比例流量阀课件

比例流量阀课件
比例流量阀课件

1、电液比例流量控制阀

1.1 分类与应用

图1.1 电液比例流量阀分类简图

1.2 节流与调速

=

Δ≠常数,调节A后,q还受负载变化的影响;

节流阀——p

Δ=常数,调节A后,q不受负载变化的影响;

调速阀——p

1.3 节流阀的控制特性

在比例节流阀中,阀芯位移是输入电信号的单调函数,如图1.2。

图1.2 稳态控制特性I-x

所示为阀口形状为三角形、矩形及双矩形的比例节流阀,在阀口工作压差为三种不同恒定值时,其输出流量与输入电信号的关系曲线簇。

图1.3 流量稳态控制特性

1.4 节流阀的功率域

所示为比例节流阀的功率域示意图。在使用比例节流阀时,要尽量避免超越阀的功率域。否则,比例节流闽的阀芯位移将会出现如图所示的饱和现象,从而使阀丧失比例控制特性。特别是不带位移传感器的单级比例节流闽,在较大压差作用下,这种直控阀的流量大到功率界限时,稳态液动力会自动将阀口关小,通过阀口的流量不会随着压差的增加而增加,存在着一种“自然”的功率域现象。

图1.4 比例节流阀的功率域示意图

图1.5 超过功率域工况的稳态控制特性曲线

1.5直动式比流节流阀

参见BOSCH教程P24-25

用比例电磁铁直接驱动阀芯,与弹簧力平衡定位,特点:

1、简单,工作可靠,可附加手动,一般能做到NG6,NG10;

2、阀口开度受液动力、摩擦力影响,精度不高;

3、最大流量NG6(35l/min),NG10(80l/min);

4、由于比例电磁铁输出力有限,存在着功率域;

5、注意P24倍流量工况,此时更要注意功率域限制

1.5先导式比流节流阀

参见力士乐插装式比例节流阀样本

1、原理特点:大流量电液比例阀以比例阀或伺服阀作为先导级,以插装阀作为主级,具有流量大、响应快、耐高压和使用寿命长等优点。它能连续、成比例地调节受控腔的压力或流量等,主要应用在铸造机械、压铸机、注塑机、吹塑机、陶瓷机械、高速冲床、钢厂等。

2、应用要求,不同的应用场合对阀的性能要求也有所侧重,如:

快锻压机上使用的大流量电液比例阀不仅响应速度快,而且具有控制精度和重复精度高的特点;

模锻压机上用于控制主缸速度、快慢速切换的大流量比例阀,则对响应速度和控制精度要求不太高,只需成比例可连续调节即可,但要求价格低廉;

压铸机上所使用的大流量比例阀对精度要求不高,但要求阀具有极快的响应速度和低廉的价格。

单一的通用型产品已经难以满足不同用户对大流量电液比例阀所提出的不同要求。针对这一现状,浙大研发了三种不同的技术方案大流量电液比例阀:。

a、以伺服阀为先导级、主级位移-电反馈型的高档大流量电液比例阀

该阀采用比例阀服阀作为先导级,采用大通径的二通插装阀作为主级,通过LVDT位移传感器检测主级插芯的开口位移,并将之反馈回放大器,通过设计及调整放大器中的控制算法和参数,构成主级阀芯位移的电反馈闭环控制。

先导级采用比例伺服阀,其阀体上为零开口四边滑阀结构,满足匹配与对称的特性,属于典型的伺服阀阀体;电机械转换器上采用高响应的比例电磁铁,另外配备一个阀芯位移传感器,先导阀部分便可构成阀芯的位置闭环,具有相当高的静态精度和动态特性。先导级和主级均带有阀芯位移传感器,放大器上采用双闭环反馈的原理,实现主级阀芯位移的精确控制。

此阀具有精度高、动态响应快的优点,但价格较高,一般用在如快锻压机或其它对油缸控制要求较高的场合。

b、以比例阀为先导级、主级位移-电反馈型的中档大流量电液比例阀

该阀采用普通的比例换向阀作为先导级,与a中所介绍的方案相比,该先导级本身不带阀芯的位移传感器,成本大为降低,先导级采用开环控制,实现上较为简单。主级同样采用大通径的二通插装阀,通过LVDT位移传感器检测主级插芯的开口位移,并将之反馈回放大器,构成主级阀芯位移的电反馈闭环控制。

由于先导级属于比例阀的结构,存在着一定的零位死区,而且先导级采用开环控制,因此其静态和动态特性都比方案a中的比例伺服阀差。主阀芯上带有位移传感器,构成位移-电反馈形式,因此通过控制方式上的优化,该阀将具备较为平衡的动静态特性。

该阀适用于则对响应速度和控制精度要求不太高,价格相对较低的场合。

c、以比例阀为先导级、主级位移-力反馈型的低档大流量电液比例阀

本方案采用三级放大结构,先导级采用普通的比例换向阀,放大级采用伺服活塞,主级采用插装阀。先导级和放大级之间采用位移—力反馈控制,主级与放大级之间采用快速随动控制。

位移—力反馈型的伺服活塞位移经反馈弹簧提供反馈力,作用到先导阀芯上与比例电磁铁的电磁力相平衡,使先导阀芯稳定在某一平衡位置上,从而使输出的伺服活塞位移与输入的控制电信号成比例。在主阀芯的设计上,采用直接由伺服活塞杆推动的方案,巧妙地在主级上应用一个B型液压半桥来控制主阀芯,在先导液桥选取合适的参数后能达到较快的响应速度。

由于先导阀和主阀上都不需要安装位移传感器,因此该阀结构简单可靠,成本低廉,但其控制精度受放大器和比例电磁铁的非线性以及摩擦力、液动力等影响会差一些,可通过在比例控制放大器中加入适当频率和幅值的颤振信号,以达到相对满意的精度。该阀适用于要求阀具有快速响应性,较低的成本,而对控制精度高求不高的场合。

