深部煤矿应力分布特征及巷道围岩控制技术 包珂

深部煤矿应力分布特征及巷道围岩控制技术 包珂
深部煤矿应力分布特征及巷道围岩控制技术 包珂

深部煤矿应力分布特征及巷道围岩控制技术包珂

发表时间:2018-06-04T11:32:15.143Z 来源:《基层建设》2018年第9期作者:包珂

[导读] 摘要:随着我国煤矿开采深度的不断增加,围岩控制及支护技术成为深部巷道开采的聚焦点。

中国平煤神马集团十三矿河南平顶山 467000

摘要:随着我国煤矿开采深度的不断增加,围岩控制及支护技术成为深部巷道开采的聚焦点。因此,本文首先简要的阐述了煤矿深部巷道围岩条件及变形特点,然后重点分析了煤矿深部巷道围岩稳定性控制措施。

关键词:深部巷道;控制措施;技术

1 煤矿深部巷道开采特点

深部巷道围岩条件比较复杂,只有充分了解深部巷道围岩性质的变化才能因地制宜,进行有效的围岩控制。深部巷道围岩开采过程中会表现出如下特点:与上部围岩相比,深部开采巷道围岩密度增加,围岩变硬;开挖前,岩体处于三向受力状态下,由于巷道掘进后,周围岩石被开挖,相当于卸载,致使其压力释放,岩体容易破碎,导致围岩强度有所下降,出现大量细微裂缝,围岩软化。开采巷道的变形特点:

(1)由于巷道开挖后,围岩会发生卸载现象,岩体能量突然得到释放,使得围岩塑性区和破碎区范围加大,巷道两帮移近量大,继而两帮高应力传到底板,巷道底鼓严重;巷道变形易受扰动,对外部环境影响反应十分灵敏,外部作用发生变化变化,巷道应力、变形均会出现显著改变。(2)巷道围岩变形的时间效应。初期来压时比较快、变形也非常显著,如果不采取科学有效的支护措施,极易发生冒顶、片帮等现象,当围岩变形稳定后,围岩则长期处于流变状态。(3)巷道围岩变形的空间效应。深井巷道来压方向大多表现为四周来压,不仅是顶板、两帮发生明显的变形和破坏,而且底板也会出现较强烈的变形和破坏,如果不对底板采取有效控制措施,巷道则会发生严重底鼓,而强烈底鼓则会加剧两帮和顶板的变形和破坏。(4)巷道围岩变形的冲击性。在有明显的冲击倾向性的巷道中,围岩变形有时并不是连续、逐渐变化的,而是突然剧烈增加,这就导致了巷道断面迅速缩小,具有强烈的冲击性。

2 深部煤矿地区地应力测量与分析方法

目前我国各大煤矿区对深部煤矿地区的地应力场的分布特征缺乏清晰、准确的认知,在系统认识方面也有所不足。目前可直接在深部煤矿地区地应力场分布研究过程中进行使用的数据仍然不足,很多煤矿深部井下工程如支护问题以及冲击地压防治问题等等,在过去较少考虑到地应力以及地应力场这组重要参数。随着煤矿地区的深度加深,巷道破坏越来越严重,地应力量值也越来越大,且其破坏力量也越来越明显,因为最后巷道变形程度更不易控制,持续挖掘容易导致深部煤矿地区塌方,从而危害到人类与财产安全。

我国深部煤矿地区的地应力场的分布特征迫切需要得到相关材料科学研究者的重视,对其进行全面、完整的分析与总结,最终为深部煤矿开采工作提供坚实的安全防护。近几年深部煤矿地区地应力测量过程中,主要应用空心包体法来测量我国深部煤矿地区的地应力数据。一定条件下也可使用水压致裂法,此后我国研究者经过整理600米到1500米深部煤矿地区的数据,排除特殊地质测量环境数据后,发现深部煤矿地区的地应力测量分析方法主要有以下几种:一般的地质可使用水压致裂法进行测量,结合应力解除法,可将深部煤矿地区的地应力数据测量统计出来。

3 煤矿深部围岩稳定性控制理论概述

从力学性质的角度讲,围岩的稳定性通常取决于岩体自身的变形性质和强度。另外,围岩自身所受的应力状态也对其稳定性有一定影响。围岩体主要由两部分组成:一是岩石骨架,二是结构面。通常煤矿深部的围岩都经历了漫长的地质年代,并且在长期的高压作用影响下使得岩石骨架变得异常致密和坚硬,所以实际影响煤矿深部围岩变形性质和强度的因素主要是结构面。因此,想要控制煤矿深部围岩的稳定主要应从结构面和应力状态着手。

煤矿深部岩巷开挖过程中,使围岩体所受的应力状态发生了变化,导致了围岩从原本的稳定状态逐渐转变为非稳定状态,虽然,在开挖初期,围岩的抗压强度比较高,但是随着不断的开挖卸荷,致使围岩的侧压有所下降,正常情况下,近表围岩的侧压将会降至为零。与此同时,大部分应力开始向巷道周向转移,使得应力集中,这时的周向应力一般会升高3倍左右。通常煤矿700m~900m深度的巷道,近表围岩的围压卸荷幅度大约在20MPa,巷道周向的应力将会增加近60MPa,在如此大的应力作用下,会使围岩的劣化速度不断加快,裂缝也会从表面不断向内部扩散,进而造成围岩失稳。为了确保围岩的稳定性,就必须在对巷道进行开挖后立即进行必要的支护。

4 煤矿深部巷道围岩控制措施

针对煤矿深部巷道围岩稳定性会降低这一问题,主要是从围岩强度和围岩应力两方面入手进行控制。

4.1 提高深部巷道围岩强度

(1)采用高强支护加固措施在围岩原来的抗剪强度上来强化围岩,严格控制围岩沿原生裂隙和次生裂隙发展,通过提高支护阻力来减少围岩变形量。(2)由于卸载作用导致围岩破碎区范围加大,在控制裂隙继续发展的同时,可以采用水泥等高强度材料通过围岩注浆的方法来填充裂隙,达到修补裂隙、改善围岩布局、强化围岩的目的。(3)针对巷道两帮移近量大、巷道底鼓严重的现象,要改善以往的支护习惯,重视顶板支护的同时加强对两帮及底角的支护,以降低两帮移近量、巷道底鼓程度,维护围岩的自身残余强度。

4.2 改善围岩应力状态

(1)深部巷道挖掘过程中,围岩由三向受力转为两向受力,围岩从本来的稳定状况转变为非稳定状况。研究表明,700米~900米深度的巷道,仅表围岩的卸载幅度大约在20MPa,巷道周围的应力将会增加约60MPa,因此,要尽可能恢复巷道的法向应力,改善围岩应力状态。(2)通过水力割缝、打卸压孔等一系列卸压技术,对深部巷道围岩受到的多种形式的压力进行卸压,将集中分布的荷载转移到离巷道较远的支撑区,减小采动支撑作业对巷道产生的应力,降低作用在围岩上的压力。(3)此外,统筹规划巷道位置,条件允许的情况下将其设在低应力区,选择合理的作业时间及先后顺序,降低相邻区段作业时带来的的影响,也能够提高巷道围岩稳定性。

