燃气泄漏与扩散模型的探讨(通用版)

燃气泄漏与扩散模型的探讨(通用版)
燃气泄漏与扩散模型的探讨(通用版)

燃气泄漏与扩散模型的探讨

(通用版)

Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place.

( 安全管理 )

单位:______________________

姓名:______________________

日期:______________________

编号:AQ-SN-0596

燃气泄漏与扩散模型的探讨(通用版)

摘要:论述了城市燃气泄漏模型(小孔泄漏模型、管道泄漏模型、其他泄漏模型)和扩散模型(高斯模型和重气扩散模型)的主要内容

及适用条件。

关键词:燃气泄漏;泄漏模型;扩散模型

DiscussiononModelsforGasLeakageandDiffusion

PENGShi-ni,ZHOUTing-he

Abstract:Themaincontentandapplicableconditionsofcitygasleakagemodel

s(poreleakagemodel,pipelineleakagemodelandotherleakagemodel)anddiffusionmodel

s(Gaussianmodelandheavygasdiffusionmodel)arediscussed.

Keywords:gasleakage;leakagemodel;diffusionmodel

燃气泄漏是燃气供应系统中最典型的事故[1]

。在燃气的储存、输配及使用过程中,由于人为或自然原因导致泄漏,燃气泄漏后在空气等介质中扩散并积聚,当达到一定浓度时遇到火源会产生爆炸并引起火灾。燃气泄漏后果的严重程度主要取决于泄漏量和扩散范围,而泄漏量又与泄漏源强度及泄漏时间有关。因此,燃气的泄漏强度和扩散范围是分析泄漏与扩散以及预测评价事故后果的基础和参考依据。本文针对城市燃气泄漏模型和扩散模型进行探讨。

1泄漏模型

1.1小孔泄漏模型

小孔泄漏模型适用于穿孔泄漏的情形,穿孔泄漏是指管道或设备由于腐蚀等原因形成小孔,燃气从小孔泄漏。常见的穿孔直径在10mm以下,对于穿孔直径在20mm以下的泄漏可以使用该模型。小孔泄漏一般是长时间持续稳定泄漏且具有泄漏点多、不易察觉、潜在危险大的特点。

对于小孔泄漏模型,按照其泄漏燃气相态的不同,可分为气体

流泄漏、液体流泄漏和气液两相流泄漏3种形式[2]

①气体流泄漏强度[1~6]

较普遍的气态燃气泄漏强度的计算是按照伯努利方程推导所得,气体从孔口泄漏的强度与其流动状态有关。因此,要确定泄漏时气体流动属于声速流动(临界流)还是亚声速流动(次临界流),可以用临界压力比来判断:

式中β——临界压力比

p0

——环境绝对压力,Pa

pc

——泄漏口燃气的临界压力,Pa

κ——燃气等熵指数

燃气等熵指数,κ是温度的函数,理想气体的,κ可近似当作定值,对于双原子气体取1.4,多原子气体取1.29,单原子气体取1.66。对于天然气等由多原子分子组成的气体,κ可近似取1.29。

式中qm

——泄漏强度,kg/s

Cg

——气体泄漏系数

A——泄漏口面积,m2

p1

——容器内燃气的绝对压力,Pa

M——燃气的摩尔质量,kg/mol

Z——压缩因子

R——摩尔气体常数,取8.314J/(mol·K)

T1

——容器内的燃气温度,K

气体泄漏系数与泄漏口的形状有关,泄漏口为圆形时取1.00,三角形时取0.95,长方形时取0.90,由内腐蚀形成的渐缩小孔取0.90~1.00,由外腐蚀或外力冲击形成的渐扩孔取0.60~0.90。压缩因子可以根据燃气的对比压力和对比温度查燃气压缩系数图得

大气污染物扩散模式

第四章 大气扩散浓度估算模式 第一节 湍流扩散的基本理论 一 湍流 1.定义:大气的无规则运动 风速的脉动 风向的摆动 2.类型: 按形成原因 热力湍流:温度垂直分布不均(不稳定)引起,取决于大气稳定度 机械湍流:垂直方向风速分布不均匀及地面粗糙度引起 3.扩散的要素 风:平流输送为主,风大则湍流大 湍流:扩散比分子扩散快105~106倍 二 湍流扩散理论(主要阐述湍流与烟流传播及湍流与物质浓度衰减的关系) 1.梯度输送理论 通过与菲克扩散理论类比建立起来的(菲克定律:单位时间内通过单位断面上的物质的数量与浓度梯 度呈正比) 类比于分子扩散,污染物的扩散速率与负浓度梯度成正比 x C k F ??-= 式中,F — 污染物的输送通量 k — 湍流扩散系数 C — 污染物的浓度 X — 与扩散截面垂直的空间坐标(扩散过程的长度) x C ??— 浓度梯度 要求得各种条件下某污染物的时、空分布,由于边界条件往往很复杂,不能求出严格的分析解,只能是在特定的条件下求出近似解,再根据实际情况进行修正。 2.湍流统计理论 泰勒首先将统计理论应用在湍流扩散上 图4-1显示:从原点O 放出的粒子,在风沿着x 方向吹的湍流大气中扩散。粒子的位置用y 表示,则结论为: ①y 随时间变化,但其变化的平均值为零 ②若从原点放出很多粒子,则在x 轴上粒子的浓度最高,浓席分布以x 轴为对称轴,并符合正态分布。 萨顿实用模式:解决污染物在大气中扩散的实用模式 高斯模式:应用湍流统计理论得出正态分布假设下的扩散模式 3.相似理论 第二节 高斯扩散模式 一 坐标系的建立—右手坐标系