1.5 二通调速阀

1.5.1 传统二通调速阀

参见力士乐直动式比例流量阀RE29188,及先导式比例流量阀RE29190样本

1、压力补偿的含义

2、控制特性与负载特性

3、传统二通调速阀存在的问题:

a、负载特性差;

b、很大的启动流量超调;

c、为使补偿特性好,体积较大;

d、动态响应上不去。

1.5.2 流量位移力反馈电液比例调速阀

(用于大流量电液比例调速,现在大量采用电液比例泵来进行大流量调节,或者是电液比例泵实现大流量粗调+小流量高响应的电液控制阀进行流量精调)

a)基本构成与先导B型半桥

b)流量位移力反馈原理

c)级间动压反馈

d)插装式结构

e)多种输入方式

f)变增益

g)电反馈

h)进油调速旁路调速

i)大流量调速阀——3级

1.5.3 试验油路及ISO有关规定

快速切断阀操作时间不超过所测响应时间的10%,且最大值不超过10mS;被试阀与负载之间的油液容积应尽可能小,以保证由于油的压缩性造成的压力梯

度用公式V

E

V dt dp ?Λ=

计算所得的,至少是所测梯度的10倍。 1.6 三通调速阀

1.6.1 传统三通调速阀

Q X W

P =??αρ

2

Δ

式中△P 为阀的压差,与节流阀的压差相一致 1.6.2 改进三通调速阀

1、负载适应控制与限压先导阀--负载敏感,负载适应,功率适应

2、Q+P 控制

?当系统压力没有达到定差溢流阀先导阀调定的安全压力时,先导阀不打开,系统实现负载压力适应,溢流阀主阀起定差溢流阀作用(保持节流阀两端压差为常数),系统的多余流量以当时的系统压力(而不是先导阀限定的高压) 从打开的溢流阀阀口排回油箱;

?只有当系统压力达到先导阀调定压力,先导阀与主阀心配合,起到一般溢流阀的作用,此时,不再起定差溢流阀作用。

专用流量阀:

A、单路稳流阀,P182原理图

B、优先阀(工程机械保证为转向控制优先提供动力油),P183原理图

C、PQ阀,P185,注意流量、压力控制时调节方法,对应PQ泵进行学习

工程应用:

A、船用升降系统

B、5000T压机平行控制系统

习题:

1、下列几种电液比例调速系统的能量分析:

A、定量泵+溢流阀+负载进油路二通电液比例调速阀

B、定量泵+溢流阀+负载回油路二通电液比例调速阀

C、定量泵+安全阀+三通电液比例调速阀

D、限压式变量泵+负载进油路二通电液比例调速阀

E、电液比例节流阀+流量-压力复合控制变量泵(BOSCH教程P136)

思考题:

1、BOSCH教程P136的液压系统中电液比例节流阀中A口与T口联通后,流量特性变化?

2、电液比例流量压力复合控制阀(也称PQ阀,吴教程P185),电液比例流量压力复合控制泵(也称PQ泵,BOSCH教程P136),两种系统特点?

3、PLASTICS 机控制系统:PQ阀、PQ泵、定量泵+变转速伺服电机

调节阀流量特性介绍

调节阀流量特性介绍 1. 流量特性 调节阀的流量特性是指被调介质流过调节阀的相对流量与调节阀的相对开度之间的关系。其数学表达式为 式中:Qmax-- 调节阀全开时流量 L---- 调节阀某一开度的行程 Lmax-- 调节阀全开时行程 调节阀的流量特性包括理想流量特性和工作流量特性。理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,有直线、等百分比、抛物线及快开4种特性(表1) 流量特性性质特点 直线调节阀的相对流量与相对开 度呈直线关系,即单位相对 行程变化引起的相对流量变 化是一个常数 ①小开度时,流量变化大,而大开度时流量变化小 ②小负荷时,调节性能过于灵敏而产生振荡, 大负荷时调节迟缓而不及时 ③适应能力较差 等百分比单位相对行程的变化引起的 相对流量变化与此点的相对 流量成正比 ①单位行程变化引起流量变化的百分率是相等的 ②在全行程范围内工作都较平稳,尤其在大开度时, 放大倍数也大。工作更为灵敏有效 ③ 应用广泛,适应性强 抛物线特性介于直线特性和等百分 比特性之间,使用上常以等 百分比特性代之 ①特性介于直线特性与等百分比特性之间 ②调节性能较理想但阀瓣加工较困难 快开在阀行程较小时,流量就有 比较大的增加,很快达最大 ①在小开度时流量已很大,随着行程的增大,流量很 快达到最大 ②一般用于双位调节和程序控制

在实际系统中,阀门两侧的压力降并不是恒定的,使其发生变化的原因主要有两个方面。一方面,由于泵的特性,当系统流量减小时由泵产生的系统压力增加。另一方面,当流量减小时,盘管上的阻力也减小,导致较大的泵压加于阀门。因此调节阀进出口的压差通常是变化的,在这种情况下,调节阀相对流量与相对开度之间的关系。称为工作流量特性[1]。具体可分为串联管道时的工作流量特性和并联管道时的工作流量特性。(1)串联管道时的工作流量特性 调节阀与管道串联时,因调节阀开度的变化会引起流量的变化,由流体力学理论可知,管道的阻力损失与流量成平方关系。调节阀一旦动作,流量则改变,系统阻力也相应改变,因此调节阀压降也相应变化。串联管道时的工作流量特性与压降分配比有关。阀上压降越小,调节阀全开流量相应减小,使理想的直线特性畸变为快开特性,理想的等百分比特性畸变为直线特性。在实际使用中,当调节阀选得过大或生产处于非满负荷状态时,调节阀则工作在小开度,有时为了使调节阀有一定的开度,而将阀门开度调小以增加管道阻力,使流过调节阀的流量降低,实际上就是使压降分配比值下降,使流量特性畸变,恶化了调节质量。 (2)并联管道时的工作流量特性 调节阀与管道并联时,一般由阀支路和旁通管支路组成,调节阀安装在阀支路管路上。调节阀在并联管道上,在系统阻力一定时,调节阀全开流量与总管最大流量之比随着并联管道的旁路阀逐步打开而减少。此时,尽管调节阀本身的流量特性无变化,但系统的可调范围大大缩小,调节阀在工作过程中所能控制的流量变化范围也大大减小,甚至起不到调节作用。要使调节阀有较好的调节性能,一般认为旁路流量最多不超过总流量的20%。 2. 调节阀的选择 2.1 流量特性选择

各种流量调节阀工作原理及正确选型

暖通知识 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。 一、温控阀 1、散热器温控阀的构造及工作原理 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果需要,可以采用远程温度传感器;远程温度传感器臵于要求控温的房间,阀体臵于供暖系统上的

