的污染。王平等[2]的研究表明,在黄河兰州段中,16种优先控制的PAHs均有检出,总PAHs浓度范围分别为:水中,2920~6680ngPL;表层沉积物中,960~2940ng/g(干重);悬浮物中,4145~29090ng/g(干重)。杨敏等[3]测定了辽河干流15个沉积物样品中16种EPA优先控制PAHs的含量,结果表明:辽河沉积物中总PAHs含量介于2718~1479 ng/g,平均值为28515ng/g,其中蒽、菲、芴含量较高。土壤中PAHs 的污染也不容忽视。据研究,天津市土壤中的PAHs 含量为20 ~ 704 μg/kg[4];环渤海地区西部表层土中PAHs平均含量为(546±8.54)μg/kg[5];东莞市农业土壤中的PAHs 含量29 ~4079 μg/kg,平均含量413 μg/kg[6]。大多数PAH通过大气排放进入环境,在水和大气、水和沉积物、水和生物体之间分布和转化,并在水和沉积物中的生物体中蓄积,而这些存在于大气和土壤中的PAHs将有可能直接被种植在农田中的农作物吸收,而最终将被带入人体中,而使人们在毫不知情的情况下而摄入了PAHs。影响人们的身体健康。靠近高速公路生长的莴苣可检出高浓度的PAH,其污染水平与靠近高速公路的距离成反比。大气污染的大叶蔬菜如菠菜,其PAH的水平可高出10倍。焦炭厂附近生长的胡萝卜和豆子,检出荧蒽1.6~1.7 μg/kg 和芘1.0~1.1 μg/kg(德国)马铃薯是苯并[α]芘水平为0.2~400μ g/kg(德国),其皮中含高浓度 的PAH。 这些受污染的土地上种植 初的农作物一部分被直接作为 粮食食用,而同时把PAHs带入 人体,另外大部分将作为食品工 业的原材料,生产出各种食品, 而这些产品最终也同样要被消 费者购买,食用,这样也把PAHs 带入体内。 PAHs在环境中的存在虽然是微量的,但其不断地生成、迁移、转化和降解,还可以通过呼吸道、皮肤、消化道进入人体,极大地威胁着人类的健康。流行病学研究表明[7],PAHs 通过皮肤、呼吸道、消化道等均可被人体吸收,有诱发皮

环境监测课程教学大纲..

环境监测课程教学大纲 课程名称:环境监测课程性质:XXX 总学时:64 学分:4 适用专业:环境工程开课单位:XXX 先修课程:无机化学、分析化学、有机化学、环境微生物学 一、课程性质、目的 环境监测是环境科学、环境工程、资源与环境、给水与排水工程等相关专业本科生的一门专业基础课,是环境科学与工程学科中具有综合性、实践性、时代性和创新性的一门重要的理论与方法课程。本课程是环境科学、环境工程和环境管理各领域的基础,是环境保护和环境科学研究不可缺少的,对环境保护的各个方面具有重大影响。 按监测对象学习,本课程主要讲述水和废水监测、大气和废气监测、固体废物监测、土壤污染监测、生物污染监测、噪声监测、环境放射性监测等内容。按测定项目学习,包括汞、镉、铬、铅、砷等重金属,氰化物、氟化物、硫化物、含氮化合物,水中溶解氧、生化需氧量、化学需氧量、酚类、油类,大气中SO2、NO X、TSP、PM10、CO、O3、烃类等气态污染物,光化学烟雾等二次污染物,颗粒物,多环芳烃类、二噁英类等重要有机污染物,以及酸雨项目监测等。按监测程序学习,本课程主要讲述各类环境监测的方案设计,优化布点、样品的采集、运输及保存,样品的预处理及测定,数据的处理及信息化,监测过程的质量保证等的内容。 按监测方法学习,主要讲述化学分析、仪器分析以及生物方法;主要为标准方法和正在推广的新的常规监测技术,还介绍一些行之有效的简易监测技术,及迅速发展的连续自动监测技术等内容。 本课程的教学目的是通过对上述内容的理论教学与实践教学,使学生掌握环境监测的基本概念、基本原理及相关法规,监测方法的科学原理和技术关键、各类监测方法的特点及适用范围等一系列理论与技术问题;掌握监测方案设计,优化布点、样品的采集、运输及保存,样品的预处理和分析测定、监测过程的质量保证、数据处理与分析评价的基本技能;了解环境监测新方法、新技术及其发展趋势。培养学生今后在监测数据收集、整理和评价等方面达到独立开展工作的能力,培养学生具有综合应用多种方法处理环境监测实践问题的能力,进一步培养与时俱进、发展新方法和新技术的创新思维和创新能力。为后期课程和将来的环境科学与工程研究、环境保护工作奠定良好的基础。 二、课程主要知识点及基本要求 第一章绪论 (一)目的与要求 1.了解环境监测的目的及分类。 2.掌握环境监测的一般过程或程序。 3.掌握优先污染物和优先监测的概念。 4.了解制订环境标准的原则及制订环境标准的作用、分类、分级情况。 5.掌握大气、水、土壤等最新的环境质量标准及其应用范围;了解各类污染物的控制或