1.原点O :无界点源或地面源,O 为污染物的排放点 高架源,O 为污染物的排放点在地面上的投影点 补充:点源 高架源 连续源 固定源 线源 地面源 间歇源 流动源 面源 2.x 轴:正向为平均风向,烟流中心线与x 轴重合 3.y 轴:垂直于x 轴 4.z 轴:垂直于xoy 平面 二 高斯模式的有关假定 1.污染物浓度在y 、z 轴上的分布为正态分布; )2exp(21 )(22 y y y y f σπ σ-= )2exp(21 )(22 z z z z f σπ σ-= y σ,z σ— 分别为污染物在y 和z 方向上分布的标准差,m 2.全部高度风速均匀稳定,即风速u 为常数; 3.源强是连续均匀稳定的,源强Q 为定值; 4.扩散中污染物是守恒的,不考虑转化,即烟云在扩散过程中没有沉降、化合、分解及地面吸收、吸附作用发生; 0=??t C 5.在x 方向上,输送作用远远大于扩散作用,即 )(x C k x x C u x ????>>??; 6.地面足够平坦。

泄漏源及扩散模式

第六章泄漏源及扩散模式 很多事故是由于物料的泄漏引起的。 因泄漏而导致事故的危害,很大程度上取决于有毒有害,易燃易爆物料的泄漏速度和泄漏量。物料的物理状态在其泄漏至空气中后是否发生改变,对其危害范围也有非常明显的影响,泄漏物质的扩散不仅由其物态、性质所决定,又为当时气象条件、当地的地表情况所影响。 6.1常见泄漏源 泄漏源分为两类: 一是小孔泄漏:通常为物料经较小的孔洞,长时间持续泄漏。如反应器、管道、阀门等出现小孔或密封失效; 二是大面积泄漏:在短时间内,经较大的孔洞泄漏大量物料。如管线断裂、爆破片爆裂等。 为了能够预测和估算发生泄漏时的泄漏速度、泄漏量、泄漏时间等,建立如下泄漏源模型,描述物质的泄漏过程: 1.流体流动过程中液体经小孔泄漏的源模式; 2.储罐中液体经小孔泄漏的源模式; 3.液体经管道泄漏的源模式; 4.气体或蒸汽经小孔泄漏的源模式; 5.闪蒸液体的泄漏源模式; 6.易挥发液体蒸发的源模式。 针对不同的工艺条件和泄漏源情况,应选用相应的泄漏源模式进行泄漏速度、泄漏量、泄漏时间的求取。 6.2 流体流动过程中液体经小孔泄漏的源模式 系统与外界无热交换,流体流动的不同能量形式遵守如下的机械能守恒方程: (6—1)式中:P——压力,Pa; ρ——流体密度,kg/m3; α——动能校正因子,无因次;α≈1 U ——流体平均速度,m/s; g ——重力加速度,g = 9.81 m/s2; z ——高度,m; F ——阻力损失,J/kg; W s ——轴功率,J; m ——质量,kg。 对于不可压缩流体,密度ρ恒为常数,有:

(6—2)泄漏过程暂不考虑轴功率,W s =0,则有: (6—3)液体在稳定的压力作用下,经薄壁小孔泄漏,如图6.1所示。 容器内的压力为p1,小孔直径为d,面积为A,容器外为大气压力。此种情况,容器内液体流速可以忽略,不考虑摩擦损失和液位变化,可得到: 式中,Q为单位时间内流体流过任一截面的质量,称为质量流量,其单位为kg/s。 考虑到因惯性引起的截面收缩以及摩擦引起的速度减低,引入孔流系数C0,则经小孔泄漏的实际质量流量为: kg /s(6—7) 式中:Q——质量流量,kg / s; A——泄漏孔面积,m2; C0——孔流系数; p1——容器内的压力,Pa; ρ——流体密度,kg / m3。 C0的取值: 1、薄壁小孔( 壁厚≤d / 2 ),Re > 105C0 = 0.61 2、厚壁小孔( d / 2 < 壁厚≤4d ),或在孔处伸有一段短管(见图6.3 ) C0 = 0.81 3、修圆小孔( 见图6.2 ) C0 = 1

点污染源空气污染扩散模型

8 点、中午12 点、晚上9 点都没有排放气体,该怎么算,是不是需要找到一个关于时间t的函数,来计算多长时间之后污染还剩下多少 c=Q./(2*pi*sigy.*sigz*u+eps).*exp(-0.5*(y.^2)./((sigy+eps).^2)).*(exp(-0.5*(z-H).^2./((sigz+eps).^2))+exp(-0.5*(z+H).^2./((sigz+ eps).^2))); 这个函数对吗?该调用什么函数? 问题: 建立单污染源空气污染扩散模型,描述其对周围空气污染的动态影响规律。 现有河北境内某一工厂废气排放烟囱高50m,主要排放物为氮氧化物。早上9 点至下午 3 点期间的排放浓度为406.92mg/m3,排放速度为1200m3 /h;晚上10 点-凌晨4 点期间 的排放浓度为1160mg/m3,排放速度为5700m3 /h;通过你的扩散模型求解该工厂方圆51 公里分别在早上浓度8 点、中午12 点、晚上9 点空气污染分布和空气质量等级。 源代码 clear all clc [x,y]=meshgrid(0:20:5100,0:20:5100); Q=135.64; z=1.5; H=50; u=1.94; sigy=0.3914238*x.^0.865014; sigz=0.0757182*x.^1.00770; c=Q./(2*pi*sigy.*sigz*u+eps).*exp(-0.5*(y.^2)./((sigy+eps).^2)).*(exp(-0.5*(z-H).^2./((sigz+eps).^2))+exp(-0.5*(z+H).^2./((sigz+ eps).^2))); mesh(x,y,c); xlabel('X'),ylabel('Y'),zlabel('C'), clear all clc [x,y]=meshgrid(-5100:20:5100,-5100:20:5100); Q=1836.7; z=1.5; H=50; u=1.7; sigy=0.3914238*x.^0.865014; sigz=0.0757182*x.^1.00770; c=Q./(2*pi*sigy.*sigz*u+eps).*exp(-0.5*(y.^2)./((sigy+eps).^2)).*(exp(-0.5*(z-H).^2./((sigz+eps).^2))+exp(-0.5*(z+H).^2./((sigz+ eps).^2))); mesh(x,y,c); xlabel('X'),ylabel('Y'),zlabel('C'), 分享到: 2015-05-29 16:32 提问者采纳 clear all [x,y]=meshgrid(-51000:100:51000,-51000:100:51000); Q=135.64; z=1.5; H=50; u=1.94; sigy=0.3914238*x.^0.865014;