结语

矿井开采深度近年来不断加深,巷道以及采场的地应力水平也在不断提升。软岩的巷道地压日渐产生剧烈显现,巷道围岩的破坏日益严重,因此深部煤矿应力的支护问题越来越受到研究者的关注。为了便于结合水压致裂法一起对深部煤矿地区的地应力量值进行调查,调研者必须将其获取的数据转换成水平和垂直方向的应力量值。深部煤矿地区的地应力不仅受到自重应力影响,也受到构造应力的影响。在设计巷道围岩支护方案的过程中,勘探者必须考虑到尽可能地不沿着岩层背斜顶部以及向斜底部进行设计,使得岩层断层的巷道布置方向

深部煤矿应力分布特征及巷道围岩控制技术 韩孝广

深部煤矿应力分布特征及巷道围岩控制技术韩孝广 发表时间:2019-01-09T14:22:32.410Z 来源:《建筑学研究前沿》2018年第31期作者:韩孝广王涛[导读] 本文分析了深部煤矿应力分布特征及巷道围岩控制技术。 山东省滕州曹庄煤炭有限责任公司山东滕州 277519 摘要:近年来,矿井开采深度逐年增加,巷道周边的地应力也相对提高。本文分析了深部煤矿应力分布特征及巷道围岩控制技术。 关键词:深部煤矿;应力分布特征;巷道围岩 前言 深部煤炭开采的最大特点是煤炭资源开采前煤岩体处于高原岩应力状态,而进行采掘活动后,裸露采掘空间表面垂直方向的应力迅速降到大气压。这种变化引起围岩应力的调整,出现很高的集中应力,在围岩中形成很大的应力梯度。围岩应力分布不是一成不变的,而是随着采掘活动的进行不断变化。当煤岩体不能承受这种应力变化时,就会出现各种灾害,这对深部煤矿的安全、高效开采带来巨大威胁。 1 深部煤矿应力分布特征 1.1 深部煤矿地应力测量与分析 目前,许多矿区对深部煤矿的地应力特征缺乏理性认识。当前直接用于地应力场的研究数据较为缺乏,许多煤矿对支护问题、冲击地压等,与地应力场联系较少。矿井深度的增加导致地应力值增加,破坏巷道能力加强。 当前的地应力测量主要以空心包体法为主,某些条件下也可采用水压致裂法。研究地应力学者通过整理600~1500m的深部矿区数据,剔除特殊地质环境测量数据后,总结出地应力测量的方法主要有:水压致裂法(用于一般地质条件)、结合应力解除法。 1.2 深部煤矿地区的地应力方向特征 经过对我国深部煤矿地区的地应力测量研究,发现我国深部矿区地应力方向存在一些特征:岩层中的水平应力方向特征较为显著;最大水平应力角度下量值较垂直应力大。 2 深部巷道围岩控制技术 巷道围岩控制技术按原理可分为3大类:①支护法。它是作用在巷道围岩表面的支护方式,如各种类型的支架、砌碹支护,为了改善支架受力状况,提高支护阻力,还可实施壁后充填和喷浆等。②加固法。其是插入或灌入煤岩体内部起加固作用,使煤岩体自稳的方法,如各种锚杆与锚索、注浆加固,锚杆、锚索分为插入煤岩体内的部分(杆体、锚固剂),以及设置在巷道表面的构件(托板、钢带及金属网),因此,“锚杆支护”确切意义上应称为“锚杆加固”或“锚杆加固与支护”。③应力控制法。它是改善巷道围岩应力状态,从而使巷道处于应力降低区的方法,包括巷道布置优化及各种人工卸压法。 2.1 巷道布置优化及应力控制法 针对深部巷道围岩应力高、变形大,甚至会出现冲击地压、煤与瓦斯突出等动力灾害,进行采掘优化、巷道布置优化,改善巷道受力状态是首先应考虑的方法。将巷道布置在应力降低区,如沿已稳定的采空区边缘掘进巷道(沿空掘巷),将巷道布置在采空区下方(掘前预采、上行开采等),均可明显降低巷道受力,改善围岩应力状态。 在深部开采中,有些煤矿水平应力大于垂直应力,而且水平应力具有明显的方向性,最大水平主应力明显高于最小水平主应力。在这种条件下,当巷道轴线与最大水平主应力平行,巷道受水平应力的影响最小,有利于顶底板稳定。根据地应力实测数据优化巷道布置方向,对巷道稳定性会起到事半功倍的作用。此外,巷道布置应尽量避开大型地质构造(断层、褶曲、陷落柱等)。 根据深部煤矿地应力场分布特征,对巷道断面形状与尺寸进行优化,可改善巷道周边附近围岩应力分布,有利于围岩稳定。人工卸压法,包括切缝、爆破、钻孔及掘卸压巷等,可转移巷道周边附近的高应力,改善围岩应力状态,在适宜的条件下可作为一种辅助的围岩控制手段。 2.2 深部巷道支护与加固法 目前,深部巷道支护与加固形式主要有:锚杆、锚喷支护,U型钢可缩性支架,注浆加固,复合支护(采用2种或2种以上的支护加固方式联合支护巷道,如锚喷+注浆加固,锚喷+U型钢可缩性支架,U型钢支架+注浆加固,以及锚喷+注浆+U型钢支架等型式)。经过多年研究与实践,我国煤矿已形成了基于煤岩体地质力学测试、以预应力锚固与注浆为核心的巷道支护成套技术。对于深部巷道,锚固与注浆技术也是经济有效的围岩控制技术。 1)预应力锚固技术。在深部巷道采用的预应力锚杆、锚索支护技术,其支护原理是大幅提高支护系统的初始刚度与强度,形成高支护应力场,降低采动应力场梯度,主动控制围岩扩容变形,保持其完整性。同时,支护系统应具有高延伸率,允许围岩有较大连续变形,通过预留变形量,使巷道发生可控变形后仍能满足使用要求。不同巷道条件应有不同的锚杆支护形式:预应力锚杆支护适用于围岩比较完整的岩石巷道、岩石顶板煤巷等;预应力锚杆与锚索支护可应用于煤顶巷道、无煤柱护巷、软岩巷道、高应力巷道、动压巷道及大断面巷道等多种比较困难的条件;全预应力锚索支护,顶板、两帮,甚至底板全部采用预应力锚索支护,适用于深部高应力巷道、强烈动压巷道等非常困难的条件。 2)注浆加固技术。在松软破碎煤岩体中开掘巷道,围岩自稳时间短、破碎范围大,在这种条件下,注浆加固是围岩控制的有效途径。注浆加固利用浆液充填围岩内的裂隙,将破碎煤岩体固结起来,提高围岩整体强度,增加围岩自身承载能力。我国煤矿目前采用的注浆材料主要分为2大类:一类是水泥基材料,是注浆加固应用最广的材料;另一类是高分子材料,如聚氨酯、脲醛树脂等。此外,还开发出多种复合材料,以改善注浆材料的性能,降低注浆材料的成本。在井下应用时,可根据巷道具体地质与生产条件进行选择。 3)预应力锚固与注浆联合加固技术。当巷道围岩松软破碎,锚杆与锚索锚固力不能保证时,预应力锚杆、锚索与注浆联合是一种有效的加固技术。注浆可将松软破碎围岩粘结,提高围岩整体强度,同时为锚杆与锚索提供可锚的基础,保证锚杆与锚索预应力与工作阻力能有效扩散到围岩中。注浆后采用预应力锚杆与锚索支护,可有效控制围岩扩容变形,保持围岩长期稳定。此外,还开发了多种注浆锚杆、注浆锚索及钻锚注一体化锚杆,适用于不同条件的巷道加固。