某一部位。 2、温控阀的选型设计 温控阀是供暖系统流量调节的最主要的调节设备,其他调节阀都是辅助设备,因此温控阀是必备的。一个供暖系统如果不设臵温控阀就不能称之谓热计量收费系统。在温控阀的设计中,正确选型十分重要。温控阀的选型目的,是根据设计流量(已知热负荷下),允许阻力降确定KV值(流量系数);然后由KV值确定温控阀的直径(型号)。因此,设计图册或厂家样本一定要给出KV值与直径的关系,否则不便于设计人员使用。 在温控阀的选型设计中,绝不是简单挑选与管道同口径的温控阀即完事大吉。而是要在选型的过程中,给选定的温控阀造成一个理想的压差工作条件。一个温控阀通常的工作压差在2~3mH2O之间,最大不超过6~10 mH2O。为此,一定要给出温控阀的预设定值的范围,以防止产生噪音,影响温控阀正常工作。当在同一KV值下,有二种以上口径的选择时,应优先选择口径小的温控阀,其目的是为了提高温控阀的调节性能。 二、电动调节阀 电动调节阀是适用于计算机监控系统中进行流量调节的设备。一般多在无人值守的热力站中采用。电动调节阀由阀体、驱动机构和变送器组成。温控阀是通过感温包进行自力式流量调节的设备,不需要外接电源;而电动调节阀一般需要单相220V电源,通常作为计算机监控系统的执行机构(调节流量)。电动调节阀或温控阀都是供热系统中流量调节的最主要的设备,其它都是其辅助设备。 三、平衡阀 平衡阀分手动平衡阀和自力式平衡阀。无论手动平衡阀还是自力式平衡阀,它们的作用都是使供热系统的近端增加阻力,

调节阀的特性及选择(DOC)

调节阀的特性及选择 调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。 电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。 本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。 1.调节阀工作原理 从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为 ()()212 212 42 P P D P P A Q -=-= ρ ζ πρζ 式中:Q——流体流经阀的流量,m 3 /s ; P1、P2——进口端和出口端的压力,MPa ; A——阀所连接管道的截面面积,m 2 ; D——阀的公称通径,mm ; ρ——流体的密度,kg/m 3 ; ζ——阀的阻力系数。 可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。阀开得越大,ζ将越小,则通过的流量将越大。 2.调节阀的流量特性 调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即 ?? ? ??=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。 一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。因此,流量特性有理想流量特性和工作流量特性之分。 2.1 调节阀的理想流量特性 调节阀在阀前后压差不变的情况下的流量特性为调节阀的理想流量特性。调节阀的理想流量特性仅由阀芯的形状所决定,典型的理想流量特性有直线流量特性、等百分比(或称对数)流量特性、抛物线流量特性和快开流量特性,如图5-6所示。

流量与阀门开度的关系

阀门的流量特性 不同的流量特性会有不同的阀门开度; ①快开流量特性,起初变化大,后面比较平缓; ②线性流量特性,是阀门的开度跟流量成正比,也就是说阀门开度达到 50%,阀门的流量也达到50%; ③等百流量特性,跟快开式的相反,是起初变化小,后面比较大。 阀门开度与流量、压力的关系,没有确定的计算公式。它们的关系只能用笼统的函数式表示,具体的要查特定的试验曲线。 调节阀的相对流量Q/Qmax与相对开度L/Lmax的关系 :Q/Qmax=f(L/Lmax) 调节阀的相对流量Q/Qmax与相对开度L/Lmax、阀上压差的关系: Q/Qmax=f(L/Lmax)(dP1/dP)^(1/2)。 调节阀自身所具有的固有的流量特性取决于阀芯形状,其中最简单是直线流量特性:调节阀的相对流量与相对开度成直线关系,即单行程变化所引起的流量变化是一个常数。 阀能控制的最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin, 则直线流量特性的流量与开度的关系为: Q/Qmax=(1/R)[1+(R-1)L/Lmax] 开度一半时,Q/Qmax=51.7% 等百分比流量特性:Q/Qmax=R^(L/Lmax-1) 开度一半时,Q/Qmax=18.3% 快开流量特性:Q/Qmax=(1/R)[1+(R^2-1)L/Lmax]^(1/2)

开度一半时,Q/Qmax=75.8% 流量特性主要有直线、等百分比(对数)、抛物线及快开四种 ①直线特性是指阀门的相对流量与相对开度成直线关系,即单位开度变化引起的流量变化时常数。 ②对数特性是指单位开度变化引起相对流量变化与该点的相对流量成正比,即调节阀的放大系数是变化的,它随相对流量的增大而增大。 ③抛物线特性是指单位相对开度的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系。 ④快开流量特性是指在开度较小时就有较大的流量,随开度的增大,流量很快就达到最大,此后再增加开度,流量变化很小,故称快开特性。 隔膜阀的流量特性接近快开特性, 蝶阀的流量特性接近等百分比特性, 闸阀的流量特性为直线特性, 球阀的流量特性在启闭阶段为直线,在中间开度的时候为等百分比特性。

溢流阀压力流量特性

1.常用液压阀一方向阀、压力阀、流量阀的类型 【答】 (1)方向阀方向阀的作用概括地说就是控制液压系统中液流方向的,但对不同类型的阀其具体作用有所差别。方向阀的种类很多,常用方向阀按结构分类如下:单向阀:l普通单向阀 2 液控单向阀普通单向阀换向阀:1 转阀式换向阀 液控单向阀 2 滑阀式换向阀:手动式换向阀、机动式换向阀、电动式换向阀、液动式换向阀、电液动换向阀。

手动式换向阀 电液动换向阀 (2)压力控制阀 溢流阀:直动式、先导式溢流阀

直动式溢流阀 先导式溢流阀减压阀:直动式、先导式减压阀 顺序阀:直动式、先导式顺序阀 压力继电器 (3)流量控制阀 节流阀调速阀 …………. 2.换向阀的控制方式,换向阀的通和位