室内空气中多环芳烃的污染分析及形态分布

实验六室内空气中多环芳烃的浓度水平及形态分布 多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)是指两个以上苯环以稠环形式相连的化合物。它是环境中广泛存在的一类有机污染物,是石油、煤炭等化石燃料及木材、烟草等有机质在不完全燃烧时产生的,具有致癌性、致畸性和致突变性。在已知的1000多种致癌物中,PAHs占1/3以上。PAHs的存在形态及分布主要受其本身物理化学性质、气温以及其它共存污染物如飘尘、臭氧等影响。空气中PAHs主要以气态、颗粒态(吸附在颗粒物上)两种形式存在,但在一定条件下两者间可以相互转化。空气中PAHs可以与臭氧、氮氧化物和硝酸等反应,生成致癌活性或诱变性更强的化合物。 人们绝大部分时间在室内生活或工作。一方面室外空气中的PAHs会进入室内;另一方面室内本身也有不少PAHs的污染源,如抽烟、采暖、烹调等。因此,室内空气PAHs污染往往比室外更严重,对人体健康有很大的影响。 一、实验目的 1.掌握室内空气中气态、颗粒态PAHs样品采集、提取、分析方法。 2.掌握高效液相色谱仪的测定原理及使用方法。 3.分析评价室内空气中PAHs的浓度水平及形态分布。 二、实验原理 室内空气中PAHs的污染现状分析包括样品的采集,前处理及浓度测定。本实验用XAD-2和玻璃纤维滤膜分别采集空气中气态、颗粒态PAHs;用二氯甲烷作萃取剂,超声提取样品中PAHs,氮气吹干浓缩样品中PAHs;采用梯度淋洗结合可波长切换荧光检测器的高效液相色谱法测定样品中痕量PAHs的峰高或峰面积,以外标法进行定量。通过测定分析,评价室内空气中PAHs的污染水平及形态分布。 三、仪器和试剂 1. 仪器 (1)高效液相色谱仪:带荧光检测器或紫外检测器。 (2)小体积气体采样泵。 (3)超声清洗器。

