M5 Petrophysical Modeling岩石物理模型(Schlumberger petrel教学资料)

岩石力学重点总结

岩石岩体区别:岩石可以瞧作就是一种材料,岩体就是岩石与各种不连续面的组合体;岩石可以瞧作就是均质的,岩体就是非均质的(在一定的工程范围内);岩石具有弹、塑、粘弹性,岩体受结构面控制,性质更复杂,强度更低;岩体通常就是指一定工程范围内的地质体,岩石则无此概念。 岩石力学就是一门研究岩石在外界因素(如荷载、水流、温度变化等)作用下的应力、应变、破坏、稳定性及加固的 学科。又称岩体力学,就是力学的一个分支。研究目的在于解决水利、土木工程等建设中的岩石工程问题。它就是 一门新兴的,与有关学科相互交叉的工程学科,需要应用数学、固体力学、流体力学、地质学、土力学、土木工程学 等知识,并与这些学科相互渗透。 研究对象:对象:岩石—对象—岩石材料—地壳中坚硬的部分; 复杂性:地质力学环境的复杂性(地应力、地下水、物理、化学作用等) 研究的基本内容: 基本理论岩体地应力 材料实验——三大部分→岩体的强度 工程应用岩体的变形

裂隙水力学 研究方法: 物理模拟→岩石物理力学性质常规实验,地质力学模型试验; 数学模型→如有限元等数值模拟; 理论分析→用新的力学分支,理论研究岩石力学问题; 由于岩石中存在各种规模的结构面(断裂带、断层、节理、裂隙)→致使岩石的物理力学性质→不连续、不均匀、各 向异性→因此,有必要引入刻划不均一程度的参数。 各向异性:指岩石的强度、变形指标(力学性质)随空间方位不同而异的特性。 岩石的基本物理力学性质 岩石力学问题的研究首先应从岩石的基本物理力学性质研究入手, 1.岩石的容重:指单位体积岩石的重量。2、比重(Gs)指岩石干重量除以岩石的实体积(不含孔隙体积)的干容重与4?c 水的容重的比值。3、孔隙率(n%)指岩石内孔隙体积与总体积之比。4、天然含水量:指天然状态下,岩石的含水量与岩石干重比值的百分比。5、吸水率:指岩石在常温条件下浸水48小时后,岩石内的含水量与岩石干容重的比值。6、饱与含水率:指岩样在强制状态(真空、煮沸或高压)下,岩样最大吸水量与岩石干重量比值。7、饱水分数:指岩石吸水

常用的岩土和岩石物理力学参数

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7、2) 当ν值接近0、5的时候不能盲目的使用公式3、5,因为计算的K 值将会非常的高,偏离实际值很多。最好就是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 与ν来计算G 值。 表7、1与7、2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7、1 土的弹性特性值(实验室值)(Das,1980) 表7、2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13与G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13与G 23。这些常量的定义见理论篇。 均质的节理或就是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度与空间参数来表示的弹性常数的公式。表3、7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7、3

K f ,如果土粒就是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值就是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或就是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这就是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7、3) 对于可变形流体(多数课本中都就是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7、4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位与速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式瞧瞧其产生的误差。 流动体积模量还会影响无流动但就是有空隙压力产生的模型的收敛速率(见1、7节流动与力学的相互作用)。如果K f 就是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但就是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱与体积模量为: n K K K f u + = (7、5) 不排水的泊松比为: ) G 3K (22G 3K u u u +-= ν (7、6) 这些值应该与排水常量k 与ν作比较,来估计压缩的效果。重要的就是,在FLAC 3D 中,

常用的岩土和岩石物理力学参数讲解

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = (7.5) 不排水的泊松比为:

岩石力学 知识点整理

岩石力学 第一章 绪论 1、岩石力学是研究岩石或者岩体在受力的情况下变形、屈服、破坏及破坏后的力学效应。 2、岩石的吸水率的定义。 演示吸水率是指岩石在大气压力下吸收水的质量w m 与岩石固体颗粒质量s m 之比的百分数表示,一 般以a w 表示,即w 0s a s s m w 100%m m m m -==? 第二章 岩石的物理力学性质 1、影响岩石的固有属性的因素主要包括试件尺寸、试件形状、三维尺寸比例、加载速度、湿度等。 2、简述量积法测量岩石容重的适用条件和基本原理。 适用条件:凡能制备成规则试样的岩石均可 基本原理:G/A*H H :均高;A :平均断面;G :重量 3、简述劈裂试验测岩石抗压强度的基本原理。 在试件上下支承面与压力机压板之间加一条垫条,将施加的压力变为线性荷载以使试件内部产生垂直于上下荷载作用方向的拉应力在对径压缩时圆盘中心点的压应力值为拉应力值的3倍而岩石的抗拉强度是抗压强度的1/10,岩石在受压破坏前就被抗拉应力破坏 4、简述蜡封法测量岩石容重的适用条件和基本原理。 适用条件:不能用量积法或水中称量法(非规则岩石试样且遇水易崩解,溶解及干缩湿胀的岩石) 基本原理:阿基米德浮力原理 首先选取有代表性的岩样在105~110℃温度下烘干24小时。取出,系上细线,称岩样重量(g s ),持线将岩样缓缓浸入刚过熔点的蜡液中,浸没后立即提出,检查岩样周围的蜡膜,若有起泡应用针刺破,再用蜡液补平,冷却后称蜡封岩样的重量(g 1),然后将蜡封岩样浸没于纯水中称其重量(g 2),则岩石的干容重(γd )为: γd =g s /[(g 1-g 2)/γw -(g 1-g s )/γn] 式中,γn 为蜡的容重(kN/m 3),.γw 为水的容重(kN/m 3) 附注:1. g 1- g 2即是试块受到的浮力,除以水的密度,(g 1- g 2)/γw 即整个试块体积。 2. (g 1- g s )/γn 为蜡的体积 第三章 岩石的力学性质 1、岩石的抗压强度随着围压的增大而(增大或减小)? 增大而增大。 2、岩石的变形特性通常用弹性模量、变形模量和泊松比等指标表示。 ①弹性模量:岩石在弹性变形阶段内,正应力和对应的正应变的比值。 ②变形模量:岩石在弹塑性变形阶段内,正应力和对应的总应变的比值。 ③泊松比:岩石在单向受拉或受压时,横向正应变与轴向正应变的绝对值的比值。 3、简述如何利用全应力-应变曲线预测岩石的蠕变破坏。 当岩石应力水平小于 H 点的应力值,岩石试件不会发生蠕变。

《大地构造学》知识点总结.

《大地构造学》知识点总结 第一章绪论 一、大地构造学的研究对象、内容、方法、意义 研究对象:大地构造学,是研究地球过程的综合学科。 研究内容:①区域或全球尺度的地壳与岩石圈构造变形特征及圈层相互作用,如:大洋-大陆相互作用、地球内部圈层相互作用、造山带与盆地的形成过程等;②构造变形与岩浆作用-沉积作用-变质作用的相互关系;③地壳与岩石圈的形成与演化过程;④地球表面海-陆的形成与演变方式及过程;⑤地球深部作用过程及其机制。 研究方法:大地构造学研究方法需要综合利用地质学其他学科以及地球物理探测、地球化学的研究手段与研究成果。 研究意义:大地构造学研究可以为认识和分析构造地质学的研究背景和形成机制提供宏观的上成因解释。 二、固体地球构造的主要研究方法 主要包括固体构造几何学与构造运动学的研究。 固体地球的构造几何学:主要研究地球的组成成分及结构。方法有:①研究暴露在地表的中、下层地壳乃至地幔顶部剖面,通过地质、地物、地化综合研究,揭示地壳深部物质组成、结构构造、物理性质、岩石矿物及元素的物化行为、温压条件、地热增温率、有关元素及矿物成分的聚散规律;②研究火山喷发携带到地表的深源包裹体,揭示深部物质与构造特征;③人工超深钻探直接取样(目前为止涉及最深深度12km);④地震探测:分为天然地震探测和人工地震探测,利用地震波的折射与反射可揭示地球深部构造特征。 固体地球构造运动学:主要研究地质历史时期的大地构造运动学与现今固体地球表面的构造运动。地质历史时期的大地构造运动学可以利用古地理学(岩相、生物、构造)、古气候分区、地球物理学与古地磁学进行研究;现今固体地球表面的构造运动可以利用空间对地的观测与分析技术。 三、大地构造学研究意义 理论意义:可以为认识和分析构造地质学的研究背景和形成机制提供宏观的上成因解释; 实际应用意义:①大型成矿集中区(矿集区)等成矿构造背景、资源规划;②大规模破坏性地震产生于形成的地质构造背景与稳定性评价;③绝大对数大型、灾难性地震都发生在活动板块边缘带(区)上,或与板块相互作用有关的次级活动构造单元边界区域。 第二章固体地球主要构造特征 一、地球表面基本面貌:海陆分布、高程分布及其意义 海陆分布特征:陆地面积占29.22%;海水覆盖面积70.78%; 高程分布特征:陆地主要分布在海平面以上数百米高程范围,大洋的主体分布在海平面以下5km的高程上;

岩石物理学

岩石物理学 这段这这我主要这了岩石物理~这以下方面这行了这,学学几个学 这致阿这奇公式的重要岩石物理这这学 阿这奇公式的这用件条 岩石这的近代究方法学研 Cole-Cole模型 岩石的这激这化效这极 Gassmann方程 这致阿这奇公式的重要岩石物理这这学 这阻率这井这明于20世这20年代.从它在1927年9月这生的那天起一直到1942年这这止,这于如何利用这阻率这井这料这算地这油含量的究工作一直也有停止这气研没.但是由于有到岩石这阻率和其含油这没找气 和度之这的定量这系,这阻率这井这料只被用这这油这来,划分岩性和这行地这这比,而不能用于定量解这和这这这价.这这情直到况Archie的公式这表以后才有了根本性的改这. 这了充分地了解阿这奇公式有这的一些这这与,首先回这一下在阿这奇公式这表之前(前阿这奇这代)这于岩石这阻率的究这以及在研状1942年以前所做这的一些这这性的岩石这这这学. 前阿这奇这代的岩石这这性究这研状 岩石是一这自然生成的混合物,其含有一定的孔隙内.在自然这下状,岩石的孔隙中充这着具有这解液性这的地这水或这化度低的淡水很.在油这集这气内,岩石孔隙中的充物一般由地这水、石油及填 天然按天然形成的比例混合而成气.

