基于近场波束形成的麦克风阵列语音增强方法

基于近场波束形成的麦克风阵列语音增强方法
基于近场波束形成的麦克风阵列语音增强方法

基于麦克风阵列的语音增强方法

基于麦克风阵列的语音增强方法 概述:在日常生活和工作中,语音通信是人与人之间互相传递信息沟通不可缺少的方式。在语音通信中,语音信号不可避免地会受到来自周围环境和传输媒介的外部噪声、通信设备的内部噪声及其他讲话者的干扰。这些干扰共同作用,最终使听者获得的是被噪声污染过的带噪声语音,严重影响了双方之间的交流。应用阵列信号处理技术的麦克风阵列能够充分利用语音信号的空时信息,具有灵活的波束控制、较高的空间分辨率、高的信号增益与较强的抗干扰能力等特点,逐渐成为强噪声环境中语音增强的研究热点。本文将介绍各种麦克风阵列语音增强方法,并总结各个方法的优劣。最终得出更好的、能够去噪的基于麦克风阵列的语音增强方法。 1麦克风阵列 麦克风阵列是将两个麦克风的信号耦合为一个信号。在频率响应中也可以根据时域中波束形成与空间滤波器相仿的应用,分析出接收到语音信号音源的方向以及其变化。采用该技术,能利用两个麦克风接收到声波的相位之间的差异对声波进行过滤,能最大限度将环境背景声音滤掉,只剩下需要的声波。对于在嘈杂的环境下使用采用了这种配置的设备,在嘈杂的环境下能使听者听起来很清晰,没杂音。 2基于麦克风阵列的语音增强方法 2.1基于自适应波束形成器的麦克风阵列语音增强 自适应波束形成是现在广泛使用的一类麦克风阵列语音增强方法。最早出现的自适应波束形成算法,其基本思想是在某方向有用信号的增益一定的前提下,使阵列输出信号的功率最小。在线性约束最小方差自适应波束形成器的基础上,1982 年Griffiths 和Jim 提出了广义旁瓣消除器成为了许多算法的基本框架。 广义旁瓣消除器(GSC)的工作原理是带噪声的语音信号同时通过自适应通道和非自适应通道,自适应通道中的阻塞矩阵将有用信号滤除后产生仅包含多通道噪声参考信号,自适应滤波器根据这个参考信号得到噪声估计,最后由这个被估计的噪声抵消非自适应通道中的噪声分量,从而得到有用的纯净语音信号。 麦克风阵列的自适应算法通过迭代运算获取波束形成的最优权矢量时,噪声模型的估计是一个非常关键的因素。它的好坏直接影响着系统波束形成的性能。系统地分析了最小均方( LMS) 自适应语音增强算法,并针对阻塞矩阵在估计噪声时存在的缺陷,在该算法的基础上提出了一种利用最小值控制递归平均( MCRA) 来估计噪声的方法。将此方法应用于波束形成,MCRA 估计出的噪声使LMS 自适应语音增强的效果更好和抗噪性更强。 2.2基于固定波束形成的麦克风阵列语音增强 固定波束形成技术是最简单最成熟的一种波束形成技术。1985 年美国学者Flanagan 提出采用延时-相加波束形成方法进行麦克风阵列语音增强,该方法通过对各路麦克风接收到的信号添加合适的延时补偿,使得各路输出信号在某一方向上保持同步,并在该方向的入射信号获得最大增益。此方法易于实现,但要想获取较高的噪声抑制能力则需要增加麦克风数目,然而对非相干噪声没有抑制能力,环境适应性差,因此实际中很少单独使用。后来出现的微分麦克风阵列、超方向麦克风阵列和固定频率波束形成技术也属于固定波束形成。 采用可调波束形成器的GSC麦克风阵列语言增强算法,其实质在GSC结构中的固定波束形成器前端引入各通道可调时延补偿,构造可调波束形成器进行声源方位估计,从而在目标声源方位获取阶段即可利用阵列的空间增益来提高方位估计性能。延迟求和波束形成器主要目的是增强主瓣方向目标信号,而抑制其他方向的噪声信号。