大气污染论文数学建模

大气污染评价与预报模型 摘要 本文对空气质量的评价及污染预报问题进行了分析,运用层次分析法依据处理后的数据对六个城市的空气质量进行了具体细致的排序;对2010年9月15日至9月21日的各项污染物浓度、各气象参数运用一元多项式回归模型进行了预测;就气象参数所属城市问题及污染物浓度与其的关系建立了相关性分析模型和多元线性回归模型;最后,根据建模过程和结果,我们对相关部门提出了几个具体的建议。 通过将数据附件所给有效数据,即日污染物浓度,转化为对应的月污染物浓度的均值,根据各城市月均污染浓度做出其随时间的走势折线图,分析了各个城市2SO 、2NO 、PM10之间的特点。我们拟根据API 指数值,以二级达标次数为准,对各城市之间的空气质量进行排名,但由于依据API 的区分空气质量等级时灵敏度较低,故采用了层次分析法对空气质量进行排名。由于我们采用了全部数据进行排名,而E 、F 数据较少,故只对ABCD 进行了排名。依据层次分析法得出的排名为:A 、B 、D 、C 。 为了精确预测各城市短期内的数据,本文选用一元多项式回归模型。对2010年的数据进行分析整理,依据回归模型得出其与时间的关系,得出预测值,并得出其置信度为95%的置信区间,结果显示模型的预测效果尚能接受,能够对所要预测数据进行预测。但由于F 城市数据缺失,根据假设做了合理的定性分析,并未对其进行定量预测。 分析空气质量与气象参数之间的关系时,首先根据数据完整性,气象参数应只属于其中一个城市,排除了D 、E 、F 的可能性,再根据相关性分析的方法,确定了气象参数属于A 城市。根据污染物与气象参数之间的因果关系,建立了多元线性回归模型,由于季节对污染物的浓度存在影响,分季节得出各污染物与各气象参数之间的相关系数,定性分析该相关系数,得出污染物与气象参数之间的关系。最后对该系数的理论与实际意义做了检验。 根据以上分析及结果,确定部分与空气质量控制相关的部门,针对其职能提出了诚恳建议。 关键词:API 评价模型 层次分析 一元多项式回归模型 相关性分析 多元回归

大气污染扩散模型

第一节大气污染物的扩散 一、湍流与湍流扩散理论 1. 湍流 低层大气中的风向是不断地变化,上下左右出现摆动;同时,风速也是时强时弱,形成迅速的阵风起伏。风的这种强度与方向随时间不规则的变化形成的空气运动称为大气湍流。湍流运动是由无数结构紧密的流体微团——湍涡组成,其特征量的时间与空间分布都具有随机性,但它们的统计平均值仍然遵循一定的规律。大气湍流的流动特征尺度一般取离地面的高度,比流体在管道内流动时要大得多,湍涡的大小及其发展基本不受空间的限制,因此在较小的平均风速下就能有很高的雷诺数,从而达到湍流状态。所以近地层的大气始终处于湍流状态,尤其在大气边界层内,气流受下垫面影响,湍流运动更为剧烈。大气湍流造成流场各部分强烈混合,能使局部的污染气体或微粒迅速扩散。烟团在大气的湍流混合作用下,由湍涡不断把烟气推向周围空气中,同时又将周围的空气卷入烟团,从而形成烟气的快速扩散稀释过程。 烟气在大气中的扩散特征取决于是否存在 湍流以及湍涡的尺度(直径),如图5-7所示。 图5-7(a)为无湍流时,烟团仅仅依靠分子 扩散使烟团长大,烟团的扩散速率非常缓慢, 其扩散速率比湍流扩散小5~6个数量级;图5 -7(b)为烟团在远小于其尺度的湍涡中扩散, 由于烟团边缘受到小湍涡的扰动,逐渐与周边 空气混合而缓慢膨胀,浓度逐渐降低,烟流几乎呈直线向下风运动;图5-7(c)为烟团在与其尺度接近的湍涡中扩散,在湍涡的切入卷出作用下烟团被迅速撕裂,大幅度变形,横截面快速膨胀,因而扩散较快,烟流呈小摆幅曲线向下风运动;图5-7(d)为烟团在远大于其尺度的湍涡中扩散,烟团受大湍涡的卷吸扰动影响较弱,其本身膨胀有限,烟团在大湍涡的夹带下作较大摆幅的蛇形曲线运动。实际上烟云的扩散过程通常不是仅由上述单一情况所完成,因为大气中同时并存的湍涡具有各种不同的尺度。 根据湍流的形成与发展趋势,大气湍流可分为机械湍流和热力湍流两种形式。机械湍流是因地面的摩擦力使风在垂直方向产生速度梯度,或者由于地面障碍物(如山丘、树木与建筑物等)导致风向与风速的突然改变而造成的。热力湍流主要是由于地表受热不均匀,或因大气温度层结不稳定,在垂直方向产生温度梯度而造成的。一般近地面的大气湍流总是机械湍流和热力湍流的共同作用,其发展、结构特征及强弱决定于风速的大小、地面障碍物形成的粗糙度和低层大气的温度层结状况。 2. 湍流扩散与正态分布的基本理论 气体污染物进入大气后,一面随大气整体飘移,同时由于湍流混合,使污染物从高浓度区向低浓度区扩散稀释,其扩散程度取决于大气湍流的强度。大气污染的形成及其危害程度在于有害物质的浓度及其持续时间,大气扩散理论就是用数理方法来模拟各种大气污染源在