环境相关污染物指标测定方法

水质测定方法步骤 50ml比色管 1d内测定总磷: 5ml水样——稀释到25m l——加4ml过硫酸钾钠,消解30min ——标定到50ml——加1ml10%抗坏血酸——30s后加2mL钼酸盐溶液——室温下放置15min后,使用10mm比色皿,在700nm波长下,以水做参比,测定吸光度。扣除空白试验的吸光度后,从工作曲线(6.2.4)上查得磷的含量。 注:玻璃器皿用10%HCL浸洗。 注:如显色时室温低于13℃,可在20~30℃水花上显色15min即可。 氨氮:纳氏试剂比色法 2ml水样——稀释到50ml——加1.0mL酒石酸钾钠溶液,混匀——加1.5mL纳氏试剂,混匀——放置10min后(淡红棕色),在波长420nm处,用光程10mm 比色皿,以水为参比,测定吸光度。 亚硝氮:2ml水样——稀释到50ml——加1ml显色剂,静置20min——540nm,10mm玻璃比色皿,去离子水参比,测定吸光值。 硝氮:紫外分光光度法 2ml水样——加(1+9)HCL——稀释到50ml——加0.1ml氨基磺酸溶液——10mm 石英比色皿,220nm,275nm,空白参比,测定吸光值。 25ml比色管 1d内测定总氮:碱性过硫酸钾消解紫外分光光度法 2ml水样——稀释到10ml——加入5mL碱性过硫酸钾溶液,消煮30min——冷却

至室温—— 加盐酸(1+9)1mL,稀释至25mL标线,混匀——10mm石英比色皿中,在紫外分光光度计上,以无氨水作参比,在波长为220与275nm处测定吸光度。 含悬浮物时,待澄清后移取上清液到石英比色皿中。 注:玻璃器皿用10%HCL浸洗 COD:重铬酸盐法 加入0.4g HgS04,几颗防爆沸玻璃珠——加入20ml水样——10.0mL重铬酸钾标准溶液,摇匀——接通冷凝管——从冷凝管上端缓慢加入30mL硫酸银-硫酸试剂,混合均匀——自溶液开始沸腾起回流两小时——冷却后,用20-30mL水自冷凝管上端冲洗冷凝管后,再用水稀释至不小于140mL。溶液冷却至室温后——加入3滴1,10-菲绕啉指示剂溶液,用硫酸亚铁铵标准滴定溶液滴定,溶液的颜色由黄色经蓝绿色变为红褐色即为终点。8 结果的表示。 当对于COD值小于50mg/L,应采用稀释10倍的重铬酸钾标准溶液氧化,采用稀释10倍的硫酸亚铁铵标准溶液回滴。(可能从第三次开始) 注:但保存时间不多于5天。采集水样的体积不得少于100mL。 试料的准备。将试样充分摇匀,取出20.0mL作为试料。 试剂配制 总磷的测定钼酸铵分光光度法 3.5 硫酸,约c(1/2H2SO4)=1mo1/L:将27mL硫酸(3.1)加入到973mL水中。 3.6 氢氧化钠(NaOH),1mo1/L溶液:将40g氢氧化钠溶于水并稀释至1000mL。 3.7 氢氧化钠(NaOH),6mo1/L溶液;将240g氢氧化钠溶于水并稀释至1000mL。 3.8 过硫酸钾,50g/L溶液:将5g过硫酸钾(K2S2O8)溶解干水,并稀释至100mL。

多环芳烃

多环芳烃、硝基苯等有机污染物去除技术的进展 摘要:目前,污染时当今世界范围所面临的普遍问题。特别是有机的污染是当今更严重的问题。这篇文章主要介绍了多环芳烃和硝基苯类有机污染物去除技术的进展。 关键词:多环芳烃硝基苯去除技术 一、多环芳烃类污染物的研究进展 随着煤、石油在工业生产,交通运输以及生活中被广泛应用,多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)已成为世界各国共同关注的有机污染物。多环芳烃不易溶于水,极易附着在固体颗粒上,所以一般来说,大气、土壤中的大多数多环芳烃处于吸附态。多环芳烃类污染物分布很广,基本上在各种环境介质中都发现了PAH s。因排废气、废水及废物倾倒,多环芳烃对水、大气及土壤产生直接污染。吸附在烟气微粒上的多环芳烃随气流传向周围及更远处,又随降尘、降雨及降雪进入水体及土壤而土壤及地面多环芳烃通过扬尘再次进入大气,通过呼吸及食物链进入动物体产生毒害。 在土壤和沉积物环境中,大多数PAHs因较强的疏水性趋向于分配到土壤或沉积物颗粒上去,并与天然有机物发生相互作用,很少保留在水体当中。当沉积物一旦遭到严重的污染,在与上覆水体发生相互频繁的交换作用时,被污染的沉积物环境还将