【答】换向阀的控制方式有手动式、机动式、电动式、液动式、电液动式五种。换向阀的通是指阀体上的通油口数,有几个通泊口就叫几通阀。换向阀的位是指换向阀阀芯与阀体的相互位置变化时,所能得到的通泊口连接形式的数目,有几种连接形式就叫做几位阀。如一换向阀有4个通油口,3种连接形式,且是电动的,则该阀全称为三位四通电磁(电动)换向阀。 3.选用换向调时应考虑哪些问题及应如何考虑 【答】选择换向阀时应根据系统的动作循环和性能要求,结合不同元件的具体特点,适用场合来选取。①根据系统的性能要求,选择滑阀的中位机能及位数和通数。②考虑换向阀的操纵要求。如人工操纵的用手动式、脚踏式;自动操纵的用机动式、电动式、液动式、电液动式;远距离操纵的用电动式、电液式;要求操纵平稳的用机动式或主阀芯移动速度可调的电液式;可靠性要求较高的用机动式。③根据通过该阀的最大流量和最高工作压力来选取(查表)。最大工作压力和流量一般应在所选定阀的围之,最高流量不得超过所选阀额定流量的120%,否则压力损失过大,引起发热和噪声。若没有合适的,压力和流量大一些也可用,只是经济性差一些。④除注意最高工作压力外,还要注意最小控制压力是否满足要求(对于液动阀和电液动换向阀)。⑤选择元件的联接方式一一管式(螺纹联接)、板式和法兰式,要根据流量、压力及元件安装机构的形式来确定。⑥流量超过63L/min时,不能选用电磁阀,否则电磁力太小,推不动阀芯。此时可选用其他控制形式的换向阀,如液动、电液动换向阀。 4.直动式溢流阀与先导式溢流阀的流量一压力特性曲线,曲线的比较分析 【答】溢流阀的特性曲线溢流阀的开启压力o当阀入口压力小于PK1时,阀处于关闭状态,其过流量为零;当阀入口压力大于k1时,阀开启、溢流,直动式溢流阀便处于工作状态(溢流 的同时定压)。图中pb是先导式溢流阀的导阀开启 压力,曲线上的拐点m所对应的压力pm是其主阀的 开启压力。当压力小于民。时, 导阀关闭,阀的流量为零;当压力大于pb(小于此 2)时,导阀开启,此时通过阀的流量只是先导阀的 泄漏量,故很小,曲线上pbm段即为导阀的工作段;当阀入口压力大于此2时,主阀打开,开始溢流,先导式溢流阀便进入工作状态。在工作状态下,元论是直动式还是先导式溢流阀,其溢流量都是随人口压力增加而增加,当压力增加到丸z时,阀芯上升到最高位置,阀口最大,通过溢流阀的流量也最大一为其额定流量毡,这时入

详细讲解流量控制阀

流量控制阀 流量控制阀是通过改变节流口通流断面的大小,以改变局部阻力,从而实现对流量的控制。流量控制阀有节流阀、调速阀和分流集流阀等。 节流阀 1-阀体2-阀心3-调节螺钉4-阀套5-阀心 上的螺旋断面6-阀口 阀套上的窗口W与阀心上的螺旋曲线S之间的相对运动,形成了可变通流断面面积,实现了对流量的控制。 改变节流口通流断面的大小,在一定的压差下,可以控制节流阀的流量。图形符号: 常见的几种节流口形式: 针式节流口、三角槽式节流口、转槽式 节流口 流量特性: 节流阀的节流口一定时,其流量随压差的增加而增大。 节流口小到一定值时流量不稳定,出现时断时续现象,称为节流口堵塞(一般0.05L/min)。不出现堵塞的最小流量叫最小稳定流量。 温度变化引起流体粘度变化使流量不稳定(可采用温度补偿装置加以补偿)。 调速阀 调速阀是具有恒流量功能的阀类,利用它能使执行元件匀速运动。

1-减压阀部分 2-减压口 3-行程限位装置 4-节流阀部分 5-节流口调速阀由两部分组成,一是节流阀部分,二是定差减压阀部分,两部分串联而成。图形符号: 工作原理:将节流阀前后压力p2和p3分别引到定压减压阀阀心下、上两端。当负载压力p3增大即调速阀压差变小时,作用在定差减压阀心的力使阀心下移。减压口增大,压降减少,使p2也增大,从而使节流阀压差△p=p2-p3保持不变;反之亦然,这样就使调速阀的流量不受其压差变化的影响,而保持恒定。 详细原理说明 原理说明: 通过阀的流量,不随阀前后的压差ΔP(Δ P = P 1-P3) 而变,而节流阀就无恒 流功能。比较下列曲线可见两者的区别。 调速阀可理解为两个串联节流口组成,Ⅰ为固定节流,Ⅱ为可变节流口。执行元件工作时,流量Q稳定流过。 外负载F若减小,两个串联节流口的流量Q将会增大。这时如果能够及时且自动地减小节流口Ⅱ的开度,使流量重回到原来的稳定值Q。要做到这些就必需自动地保持(P2-P3)不变。 Ⅰ节流口用节流阀,Ⅱ节流口用定差减压阀,它可保证节流阀前后压差(P2-P3)不变,因此可实现恒流。 改变节流阀的开度,也就能重新调定调速阀的另一恒流量。 流量特性:

流量调节阀的工作原理以及选型

流量调节阀的工作原理以及选型 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。 一、温控阀阀 1、散热器温控阀的构造及工作原理 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果需要,可以采用远程温度传感器;远程温度传感器置于要求控温的房间,阀阀体置于供暖系统上的某一部位。 2、温控阀的选型设计 温控阀是供暖系统流量调节的最主要的调节设备,其他调节阀都是辅助设备,因此温控阀是必备的。一个供暖系统如果不设置温控阀就不能称之谓热计量收费系统。在温控阀的设计中,正确选型十分重要。温控阀的选型目的,是根据设计流量(已知热负荷下),允许阻力降确定KV值(流量系数);然后由KV值确定温控阀的直径(型号)。因此,设计图册或厂家样本一定要给出KV值与直径的关系,否则不便于设计人员使用。 在温控阀的选型设计中,绝不是简单挑选与管道同口径的温控阀即完事大吉。而是要在选型的过程中,给选定的温控阀造成一个理想的压差工作条件。一个温控阀通常的工作压差在2~3mH2O之间,最大不超过6~10mH2O。为此,一定要给出温控阀的预设定值的范围,以防止产生噪音,影响温控阀正常工作。当在同一K V值下,有二种以上口径的选择时,应优先选择口径小的温控阀,其目的是为了提

比例流量阀

1、电液比例流量控制阀 1.1 分类与应用 图1.1 电液比例流量阀分类简图 1.2 节流与调速 qα = Δ≠常数,调节A后,q还受负载变化的影响; 节流阀——p Δ=常数,调节A后,q不受负载变化的影响; 调速阀——p 1.3 节流阀的控制特性 在比例节流阀中,阀芯位移是输入电信号的单调函数,如图1.2。