n05 地下洞室的围岩应力与围岩压力汇总

5 地下洞室的围岩应力与围岩压力 5.1 地下洞室的围岩应力计算及应力分布 5.1.1 概述 在岩体中开挖地下洞室,必然会破坏原来岩体内相对平衡的应力状态,并在一定范围内引起岩体天然应力状态的重分布。岩体的强度和变形特性是否适应重分布以后的应力状态,将直接影响地下建筑物的安全。为了正确评价地下建筑的稳定性,除进行必要的地质分析外,对围岩应力分布特征的分析和计算,也是评价围岩稳定性所必须的环节。 洞室开挖后,周围的岩石在一般情况下(侧压力系数<3)必然会在半径方向上发生伸长变形,在切线方向上发生压缩变形,这就使原来径向上的压缩应力降低,切向上的压缩应力增高,而这种降低和增高的程度随着远离洞壁逐渐减弱,达到一定距离后基本无影响。通常将应力的这种变化称为应力重分布(即原始的应力状态变化到新的平衡的应力状态的过程)。把应力重分布影响范围内的岩体称为围岩。围岩内的应力称为围岩应力或二次应力(相对与天然应力)。理论研究和实际测量结果表明,围岩应力的分布规律与开挖前岩体的天然应力状态及洞型等有关。 地下工程在设计、施工和使用时,总是要研究其稳定性问题。 在地下工程(井巷、隧道、洞室等)工作期内,安全和所需最小断面得以保证,称为稳定。稳定如果用公式来表示的话,就是: U u S <

矿井深部开采沿空巷道的围岩控制技术研究

矿井深部开采沿空巷道的围岩控制技术研究 摘要:针对深部综放沿空巷道围岩稳定性差、变形大、难支护的特点,通过理论分析、数值模拟和现场实验等方法,从巷道支护方式和巷道断面优化两方面讨论了深部综放沿空巷道的控制技术。研究结果表明:直墙半圆拱形断面、锚梁网索联合支护方式能够较好的控制深部综放沿空巷道围岩,减少巷道围岩变形,增强其稳定性。 关键词:深部综放沿空巷道半圆拱形锚网索联合支护断面优化 1、引言 随着对能源需求量的增加和开采强度的不断加大,我国矿山相继进入深部开采。目前,我国煤矿开采深度以每年8~12m的速度增加,而东部矿井更以每年10~25m的速度增加,预计未来20年,我国很多煤矿将进入1000m~1500m的深度开采。另一方面,我国已探明煤炭资源埋深在1000m以下的储量为2.95万亿吨,约占煤炭资源总量的53%,因此,现在及未来一段时间内,我国煤矿开采将逐渐转入深部开采。 由于深部岩体所处的地球物理环境及其应力场的复杂性,在浅部开采基础上发展起来的传统支护理论、支护参数已难以适应深部巷道支护设计和实践的需要。深部综放沿空巷道,作为一类较特殊的回采巷道,与普通的回采巷道相比,具有以下特点:(1)综放沿空巷道布置在靠近采空区的煤体中,巷道围岩结构破碎,在掘进和回采过程中,巷道将发生较大的变形;(2)对于综放沿空巷道而言,由于巷道上方为顶煤,上覆岩层运动波及的范围及影响程度相应地增大,回采过程中的矿压显现将更加剧烈;(3)综放工作面年产量多在100万t左右,开采强度大,机械设备体积较大,且所需风量剧增,这就要求巷道具有较大的断面;(4)深部综放沿空巷道埋深大,地应力相对较大。由于以上原因,深部综放沿空巷道围岩的稳定性及其控制一直是采矿领域中的研究热点和难点。本文主要从支护方式与参数、巷道断面优化等方面讨论深部综放沿空巷道围岩的控制技术。 2、综放沿空巷道断面的优化 由于施工简单,易于成型等优点,矩形和梯形断面形状是目前国内综放沿空煤巷的主要断面形状。但根据弹性力学、岩石力学知道,这两种巷道断面都容易在4个拐角处产生应力集中,不利于巷道围岩的稳定性。直墙半圆拱形断面具有易于巷道顶板稳定、易于施工等优点,目前已经成为岩石巷道的主要形式;但由于半圆拱形巷道施工较复杂,不易成型等缺点,在煤巷中很少应用。由于深部综放沿空巷道的特殊性,尤其是综合机械化掘进易于完成直墙半圆拱形断面的开挖,因此,直墙半圆拱形断面可优先应用于综掘施工的深部综放沿空巷道中。下面将通过数值计算件模拟这两种断面对浅部、深部巷道围岩,特别是对深部综放沿空巷道顶部煤岩体稳定性的影响。

巷道围岩破坏机理及防护技术

巷道围岩破坏机理及防护技术 矿产资源的不断开采,开采深度不断加大,渐渐进入深部开采,深部开采引起的三高一绕动严重影响巷道的稳定性,进入千米之后的深部开采围岩压力增大、原始构造应力大、巷道围岩变化剧烈。因此巷道围岩破坏研究机理及技术是我们研究重点,针对围岩稳定的基本状况,提出有针对性的支护方案有重要意义。 标签:巷道围岩;支护;稳定性 1 巷道围岩机理研究 矿井的深部开采的巷道问题已经不能用浅部理论解决,浅部条件下的地质情况以及矿山压力破坏机理都产生变化,深部的地质状况有独特的特点,对于深部要进行特征分析以及重新建立一个符合特点的压力显现理论。根据巷道变形的特点,建立一个科学体系将弹塑性理论以及破碎理论融合,传统的连续介质不适合复杂条件。深部巷道围岩破裂区和完整区多次交替的现象,即分区破裂化。将分区破裂化定义为“在深部岩体中开挖洞室或者巷道时,在其两侧和工作面前的围岩中,会产生交替的破裂区和不破裂区。 在各类的巷道进行施工的过程中,原始的应力场遭到破坏,巷道围岩压力的调整在巷道稳定蠕变期间,一个非线性的复杂的体系是围岩体系的状态,对于深部的巷道破坏不会有明显的显现特征,我们要保证加强对高应力下的巷道控制,做到对于耦合围岩变形的特征还有围岩压力进行控制。对于上覆岩层压力以及扩容压力是围岩失稳的主要方面,破坏扩容及粘土矿物膨胀压力是影响深部软岩巷道稳定的持续性力源。不注重围岩与支护体的变形协调和祸合难以达到理想的支护效果,是不能够合理的分析破坏机理,为此,必须从围岩的变形破坏特征。矿物组成、结构特点、力学作用等多方面深入研究围岩的变形力学机制,只有这样才能设计出一个合理稳定防御体系。对巷道围岩进行分析归类,对于不同的体系采取,对于支护方案进行设计,对参数进行确定,修缮施工工艺,多角度全方位的进行支综合研究。如今支护在材料以及支护设备上有新的突破,在支护材料方面主要研发了锚杆支护、喷射混凝土支护、钢结构支护混凝土预制大弧板结构等,在支护方式是包括锚杆+喷射混凝土、锚喷网、锚喷网+锚索,锚喷网。 2 支护方案 在现场进行锚杆与卸压孔协同作用就行现场应用,评价巷道围岩稳定性。深部测点数据在埋深982m处,最大水平主应力为29.20MPa,垂直应力为23.30MPa,最大水平主应力方向N20.6°E。埋深在1034m,轨道巷中,最大水平主应力33.22/MPa最小水平主应力15.19/MPa垂直应力25.84/MPa最大水平主应力方向N35°E。在1045m深的回风巷最大水平主应力为31.27MPa,最小水平主应力为14.27MPa,垂直应力为22.38MPa,煤矿深部地层应力场类型为H大于V大于A 型应力场,最大水平主应力为最小水平主应力的1.5到2.1倍。地应力数据划分的地应力水平是超高地应力区域,巷道围岩的强度显示,在岩层的完整性来看是