基本语音增强方法

基本语音增强方法概述 摘要:语音增强是当今语音处理的一个非常重要的领域,本文主要介绍当今比较普遍的几种基于人耳掩蔽阈值的语音增强方法:谱减法,维纳滤波法,子空间方法等,并对它们的优缺点作简要论述。 关键词:语音增强、人耳掩蔽、谱减法、维纳滤波、子空间 现今时代的主流步伐将我们带向自动化方向,语音识别在这一背景下显得尤为重要。目前已经开发出好几款语音识别软件,但是如何较为精确地实现人耳的掩蔽效应下的语音增强,仍是大家着重解决的问题。它的首要目标就是在接收端尽可能从带噪语音信号中提取纯净的语音信号,改善其质量。目前已经出现了谱减法等一系列较为普遍的方法。本文将对这几种方法进行简要介绍。 一、语音的特性 语音信号是一种非平稳、时变的随机过程,其产生过程与发声器官的运动紧密相关。而发声器官的状态变化速度比声音振动的速度要缓慢得多,因此语音信号可以认为是短时平稳的。在一段短时间内其特性基本保持不变即相对稳定,从而可以应用平稳随机过程的分析方法来处理语音信号,并可以在语音增强中利用短时频谱的平稳特性。 人耳在嘈杂的环境中,仍然能够清晰地听到自己想听的内容,一个较弱的声音(被掩蔽音)的听觉感受被另一个较强的声音(掩蔽音)影响的现象称为人耳的“掩蔽效应”。被掩蔽音单独存在时的听阈分贝值,或者说在安静环境中能被人耳听到的纯音的最小值称为绝对闻阈。在进行机器语音识别的时候,由于干扰信号和目标信号的强度差别不大,导致机器无法识别。这时语音增强就显得特别重要了。 二、时域方法 此类方法主要依赖于语音生成模型(例如AR模型)的使用,需要提取模型参数(如基音周期、LPC系数等),经常使用迭代方法。这种方法的最大缺点就是如果实际噪声或语音与模型有较大的差别,或者由于某些原因使得提取语音参数较困难,则这方法较容易失败。这类方法常用到一些滤波器,如梳状滤波器、维纳滤波器、卡尔曼滤波器等。 (1)经典的维纳滤波法是根据Winer-Hopf 积分方程求出纯语音和混合音

线性麦克风阵列定向性能的研究

线性麦克风阵列定向性能的研究? 段进伟, 史元春, 陈孝杰 (清华大学计算机科学与技术系,北京市海淀区, 100084) Study on the Directing Performance of the Linear Microphone Array Duan Jin-wei, Shi Yuan-chun, Chen Xiao-jie (Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China) + Corresponding author: Phn: +86-010-********-805, E-mail: saundradjw945@https://www.360docs.net/doc/df4371947.html, Received 2007-07-31; Accepted 2007-08-31 Abstract: Speech source localization technology, using microphone array, plays an important role in the area of human-computer interaction, especially that in smart space. The information of source position provided by the microphone array can be used in many place, such as dynamically adjust the parameters of the array in order to acquire high-quality speech audio, etc. Therefore, speech source localization has become a hot topic in both research and application areas. The objective of this paper is to analyze the affection on the symmetrical linear microphone array directing performance caused by the changes of microphone numbers, the spacing between microphones, the sampling frequency and so on. In order to accomplish this, we set up two linear microphone arrays with different hardware and designed comparative experiments. After the speech data was captured, an algorithm called SRP-PHAT was used to estimate the speech source direction. We analyzed the possible theoretic errors existed in the experiments carefully, and after the experiments, we analyzed the directing results, and compared the actual directing errors with the possible theoretic errors. At last, we summarized the performance of the two linear microphone arrays, and educed the configuration of the linear microphone array system when its integrative performance achieves the peak. Key words: linear microphone array; speech source directing; theoretic error; directing performance 摘 要: 麦克风阵列在人机交互中有着重要的研究和应用价值。而线性均匀麦克风阵列最简单,其基本功能是声源的定向。本文通过实验分析各种参数变化对线性麦克风阵列定向性能的影响。我们搭建了硬件参数不同的两套线性麦克风阵列并设计了对比实验。使用SRP-PHAT算法定向声源。我们分析了声源定向时各种可能的理论误差,对实验结果进行了误差分析,并与可能的理论误差做了对比。通过理论分析和对比实验,本文提出了线性麦克风阵列系统的性能评价指标,并给出了综合性能最优时的麦克风阵列系统参数配置。 关键词: 线性麦克风阵列; 声源定向; 理论误差; 定向性能 中图法分类号: ****文献标识码: A ?Supported by National High-Tech Research and Development Plan of China under Grant No. 2006AA01Z198; 作者简介: 段进伟(1985-),男,云南昆明人,大学本科,主要研究领域为人机交互与普适计算;