大气污染物扩散高斯模型模拟

大气污染物扩散的高斯模型模拟:可视化模拟点源大气污染的扩散Gaussian Atmospheric Dispersion Model 突发性大气污染事故时有发生,对大气污染扩散进行模拟和分析,有利于减小事故的危害,减轻人员伤亡和财产损失。高斯扩散模型是国际原子能机构(IAEA)推荐使用于重气云扩散模拟的数学模型,该模型在非重气云扩散的应用日益广泛。高斯扩散模型是描述大气对有害气体的输移、扩散和稀释作用的物理或数学模型,是进行灾害预测和救援指挥的有力手段之一。 高斯扩散模型 高斯模型又分为高斯烟团模型和高斯烟羽模型。大气污染物泄漏分为瞬时泄漏和连续泄漏,瞬时泄漏是指污染物泄放的时间相对于污染物扩散的时间较短如突发泄漏等的情形,连续泄漏则是指污染物泄放的时间较长的情形。瞬时泄漏采用高斯烟团模型模拟,而连续泄漏采用高斯模型烟羽模型模拟。高斯模型适用于非重气云气体,包括轻气云和中性气云气体。要求气体在扩散过程中,风速均匀稳定。 在高斯烟团模型中,选择风向建立坐标系统,即取泄漏源为坐标原点,x轴指向风向,y轴表示在水平面内与风向垂直的方向,z轴则指向与水平面垂直的方向,具体公式见式: (mg/s); x、y、z轴上的扩散系数,需根据大气稳定度选择参数计算得到(m);x、y、z表示x、y、z上的坐标值(m);u 表示平均风速(m/s);t表示扩散时间(s);H 表示泄漏源的高度(m)。 同理,高斯烟羽模型的表达式如: 技术方法 若用高斯模型算出空间每一个点在一个时刻的污染浓度,这个计算量是很大的。因此所设计的系统一般都是采用先进行图层网格化,由高斯模型计算出有限个网格点的上的污染物浓度,在进行空间内插得到面上每一个点的污染物浓度,并由此得到污染物浓度的等值线。整个过程的示意图如图所示

气体泄漏及扩散计算

学号: 07412225 常州大学 毕业设计(论文) (2011届) 题目重气泄漏扩散模拟及应急救援 学生薛云龙 学院环境与安全工程学院专业班级安全072班 校内指导教师王新颖专业技术职务讲师 校外指导老师专业技术职务 二○一一年六月

重气泄漏扩散模拟及应急救援 摘要:重气泄漏扩散事故是经常发生且危害较大的一种事故形式,由于重气的密度大于空气,因此重气往往沿地面扩散,泄放物质进入人体将引起中毒事故,若泄放物质被点燃或引爆将引起大规模的燃烧爆炸事故。虽然人们对重气泄漏扩散所造成的危害十分重视,但由于缺乏足够有效的数据来提供人们作风险评估及预防改善措施,因此采用数学模型进行模拟是必要的。应在生产过程中,加强管理,强化生产者的安全生产教育。分析了泄漏扩散事故的七大影响因素,提取并建立了泄漏事故模式,并对各种事故模式的泄漏机理和发生条件进行了研究分析。通过试验研究得出在实际环境中大气主导风的风速,泄漏方向对气体扩散浓度分布有重大的影响,泄漏气体在下风向扩散的最快。静风时,随着时间的增加,空间各点的浓度有升高的趋势;在稳定风流中,空间各点的浓度随时间的变化不明显,可以认为是稳态的。泄漏的气体在下风向扩散的最快,在现场一旦发生天燃气泄漏,应综合考虑泄漏源的方向和该点当时的风向,风速等因素,及时准确预测泄漏气体可能扩散到危险区域,做好应对措施。 关键词:相似理论;泄漏模型;泄漏扩散模式;示踪法;重气;应急救援;

Heavy gas leak dispersion modeling and emergency rescue Abstract : As it is well-known, many industrial and domestic gases are toxic and flammable are stored in highly-pressurized vessels at liquefied state with ambient temperature. If there is by chance a sudden release, it often forms heavy-than-air vapour. The accident release and dispersion of toxic and flammable heavy gas can present a serious ris k to the public’s safety and to the environment. Disease may be caused when the flammable heavy gases are lit. Although great attention has been paid to the hazard of heavy gas dispersion, effective data of filed experiments are still insufficient to make risk assessment and precaution. Through the statistical analysis, draw a conclusion that chemical system in production, transportation and storage process, should first consideration and control of hazardous chemicals, and summarizes the characteristics of the leak diffusion process performance. Subjective factors, equipment inherent defect caused by leakage on China's chemical system is the main reason of the accident. In the process of production, should be strengthen management, strengthen the education of production safety producer. Analysis of the seven factors affecting diffusion of leakage accident, to extract and established the patterns of the leakage accident, and various and leakage accident modes mechanism and the conditions were studied and analyzed. Through the experimental study on practical environment atmosphere that dominated the wind, the wind of gas leakage direction spread concentration distribution, has enormous influence on the spread of gas leakage next wind fastest. Static, as time flies, the space increased concentration of the each point of the trend. In the stable romantic, space the concentration of each point does not change significantly over time, can be considered a steady. Leak gas diffusion next wind fastest, on the site once produce natural gas leak, should be taken into account in the direction and point source leaking the wind direction, wind speed at factors such as timely and accurate prediction leakage, gas may be spread to dangerous area, completes the countermeasures. Key words:Theory of similarity; Leakage model;Leakage diffusion mode;Trace method; heavy gas;Emergency rescue