在这流通这岩石这,岩石孔隙水中的子要在这流的作用下这生这离运.这这这明,岩石孔隙水(地这水)中的子离主要是这子离(Na+)和这子离(Cl-),所以,这这子在这流作用下穿这岩石孔隙系这的这易程度这定了岩石两离决 的这阻率.孔隙度这高且其孔隙系这具有良好这通性的岩石具有这低的这阻率.孔隙度这低且其孔隙通道的几何形这这和这通性不好的岩石的这阻率这高状.如果岩石中的孔隙通道被不这这的这物所堵塞,这这这子不能在离孔隙通道中移这,因此提高了岩石的这阻率.在含有这化合物的地这中碳,由于这这化合物一般是不这这的,所以它离运这的存在这这上是堵塞了子移的通道,使岩石的这阻率这大.另外,含泥这岩石的这阻率这受土这物的含黏量和这型的影响. 前阿这奇这代的岩石这这性究这这研 当研响这这阿这奇的究工作有重要影的这这有下列4个: Kogan这这 1935年,前这这巴这阿塞这柏疆(Azerbayzhan)石油究所的研I Kogan采用这慢替代法做了一这于松散个砂粒堆这物这这性的这这.他把巴这从(Baku)油田采到的砂粒在一垂直管子里管子里充这了这水装个并将.然后,将个管子的底部放入到一石油这杯中.最后,向这杯中加入这这空气.利用这这空的这力气,使得这杯里的石油慢慢地这入到这砂子的管子里去装,将并来管子里的这水这走用石油代替.Kogan的含水这和度据是利用重数量这量得到的,而这阻率据是利用这臂数(惠斯登(Wheatstone))这这采集的. 在整这这这程中个,Kogan一共这这了这不同的砂粒两,模这砂岩的孔隙度这20%到45%.相这的这量这果这出了明这的这律性.Kogan的这这据被成功地用于这这前这这巴这地的油田的这采和枯竭程度数区.

岩石物理模型

岩石物理模型综述 岩石是由固体的岩石骨架和流动的孔隙流体组成的多相体,其速度的影响因素呈现复杂性和多样性各因素对速度的影响不是单一的,是相互影响综合作用的结果,这也表明利用地球物理资料进行储层特征预测和流体识别是切实可行的,岩石的弹性表现为多相体的等效弹性,可以概括为4个分量:基质模量,干岩骨架模量,孔隙流体模量,和环境因素(包括压力温度声波频率等),岩石物理理论模型旨在建立这些模量之间相互的理论关系,它在通过一定的假设条件把实际的岩石理想化,通过内在的物理学原理建立通用的关系。有些模型假设岩石中的孔隙和颗粒是层状排列的,有些模型认为岩石是由颗粒和某种单一几何形状的孔隙组成的集合体,其中孔隙可以是球体、椭球体或是球形或椭球形的包含体,还有些模型认为岩石颗粒是相同的弹性球体。鉴于以上不同的实际岩石理想化过程,我们将岩石物理模型分为四类:层状模型、球形孔隙模型、包含体模型和接触模型。 1 层状模型 ①V oigt-reuss-hill(V-R-H)模量模型 在已知组成岩石介质各相的相对含量以及弹性模量的情况下,分别利用同应变状态同应力状态估算岩石介质有效弹性模量的vogit上限reuss下限,利用两者的算术平均计算岩石的有效弹性模量,这种平均并没有任何理论的基础和物理含义,该模型比较适合于计算矿物成分的有效体积模量及可能的最大上下限,不适于求取岩石的总体积模量剪切模量和气饱和岩石的情况。

②Hashin-shtrikman模量模型 在已知岩石矿物和孔隙流体的弹性模量及孔隙度的情况下,Hashin-shtrikman模型能精确地计算出多孔流体饱和岩石模量的取值范围,其上下限的分离程度取决于组成矿物弹性性质的差异(均为固体矿物颗粒时,上下限分离很小;如有流体存在时,则上下限分离较大)。 ③wood模量模型 wood模量模型首先利用reuss下限计算混合物平均体积模量,再利用其与密度的比值估算速度,该模型比较适用于计算孔隙混合流体的有效有效体积模量,或者浅海沉积物的有效体积模量(浅海沉积物基本为悬浮状态)。 ④时间平均平均方程 Wyllie等人的测量显示,假设岩石满足:(1)具有相对均匀的矿物;(2)被液体饱和;(3)在高有效压力下,波在岩石中直线传播的时间是在骨架中的传播时间与在孔隙流体中的传播时间的和,由此得到声波时差公式为 ΔT=(1-φ)ΔTma+φΔTf 其中,ΔT为声波时差,ΔTma和ΔTf分别是孔隙流体和岩石骨架的声波时差值,φ是孔隙度。因此,通常被称为时间平均方程,该方程适用于压实和胶结良好的纯砂岩。对于未胶结、未压实的疏松砂岩,需要用压实校正系数犆p校正;对于泥质砂岩,要进行泥质校正。 2 球形空隙模型