多通道语音增强方法简介

多通道语音增强方法简介 【摘要】由于多麦克风越来越多地部署到同一个设备上,基于双麦克风和麦克风阵列的多通道语音增强研究有了较大的应用价值。介绍了自适应噪声对消法、FDM等双通道语音增强方法和波束形成、独立分量分析等麦克风阵列语音增强方法,对各个方法的原理、发展和优缺点进行了详细分析和总结,对多通道语音增强深入研究有一定帮助。 【关键词】语音增强;双通道;麦克风阵列;波束形成 1.引言 语音是人们通讯交流的主要方式之一。我们生活的环境中不可避免地存在着噪声,混入噪声的语音会使人的听觉感受变得糟糕,甚至影响人对语音的理解。在语音编码、语音识别、说话人识别等系统中,噪声也会严重影响应用的效果。语音增强成为研究的一个问题,其模型如图1所示。 图1 语音增强模型 按照采集信号的麦克风数量分类,语音增强方法可被分为单通道(single channel)、双通道(dual-channel)、麦克风阵列(microphone array)三种类型。一般来说,麦克风越多,去噪的效果越好。早期,大部分通信/录音终端都只配有一个麦克风,因此单通道语音增强吸引了大量研究者的目光,方法较为成熟。但单通道方法的缺点是缺少参考信号,噪声估计难度大,增强效果受到限制。近年来随着麦克风设备的小型化和成本的降低,双麦克风和麦克风阵列越来越多地被部署。研究者的注意力也在从单通道语音增强向双通道和麦克风阵列语音增强转移,这里对已有的多通道语音增强算法作以简单介绍。 2.双通道语音增强方法 在语音增强中,一个关键的问题就是获得噪声。在单通道语音增强中,噪声是通过从带噪语音信号中估计得到的,估计算法较为复杂且估计噪声总是与真实噪声存在差异,这就限制了增强效果的提高。为了获得真实噪声,简单的做法就是增加一个麦克风来采集噪声。从带噪语音信号中减去采集噪声来得到语音信号,这种方法叫做自适应噪声对消法(ANC,adaptive noise canceling),是最原始的最简单的双通道语音增强算法。针对双麦克风开发的算法不多,主要有噪声对消法、一阶差分麦克风(FDM,first-order differential microphone)及基于FDM 改进得到的自适应零陷波束形成法(ANF,adaptive null-forming)。 2.1 自适应噪声对消法 噪声对消法采用两个麦克风,一个麦克风采集带噪语音,另一个采集噪声信号,用带噪信号减去噪声信号,得到语音信号。减操作一般在频域进行,如果采

语音增强算法的研究与实现

语音增强算法的研究与实现 目录 目 录 ..................................................................... ............................................................ I 河西学院本科生毕业论文(设计)诚信声 明 ................................... 错误~未定义书签。I 河西学院本科生毕业论文(设计)任务 书 ...................................... 错误~未定义书签。II 河西学院本科毕业论文(设计)开题报 告 ..................................... 错误~未定义书签。IV 摘 要 ..................................................................... .................................................................. I Abstract ........................................................... ....................................................................... I 1 引 言 ..................................................................... .. (1) 2 语音增强算法概 述 ..................................................................... (1)