图1.2 稳态控制特性I-x 所示为阀口形状为三角形、矩形及双矩形的比例节流阀,在阀口工作压差为三种不同恒定值时,其输出流量与输入电信号的关系曲线簇。 图1.3 流量稳态控制特性 1.4 节流阀的功率域 所示为比例节流阀的功率域示意图。在使用比例节流阀时,要尽量避免超越阀的功率域。否则,比例节流闽的阀芯位移将会出现如图所示的饱和现象,从而使阀丧失比例控制特性。特别是不带位移传感器的单级比例节流闽,在较大压差作用下,这种直控阀的流量大到功率界限时,稳态液动力会自动将阀口关小,通过阀口的流量不会随着压差的增加而增加,存在着一种“自然”的功率域现象。

图1.4 比例节流阀的功率域示意图 图1.5 超过功率域工况的稳态控制特性曲线

1.5直动式比流节流阀 参见BOSCH教程P24-25 用比例电磁铁直接驱动阀芯,与弹簧力平衡定位,特点: 1、简单,工作可靠,可附加手动,一般能做到NG6,NG10; 2、阀口开度受液动力、摩擦力影响,精度不高; 3、最大流量NG6(35l/min),NG10(80l/min); 4、由于比例电磁铁输出力有限,存在着功率域; 5、注意P24倍流量工况,此时更要注意功率域限制 1.5先导式比流节流阀 参见力士乐插装式比例节流阀样本 1、原理特点:大流量电液比例阀以比例阀或伺服阀作为先导级,以插装阀作为主级,具有流量大、响应快、耐高压和使用寿命长等优点。它能连续、成比例地调节受控腔的压力或流量等,主要应用在铸造机械、压铸机、注塑机、吹塑机、陶瓷机械、高速冲床、钢厂等。 2、应用要求,不同的应用场合对阀的性能要求也有所侧重,如: 快锻压机上使用的大流量电液比例阀不仅响应速度快,而且具有控制精度和重复精度高的特点; 模锻压机上用于控制主缸速度、快慢速切换的大流量比例阀,则对响应速度和控制精度要求不太高,只需成比例可连续调节即可,但要求价格低廉; 压铸机上所使用的大流量比例阀对精度要求不高,但要求阀具有极快的响应速度和低廉的价格。 单一的通用型产品已经难以满足不同用户对大流量电液比例阀所提出的不同要求。针对这一现状,浙大研发了三种不同的技术方案大流量电液比例阀:。 a、以伺服阀为先导级、主级位移-电反馈型的高档大流量电液比例阀

流量控制阀工作原理及其特点

流量控制阀工作原理及其特点 流量控制阀是在一定压力差下,依靠改变节流口液阻的大小来控制节流口的流量,从而调节执行元件(液压缸或液压马达)运动速度的阀类。主要包括节流阀、调速阀、溢流节流阀和分流集流阀等。安装形式为水平安装。 流量控制阀的产品特点: 流量控制阀又称400X流量控制阀,是一种采用高精度先导方式控制流量的多功能阀门。适用于配水管需控制流量和压力的管路中,保持预定流量不变,将过大流量限制在一个预定值,并将上游高压适当减低,即使主阀上游的压力发生变化,也不会影响主阀下游的流量。 流量控制阀的选型:可根据管道等径选用。可根据最大流量和阀门的流量范围选用。 流量控制阀的工作原理: 数显流量控制阀其结构是由自动阀芯,手动阀芯及显示器部分组成。显示部分则由流量阀机芯、传感器发讯器、电子计算器显示器部分组成。 它的工作是及其复杂的。被测水流经阀门,水流冲击流量机芯内的叶轮,叶轮旋转与传感发讯器感应,使传感器发出与流量成正比的电讯号,流量电讯号通过导线送入电子计算器,经过计算器计算、微处理器处理后,其流量值显示出来。 手动阀芯是用来调节流量的,根据显示值来设定所需的流量值。自动阀芯是用来维持流量恒定的,即在管网压力变化时,自动阀芯就会在压力的作用下自动开大火关小阀口来维持设定流量数值不变。 真空阀门 目录 一、真空充气阀类 1、DDC-JQ系列电磁真空带充气阀

2、DDC-JQ-B系列电磁真空带充气阀 3、DYC-Q系列低真空电磁压差充气阀 4、GYC-JQ系列高真空电磁压差式充气阀 5、GQC系列电磁高真空充气阀 6、GDC-Q5型、GDC-5型电磁真空阀 二、真空挡板阀类 1、GDC-J型系列电磁高真空挡板阀 2、GDQ型系列气动高真空挡板阀 3、GD-J型系列高真空挡板阀 4、GDQ-J(b)型系列电、气动高真空挡板阀(带波纹管密封) 5、GDQ-J(b)-A型系列气动高真空挡板阀(带波纹管密封) 6、GD-J(b) 型系列手动高真空挡板阀(带波纹管密封) DDC-JQ系列电磁真空带充气阀 DDC-JQ型系列电磁真空带充气阀是安装在机械式真空泵上的专用阀门。阀门与泵接在同一电源上,泵的开启与停止直接控制了阀的开启与关闭。当泵停止工作或电源突然中断时,阀能自动将真空系统封闭,并将大气通过泵的进气口充入泵腔,避免泵油返流污染真空系统。 适用的工作介质为空气及非腐蚀性气体。 注:快卸及活套法兰连接方式请参阅DDC-JQ-B系列电磁真空带充气阀(内有DN100规格). 主要技术性能 适用范围(Pa) 105~1x10-2 <6.7x10-4 阀门漏率(Pa.L/S)