第五章 大气污染扩散

第五章大气污染扩散 第一节大气结构与气象 有效地防止大气污染的途径,除了采用除尘及废气净化装置等各种工程技术手段外,还需充分利用大气的湍流混合作用对污染物的扩散稀释能力,即大气的自净能力。污染物从污染源排放到大气中的扩散过程及其危害程度,主要决定于气象因素,此外还与污染物的特征和排放特性,以及排放区的地形地貌状况有关。下面简要介绍大气结构以及气象条件的一些基本概念。 一、大气的结构 气象学中的大气是指地球引力作用下包围地球的空气层,其最外层的界限难以确定。通常把自地面至1200 km左右范围内的空气层称做大气圈或大气层,而空气总质量的98.2%集中在距离地球表面30 km以下。超过1200 km的范围,由于空气极其稀薄,一般视为宇宙空间。 自然状态的大气由多种气体的混合物、水蒸气和悬浮微粒组成。其中,纯净干空气中的氧气、氮气和氩气三种主要成分的总和占空气体积的99.97%,它们之间的比例从地面直到90km高空基本不变,为大气的恒定的组分;二氧化碳由于燃料燃烧和动物的呼吸,陆地的含量比海上多,臭氧主要集中在55~60km高空,水蒸气含量在4%以下,在极地或沙漠区的体积分数接近于零,这些为大气的可变的组分;而来源于人类社会生产和火山爆发、森林火灾、海啸、地震等暂时性的灾害排放的煤烟、粉尘、氯化氢、硫化氢、硫氧化物、氮氧化物、碳氧化物为大气的不定的组分。 大气的结构是指垂直(即竖直)方向上大气的密 度、温度及其组成的分布状况。根据大气温度在垂直 方向上的分布规律,可将大气划分为四层:对流层、 平流层、中间层和暖层,如图5-1所示。 1. 对流层 对流层是大气圈最靠近地面的一层,集中了大气 质量的75%和几乎全部的水蒸气、微尘杂质。受太阳 辐射与大气环流的影响,对流层中空气的湍流运动和 垂直方向混合比较强烈,主要的天气现象云雨风雪等 都发生在这一层,有可能形成污染物易于扩散的气象 条件,也可能生成对环境产生有危害的逆温气象条件。 因此,该层对大气污染物的扩散、输送和转化影响最大。 大气对流层的厚度不恒定,随地球纬度增高而降低,且与季节的变化有关,赤道附近约为15km,中纬度地区约为10~12 km,两极地区约为8km;同一地区,夏季比冬季厚。一般情况下,对流层中的气温沿垂直高度自下而上递减,约每升高100m平均降低0.65℃。 从地面向上至1~1.5 km高度范围内的对流层称为大气边界层,该层空气流动受地表影响

扩散模型

2 扩散模型 2.1 高斯模型 燃气泄漏后会在泄漏源附近形成气团,气团在大气中的扩散计算通常采用高斯模型。高斯模型的基本形式是在如下的假设条件下推导出来的[1、9]:假定燃气在扩散的过程中没有沉降、化合、分解及地面吸收的发生;燃气连续均匀地排放;扩散空间的风速、大气稳定度都均匀、稳定;在水平和垂直方向上都服从正态分布。 泄漏燃气相对密度小于或接近1的连续泄漏采用高斯烟羽模型。以泄漏点为原点,风向方向为x轴的空间坐标系中的某一点(x,y,z)处的质量浓度计算公式如下[9]: 平均风速>1m/s时: 平均风速=0.5~1m/s时: 平均风速<0.5m/s时,假设气团围绕泄漏点浓度均匀分布,则距离泄漏点r 处的燃气质量浓度为: 式中ρ d (x,y,z)——扩散燃气在点(x,y,z)处的质量浓度,kg/m3 x、y、z——x、y、z方向上距泄漏点的距离,m u a ——平均风速,m/s δ x 、δ y 、δ z ——x、y、z方向的扩散系数,m

h——泄漏点高度,m ρ (r)——距离泄漏点r处的燃气质量浓度,kg/m3 d r——空间内任意一点到泄漏点的距离,m a、b——扩散系数,m t——静风持续时间,s,取3600的整数倍 扩散系数可查HJ/T 2.2—93《环境影响评价技术导则大气环境》得到。2.2 重气扩散模型 液化石油气密度比空气密度大,属于重气。该类气体泄漏时在重力的作用下会下沉,这时使用高斯模型计算的结果会使泄漏燃气扩散速度偏大,泄漏源附近的浓度偏小。为了解决这个问题,可以引入最早由Van Ulden提出,并由Manju Mohan等发展的箱式模型[1]。箱式模型分为两个阶段:泄漏后的重气扩散阶段和重气效应消失后的被动气体扩散阶段。 重气泄漏后首先是重气扩散阶段。在这个阶段,重气云团由于重力作用逐渐下沉并不断卷吸周围的空气,在卷吸空气的同时,气云受热,最终当重气云团与空气的密度差<0.001kg/m3时,可认为气云转变成中性状态。 随着重气的继续扩散,气云所受的重力不再是影响扩散的主要因素,而大气湍流扩散逐渐占主要地位,这时便是被动气体扩散阶段,可以应用高斯模型计算泄漏燃气的扩散。 3 结论 使用泄漏模型可以计算出燃气泄漏的理论量,此量为扩散计算提供基础数据,可以依据此量分析泄漏后的扩散范围以及预测评价事故后果。使用扩散模型可以对燃气泄漏后的危险区域进行预测。泄漏模型和扩散模型都有各自的适用条件和范围,应该根据泄漏扩散的具体情况分析选择相应模型。