基于麦克风阵列的语音增强算法概述

- 29 - 基于麦克风阵列的语音增强算法概述 丁 猛 (海军医学研究所,上海 200433) 【摘 要】麦克风阵列语音增强技术是将阵列信号处理与语音信号处理相结合,利用语音信号的空间相位信息对语音信号进行增强的一种技术。文章介绍了各种基于麦克风阵列的语音增强基本算法,概述了各算法的基本原理,并总结了各算法的特点及其所适用的声学环境特性。 【关键词】麦克风阵列;阵列信号处理;语音增强 【中图分类号】TN911.7 【文献标识码】A 【文章编号】1008-1151(2011)03-0029-02 (一)引言 在日常生活和工作中,语音通信是人与人之间互相传递信息沟通不可缺少的方式。近年来,虽然数据通信得到了迅速发展,但是语音通信仍然是现阶段的主流,并在通信行业中占主导地位。在语音通信中,语音信号不可避免地会受到来自周围环境和传输媒介的外部噪声、通信设备的内部噪声及其他讲话者的干扰。这些干扰共同作用,最终使听者获得的语音不是纯净的原始语音,而是被噪声污染过的带噪声语音,严重影响了双方之间的交流。 应用阵列信号处理技术的麦克风阵列能够充分利用语音信号的空时信息,具有灵活的波束控制、较高的空间分辨率、高的信号增益与较强的抗干扰能力等特点,逐渐成为强噪声环境中语音增强的研究热点。美国、德国、法国、意大利、日本、香港等国家和地区许多科学家都在开展这方面的研究工作,并且已经应用到一些实际的麦克风阵列系统中,这些应用包括视频会议、语音识别、车载声控系统、大型场所的记录会议和助听装置等。 文章将介绍各种麦克风阵列语音增强算法的基本原理,并总结各个算法的特点及存在的局限性。 (二)常见麦克风阵列语音增强方法 1.基于固定波束形成的麦克风阵列语音增强 固定波束形成技术是最简单最成熟的一种波束形成技术。1985年美国学者Flanagan 提出采用延时-相加(Delay-and-Sum)波束形成方法进行麦克风阵列语音增强,该方法通过对各路麦克风接收到的信号添加合适的延时补偿,使得各路输出信号在某一方向上保持同步,并在该方向的入射信号获得最大增益。此方法易于实现,但要想获取较高的噪声抑制能力则需要增加麦克风数目,然而对非相干噪声没有抑制能力,环境适应性差,因此实际中很少单独使用。后来出现的微分麦克风阵列(Differential Microphone Arrays)、超方向麦克风阵列(Superairective Microphone Arrays )和固定频率波束形成(Frequency-Invariant Beamformers) 技术也属于固定波束形成。 2.基于自适应波束形成器的麦克风阵列语音增强 自适应波束形成是现在广泛使用的一类麦克风阵列语音增强方法。最早出现的自适应波束形成算法是1972年由Frost 提出的线性约束最小方差(Linearly Constrained Minimum Variance,LCMV)自适应波束形成器。其基本思想是在某方向有用信号的增益一定的前提下,使阵列输出信号的功率最小。在线性约束最小方差自适应波束形成器的基础上,1982年Griffiths 和Jim 提出了广义旁瓣消除器(Generalized Sidelobe Canceller, GSC),成为了许多算法的基本框架(图1)。 图1 广义旁瓣消除器的基本结构 广义旁瓣消除器是麦克风阵列语音增强应用最广泛的技术,即带噪声的语音信号同时通过自适应通道和非自适应通道,自适应通道中的阻塞矩阵将有用信号滤除后产生仅包含多通道噪声参考信号,自适应滤波器根据这个参考信号得到噪声估计,最后由这个被估计的噪声抵消非自适应通道中的噪声分量,从而得到有用的纯净语音信号。 如果噪声源的数目比麦克风数目少,自适应波束法能得到很好的性能。但是随着干扰数目的增加和混响的增强,自适应滤波器的降噪性能会逐渐降低。 3.基于后置滤波的麦克风阵列语音增强 1988年Zelinski 将维纳滤波器应用在麦克风阵列延时—相加波束形成的输出端,进一步提高了语音信号的降噪效果,提出了基于后置滤波的麦克风阵列语音增强方法(图2)。基于后置滤波的方法在对非相干噪声抑制方面,不仅具有良好的效果,还能够在一定程度上适应时变的声学环境。它的基本原理是:假设各麦克风接收到的目标信号相同,接收到的噪声信号独立同分布,信号和噪声不相关,根据噪声特性, 【收稿日期】2010-12-30 【作者简介】丁猛(1983-),男,海军医学研究所研究实习员。