水文地质学知识点整理

地下水的概念P1:地下水是赋存于地表以下岩石(土)空隙中各种形态的水的总称。既有液态的水液,也有气态的水汽,也包括固态的水冰,还有介于它们之间其他形态的水。 地下水的功能属性P2:地下水的资源属性,地下水是生态因子,地下水是环境(灾害)因子,地下水是一种重要的地质营力,地下水是地球深部的信息载体。 水文地质学的研究方法P4:野外调查,野外试验,室内试验,遥感,地球物理勘察,信息技术的应用。 第一章水循环与地下水赋存 1、了解地球内部圈层构P7 地球圈层构造划分表 地球外部圈层:由五个大致成层分布的自然子系统组成,按照性质可以分成3类。即3个无机子系统———大气圈、水圈、岩石圈。1个类有机子系统———土壤圈。1个有机子系统———生物圈。 2、地球水圈可以划分为地质水圈和水文水圈。P9 3、地球上的水循环P10:地球各个圈层中的水相互联系、相互转化的过程统称为大气水的水循环,又叫做自然界的水循环。按其循环途径的长短、循环速度的快慢以及涉及层圈的范围,可分为地质循环和水文循环两类。 4、岩石(土)介质中水的存在形式P17页

5、赋存介质的水理性质P19-20:指与水的储容和运移有关的赋存介质的性质,主要包括空隙的大小、多少、连通程度及其分布的均匀程度,这些性质的差异,会使其储容、滞留、释放以及透过水的能力不同。表征介质水理性质的指标有容水度,给水度,持水度。 容水度:指介质能够容纳一定水量的性质。 给水性:指饱水介质在重力作用下,能够自由给出一定水量的性质持水性:指重力释水后,介质能够保持一定水量的性能。 二、地下水的基本类型及其特征 1、包气带和饱水带:P21 2、越流P22:把两个含水层透过该弱透水层发生垂直水量交换的现象称为地下水的越流。 按照地下水的埋藏条件,可以把地下水分为潜水、承压水、与上层滞水。其中潜水和承压水在一定条件下是可以相互转化的。P23 3、潜水的概念P26:潜水是地表一下埋藏在饱水带中第一个稳定隔水层智商的具有自由水面的重力水。

岩石物理分析

第一篇地震岩石物理学及在储层预测的应用 Seismic Rock physics Theory and the Application in Reservor Discrimination 摘要 储层预测研究主要在于弄清储层构造特征、岩性特征及储层参数,进而减少勘探开发风险。储层参数包括孔隙度、渗透率、流体类型等,而地震资料提供的是地震波旅行时和振幅信息,再通过反演可得到弹性参数。地震岩石物理学则为储层参数和弹性参数之间搭建桥梁。横波速度是重要的地球物理参数在近些年发展起来的叠前地震储层弹性参数反演及流体检测方面起着重要的作用。地震横波速度估计技术是根据地震岩石物理建立的目标岩石模量计算模式,利用计算出的模量重建纵波曲线,与实测曲线建立迭代格式修正岩石模量,实现横波速度等关键参数估计。在方法实现上利用了Xu-White模型为初始模型。流体因子是识别储层流体的重要参数,常规流体因子多是基于单相介质理论提出的,而从双相介质岩石物理理论出发可以更好的研究孔隙流体对介质岩石弹性性质的影响,为敏感流体因子的构建提供更好的指导。本文采用了Gassmann流体因子,并分析了其敏感性。 关键词:等效介质模量,孔隙度,横波速度估算,Xu-White模型,Gassmann流体因子。

Seismic Rock physics Theory and the Application in Reservor Discrimination Abstract The study of reservoir prediction is mainly to investigate the characteristics of reservoir structure,lithologic features and reservoir parameters,aim to reduce the risk of exploration. Reservoir parameters include porosity,permeability,fluid type,etc,But seismic data only reflects on seismic traveltime,amplitude information,and elastic parameters which can be obtained throuth seismic inversion.Seismic rock physics builds bridges for reservoir parameters elastic.S-wave velocity, an important geophysical parameter,plays an important role in pre-stack seismic reservoir elastic parameter inversion and fluid detection witch developed in recent years.The seismic shear wave velocity estimation technique is based on the rock mass calculation model established by the seismic rock physics, reconstructs the longitudinal wave curve with the calculated modulus, establishes the iterative pattern with the measured curve to correct the rock modulus, and obtain the key parameters such as the shear wave velocity.The Xu-White model was used as the initial model in the method implementation. Fluid factor is an important parameter to identify reservoir fluid. Conventional fluid factors are mostly based on the theory of single-phase medium. From the theory of biphasic medium rock physics, it can be better to study the effect of pore fluid on the elastic properties of fluid The construction of fluid factors provides better guidance. In this paper, the Gassmann fluid factor is used and its sensitivity is analyzed. Key word:Equivalent medium modulus, porosity,Shear wave velocity estimation, Xu-White model, Gassmann fluid factor