大气污染论文数学建模

14062116 刘宇飞 大气污染评价与预报模型 摘要 本文对空气质量的评价及污染预报问题进行了分析,运用层次分析法依据处理后的数据对六个城市的空气质量进行了具体细致的排序;对2010年9月15日至9月21日的各项污染物浓度、各气象参数运用一元多项式回归模型进行了预测;就气象参数所属城市问题及污染物浓度与其的关系建立了相关性分析模型和多元线性回归模型;最后,根据建模过程和结果,我们对相关部门提出了几个具体的建议。 通过将数据附件所给有效数据,即日污染物浓度,转化为对应的月污染物浓度的均值,根据各城市月均污染浓度做出其随时间的走势折线图,分析了各个城市2SO 、2NO 、PM10之间的特点。我们拟根据API 指数值,以二级达标次数为准,对各城市之间的空气质量进行排名,但由于依据API 的区分空气质量等级时灵敏度较低,故采用了层次分析法对空气质量进行排名。由于我们采用了全部数据进行排名,而E 、F 数据较少,故只对ABCD 进行了排名。依据层次分析法得出的排名为:A 、B 、D 、C 。 为了精确预测各城市短期内的数据,本文选用一元多项式回归模型。对2010年的数据进行分析整理,依据回归模型得出其与时间的关系,得出预测值,并得出其置信度为95%的置信区间,结果显示模型的预测效果尚能接受,能够对所要预测数据进行预测。但由于F 城市数据缺失,根据假设做了合理的定性分析,并未对其进行定量预测。 分析空气质量与气象参数之间的关系时,首先根据数据完整性,气象参数应只属于其中一个城市,排除了D 、E 、F 的可能性,再根据相关性分析的方法,确定了气象参数属于A 城市。根据污染物与气象参数之间的因果关系,建立了多元线性回归模型,由于季节对污染物的浓度存在影响,分季节得出各污染物与各气象参数之间的相关系数,定性分析该相关系数,得出污染物与气象参数之间的关系。最后对该系数的理论与实际意义做了检验。 根据以上分析及结果,确定部分与空气质量控制相关的部门,针对其职能提出了诚恳建议。 关键词:API 评价模型 层次分析 一元多项式回归模型

点污染源空气污染扩散模型

8点、中午12点、晚上9点都没有排放气体,该怎么算,是不是需要找到一个关于时间t的函数,来计算多长时间之后污染还剩下多少 c=Q./(2*pi*sigy.*sigz*u+eps)*exp(-0.5*(y.A2)./((sigy+eps).A2)).*(exp(-0.5*(z-H).A2./((sigz+eps).A2))+exp(-0.5*(z+H).A2./((sigz+ eps)A2))); 这个函数对吗?该调用什么函数? 问题: 建立单污染源空气污染扩散模型,描述其对周围空气污染的动态影响规律。 现有河北境内某一工厂废气排放烟囱高50m,主要排放物为氮氧化物。早上9点至下午 3点期间的排放浓度为406.92mg/m3,排放速度为1200m3 /h;晚上10点-凌晨4点期间 的排放浓度为1160mg/m3,排放速度为5700m3 /h;通过你的扩散模型求解该工厂方圆51 公里分别在早上浓度8点、中午12点、晚上9点空气污染分布和空气质量等级。 源代码 clear all clc [x,y]=meshgrid(0:20:5100,0:20:5100); Q=135.64; z=1.5; H=50; u=1.94; sigy=0.3914238*x.A0.865014; sigz=0.0757182*x.A1.00770; c=Q./(2*pi*sigy.*sigz*u+eps).*exp(-0.5*(y.A2)./((sigy+eps).A2)).*(exp(-0.5*(z-H).A2./((sigz+eps).A2))+exp(-0.5*(z+H).A2./((sigz+ eps)A2))); mesh(x,y,c); xlabel('X'),ylabel('Y'),zlabel(C), clear all clc [x,y]=meshgrid(-5100:20:5100,-5100:20:5100); Q=1836.7; z=1.5; H=50; u=1.7; sigy=0.3914238*x.A0.865014; sigz=0.0757182*x.A1.00770; c=Q./(2*pi*sigy.*sigz*u+eps).*exp(-0.5*(y.A2)./((sigy+eps).A2)).*(exp(-0.5*(z-H).A2./((sigz+eps).A2))+exp(-0.5*(z+H).A2./((sigz+ eps)A2))); mesh(x,y,c); xlabel('X'),ylabel('Y'),zlabel(C), 分享到: 2015-05-29 16:32 提问者采纳 clear all [x,y]=meshgrid(-51000:100:51000,-51000:100:51000); Q=135.64; z=1.5; H=50; u=1.94; sigy=0.3914238*x.A0.865014;

石油小孔泄露模型

燃气中的小孔泄漏探讨(转载) 泄漏检测技术2010-09-13 15:54:59 阅读14 评论0 字号:大中小订阅 摘要:论述了城市燃气泄漏模型(小孔泄漏模型、管道泄漏模型、其他泄漏模型)和扩散模型(高斯模型和重气扩散模型)的主要内容及适用条件。 关键词:燃气泄漏;泄漏模型;扩散模型 Discussion on Models for Gas Leakage and Diffusion PENG Shi-ni,ZHOU Ting-he Abstract:The main content and applicable conditions of city gas leakage models(pore leakage model,pipeline leakage model and other leakage model)and diffusion models(Gaussian model and heavy gas diffusion model)are discussed. Key words:gas leakage;leakage model;diffusion model 燃气泄漏是燃气供应系统中最典型的事故[1]。在燃气的储存、输配及使用过程中,由于人为或自然原因导致泄漏,燃气泄漏后在空气等介质中扩散并积聚,当达到一定浓度时遇到火源会产生爆炸并引起火灾。燃气泄漏后果的严重程度主要取决于泄漏量和扩散范围,而泄漏量又与泄漏源强度及泄漏时间有关。因此,燃气的泄漏强度和扩散范围是分析泄漏与扩散以及预测评价事故后果的基础和参考依据。本文针对城市燃气泄漏模型和扩散模型进行探讨。 1 泄漏模型 1.1 小孔泄漏模型 小孔泄漏模型适用于穿孔泄漏的情形,穿孔泄漏是指管道或设备由于腐蚀等原因形成小孔,燃气从小孔泄漏。常见的穿孔直径在10mm以下,对于穿孔直径在20mm以下的泄漏可以使用该模型。小孔泄漏一般是长时间持续稳定泄漏且具有泄漏点多、不易察觉、潜在危险大的特点。 对于小孔泄漏模型,按照其泄漏燃气相态的不同,可分为气体流泄漏、液体流泄漏和气液两相流泄漏3种形式[2]。 ①气体流泄漏强度[1~6] 较普遍的气态燃气泄漏强度的计算是按照伯努利方程推导所得,气体从孔口泄漏的强度与其流动状态有关。因此,要确定泄漏时气体流动属于声速流动(临界流)还是亚声速流动(次临界流),可以用临界压力比来判断: 式中β——临界压力比 p0——环境绝对压力,Pa pc——泄漏口燃气的临界压力,Pa