基于AMESim的比例伺服流量阀建模与仿真

液压气动与密封/2017年第01期 doi:10.3969/j.issn.1008-0813.2017.01.003 收稿日期:2016-07-22 基金项目:中国科学院创新基金项目(CXJJ-16S034) 作者简介:马铭泽(1991-),男,回族,吉林长春人,硕士研究生,从事燃气轮机燃油控制系统仿真与实验研究。 0引言 燃气轮机由于具有高可靠性和高效率而被广泛应 用于机车和舰船动力、分布式能源、管线压缩驱动装置及工业发电等领域。燃气轮机燃油控制系统是燃气轮机的重要组成部分,应具备根据控制系统指令准确调节供油量的能力。比例伺服流量阀作为调节燃油系统供油量的核心部件,其工作性能的优劣直接影响到燃气轮机运行的安全性和稳定性,因此有必要对比例伺服流量阀性能的影响因素进行分析。 比例伺服流量阀是一种根据输入的控制信号,按比例对介质流量进行控制的液压控制元件 [1-2] 。使用比 例电磁铁替代了普通开关型液压阀的手动调节装置或普通电磁铁,既消除了阀口流量因阀口前后压力差变化而波动的影响,又满足了对液压参量进行远距离、高精度的连续控制[3-4]。比例伺服流量阀的流量特性受元 件参数等多种因素的影响,当参数调整不当时,调节作用和性能无法保证,甚至会影响整个液压系统的稳定性。本文应用计算机辅助软件AMESim 对QVHZA-06-12型比例伺服流量阀进行建模仿真[5-6],分析不同参 数对其流量特性的影响,得到较为准确的仿真模型。1比例伺服流量阀工作原理 比例伺服流量阀是由定压差减压阀和节流阀组成 的[7],其工作原理如图1所示。入口压力为p 1的压力油从A 口进入比例伺服流量阀,先经过定压差减压阀的 阀口,压力由p 1减至p 2,然后经节流阀阀口流出,出口压 力为p 3。定压差减压阀后的压力油p 2经阻尼孔a 作用 1-阀体2-定压差减压阀调节弹簧3-减压阀芯4-阻尼孔a 5-阻尼孔b 6-节流阀调节弹簧7-节流阀芯8-推杆9-比例电磁铁 图1比例伺服流量阀工作原理图 基于AMESim 的比例伺服流量阀建模与仿真 马铭泽1,田拥胜2,王 涛2,高 庆2,谭春青2,汪建文1 (1.内蒙古工业大学能源与动力工程学院,内蒙古呼和浩特010051; 2.中国科学院工程热物理研究所,北京100190) 摘要:针对液压控制系统中常用的比例伺服流量阀,应用AMESim 软件对其流量特性进行了仿真研究。分析了定压差减压阀阻尼孔径、节流阀阻尼孔径、节流阀座孔径、弹簧刚度以及弹簧预紧力对其流量特性的影响。通过对仿真模型结构参数的合理调整,得到了与实验结果吻合的仿真模型,为比例伺服流量阀的优化设计和液压控制系统设计提供参考。关键词:比例流量阀;流量特性;AMESim ;仿真中图分类号:TH137.52 文献标志码:A 文章编号:1008-0813(2017)01-0016-05 Modeling and Simulation of Proportional Flow Control Valve Based on AMESim MA Ming-ze 1,TIAN Yong-sheng 2,WANG Tao 2,GAO Qing 2,TAN Chun-qing 2,WANG Jian-wen 1 (1.College of Energy and Power Engineering,Inner Mongolia University of Technology,Hohhot 010051,China; 2.Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China ) Abstract :Focused on the proportional servo flow valve which was commonly used in hydraulic control system ,using simulation software AMESim to analyse its flow characteristic.The constant differential pressure reducing valve damping hole diameter,throttle valve damping hole diameter,throttle valve seat diameter,spring stiffness as well as spring pre-compressing force of different parameters on the flow char-acteristics of proportional flow control valve was analysed.Through the reasonable adjustment of the structural parameters,the simulation model which was close to the experimental results was obtained.The results provided theoretical reference for the optimization of propor-tional servo flow valve and hydraulic system design. Key words :proportionalservo flow valve;flow characteristics;AMESim;simulation 16 万方数据

2、控制阀流量特性解析

2、控制阀流量特性解 析 -CAL-FENGHAI.-(YICAI)-Company One1

控制阀流量特性解析 控制阀的流量特性是控制阀重要技术指标之一,流量特性的偏差大小直接影响自动控制系统的稳定性。使用单位希望所选用的控制阀具有标准的固有流量特性,而控制阀生产企业要想制造出完全符合标准的固有流量特性控制阀是非常困难的,因直线流量特性相对简单,且应用较少,所以本文重点对等百分比流量特性进行讨论。 控制阀的流量特性是指介质流过阀门的相对流量与相对行程之间的关系,数学表达式为Q/Qmax = f(l/L),式中:Q/Qmax—相对流量。指控制阀在某一开度时的流量Q与全开流量Qmax之比; l/L—相对行程。指控制阀在某一开度时的阀芯行程l与全开行程L之比 一般来讲,改变控制阀的流通面积便可以控制流量。但实际上由于多种因素的影响,在节流面积发生变化的同时,还会产生阀前、阀后压力的变化,而压差的变化又将引起流量的变化,为了便于分析,先假定阀前、阀后压差不变,此时的流量特性称为理想流量特性。 理想流量特性主要有等百分比(也称对数)、直线两种常用特性,理想等百分比流量特性定义为:相对行程的

等值增量产生相对流量系数的等百分比增加的流量特性,数学表达式为Q/Qmax = R(l/L-1)。 理想直线流量特性定义为:相对行程的等值增量产生相对流量系数的等值增量的流量特性,数学表达式为 Q/Qmax=1/R[1+(R-1)l/L] 式中R—固有可调比,定义为在规定偏差内的最大流量系数与最小流量系数之比。 常见的控制阀固有可调比有30、50两种。 当可调比R=30和R=50时,直线、等百分比的流量特性在相对行程10%~100%时各流量值见表一 表一 由上表可以看出,直线流量特性在小开度时,流量相对变化大,调节作用强,容易产生超调,可引起震荡,在大开度时调节作用弱,及时性差。而等百分比流量特性小开度时流量小,流量变化也小,在大开度时流量大,流量变化

流量控制阀的特点及其工作原理

流量控制阀的特点及其工作原理 中国泵业网流量控制阀的工作特点及其原理流量控制阀是在一定压力差下,依靠改变节流口液阻的大小来控制节流口的流量,从而调节执行元件(液压缸或液压马达)运动速度的阀类。主要包括节流阀、调速阀、溢流节流阀和分流集流阀等。安装形式为水平安装。 流量控制阀的特点: 流量控制阀又称400X流量控制阀,是一种采用高精度先导方式控制流量的多功能阀门。适用于配水管需控制流量和压力的管路中,保持预定流量不变,将过大流量限制在一个预定值,并将上游高压适当减低,即使主阀上游的压力发生变化,也不会影响主阀下游的流量。 流量控制阀的选型:可根据管道等径选用。可根据最大流量和阀门的流量范围选用。 流量控制阀的工作原理: 数显流量控制阀其结构是由自动阀芯,手动阀芯及显示器部分组成。显示部分则由流量阀机芯、传感器发讯器、电子计算器显示器部分组成。 它的工作是及其复杂的。被测水流经阀门,水流冲击流量机芯内的叶轮,叶轮旋转与传感发讯器感应,使传感器发出与流量成正比的电讯号,流量电讯号通过导线送入电子计算器,经过计算器计算、微处理器处理后,其流量值显示出来。 手动阀芯是用来调节流量的,根据显示值来设定所需的流量值。