岩石物理学复习提纲2017

岩石物理学复习提纲 2017 一、试卷题型 ?基本概念以填充和名词解释形式考查 一、填充题: 例: 1、岩石物理学主要从()和()上研究岩石特性与其() 性质间相互关系。 2、矿物一般是由无机作用形成的,()和()都是有机作用的 产物,故均非矿物。 二、名词解释: 例: 1、岩石物理学: 2、离子导电岩石:

一、试卷题型 ?简述题与综合题: 三、简述题,主要考查对岩石物理中一些问题的理解 例: 1、简述岩石物理学研究中存在的问题 2、用定性或定量方式列举三个主要岩石特性因素是怎样影响岩石地震 特性的 3、岩石物理模型中公式的定义,物理量的含义,公式等 一、试卷题型 ?简述题与综合题: 四、综合题,与简述题的差别为,一般在综合题中会加入简单的计算, 同时考查对知识的综合应用。 例: 1、阿尔奇公式的基本形式和物理意义,写出各个参量的含意;已知一 些参数后求岩石的电阻率孔隙度和饱和度; 2、 Gassmann方程中需要哪些参数,与空间平均方式建立岩石物理 模型有什么关系,基质体积模量,孔隙内混合流体的体积模量用什么模型计算,已知体积模量怎样计算速度,反之。

一、试卷题型 ?图示说明题和公式推导或证明 五、图示说明题,用图示的方式说明弹性波在固液介质中的传播规律并用文字回答基本规律; 例1:在一个液-固介质的分界面上,上层液体介质的波阻抗为Z 1=Vp 1ρ1,下层固体介质的波阻抗为Z 2=Vp 2ρ2,且V 2>V 1。当一个波以α角入射到界面时,在界面上会发生什么现象?用射线、箭头和角度方式图示,并回答问题。 一、试卷题型 ?图示说明题和公式推导或证明 例2:图示岩石基本特性与速度的关系(定性关系)。

岩石的基本物理力学性质

岩石的基本物理力学性质 岩石的基本物理力学性质是岩体最基本、最重 要的性质之一,也是岩体力学中研究最早、最完善 的力学性质。 岩石密度:天然密度、饱和密度、 质量指标密度、重力密度 岩石颗粒密度 孔隙性孔隙比、孔隙率 含水率、吸水率 水理指标 渗透系数 抗风化指标软化系数、耐崩解性指数、膨胀率 抗冻性抗冻性系数 单轴抗压强度 单轴抗拉强度 抗剪强度 三向压缩强度 岩石的基本物理力学性质 ◆岩石的变形特性 ◆岩石的强度理论 试验方法参照标准:《工程岩体试验方法标准》(GB/T 50266-99)。 第二章岩石的基本物理力学性质 第一节岩石的基本物理性质 第二节岩石的强度特性 第三节岩石的变形特性

第四节岩石的强度理论 回顾----岩石的基本构成 岩石是自然界中各种矿物的集合体,是天然地质作用的产物,一般而言,大部分新鲜岩石质地均坚硬致密,空隙小而少,抗水性强,透水性弱,力学强度高。 岩石是构成岩体的基本组成单元。相对于岩体而言,岩石可看作是连续的、均质的、各向同性的介质。 岩石的基本构成:由组成岩石的物质成分和结构两大方面来决定的。 回顾----岩石的基本构成 一、岩石的物质成分 ●岩石是自然界中各种矿物的集合体。 ●岩石中主要的造岩矿物有:正长石、斜长石、石英、黑云母、角闪石、辉石、方解石、白云石、高岭石等。 ●岩石中的矿物成分会影响岩石的抗风化能力、物理性质和强度特性。 ●岩石中矿物成分的相对稳定性对岩石抗风化能力有显著的影响,各矿物的相对稳定性主要与化学成分、结晶特征及形成条件有关。 回顾----岩石的基本构成 二、岩石的结构 是指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、性状、排列、结构连结特点及岩石中的微结构面(即内部缺陷)。其中,以结构连结和岩石中的微结构面对岩石工程性质影响最大。 回顾----岩石的基本构成 ●岩石结构连结 结晶连结和胶结连结。 结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩及部分沉积岩的结构连结。这种连结结晶颗粒之间紧密接触,故岩石强度一般较大,但随结构的不同而有一定的差异。 胶结连结:指颗粒与颗粒之间通过胶结物在一起的连结。对于这种连结的岩石,其强度主要取决于胶结物及胶结类型。从胶结物来看,硅质铁质胶结的岩石强度较高,钙质次之,而泥质胶结强度最低。 回顾----岩石的基本构成 ●岩石中的微结构 岩石中的微结构面(或称缺陷),是指存在于矿物颗粒内部