成为水体再次污染的潜在来源,造成二次污染。 水环境中PAHs生物降解的程度要靠PAHs的溶解率的大小,正因为大多数PAHs易被吸附分配到土壤或沉积物颗粒上去,使之生物有效性降低而导致其生物降解率大大降低。虽然被吸附于土壤、沉积物上的PAHs因生物有效性降低而减小对环境的毒害,但最终会通过各种因素再次释放到环境之中产生危害。刘凌[12]在研究吸附作用对有机污染物的生物降解过程影响时,发现吸附在土壤颗粒内部的有机污染物,必须通过解吸和扩散过程传输到土壤颗粒外部的水溶液中,然后才能被微生物降解。如果有机污染物的土壤-水吸附分配系数Kd越大,则它存在于土壤水溶液的重量百分比就越小,发生生物降解反应的可能性就越小。Weissenfels等在研究阻碍PAHs生物降解的土壤特性和PAHs吸附与生物降解之间的关系时也发现,PAHs与土壤有机质结合力是PAHs发生生物降解的关键。他在沙和土壤吸附PAHs实验中,观察到沙吸附的PAHs能够很快被微生物降解到检测限以下,而土壤吸附的PAHs则降解很慢,并且有23%的PAHs不可被微生物降解。 二、硝基苯类有机污染物去除技术的进展 硝基芳香族化合物是重要的化工原料,被广泛应用于医药、燃料、农药、塑料等的合成前体,常常在生产和使用过程中被释放到环境中对生态系统造成影响,是一类重要的环境污染物。硝基苯对人与动物有较强的毒害作用,能引起紫绀,刺激皮

环境监测常用分析方法简介

环境监测常用分析方法简介

环境样品的测试方法是在现代分析化学各个领域的测试技术和手段的基础上发展起来的,用于研究环境污染物的性质、来源、含量、分布状态和环境背景值。随科学技术的不断发展,除经典的化学分析、各种仪器分析为环境分析监测服务外,一些新的测试手段和技术,如色谱-质谱联用、激光、中子活化法、遥感遥测技术也很快被广泛应用于环境污染的监测中,为了及时反映监测对象和取样时的真实情况,确切掌握环境污染连续变化的状况,许多小型现场监测仪器和大型自动监测系统也获得迅速的发展。 一、化学分析法 是以特定的化学反应为基础的分析方法,分重量分析法和容量分析法两类。 重量法操作麻烦,对于污染物浓度低的,会产生较大误差,它主要用于大气中总悬浮颗粒、降尘量、烟尘、生产性粉尘及废水中悬浮固体、残渣、油类、硫酸盐、二氧化硅等的测定。随着称量工具的改进,重量法得到进一步发展。例如,近几年用微量测重法测定大气飘尘和空气中的汞蒸汽等。 容量法具有操作方便、快速、准确度高、应用范围广、费用低的特点,在环境监测中得到较多应用,但灵敏度不够高,对于测定浓度太低的污染物,也不能得到满意的结果。它主要用于水中的酸碱度、NH3-N、COD、BOD、DO、Cr6+、硫离子、氰化物、氯化物、硬度、酚等的测定,及废气中铅的测定。 二、光学分析法