自动阀芯是用来维持流量恒定的,即在管网压力变化时,自动阀芯就会在压力的作用下自动开大火关小阀口来维持设定流量数值不变。 推力球轴承的用途: 推力球轴承只适用于承受一面轴向负荷、转速较低的机件上,只适用于承受一面轴向负荷、转速较低的机件上,例如起重机吊钩、立时水泵、立时离心机、千斤顶、如起重机吊钩、立时水泵、立时离心机、千斤顶、低速减速器等。轴承的轴圈、座圈和滚动体是分离的,速减速器等。轴承的轴圈、座圈和滚动体是分离的,可以分别装拆。 推力轴承的安装注意事项: 平面推力轴承在装配体中主要承受轴向载荷,其应用广泛。平面推力轴承在装配体中主要承受轴向载荷,其应用广泛。虽然推力轴承安装操作比较简单,虽然推力轴承安装操作比较简单,但实际维修时仍常有错误发生,即轴承的紧环和松环安装位置不正确,发生,即轴承的紧环和松环安装位置不正确,结果使轴承失去作用,轴颈很快地被磨损。紧环内圈与轴颈为过渡配合,去作用,轴颈很快地被磨损。紧环内圈与轴颈为过渡配合当轴转动时带动紧环,并与静止件端面发生摩擦,当轴转动时带动紧环,并与静止件端面发生摩擦,在受到轴向作用力(Fx)时将出现摩擦力矩大于内径配合阻力矩,向作用力(Fx)时,将出现摩擦力矩大于内径配合阻力矩,导(Fx)致紧环与轴配合面强制转动,加剧轴颈磨损。 因此,推力轴承安装时应注意以下几点。 (1)分清轴承的紧环和松环(根据轴承内径大小判断,孔径相分清轴

阀门特性

调节阀介绍,等百分比特性,线性特性,抛物线特性 调节阀用于调节介质的流量、压力和液位。根据调节部位信号,自动控制阀门的开度,从而达到介质流量、压力和液位的调节。调节阀分电动调节阀、气动调节阀和液动调节阀等。本手册主要介绍电动调节阀和气动调节阀两种。 调节阀由电动执行机构或气动执行机构和调节阀两部分组成。调节并通常分为直通单座式和直通双座式两种,后者具有流通能力大、不平衡办小和操作稳定的特点,所以通常特别适用于大流量、高压降和泄漏少的场合。 流通能力Cv是选择调节阀的主要参数之一,调节阀的流通能力的定义为:当调节阀全开时,阀两端压差为0.1MPa,流体密度为1g/cm3时,每小时流径调节阀的流量数,称为流通能力,也称流量系数,以Cv表示,单位为t/h,液体的Cv值按下式计算。 根据流通能力Cv值大小查表,就可以确定调节阀的公称通径DN。 调节阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经调节阀的相对流量与它的开度之间关系。调节阀的流量特性有线性特性,等百分比特性及抛物线特性三种。三种注量特性的意义如下: (1)等百分比特性(对数) 等百分比特性的相对行程和相对流量不成直线关系,在行程的每一点上单位行程变化所引起的流量的变化与此点的流量成正比,流量变化的百分比是相等的。所以它的优点是流量小时,流量变化小,流量大时,则流量变化大,也就是在不同开度上,具有相同的调节精度。 (2)线性特性(线性) 线性特性的相对行程和相对流量成直线关系。单位行程的变化所引起的流量变化是不变的。流量大时,流量相对值变化小,流量小时,则流量相对值变化大。

(3)抛物线特性 流量按行程的二方成比例变化,大体具有线性和等百分比特性的中间特性。 从上述三种特性的分析可以看出,就其调节性能上讲,以等百分比特性为最优,其调节稳定,调节性能好。而抛物线特性又比线性特性的调节性能好,可根据使用场合的要求不同,挑选其中任何一种流量特性。

调节阀流量特性选择

调节阀的流量特性如何选择 控制阀的流量特性是介质流过控制阀的相对流量与相对位移(控制阀的相对开度)间的关系,一般来说改变控制阀的阀芯与阀座的流通截面,便可控制流量。但实际上由于多种因素的影响,如在截流面积变化的同时,还发生阀前后压差的变化,而压差的变化又将引起流量的变化。 在阀前后压差保持不变时,控制阀的流量特性称为理想流量特性;控制阀的结构特性是指阀芯位移与流体流通截面积之间的关系,它纯粹由阀芯大小和几何形状决定,与控制阀几何形状有关外,还考虑了在压差不变的情况下流量系数的影响,因此,控制阀的理想流量特性与结构特性是不同的。 理性流量特性主要由线性、等百分比、抛物线及快开四种。在实际生产应用过程中,控制阀前后压差总是变化的,这时的流量特性称为工作流量特性,因为控制阀往往和工艺设备串联或并联使用,流量因阻力损失的变化而变化,在实际工作中因阀前后压差的变化而使理想流量特性畸变成工作特性。 控制阀的理想流量特性,在生产中常用的是直线、等百分比、快开三种,抛物线流量特性介于直线与等百分比之间,一般可用等百分比来代替,而快开特性主要用于二位式调节及程序控制中。因此,控制阀的特性选择是指如何选择直线和等百分比流量特性。 目前控制阀流量特性的选择多采用经验准则,可从下述几个方面考虑: 1、从调节系统的质量分析 下图是一个热交换器的自动调节系统,它是由调节对象、变送器、调节仪表和控制阀等环节组成。 K1变送器的放大系数,K2调节仪表的放大系数,K3执行机构的放大系数,K4控制阀的放大系数,K5调节对象的放大系数。 很明显,系统的总放大系数K为:K=K1*K2*K3*K4*K5 K1、K2、K3、K4、K5分别为变送器、调节仪表、执行机构、控制阀、调节对象的放大系数,在负荷变动的情况下,为使调节系统仍能保持预定的品质指标;则希望总的放大系数在调节系统的整个操作范围内保持不变。通常,变送器、调节器(已整定好)和执行机构的放大系数是一个常数,但调节对象的放大系数却总是随着操作条件变化而变化,所以对象的特性往往是非线性的。因此,适当选择控制阀的特性,以阀的放大系数的变化来补偿调节对象放大系数的变化,而使系统的总放大系数保持不变或近似不变,从而提高调节系统的质量。 因此,控制阀流量特性的选择应符合: K4*K5=常数 对于放大系数随负荷的加大而变小的现象,假如选用放大系数随负荷加大而变大的等百分