麦克风阵列模组设计方案

麦克风阵列模组设计方案 一、麦克风阵列基本原理 二、麦克风阵列的应用 三、麦克风阵列模组的设计 一、麦克风阵列基本原理 阵列(Array): 数学定义--有限个相同资料形态之元素组成之集合 麦克风阵列是指按一定距离排列放置的一组麦克风,通过声波抵达阵列中每个麦克风之间的微小时差的相互作用,麦克风阵列可以得到比单个的麦克风更好地指向性。在麦克风阵列的设计中首要的改进是引入了波束成形、阵列指向性与波束宽度的概念。 波束的形成 通过对所有麦克风信号的综合处理,麦克风阵列可以组合成为所要求的强指向性麦克风,形成被称为“波束”的指向特性。麦克风阵列的波束可以经由特殊电路或程序算法软件控制使其指向声源方向而加强音频采集效果。 阵列算法处理后的指向性波束形成技术能精确的形成一个锥状窄波束,只接受说话人的声音同时抑制环境中的噪音与干扰。

图一使用单麦克风与采用波束形成技术麦克风阵列接收讲话者声音效果的对比

阵列指向性 由于麦克风阵列的输出信号中包含比单只麦克风更低的噪声和回声成份, 。麦克风阵列在1000Hz的典型指所以其固有噪声抑制能力要远高于单只麦克风。 所以其固有噪声抑制能力要远高于单只麦克风 向性波束图型如图二所示。其指向性图形要远好于任一款价格昂贵的高性能超心形麦克风。 图二麦克风阵列在1000Hz的典型指向性波束图型

指向性指数 另一个表证波束的参数是指向性指数。 波束轴线))检测到指向性指数D表征的是麦克风阵列主响应轴(波束轴线 的声源信号与需要屏蔽的各种噪声与回声信号的比值

二麦克风阵列的应用 正确的麦克风阵列几何排列(数量,类型及麦克风的位置)关系到最后的声学效果。为了保证成功的设计和用户满意度,双元件麦克风阵列适用于在较安静的办公场所及室内的条件使用。这种阵列形成的是水平方向压缩后的较窄波束,使用时应将两个麦克风连线中点指向讲话者。其几何排布如图三、图四所示 图三小型双麦克风阵列图四大型双麦克风阵列 四元件麦克风阵列适用于在一般的办公场或较嘈杂的环境使用,当讲话者到麦克风的距离达到3-5M距离时,仍有很好的录音效果,见图五、图六 图五4麦克风阵列图六L-形状的4麦克风阵列