岩石物理分析技术在储层预测中的应用

岩石物理分析技术在储层预测中的应用 引言 岩石物理分析基础 应用及效果分析 合成地震记录有明显的改善 结论 1、在AVO研究工作中,泊松比是弹性波反演的主要参数之一,通常采用纵横波速度曲线来求取。 【泊松比:泊松比是指材料在单向受拉或受压时,横向正应变与轴向正应变绝对值的比值,也叫横向变形系数,它是反映材料横向变形的弹性常数。】 2、Gassmann理论为基础的经验公式,其应用的前提条件是: 1)孔隙流体与孔隙壁接触很好; 2)速度不随频率的变化而变化; 3)剪切模量不受流体影响。 3、在实际测井资料分析研究中,由于测井资料容易受到泥浆、井径扩径等非地层因素的影响,同时由于受泥浆滤液浸入的影响,声波和密度的测量代表地层冲洗带的响应状态。 4、通过对工区内岩石物性特性分析研究,可以得到地层的泥质含量、孔隙度、渗透率、含油饱和度、束缚水饱和度等储层物性参数。 如果已知组成地层各分量及各流体分量的体积模量和剪切模量就能够根据Gassmann理论或者Wood理论确定地层的有效体积模量Κ和有效剪切模量μ.Gassmann理论的有效体积模量Κ和有效剪切模量μ为: 式中Κ为岩石的体积模量,Κ s 为颗粒的体积模量,Κ d 为干岩石骨架的体积 模量,Κ f 为流体的体积模量,μ为岩石的剪切模量,μ d 为干岩石的剪切模量, ρ为流体的颗粒密度;ρ f 为岩石的颗粒密度,φ为孔隙度. Κ f 由Wood公式求出: 式中f i 是体积因子,Κ i 是体积模量,ρ i 矿物的体积密度. 地层的体积密度是岩石密度的体积加权,并且与岩石的孔隙度密切相关,通过下式得到:

其中ρ为地层的体积密度,ρ 0为地层岩石的骨架密度,ρ f 为孔隙中流体的 密度,φ岩石的孔隙度。 纵横波的重构是根据Xu-White模型,压缩波速度是介质密度和弹性模量的函数,可表示为: 横波通过固相弹性介质的速度是: 式中V c 为压缩波速度,Κ为地层的有效体积弹性模量,μ为地层的有效切 变弹性模量,ρ为地层的体积密度,V s 为横波速度。 通过测井曲线的重构,做出各井标准层的测井响应频率直方图或频率交会图,同关键井的标准砂岩或泥岩层作对比,地层的物性参数及含油情况等能够得到很好的反映,并能够真正反映地层的沉积环境,消除由于环境影响对测井的影响. 5、下图为一实际测井资料,在井的563-572m是油层、622-627.8m为气层。 X井曲线校正对比图: X井合成记录对比情况:

致密砂岩岩石物理模型研究

致密砂岩岩石物理模型研究致密砂岩油气作为非常规能源的一种,对世界常规能源的接替起到了至关重要的作用。其显著的特征是渗透率低(小于或等于0.1×10-3μm2)、岩石压实紧密、微观储渗机理复杂。多数情况下,致密储层的胶结程度高,塑性大,岩屑含量及粘土含量相对多,常规的解释与评价方法很难揭示岩石的储集与渗流机理,并且现有的岩石物理解释模型也难以精细的表征其微观特征,表征物性特征的参数同样也不仅仅为孔、渗的数值大小,因此对于致密砂岩,基于岩石微观孔隙结构参数的表征是对物性进行描述的重要内容。但在致密砂岩储层中如何明确裂缝的形成过程并把它表征出来一直是一个难点。在致密砂岩形成过程中,成岩作用对其影响最大。在成岩作用过程中,压实作用和胶结作用较大幅度地降低了储层的孔隙度和渗透率,粘土等矿物的充填也是渗透率降低的重要原因。 致密砂岩储层复杂的地质特征使得储层的渗流特征、弹性及物性特征有别于常规砂岩储层,加之极强的非均质性,使得致密砂岩岩石物理分析研究具有很大的挑战性,常规的孔隙度、渗透率以及饱和度等公式适用性差,利用测井手段识别致密砂岩中的气层特别困难、精确评估致密砂岩储层难度大。对此许多学者进行了岩石物理分析及建模方法、测井评价、储层横向预测,以及在开发过程中利用微地震、时移地震等进行储层动态监测的研究。有效的对岩石物理模型进行研究,能够合理地对储层含油气性进行预测。 1、致密砂岩储层特征 在常规砂岩储层中,有效孔隙度通常只比总孔隙度稍低,然而如图 3-1 所示(蓝色部分为容纳气体的孔隙空间),致密砂岩储层中,强烈的成岩作用导致有效孔隙度值比总孔隙度要小很多。伴着成岩作用的发生,致密砂岩得原生孔隙结构发生重大改变,平均孔隙直径减小,弯曲度加大,不连通孔隙增多,于是岩石的孔隙类型和孔隙微结构变得十分复杂。