阀对流量的控制可以分为两种

阀对流量的控制可以分为两种: 一种是开关控制:要么全开、要么全关,流量要么最大、要么最小,没有中间状态,如普通的电磁直通阀、电磁换向阀、电液换向阀。 另一种是连续控制:阀口可以根据需要打开任意一个开度,由此控制通过流量的大小,这类阀有手动控制的,如节流阀,也有电控的,如比例阀、伺服阀。 所以使用比例阀或伺服阀的目的就是:以电控方式实现对流量的节流控制(当然经过结构上的改动也可实现压力控制等),既然是节流控制,就必然有能量损失,伺服阀和其它阀不同的是,它的能量损失更大一些,因为它需要一定的流量来维持前置级控制油路的工作。 编辑本段 滑阀结构 伺服阀的主阀一般来说和换向阀一样是滑阀结构,只不过阀芯的换向不是靠电磁铁来推动,而是靠前置级阀输出的液压力来推动,这一点和电液换向阀比较相似,只不过电液换向阀的前置级阀是电磁换向阀,而伺服阀的前置级阀是动态特性比较好的喷嘴挡板阀或射流管阀。 也就是说,伺服阀的主阀是靠前置级阀的输出压力来控制的,而前置级阀的压力则来自于伺服阀的入口p,假如p口

的压力不足,前置级阀就不能输出足够的压力来推动主阀芯动作。 而我们知道,当负载为零的时候,如果四通滑阀完全打开,p口压力=t口压力+阀口压力损失(忽略油路上的其它压力损失),如果阀口压力损失很小,t口压力又为零,那么p 口的压力就不足以供给前置级阀来推动主阀芯,整个伺服阀就失效了。所以伺服阀的阀口做得偏小,即使在阀口全开的情况下,也要有一定的压力损失,来维持前置级阀的正常工作。 伺服阀其实缺点极多:能耗浪费大、容易出故障、抗污染能力差、价格昂贵等等等等,好处只有一个:动态性能是所有液压阀中最高的。就凭着这一个优点,在很多对动态特性要求高的场合不得不使用伺服阀,如飞机火箭的舵机控制、汽轮机调速等等。动态要求低一点的,基本上都是比例阀的天下了。 一般说来,好像伺服系统都是闭环控制,比例多用于开环控制;其次比例阀类型要多,有比例压力、流量控制阀等,控制比伺服要灵活一些。从他们内部结构看,伺服阀多是零遮盖,比例阀则有一定的死区,控制精度要低,响应要慢。但从发展趋势看,特别在比例方向流量控制阀和伺服阀方面,两者性能差别逐渐在缩小,另外比例阀的成本比伺服阀要低许多,抗污染能力也强!

普通流量阀与比例流量阀的比较

普通流量阀与比例流量阀的比较 学号:089054348 姓名:芮杨 1.摘要:普通流量阀广泛应用于工业中,但是随着比例技术的诞生,将比例技术引 入流量阀中,使比例流量阀与传统流量阀有很大的区别,而且在控制原理上有着 本质的区别。 2.关键词:普通流量阀,比例流量阀,比例技术,节流阀,调速阀,溢流控制阀, 压力补偿,压力控制,流量反馈等 3.正文 一.流量控制阀的定义:流量控制阀就是依靠改变阀口通流面积的大小或通流通道的长短来改变液阻,控制流量,实现对执行元件运动速度(或转速)的调节和控制的液压阀。 常用的流量控制阀有普通节流阀、普通调速阀、温度补偿调速阀、溢流节流阀和分流集流阀等。 在介绍比例方向阀之前,我们首先了解一下什么是比例技术,怎么实现比例技术来控制流量大小。 电液比例控制是介于普通开关控制和伺服控制之间的一种新的控制方式。它既可以根据输入电信号的大小连续地、成比例地对液压系统的流量、压力、方向实现远距离控制、计算机控制,又在制造成本、抗污染等方面优于伺服控制,因此被广泛应用于性能要求不是很高的一般工业部门。 严格上说,比例控制是实现元件或系统的被控制量与控制量之间线性关系的技术手段,依靠这一手段要保证输出量的大小按确定的比例随着输入量的变化而变化。 比例技术实现的核心是“比例电磁铁”和“比例放大器”,其中比例电磁铁将电信号转换成力和位移,而比例放大器相当于电脑的CPU,它处理信号并输出正确的控制信号。这些都是实现比例技术的关键。

比例流量控制阀是通过电液比例技术控制阀芯的运动,能根据输入信号的大小来控制阀口的大小,从而控制流量的大小。它的控制能实现连续控制,比普通方向阀的性能有很大提升。 按控制和反馈原理分为比例节流阀和比例调速阀,其中比例调速阀又有阀口的压差控制或流量的闭环反馈控制两种结构。若按照压差控制的调速阀有压差补偿型和负载适应型。采用流量闭环反馈的调速阀有流量-位移-力反馈型和流量-电反馈型等结构。 按信号和液流方向特点分,有单向比例流量控制阀和双向比例流量控制阀,其中单向比例流量控制阀就是传统的比例流量阀。双向比例流量控制阀是指比例方向阀,它与传统开关比例方向阀有着重要差别,比例流量控制阀既控制液流的流动方向又控制流量的大小。 按控制的级数和流量规格分,有单级阀,二级阀,三级阀。 按阀口数量分,有二通流量阀,三通流量阀和通油路等于或多于四个的多通口阀。 二.下面着重介绍普通流量阀与比例方向阀典型结构原理及其对比。 ㈠.普通流量阀(节流阀,调速阀,溢流节流阀) 1.节流阀 ①.工作原理 液流从进油口流入经节流口后,从阀的出油口流出。本阀的阀芯锥台上开有三角形槽。转动调节旋钮,阀芯产生轴向位移,节流口的开口量即发生变化。阀芯越右移开口量就越大 ②.典型结构

相关文档
最新文档