地下洞室围岩应力与围岩压力计算

第六章地下洞室围岩应力 与围岩压力计算 第一节概述 一、地下洞室的定义与分类 1、定义: 地下洞室(underground cavity)是指人工开挖或天然存在于岩土体中作为各种用途的地下空间。 2、地下洞室的分类 按用途:矿山巷道(井)、交通隧道、水工隧道、地下厂房(仓库)、地下军事工程 按洞壁受压情况:有压洞室、无压洞室 按断面形状:圆形、矩形、城门洞形、椭圆形 按与水平面关系:水平洞室、斜洞、垂直洞室(井) 按介质类型:岩石洞室、土洞 二、洞室围岩的力学问题 (1)围岩应力重分布问题——计算重分布应力 1)天然应力:人类工程活动之前存在于岩体中的应力。又称地应力、初始应力、一次应力等。 2)重分布应力:由于工程活动改变了的岩体中的应力。又称二次分布应力等。 地下开挖破坏了岩体天然应力的相对平衡状态,洞室周边岩体将向开挖空间松胀变形,使围岩中的应力产生重分布作用,形成新的应力状态,称为重分布应力状态。

(2)围岩变形与破坏问题——计算位移、确定破坏范围 在重分布应力作用下,洞室围岩将向洞内变形位移。如果围岩重分布应力超过了岩体的承受能力,围岩将产生破坏。 (3)围岩压力问题——计算围岩压力 围岩变形破坏将给地下洞室的稳定性带来危害,因而,需对围岩进行支护、衬砌,变形破坏的围岩将对支衬结构施加一定的荷载,称为围岩压力(或称山岩压力、地压等)。 (4)有压洞室围岩抗力问题——计算围岩抗力 在有压洞室中,作用有很高的内水压力,并通过衬砌或洞壁传递给围岩,这时围岩将产生一个反力,称为围岩抗力。 天然应力,没有工程活动 开挖洞室后的应立场,为重分布应力,与天然应力有所改变 在附近开挖第二个洞室,则视前一个洞室开挖后的应力场为天然应力,第二个洞室开挖后的应力场为重分布应力

复杂地质条件下极不稳定煤岩巷道围岩稳定性控制及 ... - 湖南科技大学

推荐2017年度湖南省科技进步奖公示材料 项目名称: 复杂地质条件下极不稳定煤岩巷道围岩稳定性控制及成套技术 推荐奖种: 科技进步奖 主要完成人: 朱永建王斌王平张道兵余伟健袁越彭小跃唐鸿翔 主要完成单位: 湖南科技大学湖南黑金时代股份有限公司周源山煤矿重庆市巫山煤电有限公司 推荐单位: 湖南科技大学 项目简介: 本项目以复杂地质条件下极不稳定性煤岩巷道围岩稳定性与控制为主要工 程背景,在国家自然科学基金、湖南省自然科学基金和湖南省科技计划项目等的 资助下,通过大量理论分析和现场实践,与各矿山企业开展广泛合作研究,提出 了新的巷道围岩分类方法和控制理论,发明了多种新型支护结构与锚固形式,开 发了多种支护新方法及其施工器具与监测手段,进一步推动了复杂条件下矿山巷 道围岩控制理论与技术的发展。 针对顶板岩层结构复杂的大跨度、超长巷道,根据复杂地质条件下的煤巷顶 板围岩变化不确定性特点以及锚杆支护技术工程特性,确定了神东矿区锚杆支护 煤巷顶板稳定性主要影响因素,在BP神经网络预测模型的基础上开发了神东矿 区锚杆支护煤巷顶板稳定性分类软件系统,利用开发的软件系统对该矿区分矿 井、分煤层、分区域进行了煤巷顶板稳定性分类;针对湖南煤业集团周源山煤矿 和重庆市巫山煤电有限公司等矿井提出了综采大跨度回采巷道“锚杆-锚索”减 跨支护技术和大断面切眼的支护方案。 结合高应力软弱煤岩体巷道围岩变形特点,提出了长、短锚杆等应力轴比承 载拱强度理论,讨论了支护结构与围岩形成的承载共同体的大小和形状对深部软 岩巷道稳定性的影响,开发了长、短锚杆支护技术,发明了一种用于全长锚固支

护的协调变形和用于控制深部岩体的高效锚固吸能锚杆等锚固装置,该研究成果应用贵州兴义市凹子冲煤矿回风斜井等巷道。 为了提高构造带极不稳定松散围岩巷道的稳定性,重点研究了端面顶板冒落高度与各影响因素线性相关性,分析了构造带极不稳定松散围岩变形特点,提出全断面注浆设计和双液注浆技术等相关治理方案,开发了一种新型注浆锚索装置和具有自动推进功能的全断面封闭带预切糟U型钢支架及施工方法,该研究成果广泛应用于林东矿业集团泰来煤矿回采和运输等巷道。 针对复杂地质条件下极不稳定巷道的锚固施工问题,为提高钻孔质量和效率,应用了一种新型专用底板钻机,并研发了多角度精确成孔的凿岩机气腿式支架和一种用于巷道底板的带洛阳铲头的锚索钻机等装备;针对深部动压巷道锚杆检测与监测,优化了可伸长锚杆检测的拉拔仪,开发了锚杆安装质量检测的新方法和巷道智能自动监测系统等配套技术。该系列技术在贵州林东矿业集团泰来煤矿、贵州兴义市凹子冲煤矿和重庆市巫山煤电有限公司等矿区进行了应用。 项目获授权发明专利6项、实用新型专利4项、出版专著1部、发表学术论文10篇,近三年来,本项目先后在湖南煤业集团周源山煤矿、湖南华润煤业唐洞煤矿有限公司、贵州林东矿业集团泰来煤矿、重庆市巫山煤电有限公司、贵州兴义市凹子冲煤矿等10余家矿山企业得到了推广应用,取得直接经济效益超过1.0亿元,显著改善了煤矿巷道的维护和安全状况,为煤炭行业的科技进步做出了重要贡献。