SLAB用户手册模拟重气体泄漏的空气扩散模型中文简要

SLAB 用户手册:模拟重气体泄漏的空气扩散模型 中文简要用户使用手册 环境保护部环境工程评估中心 国家环境保护环境影响评价数值模拟重点实验室

手册说明 本用户手册基于《USER’S MANUAL FOR SLAB: AN ATMOSPHERIC DISPERSION MODEL FOR DENSER-THAN-AIR RELEASES》(1990.06)编写,仅对美国EPA网站所提供的模拟重气体泄漏的空气扩散模型SLAB的使用方法提供中文版简要说明,更详细的程序使用说明请查阅相关的软件手册及文档,或采用带图形界面版的商业软件。 本手册由环境保护部环境工程评估中心国家环境保护环境影响评价数值模拟重点实验室负责编写,参与人员包括:易爱华、陈陆霞、胡翠娟、梁昊、杨晔、丁峰等。 本手册版权所有,转载及印刷请与环境保护部环境工程评估中心联系。 本手册所涉及的模型系统及本手册电子版本下载地址:

一、SLAB简介 SLAB是用于模拟重气体泄漏的空气扩散模型。该模型最初基于Zeman于1982年提出的关于重气体云的空气卷吸和重力扩散的理念而开发。SLAB早期相关工作由美国能源署支持。SLAB的进一步开发由USAF工程和服务中心(1986年开始)和美国石油学会(1987开始)共同提供支持。 现行的SLAB版本可以模拟连续的、限时的和瞬时的物质泄漏,泄漏源包括以下4种:地面液池蒸发、高于地面的水平射流、烟囱或高于地面的垂直射流,以及瞬时释放。 SLAB除可以用于模拟重气体的扩散,还可以模拟中性浮力气体的烟云扩散,以及烟云轻于空气时的上升过程。 泄漏时的空气扩散过程可以通过求解质量、动量、能力和物质的守恒方程来计算,如图1所示。为了简化守恒方程的求解过程,方程可以通过将烟云作为稳态烟羽或瞬时烟团在空间上进行平均。连续排放(持续时间非常长的排放源)可以作为稳态烟羽。有限时间的排放采用稳态烟羽模式描述最初烟云的扩散,而且在该排放源持续泄漏的时间段内,可以一直使用稳态烟羽模式。释放一旦终止,烟团被视为瞬时烟团,之后的扩散采用瞬时烟团模式来计算。对于瞬时泄漏的排放源,整个过程都均使用瞬时烟团扩散模式。 二、理论介绍 2.1重气体扩散模型简介 重气体泄漏的空气扩散模型受到多种物理现象的影响,这些物理现象在中性或浮力气体泄漏中可能不会发生或者即便发生也不是很重要。这些物理现象包括:重气体烟云的稳定密度分层导致的湍流衰减;由于重力流和初始排放源动量导致的环境速率场的改变;由于液滴形成和挥发以及在过热或低温液体排放情况下的地面加热对烟云温度、浮力和湍流的热力学效应;此外,我们所关注的某种特定的重气体的浓度可能和典型大气污染物关注的累积浓度差别很大。例入,对于易燃气体,关注的是瞬间浓度;而对于有毒气体,关注的则是几分钟到几小时的浓度,以及累积浓度。因此,为了能够更好的预测出重气体泄漏时有毒浓度区的大小和持续时间,所有重要的物力现象都需要进行考虑,而且预测过程中要使用最合理的浓度平均时间。 为了满足重气体泄漏情形的要求,SLAB模型以质量、动量、能量和物质守恒方程的平均形式为起点,在该理论框架的基础上进行开发(如图1所示)。这些方程用于计算扩散烟团的空间平均性质,并且以两种方式来代表两种不同的扩散模式:稳态烟羽扩散模式和瞬时烟团扩散模式。

高斯扩散模型

大气污染扩散 第一节大气结构与气象 有效地防止大气污染的途径,除了采用除尘及废气净化装置等各种工程技术手段外,还需充分利用大气的湍流混合作用对污染物的扩散稀释能力,即大气的自净能力。污染物从污染源排放到大气中的扩散过程及其危害程度,主要决定于气象因素,此外还与污染物的特征和排放特性,以及排放区的地形地貌状况有关。下面简要介绍大气结构以及气象条件的一些基本概念。 一、大气的结构 气象学中的大气是指地球引力作用下包围地球的空气层,其最外层的界限难以确定。通常把自地面至1200 km左右范围内的空气层称做大气圈或大气层,而空气总质量的98.2%集中在距离地球表面30 km以下。超过1200 km的范围,由于空气极其稀薄,一般视为宇宙空间。 自然状态的大气由多种气体的混合物、水蒸气和悬浮微粒组成。其中,纯净干空气中的氧气、氮气和氩气三种主要成分的总和占空气体积的99.97%,它们之间的比例从地面直到90km高空基本不变,为大气的恒定的组分;二氧化碳由于燃料燃烧和动物的呼吸,陆地的含量比海上多,臭氧主要集中在55~60km高空,水蒸气含量在4%以下,在极地或沙漠区的体积分数接近于零,这些为大气的可变的组分;而来源于人类社会生产和火山爆发、森林火灾、海啸、地震等暂时性的灾害排放的煤烟、粉尘、氯化氢、硫化氢、硫氧化物、氮氧化物、碳氧化物为大气的不定的组分。 大气的结构是指垂直(即竖直)方向上大气的 密度、温度及其组成的分布状况。根据大气温度在 垂直方向上的分布规律,可将大气划分为四层:对 流层、平流层、中间层和暖层,如图5-1所示。 1. 对流层 对流层是大气圈最靠近地面的一层,集中了大 气质量的75%和几乎全部的水蒸气、微尘杂质。受 太阳辐射与大气环流的影响,对流层中空气的湍流 运动和垂直方向混合比较强烈,主要的天气现象云 雨风雪等都发生在这一层,有可能形成污染物易于 扩散的气象条件,也可能生成对环境产生有危害的 逆温气象条件。因此,该层对大气污染物的扩散、输送和转化影响最大。 大气对流层的厚度不恒定,随地球纬度增高而降低,且与季节的变化有关,赤道附近约