是以光的吸收、辐射、散射等性质为基础的分析方法,主要有以下几种: (一)分光光度法 是一种具有仪器简单、容易操作、灵敏度较高、测定成分广等特点的常用分析法。可用于测定金属、非金属、无机和有机化合物等。在国内外的环境监测分析法中占有很大的比重。 (二)原子吸收分光光度法 是在待测元素的特征波长下,通过测量样品中待测元素基态原子(蒸气)对特征谱线吸收的程度,以确定其含量的一种方法。此法操作简便、迅速、灵敏度高、选择性好、抗干扰能力强、测定元素范围广,是环境中痕量金属污染物测定的主要方法,可测定70多种元素,国内外都用作测定重金属的标准分析方法。(三)发射光谱分析法 是在高压火花或电弧激发下,使原子发射特征光谱,根据各元素特征性的光谱线可作定性分析,而谱线强度可用作定量测定。 本法样品用量少、选择性好、不需化学分离便可同时测定多种元素,可用于无机有害物质铬、铅、镉、硒、汞、砷等20多种元素的测定,但不宜分析个别试样,且设备复杂,定量条件要求高,故在环境监测的日常工作中,使用发射光谱分析法较少。但自电感耦合高频等离子体光源(简称ICP光源)研究成功以来,由于它具有灵敏度高、准确度和再现性好,基体效应和其他干扰较少和线性范围

多环芳烃的介绍

多环芳烃(PAHs)的介绍 一、简介 PAHs,学名多环芳烃。是石油、煤等燃料及木材、可燃气体在不完全燃烧或在高温处理条件下所产生的一类有害物质,通常存在于石化产品、橡胶、塑胶、润滑油、防锈油、不完全燃烧的有机化合物等物质中,是环境中重要致癌物质之一. 在环境中,有机污染物充斥于各处,多环芳香化合物(PAH)为其大宗,且部分已被证实对人体具有致癌与致突变性。PAH之来源包括:藻类或细菌之生物合成、森林大火、火山爆发,以及火力发电厂、**场焚化场、汽机车与工厂排气等。PAH之种类很多,其中之16种化合物于1979年被美国环境保护署(US EPA)所列管。 PAHs主要包括以下16种同类物质: 1 Naphthalene 萘 2 Acenaphthylene 苊烯 3 Acenaphthene 苊 4 Fluorene 芴 5 Phenanthrene 菲 6 Anthracene 蒽 7 Fluoranthene 荧蒽 8 Pyrene 芘 9 Benzo(a)anthracene 苯并(a)蒽 10 Chrysene 屈 11 Benzo(b)fluoranthene 苯并(b)荧蒽 12 Benzo(k)fluoranthene 苯并 (k)荧蒽 13 Benzo(a)pyrene 苯并(a)芘 14 Indeno(1,2,3-cd)pyrene 茚苯(1,2,3-cd)芘 15 Dibenzo(a,h)anthracene 二苯并(a, n)蒽 16 Benzo(g,hi)perylene 苯并(ghi)北(二萘嵌苯) 性状:纯的PAH通常是无色,白色,或浅黄绿色的固体。 我们为您提供的测试标准: EPA8270 索氏萃取提取PAHs,其中覆盖了16项PAHs的测试项目!

多环芳烃场地污染调查与风险评估

多环芳烃场地污染调查与风险评估 中国科学院广州化学研究所分析测试中心 卿工--189-3394-6343 多环芳烃(Polycyclic Aromatic Hydrocarbons PAHs)是煤,石油,木材,烟草,有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物,是重要的环境和食品污染物。迄今已发现有200多种PAHs,其中有相当部分具有致癌性,如苯并α芘,苯并α蒽等。PAHs广泛分布于环境中,可以在我们生活的每一个角落发现,任何有有机物加工,废弃,燃烧或使用的地方都有可能产生多环芳烃。 芳香烃组成图