巷道支护技术

2.1 巷道围岩控制理论 1907年俄国学者普罗托吉雅可诺夫提出普氏冒落拱理论[1-2],该理论认为:巷道开掘后,已采空间上部岩层将逐步垮落,其上方会形成一个抛物线形的自然平衡拱,下方冒落拱的高度与岩层强度和巷道宽度有关。该理论适用于确定巷道围岩强度不高、开采深度不是很大的巷道支护反力。20世纪50年代以来,人们开始用弹塑性力学解决巷道支护问题,其中最著名的是Fenner [3]公式和Kastner 公式[4]。 Fenner 公式为: ()[]10cot sin 1cot -??? ??+-+-=???σ?N i R r C C P (1) 式中,i P —支护反力;C —围岩内聚力;?—内摩擦角;0σ—原岩应力;r —巷道半径;R —塑性圈半径;?N —塑性系数,κ??sin 1sin 1-+= N 。 Kastner 公式为: ()()?????sin 1sin 20sin 1cot cot -??? ??-?++-=R r C P C P i (2) 式中,i P —支护反力;C —围岩内聚力;?—内摩擦角;0P —初始应力;r —巷道半径;R —塑性圈半径。 国内外巷道顶板控制理论发展很快[3-4],我国在1956年开始使用锚杆支护,迄今为止,已有50多年的历史。锚杆支护机理研究随着锚杆支护实践的不断发展,国内外已经取得大量研究成果[5-10]。 (1)悬吊理论 1952年路易斯阿帕内科L(ouis.Apnake)等提出了悬吊理论,悬吊理论认为锚杆支护的作用就是将巷道顶板较软弱岩层悬吊在上部稳固的岩层上,在预加张紧力的作用下,每根锚杆承担其周围一定范围内岩体的重量,锚杆的锚固力应大于其所悬吊的岩体的重力。 (2)组合梁理论

软岩动压巷道围岩稳定性原理及控制技术研究

软岩动压巷道围岩稳定性原理及控制技术研究 顾士亮 (中国矿业大学,江苏徐州221008) [摘 要] 针对张双楼煤矿西大巷围岩力学性质,主要是膨胀性泥岩在浅部遇水破碎、扩容的特征、深部膨胀特征,通过现场测试、建立力学模型、数值计算,对西大巷稳定性的 力学效应、受采动影响时围岩塑性区及破碎区宽度及变形与采动支承应力的关系 分析,分析在采动支承应力作用下的软岩巷道,其围岩破碎区、塑性区的范围,巷道 变形与破碎围岩塑性区范围、峰后强度、支护的关系,研究动压软岩巷道围岩变形 机理、软岩巷道围岩流动规律,提出了深井巷道围岩控制的“内、外结构”稳定性原 理。针对西大巷围岩地质条件,依据研究的成果,寻求巷道稳定控制技术,并通过 工业性试验检验,使得西大巷由研究试验前的强烈变形到研究后的基本稳定。[关键词] 软岩;巷道;稳定性;控制 [中图分类号] T D263 [文献标识码] B [文章编号] 100326083(2004)0120015203 0 引 言 在煤矿巷道中,70%~80%的巷道受到采动影响,到深部后表现明显的软岩特性,巷道强烈底鼓、围岩难以控制,动压影响的软岩巷道的维护状况已成为制约煤矿集约化生产的瓶颈。与一般软岩巷道相比,动压软岩巷道稳定性主要取决于巷道的围岩性质、动压的影响。对这类巷道围岩稳定性及其控制尚未有系统的研究。通过对张双楼煤矿西大巷围岩力学性质分析,探讨软岩动压巷道围岩稳定性原理及控制技术。 1 巷道围岩岩性及其对巷道稳定性的影响分析 (1)围岩工程力学性质。岩石强度试验表明,砂质泥岩、泥岩、海相泥岩强度较小,单轴抗压强度一般20~40MPa,部分低于20MPa。海相泥岩最大膨胀率1718%,最大膨胀力012MPa,砂质泥岩最大膨胀率2818%,最大膨胀力0131MPa。 (2)西大巷变形的主要原因。岩石的工程力学性质差;受到7煤和9煤叠加采动支承压力作用;原支护形式不合理,难以抗拒围岩012~0131 MPa的膨胀力。 2 软岩巷道围岩受力变形分析 峰值强度前的变形为线弹性变形;在岩体破坏前,不发生体积应变,但在峰值后出现塑性剪胀扩容和应变软化现象,在应变软化区和残余变形区的塑性扩容系数一致;曲线简化为弹性变形区(虎克定律)、应变软化区和残余变形区(摩尔2库仑准则),对应巷道围岩变形的弹性区、塑性区和破碎区。 3 动压作用下的软岩巷道围岩受力变形 动压对软岩巷道变形的影响主要反映在塑性区岩体的蠕变。蠕变速度始终维持在一定的水平。不同应力水平下峰后蠕变试验如图1所示 。 (a)加载 (b)峰后蠕变 (c)峰后蠕变 (d)峰后蠕变 图1 不同应力水平下峰后蠕变曲线 51 2004年第1期 能源技术与管理

矿山岩层控制

采场顶板支护方法和顶板控制 摘要:在实际生产过程中,工作面常有下述一系列矿山压力现象,并且习惯上用这些现象作为衡量矿山压力显现程度的指标。随着我国各种支护设备的使用,我国煤矿回采开采已进入现代化水平,工作面的推进速度,以及当工作面甩掉这些已发生错动的老顶时,时常发生顶板的周期来压,裂隙带岩层形成的结构将始终经历“稳定—失稳—再稳定”的变化。这种变化将呈现周而复始的过程。回采工作面应用的液压支架主要是由梁与柱组合而成的,不仅能实现支设与回撤的自动化,而且对顶板的管理和维护起到很关键的作用,使工作面推进一系列工序也同时实现了机械化,充分减轻了繁重的体力劳动。 关键词矿山压力回采开采周期来压液压支架顶板管理 一.巷道围岩控制理论与实践的发展 (1)巷道布置改革及无煤柱护巷技术 我国在采准巷道矿压理论指导下,形成了完善的巷道合理布置系统。在分析开采引起的围岩应力重新分部规律的基础上,研究沿空巷道一侧煤柱边缘带的应力重新分部和支架与围岩关系,掌握无煤柱护巷机理,推进无煤柱护巷技术。同时,发展整体浇注式巷旁充填技术,为沿空留巷的扩大应用开辟了广阔前景。 (2)研究巷道支架与围岩关系采用先进支护技术 研究巷道支架的合理性能和结构形式,既能有效地抑制围岩变形,又能与围岩变形相互协调,减少支架损坏和改善巷道维护。为此,

研制了适用于不同条件的U型钢、工字钢结构可缩性支架,完善了辅助配套设施,发展了支架壁后充填。 (3)软岩巷道围岩控制理论与实践的发展 自70年代以来,有计划地开展软岩巷道支护技术科技攻关。对软岩巷道围岩控制的基础理论、软岩的岩性分析及工程地质条件、围岩变形力学机制、巷道支护设计、施工工艺及监测进行全面系统研究。针对软岩的类别和变形力学机制,发展了锚喷网支护技术、U型钢支护壁后充填技术、防治底臌封闭支护技术、围岩爆破卸压和注浆加固技术。 (4)巷道围岩控制设计决策及支护质量与顶板动态监测 依据巷道围岩稳定性分类及巷道支护形式与合理支护参数选择 专家系数,预测巷道围岩稳定性类别、预计围岩移近量、选择支护型式、确定支护参数。实行巷道支护质量与顶板动态全过程监测,通过施工过程中的现场监测、信息反馈、不断修正支护设计和调整支护参数。使巷道围岩控制逐步由经验判断和定性评估向定量分析和科学管理转化。 二.采场上覆岩层活动规律的假说 自从采用长壁工作面开采以来,上覆岩层中是否存在着大结构,以及此结构是什么形式,一直是采矿科学研究的重要课题。 1.压力拱假说