大气污染物扩散的高斯模型模拟

9.2.2大气污染物扩散的高斯模型模拟:可视化模拟点源大气污染的扩散 9.2.2 Gaussian Atmospheric Dispersion Model 突发性大气污染事故时有发生,对大气污染扩散进行模拟和分析,有利于减小事故的危害,减轻人员伤亡和财产损失。高斯扩散模型是国际原子能机构(IAEA)推荐使用于重气云扩散模拟的数学模型,该模型在非重气云扩散的应用日益广泛。高斯扩散模型是描述大气对有害气体的输移、扩散和稀释作用的物理或数学模型,是进行灾害预测和救援指挥的有力手段之一。 9.2.2.1高斯扩散模型 高斯模型又分为高斯烟团模型和高斯烟羽模型。大气污染物泄漏分为瞬时泄漏和连续泄漏,瞬时泄漏是指污染物泄放的时间相对于污染物扩散的时间较短如突发泄漏等的情形,连续泄漏则是指污染物泄放的时间较长的情形。瞬时泄漏采用高斯烟团模型模拟,而连续泄漏采用高斯模型烟羽模型模拟。高斯模型适用于非重气云气体,包括轻气云和中性气云气体。要求气体在扩散过程中,风速均匀稳定。 在高斯烟团模型中,选择风向建立坐标系统,即取泄漏源为坐标原点,x 轴指向风向,y 轴表示在水平面内与风向垂直的方向,z 轴则指向与水平面垂直的方向,具体公式见式(9.1): 22222()()()22223/2(,,,)()(2)y x z z y x ut z H z H x y z Q C x y z t e e e e σσσσπσσσ--+----=???+?…………(9.1) 其中:(,,,)C x y z t 为泄漏介质在某位置某时刻的浓度值;Q 为污染物单位时间排放量(mg/s); x σ、y σ、z σ分别x 、y 、z 轴上的扩散系数,需根据大气稳定度选择参数计算得到(m);x 、y 、z 表示x 、y 、z 上的坐标值(m);u 表示平均风速(m/s);t 表示扩散时间(s);H 表示泄漏源的高度(m)。 同理,高斯烟羽模型的表达式如: 22222()()222(,,,)()2y z z y z H z H y z Q C x y z t e e e u σσσπσσ-+---=??+………………………(9.2) 9.2.2.2 技术方法 若用高斯模型算出空间每一个点在一个时刻的污染浓度,这个计算量是很大的。因此所设计的系统一般都是采用先进行图层网格化,由高斯模型计算出有限个网格点的上的污染物浓度,在进行空间内插得到面上每一个点的污染物浓度,并由此得到污染物浓度的等值线。整个过程的示意图如图9.2.1所示

泄漏和扩散模拟

泄漏和扩散模拟 一、训练目的 1.通过训练,了解PHAST软件的基本功能,学会使用PHAST软件解决石油化工装置泄漏、扩散等问题,掌握使用PHAST软件建立相关模型,模拟分析气体获液体泄漏扩散后浓度的变化。 2.掌握气体扩散的模拟分析方法。 二、训练内容要求 气体或液体泄漏扩散过程模拟 三、训练仪器 本训练所用软件为PHAST6.7 四、训练方法和步骤: 1 学习使用软件,了解软件的界面及输入和输出数据 2 选择Vessel/pipe source 模型 3 输入相关参数(甲烷储罐数据) 4 对结果进行分析 五、气体泄漏扩散浓度的计算 1.泄漏量的计算 气体从容器的裂缝或者小孔泄漏时,其泄漏速度与空气的流动速度有关。因此,首先要判断泄漏时气体流动属于亚音速还是音速流动,前者称为次临界流,后者称为临界流。 满足下列条件时,气体流动属于亚音速流动: 而当满足下列条件时,气体流动属于音速流动: 上面两式中,P 0---环境压力,P a P---管道内介质压力,P a

γ---比热比,γ=C P /C V ,定压比热与定容比热之比 (1)气体呈亚音速流动时,泄露速率Q (2)气体呈音速流动时,泄露速率Q 上面两式中 C d -气体泄露速率,泄露裂口为圆形时取1.00 Y-气体膨胀因子,对音速流动,Y=1 -气体密度,kg/m3 R-气体常数,R=8.314472J/(K*mol) T-气体温度,K 2.射流扩散及气团扩散模型 气体泄露时从裂口射出形成气体射流,一般情况下,泄露气体的压力将高于周围环境的大气压力,温度低于环境温度,在进行射流计算式,应该以等价射流孔径来计算,等价射流的孔径按下式计算: 其中,—裂口直径,m —泄露气体的密度,kg/m3 —周围环境条件下气体密度,kg/m3 射流气体泄露出来之后,在大气环境和地形地貌的影响下,在泄露上方

相关文档
最新文档