常用的岩土和岩石物理力学参数

(E, ν与) (K, G) 的转换关系如下: K E 3(1 2 ) G E (7.2) 2(1 ) 当 ν值接近 0.5 的时候不能盲目的使用公式 3.5,因为计算的 K 值将会非常的高,偏离 实际值很多。最好是确定好 K 值 (利用压缩试验或者 P 波速度试验估计 ),然后再用 K 和 ν 来计算 G 值。 表 7.1 和 7.2 分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值) (Goodman,1980) 表 7.1 干密度 (kg/m 3) E(GPa) ν K(GPa) G(GPa) 砂岩 19.3 0.38 26.8 7.0 粉质砂岩 26.3 0.22 15.6 10.8 石灰石 2090 28.5 0.29 22.6 11.1 页岩 2210-257 11.1 0.29 8.8 4.3 大理石 2700 55.8 0.25 37.2 22.3 花岗岩 73.8 0.22 43.9 30.2 土的弹性特性值(实验室值) (Das,1980) 表 7.2 松散均质砂土 密质均质砂土 松散含角砾淤泥质砂土 密实含角砾淤泥质砂土 硬质粘土 软质粘土 黄土 软质有机土 冻土 3 弹性模量 E(MPa) 泊松比 ν 干密度 (kg/m ) 1470 10-26 0.2-0.4 1840 34-69 0.3-0.45 1630 1940 0.2-0.4 1730 6-14 0.2-0.5 1170-1490 2-3 0.15-0.25 1380 610-820 2150 各向异性弹性特性——作为各向异性弹性体的特殊情况, 横切各向同性弹性模型需要5 中弹性常量: E E 3 , ν12 , ν 和 G 13 ;正交各向异性弹性模型有 9 个弹性模量 E 1, 13 1,E 2,E 3, ν12 , ν , ν 和 G 23。这些常量的定义见理论篇。 1323 ,G 12,G 13 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。 一些学者已经给出了用 各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表 3.7 给出了各向 异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表 7.3 E x (GPa) E y (GPa) νyx νzx G xy (GPa) 砂岩 43.0 40.0 0.28 0.17 17.0 砂岩 15.7 9.6 0.28 0.21 5.2

岩石力学复习重点

1岩石力学与工程学科定义。 岩石力学是一门认识和控制岩石系统的力学行为和工程功能的科学。 2岩石力学与工程的任务、研究对象以及其研究范围。 3岩石力学与工程的研究方法。1)工程地质研究方法2)科学实验方法3)数学力学分析方法4)整体综合分析方法 第一章岩石物理力学性质 1岩石的物理性质(几个重要概念:容重的测量方法P25\吸水率、抗冻性、软化性) 容重的测量方法:A、量积法测定岩石的容重B、水中称重法测定岩石的容重C、蜡封法测定岩石的容重学性质。 吸水率:岩石在一定条件下吸收水分的性能称为岩石的吸水性。 抗冻性:岩石抵抗冻融破坏的性能称为岩石的抗冻性。 软化性:岩石浸水后强度降低的性能称为岩石的软化性。 2岩石的力 1点荷载强度指标是一种最简单的岩石强度试验,其试验所获得的强度指标可用做岩石分级的一个指标,有时可代替单轴抗压强度。 岩石的抗剪切强度:岩石在在剪切荷载作用下达到破坏所能承受的最大剪应力称为岩石的抗剪切强度。剪切强度试验分为非限制性剪切强度试验和限制性剪切强度试验二类。 2.试件在单轴压缩状态下的主要破坏形式 1)X状共轭斜面剪切破坏,是最常见的破坏形式。 2)单斜面剪切破坏,这种破坏也是剪切破坏。 3)塑性流动变形,线应变≥10%。 4)拉伸破坏,在轴向压应力作用下,在横向将产生拉应力。这是泊松效应的结果。这种类型的破坏就是横向拉应力超过岩石抗拉极限所引起的。 3.用能量法解释刚性实验机的工作原理 试件受压,试验机框架受拉,刚性试验机 4.全程应力应变三个用途 1.预测岩爆 2.预测蠕变破坏 3.预测循环加载条件下岩石的破坏 5.全程应力应变曲线及解释

岩石的基本物理力学性质及其试验方法

第一讲岩石的基本物理力学性质及其试验方法(之一) 一、内容提要: 本讲主要讲述岩石的物理力学性能等指标及其试验方法,岩石的强度特性。 二、重点、难点: 岩石的强度特性,对岩石的物理力学性能等指标及其试验方法作一般了解。 一、概述 岩体力学是研究岩石和岩体力学性能的理论和应用的科学,是探讨岩石和岩体对其 周围物理环境(力场)的变化作出反应的一门力学分支。 所谓的岩石是指由矿物和岩屑在长期的地质作用下,按一定规律聚集而成的自然体。由于成因的不同,岩石可分成火成岩、沉积岩、变质岩三大类。岩体是指在一定工程范围内的自然地质体。通常认为岩体是由岩石和结构面组成。所谓的结构面是指没有或者具有极低抗拉强度的力学不连续面,它包括一切地质分离面。这些地质分离面大到延伸几公里的断层,小到岩石矿物中的片理和解理等。从结构面的力学来看,它往往是岩体中相对比较薄弱的环节。因此,结构面的力学特性在一定的条件下将控制岩体的力学特性,控制岩体的强度和变形。 【例题1】岩石按其成因可分为( )三大类。 A. 火成岩、沉积岩、变质岩 B. 花岗岩、砂页岩、片麻岩 C. 火成岩、深成岩、浅成岩 D. 坚硬岩、硬岩、软岩答案:A 【例题2】片麻岩属于( )。 A. 火成岩 B. 沉积岩 C. 变质岩