巷道围岩

大变形巷道围岩变形机理与控制技术 摘要: 为得到困难条件下大变形巷道围岩的变形机理与控制对策以困难条件下巷道的类型划分和特点为基础,总结了巷道围岩表面变形特征和内部的变形与结构特征,详细分析了高应力大变形破坏、底鼓型巷道系统失稳、采动巷道的变形破坏、结构面错动变形机制、围岩与支护结构不耦合五类主要变形机制。结合巷道围岩控制理论研究与工程实践,提出了目前困难条件下矿井巷道支护存在的主要问题、难点与控制关键。 关键词: 困难条件; 大变形巷道; 围岩控制; 变形机理; 控制技术 0 引言 近年来,随着我国经济社会的快速发展、西部能源战略基地的大力建设、南方煤企重组的结构调整,煤炭的产量在逐步提高,为国民经济建设提供了重要支撑。然而,随着煤炭资源开发规模、开采深度的增加,开采条件在持续恶化,巷道维护难度在不断增加,这给矿山巷道支护提出了新的挑战与课题,因此,困难条件下( 例如大采深、构造应力、多次采动影响、松软围岩、突出煤层等) 巷道围岩控制理论与技术亦成为当前矿业工程领域研究的热点与难点。首先,由于我国东中部浅部煤炭资源的日益短缺,煤层开采必然转向深部,而深部开采因高地温、高地压、高渗透压和开采扰动( “三高一扰动”)的不利影响,使得深部矿井巷道的地质力学环境愈加复杂,地下工程灾害日益增多,深部巷道围岩稳定性控制变得更为困难。一方面,部分矿井由浅部的硬岩矿井转型为深部软岩矿井,围岩缓变型大变形支护问题十分突出。另一方面,深部煤层开采引发的冲击地压、瓦斯突出、岩爆等突变型大变形重大灾害在我国频繁发生,给国家财产和人民生命造成了巨大的损失,动力作用下巷道围岩控制问题已成为目前煤炭科技工作者所关注的重大问题之一。其次,西部大型煤炭生产基地的建设为矿井巷道围岩控制理论与技术的发展提供了良好的机遇,同时也提出了新的挑战。西部矿区的地质条件有其特殊性,即第四纪冲积层非常浅、软弱基岩埋藏深、含水层较多,( 特) 厚砂砾层、松散沉积砂层、厚冲积层等地层较为常见。特别是基岩多为中生代软弱不稳定岩层,成岩较晚、胶结程度差、强度低,遇水软化、泥化,这都增加了巷道围岩的控制难度。再次,与北方矿区相比,南方煤矿多为小型矿井,煤层赋存不稳定,地质条件较为复杂,矿井瓦斯含量较高,万吨掘进率偏高。因此,南

深部煤矿应力分布特征及巷道围岩控制技术 包珂

深部煤矿应力分布特征及巷道围岩控制技术包珂 发表时间:2018-06-04T11:32:15.143Z 来源:《基层建设》2018年第9期作者:包珂 [导读] 摘要:随着我国煤矿开采深度的不断增加,围岩控制及支护技术成为深部巷道开采的聚焦点。 中国平煤神马集团十三矿河南平顶山 467000 摘要:随着我国煤矿开采深度的不断增加,围岩控制及支护技术成为深部巷道开采的聚焦点。因此,本文首先简要的阐述了煤矿深部巷道围岩条件及变形特点,然后重点分析了煤矿深部巷道围岩稳定性控制措施。 关键词:深部巷道;控制措施;技术 1 煤矿深部巷道开采特点 深部巷道围岩条件比较复杂,只有充分了解深部巷道围岩性质的变化才能因地制宜,进行有效的围岩控制。深部巷道围岩开采过程中会表现出如下特点:与上部围岩相比,深部开采巷道围岩密度增加,围岩变硬;开挖前,岩体处于三向受力状态下,由于巷道掘进后,周围岩石被开挖,相当于卸载,致使其压力释放,岩体容易破碎,导致围岩强度有所下降,出现大量细微裂缝,围岩软化。开采巷道的变形特点: (1)由于巷道开挖后,围岩会发生卸载现象,岩体能量突然得到释放,使得围岩塑性区和破碎区范围加大,巷道两帮移近量大,继而两帮高应力传到底板,巷道底鼓严重;巷道变形易受扰动,对外部环境影响反应十分灵敏,外部作用发生变化变化,巷道应力、变形均会出现显著改变。(2)巷道围岩变形的时间效应。初期来压时比较快、变形也非常显著,如果不采取科学有效的支护措施,极易发生冒顶、片帮等现象,当围岩变形稳定后,围岩则长期处于流变状态。(3)巷道围岩变形的空间效应。深井巷道来压方向大多表现为四周来压,不仅是顶板、两帮发生明显的变形和破坏,而且底板也会出现较强烈的变形和破坏,如果不对底板采取有效控制措施,巷道则会发生严重底鼓,而强烈底鼓则会加剧两帮和顶板的变形和破坏。(4)巷道围岩变形的冲击性。在有明显的冲击倾向性的巷道中,围岩变形有时并不是连续、逐渐变化的,而是突然剧烈增加,这就导致了巷道断面迅速缩小,具有强烈的冲击性。 2 深部煤矿地区地应力测量与分析方法 目前我国各大煤矿区对深部煤矿地区的地应力场的分布特征缺乏清晰、准确的认知,在系统认识方面也有所不足。目前可直接在深部煤矿地区地应力场分布研究过程中进行使用的数据仍然不足,很多煤矿深部井下工程如支护问题以及冲击地压防治问题等等,在过去较少考虑到地应力以及地应力场这组重要参数。随着煤矿地区的深度加深,巷道破坏越来越严重,地应力量值也越来越大,且其破坏力量也越来越明显,因为最后巷道变形程度更不易控制,持续挖掘容易导致深部煤矿地区塌方,从而危害到人类与财产安全。 我国深部煤矿地区的地应力场的分布特征迫切需要得到相关材料科学研究者的重视,对其进行全面、完整的分析与总结,最终为深部煤矿开采工作提供坚实的安全防护。近几年深部煤矿地区地应力测量过程中,主要应用空心包体法来测量我国深部煤矿地区的地应力数据。一定条件下也可使用水压致裂法,此后我国研究者经过整理600米到1500米深部煤矿地区的数据,排除特殊地质测量环境数据后,发现深部煤矿地区的地应力测量分析方法主要有以下几种:一般的地质可使用水压致裂法进行测量,结合应力解除法,可将深部煤矿地区的地应力数据测量统计出来。 3 煤矿深部围岩稳定性控制理论概述 从力学性质的角度讲,围岩的稳定性通常取决于岩体自身的变形性质和强度。另外,围岩自身所受的应力状态也对其稳定性有一定影响。围岩体主要由两部分组成:一是岩石骨架,二是结构面。通常煤矿深部的围岩都经历了漫长的地质年代,并且在长期的高压作用影响下使得岩石骨架变得异常致密和坚硬,所以实际影响煤矿深部围岩变形性质和强度的因素主要是结构面。因此,想要控制煤矿深部围岩的稳定主要应从结构面和应力状态着手。 煤矿深部岩巷开挖过程中,使围岩体所受的应力状态发生了变化,导致了围岩从原本的稳定状态逐渐转变为非稳定状态,虽然,在开挖初期,围岩的抗压强度比较高,但是随着不断的开挖卸荷,致使围岩的侧压有所下降,正常情况下,近表围岩的侧压将会降至为零。与此同时,大部分应力开始向巷道周向转移,使得应力集中,这时的周向应力一般会升高3倍左右。通常煤矿700m~900m深度的巷道,近表围岩的围压卸荷幅度大约在20MPa,巷道周向的应力将会增加近60MPa,在如此大的应力作用下,会使围岩的劣化速度不断加快,裂缝也会从表面不断向内部扩散,进而造成围岩失稳。为了确保围岩的稳定性,就必须在对巷道进行开挖后立即进行必要的支护。 4 煤矿深部巷道围岩控制措施 针对煤矿深部巷道围岩稳定性会降低这一问题,主要是从围岩强度和围岩应力两方面入手进行控制。 4.1 提高深部巷道围岩强度 (1)采用高强支护加固措施在围岩原来的抗剪强度上来强化围岩,严格控制围岩沿原生裂隙和次生裂隙发展,通过提高支护阻力来减少围岩变形量。(2)由于卸载作用导致围岩破碎区范围加大,在控制裂隙继续发展的同时,可以采用水泥等高强度材料通过围岩注浆的方法来填充裂隙,达到修补裂隙、改善围岩布局、强化围岩的目的。(3)针对巷道两帮移近量大、巷道底鼓严重的现象,要改善以往的支护习惯,重视顶板支护的同时加强对两帮及底角的支护,以降低两帮移近量、巷道底鼓程度,维护围岩的自身残余强度。 4.2 改善围岩应力状态 (1)深部巷道挖掘过程中,围岩由三向受力转为两向受力,围岩从本来的稳定状况转变为非稳定状况。研究表明,700米~900米深度的巷道,仅表围岩的卸载幅度大约在20MPa,巷道周围的应力将会增加约60MPa,因此,要尽可能恢复巷道的法向应力,改善围岩应力状态。(2)通过水力割缝、打卸压孔等一系列卸压技术,对深部巷道围岩受到的多种形式的压力进行卸压,将集中分布的荷载转移到离巷道较远的支撑区,减小采动支撑作业对巷道产生的应力,降低作用在围岩上的压力。(3)此外,统筹规划巷道位置,条件允许的情况下将其设在低应力区,选择合理的作业时间及先后顺序,降低相邻区段作业时带来的的影响,也能够提高巷道围岩稳定性。 结语 矿井开采深度近年来不断加深,巷道以及采场的地应力水平也在不断提升。软岩的巷道地压日渐产生剧烈显现,巷道围岩的破坏日益严重,因此深部煤矿应力的支护问题越来越受到研究者的关注。为了便于结合水压致裂法一起对深部煤矿地区的地应力量值进行调查,调研者必须将其获取的数据转换成水平和垂直方向的应力量值。深部煤矿地区的地应力不仅受到自重应力影响,也受到构造应力的影响。在设计巷道围岩支护方案的过程中,勘探者必须考虑到尽可能地不沿着岩层背斜顶部以及向斜底部进行设计,使得岩层断层的巷道布置方向