语音增强算法的分类

语音增强算法的分类 现实环境中的噪声多种多样,特性各异,很难找到一种通用的语音增强算法适用于各种噪声的消除;同时语音增强算法与语音信号数字处理理论、人的听觉系统和语音学等学科紧密相关,这也促使人们必须根据不同的噪声源来选择不同的对策。以上原因使语音增强技术研究呈现百花齐放的局面。几十年来,许许多多的学者在这方面进行了不懈的努力,总结出了许多有效的方法。 根据信号输入的通道数,可将这些方法分为单通道的语音增强算法与多通道的语音增强算法。单通道的语音系统在现实生活中较常见,手机、耳麦等都属于单通道语音系统。这种情况下,语音与噪声同时存在于一个通道中,语音信号与噪声信号必须从同一个带噪语音中获得。这种系统一般要求信号中的噪声比较平稳,以便在无声段对噪声进行估计,再依据估计得到的噪声参数对有声段进行处理,得到增强语音。而多通道的语音系统中语音增强的一种算法是,利用各个通道的语音信号之间存在的某些相关性,对带噪语音信号进行处理,得到增强的语音。比如,在自适应噪声抵消法中采用了两个话筒作为输入,其中一个采集带噪的语音信号,另外一个采集噪声,从噪声通道所采集的噪声直接当作带噪语音中的噪声,并将它从带噪语音中减去即可。另一种多通道的语音增强算法是采用阵列信号,这种方法采用多个以一定方式排列的采集设备接收信号。由于不同的独立信号源与各个采集设备之间的距离不同,最后在各个接收设备中的合成信号也不同,再根据这些信号将各个独立信号分离出来。 按照所依据原理的不同,我们可以将语音增强分为以下几类: (1)参数方法 此类方法主要依赖于语音生成模型(例如AR模型)的使用,需要提取模型参数(如基音周期、LPC系数等),经常使用迭代方法。这种方法的最大缺点就是如果实际噪声或语音与模型有较大的差别,或者由于某些原因使得提取语音参数较困难,则这方法较容易失败。这类方法常用到一些滤波器,如梳状滤波器、维纳滤波器、卡尔曼滤波器等。 (2)非参数方法 非参数方法不需要从带噪语音信号中估计语音模型参数,这就使得此类方法相对于参数方法而言应用较广。但由于没有利用可能的语言统计信息,故结果一般不是最优的。同时,我们知道,语音信号是非平稳的随机过程,但语音信号特性的缓慢变化使得在较短的时间(比如10~30ms)内,可以视其为平稳的,如果能从带噪语音的短时谱中估计出“纯净”语音的短时谱,即可达到语音增强的目的。由于人耳对语音的感知主要是通过语音信号中各频谱分量的幅度来获得的,而对各分量的相位并不敏感,因此,这类方法的重点是将估计的对象放在语音信号的短时谱幅度上。非参数方法主要包括谱减法、自适应滤波法等。 (3)统计方法 统计方法比较充分地利用了语音和噪声的统计特性,如语音信号可视不同情况和需要采用高斯模型、拉普拉斯模型以及伽玛模型等。此类方法一般是在建立了模型库后,经历一个训练过程来获得初始统计参数,并且在后续的工作过程中要根据实际的数据实时的更新这些统计参数,以使模型能更好的符合实际情况,它与语音系统的联系非常密切。这类方法里面主要包括最小均方误差估计(MMSE,Minimum Mean Square Error)、对数谱估计的最小均方误差(MMSE-LSA,Minimum Mean-Square Error Log-SpectralAmplitude)、听觉掩蔽效应(Masking Effect)等。 (4)多通道方法 多通道方法利用了更多的信息,包括空间信息,可以更好地滤除噪声、分离语音,但对硬件设备要求高,算法一般较复杂。噪声抵消法、延迟一相加波束形成器(delay-sum beamformer)、

讯飞麦克风阵列声学测试方法

讯飞麦克风阵列声学测试 方法 This model paper was revised by the Standardization Office on December 10, 2020

讯飞麦克风阵列声学测试方法 测试准备 环境: 混响环境(模拟家庭客厅环境) 器材: 两个高保真音箱:1个用于播放语音,1个用于播放噪声; 音响支架2个:1个用于放置语音播放设备,1个用于放置噪音播放设备; 笔记本电脑2个:1个用于播放语音信号和噪声信号,1个用于抓取日志或录音; 分贝仪1个:用于噪声、语音信号强度测试,计算信噪比等; 卷尺1个:用于测试与设备的距离; 语料: 唤醒语料:用于测试唤醒率; 命令词语料:用于语音识别,测试识别率; 本机功放播放音频:回声消除测试使用; 家庭环境噪声音频:可播放中央台新闻节目,约30分钟; 硬件:

讯飞demo板1个 裸板1个 整机1个 软件: IPTV主板软件: 可抓日志,准备至少两个串口线。 可录音,可录15分钟以上。准备两个U盘。 可手动打开/关闭唤醒模式。可手动设置波束。 核心板固件:准备烧录工具。 唤醒词:跟唤醒词音频一致。 测试环境搭建 麦克风阵列测试示意图如下:

在安静环境下,放置阵列位于待测区域中间位置,唤醒源位于距阵列1m 处,噪声源位于距阵列处,唤醒源和阵列在一条直线上。 通过高保真音箱播放语料,通过分贝仪在阵列处测试信噪比,要求噪声源、唤醒源在阵列处的响度均为55dB 。安静环境下和噪声环境下分别测试唤醒率和识别率。 调整唤醒源的位置,距阵列的距离分别为3m 和5m 。要求唤醒源在阵列处的响度仍为55dB 。安静环境下和噪声环境下分别进行唤醒率和识别率测试。 测试说明: 测试环境因素影响非常大,唤醒源的位置角度调一调,响度校正时测试值的波动也很大。每次测试都要有对比物,只有同一时间同一环境对比测试的结果才有意义。 一、声学效果测试 1 分别对音箱6麦克整机与音箱裸麦、音箱裸麦与评估板裸麦进行唤醒、声源定位测试 测试步骤: 唤醒源 待测区域 麦克风阵

几种单通道的语音增强算法研究

龙源期刊网 https://www.360docs.net/doc/df4371947.html, 几种单通道的语音增强算法研究 作者:杨龙 来源:《科技视界》2015年第26期 【摘要】对目前常用的几种单通道语音增强算法,即谱减法、最小均方误差估计以及子 空间算法进行研究,通过仿真实验对三种单通道语音增强算法的去噪效果和去噪后语音失真程度以及信噪比进行比较分析,由此论证三种方法的使用条件和在该条件下的增强效果。 【关键词】语音增强;去噪;信噪比 The Search of Single Channel Speech Enhancement Algorithms YANG Long (Department of Information Engineer, Academy of Armored Forces Engineering, Beijing 100072,China) 【Abstract】The paper compares the commonly used several kinds of single channel speech enhancement algorithms, such as spectral subtraction, minimum mean square error estimation and subspace algorithm. Through the experiments, the paper aims at arguing the performance of the three kinds of single channel speech enhancement algorithms and gains the condition and environment of using the algorithms.. 【Key words】Speech enhancement;De-noise;SNR 语音通信是最直接有效的传递信息的手段,随时代的发展,语音通信质量不断被提出更高的要求,因而语音增强技术一直是研究的热点,语音增强算法层出不穷。 语音增强算法可根据麦克风的通道数分为单通道和多通道。由于模型简单和成本较低,单通道语音增强算法一直被广泛的应用并不断研究推广。常见的单通道语音增强算法有谱减法,基于统计的方法,子空间,维纳滤波等。 1 三种单通道语音增强算法 1.1 谱减法 谱减法基本思想是假设加性噪声的情况下,从带噪语音的频谱估值中减去噪声频谱估值,从而得到纯净语音的频谱估值。谱相减法的一般形式如图1所示,Y(ω)是带噪语音频域形式,(ω)为噪声频谱估计。 1.2 最小均方误差估计(MMSE)