物理性质 多环芳烃大部分是无色或淡黄色的结晶,个别具深色,熔点及沸点较高,蒸气压很小,大多不溶于水,易溶于苯类芳香性溶剂中,微溶于其他有机溶剂中,辛醇-水分配系数比较高。多环芳烃大多具有大的共扼体系,因此其溶液具有一定荧光。一般说来,随多环芳烃分子量的增加,熔沸点升高,蒸气压减小。多环芳烃的颜色、荧光性和溶解性主要与多环芳烃的共扼体系和分子苯环的排列方式有关.随p电子数的增多和p电子离域性的增强,颜色加深、荧光性增强,紫外吸收光谱中的最大吸收波长也明显向长波方向移动;对直线状的多环芳烃,苯环数增多,辛醇-水分配系数增加,对苯环数相同的多环芳烃,苯环结构越“团簇”辛醇-水分配系数越大。 化学性质 多环芳烃化学性质稳定.当它们发生反应时,趋向保留它们的共扼环状系,一般多通过亲电取代反应形成衍生物并代谢为最终致癌物的活泼形式。其基本单元是苯环,但化学性质与苯并不完全相似。分为以下几类: ⑴具有稠合多苯结构的化合物 如三亚苯、二苯并[e,i]芘、四苯并[a,c,h,j]蒽等,与苯有相似的化学稳定性,说明:电子在这些多环芳烃中的分布是和苯类似的。如图1所示:

《国家环境污染物监测方法标准制修订技术导则》(征求意见稿)编制说明

《国家环境污染物监测方法标准制修订技术导则》(征求意见稿)编制说明

附件3: 《国家环境污染物监测方法标准制修订技 术导则》编制说明 (征求意见稿) 《国家环境污染物监测方法标准制修订技术导则》编制组 二○○九年六月

目录 1项目背景 (1) 1.1任务来源 (1) 1.2工作过程 (1) 2标准修订的必要性 (2) 2.1国家对环境监测方法标准的制修订提出了更高的要求 (2) 2.2环境监测方法标准的编制过程需要进一步明确 (2) 2.3环境监测方法标准的技术内容需要进一步完善 (3) 2.4环境监测方法标准文本和编制说明需要进一步规范 (3) 3标准修订原则 (4) 4标准修订说明 (4) 4.1主要修订内容 (4) 4.2适用范围 (4) 4.3规范性引用文件 (5) 4.4术语和定义 (5) 4.5工作程序 (6) 4.6基本要求 (7) 4.7标准的结构 (8) 4.8环境监测方法标准的主要技术内容 (8) 4.9方法验证 (11) 4.10附录A (12) 4.11附录B (16) 4.12附录C 和附录D (16) i

《国家环境污染物监测方法标准制修订技术导则》编制说明1项目背景 1.1任务来源 《环境监测分析方法标准制订技术导则》(HJ/T168-2004)自发布实施以来在我国的环境监测方法标准制修订工作中发挥了重要作用。目前,我国的环境监测方法标准制修订工作进入了一个快速增长的时期,环保部出台了一系列的规范性文件,如《国家环保标准制修订工作管理办法》(原国家环保总局2006 年第 41 号公告)等,旨在进一步规范和加强国家环保标准制修订工作。在新形式下,为进一步规范国家环境监测方法标准的制修订工作,加快标准制修订工作进度,为标准编制单位提供更为具体有效的技术性指导,2008 年,原国家环保总局以《关于开展2008 年度国家环境保护标准制修订项目工作的通知》(环办函[2008]44 号)向中国环境科学研究院下达了修订《环境监测分析方法标准制修订技术导则》(HJ/T168-2004)的任务,项目统一编号为1535.2。 1.2工作过程 在接受任务以后,中国环境科学研究院成立了标准编制组,并邀请国家环境分析测试中心和江苏省环境监测中心作为合作单位。标准编制组结合环境标准技术审查工作,全面跟踪了解环境监测方法标准制修订的全过程,分析总结了目前环境监测方法标准制修订过程中存在的问题,以及部分编制单位的工作经验。在此基础上,标准编制组多次组织有关专家及环境监测分析一线工作人员对标准的适用范围、术语定义、主要技术内容、方法验证以及检出限、测定下限等方法特性指标等内容分专题进行了深入剖析和研讨,同时结合目前环境保护标准工作的最新要求,针对HJ/T168-2004 中存在的问题提出了解决方案,形成了《国家环境污染物监测方法标准制修订技术导则》(征求意见稿)。

相关文档
最新文档