第五章 1 岩体应力与围岩应力分布

第五章岩体应力与围岩应力分布 岩石变形和破坏都是在应力作用下的结果。 岩体中的应力有多大,又是怎样分布的呢? 地下洞室开挖及建筑物作用,又会使岩体中的应力发生什么样的变化呢? 因此,对岩体的稳定性分析,首先要掌握岩体中的应力状态和分布规律。

一、岩体应力种类和分布 1.岩体应力种类 1).自重应力 由岩体的自重所引起的应力称为岩体的自重应力。 2).构造应力 由地壳构造运动在岩体中所引起的应力称为构造应力3).温度应力 由岩体内地温梯度的影响而产生的应力称温度应力

4).成岩应力 岩石生成过程中在成岩作用下所产生的应力。 如结晶作用,变质作用,沉积作用,固结作用,脱水作用等。5).渗流荷载 地下水在岩体中运动所产生的荷载。 渗流荷载一般作为外荷载 6).附加应力 由建筑物在岩基中所引起的应力。

7).围岩应力 ①应力重分布:地下洞室开挖后,使岩体中原来的应力发生改变,把应力的这种变化称为应力重分布。 ②围岩:把应力重分布影响范围内的岩体称为围岩。 ③围岩应力:围岩内的应力叫围岩应力。 围 岩

2、地应力概念 1). 地应力 岩体中各种应力的总称(一般不包括渗流荷载) 2). 应力场 应力在空间有规律的分布状态称为应力场。 如自重应力场,构造应力场。 3). 天然应力(或初始应力) 指工程施工前就存在于岩体中的应力,如自重应力、构造应力、温度应力、渗流荷载。

在天然应力中,成岩应力仅在岩石生成过程中起作用,温度应力在地表浅部作用较小,所以,岩体中天然应力主要是构造应力和自重应力,两者构成了天然应力场的主要部分。 岩体在长期的地质作用过程中,已处于一种天然的平衡状态,但在工程建设中,不仅会施加附加应力,还会引起应力重分布,正是由于工程建筑,岩体的天然稳定状态将随之改变。

巷道滞后注浆围岩控制理论与实践.

巷道滞后注浆围岩控制理论与实践 1.概述 1.1 注浆技术应用现状 采矿工程师应用注浆技术已有一个多世纪的历史,1864年首创水泥注浆法,1885年铁琴斯(Tietjens)成功采用地面预注浆开凿井筒,获得专利权;20世纪初注浆技术应用到井下巷道,此后注浆法在矿井建设中作为防治水和改善工程地质条件的重要方法,先后在英国、法国、南非和苏联得到广泛应用。比较有名的注浆工程如:巴黎地铁奥柏(Auber)车站注浆、横跨尼罗河的阿斯旺(Aswan Dam)水坝防渗注浆、日本青函隧道围岩预注浆等,其目的主要是防渗和堵水,客观上也起到稳定工程结构及围岩的作用。近数十年来,注浆技术在岩土工程实践中获得了更广泛的应用,已研制开发出多种注浆方法和上百种注浆材料,满足了很多复杂地质条件的工程要求,并积累了丰富的经验,逐渐发展成为一个相对独立的研究方向。1989年国际岩石力学学会成立注浆委员会,1991年我国在广州举行全国灌浆会议,并成立了中国岩石力学与工程学会岩石锚固与注浆技术专业委员会,加强了理论研究和技术交流。但由于岩土介质的极端复杂,裂隙岩体的渗流理论尚不够成熟,注浆工程常常依赖于经验,大型注浆工程技术参数只能依赖于反复的现场调试和监测,其中注浆固结体的力学性质、浆液流动时的力学过程以及注浆参数设计等理论问题,尤其缺乏系统完整的研究与论述。这些问题影响到注浆效果和技术经济指标的提高,甚至造成人力、物力的浪费,其总体研究水平与其他岩土工程技术相比尚处于初级阶段。