一文带你全面熟悉智能语音之麦克风阵列技术的原理

一文带你全面熟悉智能语音之麦克风阵列技术的原理 麦克风阵列(Microphone Array),从字面上,指的是麦克风的排列。也就是说由一定数目的声学传感器(一般是麦克风)组成,用来对声场的空间特性进行采样并处理的系统。 早在20世纪70、80年代,麦克风阵列已经被应用于语音信号处理的研究中,进入90年代以来,基于麦克风阵列的语音信号处理算法逐渐成为一个新的研究热点。而到了“声控时代”,这项技术的重要性显得尤为突出。 麦克风阵列能干什么? 任何一项技术的发生发展都伴随着问题的提出及解决,麦克风阵列也是如此。那么它主要应用在哪些场景下呢?又有着怎样的功能! ◆【噪声环境怎么破?】——语音增强(Speech Enhancement) 语音增强是指当语音信号被各种各样的噪声(包括语音)干扰甚至淹没后,从含噪声的语音信号中提取出纯净语音的过程。所以DingDong在嘈杂环境下,也能准确识别语音指令。通过麦克风阵列波束形成进行语音增强示意图 从20世纪60年代开始,Boll等研究者先后提出了针对使用一个麦克风的语音增强技术,称为单通道语音增强。因为它使用的麦克风个数最少,并且充分考虑到了语音谱和噪声谱的特性,使得这些方法在某些场景下也具有较好的噪声抑制效果,并因其方法简单、易于实现的特点广泛应用于现有语音通信系统与消费电子系统中。 但是,在复杂的声学环境下,噪声总是来自于四面八方,且其与语音信号在时间和频谱上常常是相互交叠的,再加上回波和混响的影响,利用单麦克风捕捉相对纯净的语音是非常困难的。而麦克风阵列融合了语音信号的空时信息,可以同时提取声源并抑制噪声。 目前科大讯飞已经实现了基于线性阵列、平面阵列以及空间立体阵列的波束形成和降噪技术,效果均达到业界一流水平。 2013年科大讯飞车载降噪产品和国际竞争对手效果对比 ◆【说话人老是变幻位置怎么破?】——声源定位(Source Localization)

麦克风阵列原理

麦克风阵列原理 1 麦克风阵列 麦克风阵列,是一组位于空间不同位置的全向麦克风按一定的形状规则布置形成的阵列,是对空间传播声音信号进行空间采样的一种装置,采集到的信号包含了其空间位置信息。根据声源和麦克风阵列之间距离的远近,可将阵列分为近场模型和远场模型。根据麦克风阵列的拓扑结构,则可分为线性阵列、平面阵列、体阵列等。 (1) 近场模型和远场模型 声波是纵波,即媒质中质点沿传播方向运动的波。声波是一种振动波,声源发声振动后,声源四周的媒质跟着振动,声波随着媒质向四周扩散,所以是球面波。 根据声源和麦克风阵列距离的远近,可将声场模型分为两种:近场模型和远场模型。近场模型将声波看成球面波,它考虑麦克风阵元接收信号间的幅度差;远场模型则将声波看成平面波,它忽略各阵元接收信号间的幅度差,近似认为各接收信号之间是简单的时延关系。显然远场模型是对实际模型的简化,极大地简化了处理难度。一般语音增强方法就是基于远场模型。 近场模型和远场模型的划分没有绝对的标准,一般认为声源离麦克风阵列中心参考点的距离远大于信号波长时为远场;反之,则为近场。设均匀线性阵列相邻阵元之间的距离(又称阵列孔径)为d,声源最高频率语音的波长(即声源的最小波长)为λmin,如果声源到阵列中心的距离大于2d2/λmin,则为远场模型,否则为近场模型,如图1所示。 图1 近场模型和远场模型 (2) 麦克风阵列拓扑结构 按麦克风阵列的维数,可分为一维、二维和三维麦克风阵列。这里只讨论有一定形状规则的麦克风阵列。 一维麦克风阵列,即线性麦克风阵列,其阵元中心位于同一条直线上。根据相邻阵元间距是否相同,又可分为均匀线性阵列(Uniform Linear Array,ULA)和嵌套线性阵列,如图2所示。均匀线性阵列是最简单的阵列拓扑结构,其阵元之间距离相等、相位及灵敏度一直。嵌套线性阵列则可看成几组均匀线性阵列的叠加,是一类特殊的非均匀阵。线性阵列只能得到信号的水平方向角信息。

相关文档
最新文档