答案:C 【例题3】在一定的条件下控制岩体的力学特性,控制岩体的强度和变形的是 ( )。 A. 岩石的种类 B. 岩石的矿物组成 C. 结构面的力学特性 D. 岩石的体积大小答案:C 二、岩石的基本物理力学性质及其试验方法 (一)岩石的质量指标 与岩石的质量有关的指标是岩石的最基本的,也是在岩石工程中最常用的指标。 1 岩石的颗粒密度(原称为比重) 岩石的颗粒密度是指岩石的固体物质的质量与其体积之比值。岩石颗粒密度通常采用比重瓶法来求得。其试验方法见相关的国家标准。岩石颗粒密度可按下式计算 2 岩石的块体密度 岩石的块体密度是指单位体积岩块的质量。按照岩块含水率的不同,可分成干密度、饱和密度和湿密度。 (1)岩石的干密度 岩石的干密度通常是指在烘干状态下岩块单位体积的质量。该指标一般都采用量积法求得。即将岩块加工成标准试件(所谓的标准试件是指满足圆柱体直径为48~54mm,高径比为2.0~2.5,含大颗粒的岩石,其试件直径应大于岩石最大颗粒直径的10倍;并对试件加工具有以下的要求;沿试件高度,直径或边长的误差不得大于0.3mm;试件两端面的不

岩石力学重点总结

岩石岩体区别:岩石可以瞧作就是一种材料,岩体就是岩石与各种不连续面的组合体;岩石可以瞧作就是均质的,岩体就是非均质的(在一定的工程范围内);岩石具有弹、塑、粘弹性,岩体受结构面控制,性质更复杂,强度更低;岩体通常就是指一定工程范围内的地质体,岩石则无此概念。 岩石力学就是一门研究岩石在外界因素■(如荷载、水流、温度变化等)作用下的应力、应变、破坏、稳定性及加固的学科。又称岩体力学,就是力学的一个分支。研究目的在于解决水利、土木工程等建设中的岩石工程问题。它就是一门新兴的,与有关学科相互交叉的工程学科,需要应用数学、固体力学、流体力学、地质学、土力学、土木工程学等知识,并与这些学科相互渗透。 研究对象[对象:岩石一对象一岩石材料一地壳中坚硬的部分; 复杂性:地质力学环境的复杂性(地应力、地下水、物理、化学作用等)

研究方法:物理模拟T岩石物理力学性质常规实验,地质力学模型试验; 数学模型T如有限元等数值模拟; 理论分析T用新的力学分支,理论研究岩石力学问题; 由于岩石中存在各种规模的结构面(断裂带、断层、节理、裂隙)7致使岩石的物理力学性质T不连续、不均匀、各向异性T因此,有必要引入刻划不均一程度的参数。 各向异性:指岩石的强度、变形指标(力学性质)随空间方位不同而异的特性。 岩石力学问题的研究首先应从岩石的基本物理力学性质研究入手, 1.岩石的容重:指单位体积岩石的重量。2、比重(Gs)指岩石干重量除以岩石的实体积(不含孔隙体积)的干容重与4无水的容重的比值。3、孔隙率(n%)指岩石内孔隙体积与总体积之比。4、天然含水量:指天然状态下,岩石的含水量与

岩石干重比值的百分比。5、吸水率:指岩石在常温条件下浸水48小时后,岩石内的含水量与岩石干容重的比值。6、饱与含水率:指岩样在强制状态(真空、煮沸或高压)下,岩样最大吸水量与岩石干重量比值。7、饱水分数:指岩石吸水率与饱水率的比值百分率。8抗冻系数。9、软化系数。10、渗透系数K与吕容系数Lu。 岩体的工程分类:岩体质量指标RQD,RQD值的大小,反映了岩体完整程度T岩体分类。 岩石的水理性质:岩石遇水后会引起某些物理、化学与力学性质的改变,岩石的这种性质称为岩石的水理性。 1、岩石的吸水性 2、岩石的软化性 3、岩石的膨胀性 4、岩石的崩解性 5、岩石的抗冻性 6、岩石的透水性岩石的碎胀性、 岩石的强度:重要性(工程安全、经济效益)【岩石由固体,水,空气等三相组成。】 复杂性:岩石的强度包括岩块的强度与结构面的强度,以及耦合效益+地质环境因素影响(地应力、地下水等) 岩石的破坏形式:1、脆性破坏:岩石发生破坏时,变形很小,明显声响,一般发生在单轴或低围压坚硬岩石。 2、塑性破坏:破坏时,变形较大,有明显的“剪胀”效应,一般发生在较软弱岩石或高围压坚硬岩石 3、沿软弱结构面(原生)剪切破坏。

相关文档
最新文档