在我国煤矿的井巷施工中,注浆技术早在20世纪50年代就有较多的应用,东北鹤岗矿区、鸡西矿区和山东淄博矿区首先采用井壁注浆封堵井筒漏水,随后山东新汶矿区张庄立井采用工作面预注浆取得良好堵水效果。20世纪60年代以后注浆法有了很大发展,在矿井中已将注浆用于堵水、灭火、密封(瓦斯)以及对软土和构造破碎岩层进行加固,处理围岩冒落坍塌事故,进行巷道修复等方面的工作。20世纪80年代以来,由于现代支护理论的发展和注浆技术的进步,以支护为目的的巷道围岩注浆在苏联、德国等地开始研究和推行,我国同期也在复杂和不良岩体内的巷道工程中采用过注浆加固技术。典型的实例有:金川镍矿用后注浆法加固巷道取得良好效果;山东龙口矿区采用注浆加固与锚喷支护或锚喷架联合支护治理软岩取得实效;徐州旗山矿应用锚注支护技术维护巷道取得成功;抚顺矿区采用卸压加固注浆获得成功;徐州矿务局权台煤矿在v类回采巷道中采用围岩注浆与锚架联合支护取得成功,淮北矿务局朱仙庄煤矿、芦岭煤矿的新掘岩巷、修复岩巷和煤巷中应用滞后注浆加固技术控制围岩变形取得明显效果。 注浆材料也从水泥浆发展到多种化学浆、水泥一水玻璃浆。 因此,从历史发展看,注浆多用于岩土工程的堵水、防渗与加固,主要是一门与地下水害作斗争的工程技术。 煤矿巷道围岩注浆加固技术目前仅作为一项特殊的手段,主要用于如下两种情况: (1) 为提高掘进头及掘进工作面前方煤和岩体的稳定性,短期加固煤岩体,便于安全掘进和支护,从时间上可分为预注浆和随开挖及时注浆,

洞室围岩稳定性

第七章地下洞室围岩稳定性的工程地质分析 第一节围岩应力的重分布 一、岩体初始应力状态——地应力 地下洞室开挖前,岩体内的应力状态称为初始应力状态。 地应力的类型:自重应力 构造应力 变异及其他应力 二、围岩应力的重分布特征 (一)围岩应力:洞室周围发生应力重分布的这部 分岩体叫围岩 围岩中重分布的应力状态叫围岩应力 (二)地下洞室围岩应力重分布特征 1、圆形洞侧压力系数λ=1 径向应力向洞壁内方向逐渐增大 切向应力在洞壁处为2倍的自重应力,但向洞壁内逐渐减小,到5-6倍洞半径时径向应力=切向应力=自重应力 即围岩应力重分布影响范围是6倍的洞半径 2、圆形洞λ不等于1 洞壁受剪应力最大 3、其他形状洞室 洞顶、洞底容易出现拉应力,转角处剪应力最大 洞室高、宽对围岩应力影响最大 三、开挖后围岩中出现塑性圈时的重分布应力 围岩一旦松动,如不加支护,则会向深部发展,形成具有一定范围的应力松弛区,称为塑性松动圈。在松动圈形成过程中,原来周边集中的高应力逐渐向深处转移,形成新的应力增高区,该区岩体被挤压紧密,称为承载圈。此圈之外为初始应力区。 第二节围岩的变形破坏的特征 1、坚硬完整结构:岩爆、开裂 2.块断结构:块体滑移、掉块 3、层状结构岩体:层面张裂、岩层弯曲折断 4、碎裂结构、散体结构岩体 以塌方、塑性挤入为主 第三节地下工程位置选择的工程地质评价 一、地形条件 1、在地形上要求山体完整,洞室周围包括洞顶及傍山侧应有足够的山体厚度。 2、隧洞进出口地段的边坡应下陡上缓,无滑坡、崩塌等现象存在。 3、洞口岩石应直接出露或坡积层薄,岩层最好倾向山里以保证洞口坡的安全。 4、隧洞进出口不应选在排水困难的低洼处,也不应选在冲沟、傍河山嘴及谷口等易受水流冲刷的地段 5、水工隧洞避免曲线或弯道,转弯角度大于60°,曲率半径大于5倍洞径。 二、岩性条件 坚硬完整的岩体,围岩一般是稳定的,能适应各种断面形状的地下洞室。而软弱岩体如粘土岩类、破碎及风化岩体,吸水易膨胀的岩体等,通常力学强度低,遇水易软化、崩解及膨胀等,不利于围岩的稳定。一般软硬互层或含软弱夹层的岩体,稳定性差。层状岩体

巷道围岩力学

1 本规范是专门针对潞安矿区现有生产矿井所开采的3#煤层的地质与生产条件而编制的,旨在促进 潞安矿区煤巷锚杆支护技术健康发展,为矿井实现安全高效创造良好条件。 1.2 根据《潞安矿区巷道围岩地质力学测试与分类研究报告》和《潞安矿区煤巷锚杆支护成套技术研究》的结论,在潞安矿区的煤巷中可以并应积极推广应用锚杆支护技术。指导思想是:解放思想,实事求是,因地制宜,积极推广应用。工作原则是:以科学的理论依据为指导,以严谨的态度抓好设计、施工和管理。 1.3 本规范适用于潞安矿区以锚杆支护作为主要手段的煤巷,包括:(1) 回采巷道(运输巷,回风巷,开切眼,瓦排巷等);(2) 采区集中巷;(3) 煤层大巷;(4) 各类煤巷交岔点和峒室。1.4 在进行煤巷锚杆支护设计前,必须有全面、准确、可靠的巷道围岩地质力学参数,包括地应力的大小和方向、围岩强度、围岩结构等。否则,不能进行锚杆支护设计。 1.5 煤巷锚杆支护设计采用动态信息设计法。设计是一个动态过程,充分利用每个过程提供的信息。设计应严格按五个步骤进行,即巷道调查和地质力学评估、初始设计、井下施工与监测、信息反馈分析和修正设计、日常监测。1.6 煤巷锚杆支护材料的尺寸规格、力学性能与产品质量必须满足锚 杆支护设计的要求,并符合煤矿安全有关规定。否则,不能下井使用。 1.7 煤巷锚杆支护施工应严格按照设计和作业规程要求进行,确保施工质量。1.8 与煤巷锚杆支护技术有关的各级管理和技术人员,以及操作工人,都应进行锚杆支护技术培训。1.9 本规范未涉及的煤巷锚杆支护技术问题,应按煤炭行业有关规定执行。 第二章巷道围岩地质力学评估与现场调查 2.1 巷道围岩地质力学评估与现场调查是煤巷锚杆支护设计的基础依据和先决条件,必须在进行支护设计之前完成。 2.2 地质力学评估与现场调查首先应确定评估与调查的区域,考虑巷道服务期间影响支护系统的所有因素,随后的锚杆支护设计应该限定在这个区域内。 2.3 地质力学评估与现场调查主要包括以下内容(1) 巷道围岩岩性与强度煤层厚度、倾角和强度;顶、底板各岩层的岩性、厚度、倾角和强度。(2) 围岩结构与地质构造巷道围岩内节理、裂隙等不连续面的分布,对围岩完整性的影响;巷道附近较大断层、褶曲等地质构造与巷道的位置关系,以及对巷道围岩稳定性的影响程度。 (3) 地应力巷道原岩应力的大小和方向,与巷道轴线的夹角;巷道周围采动状况,以及采动对巷道围岩 应力的影响程度。(4) 环境影响巷道水文地质条 件,涌水量,瓦斯涌出量,对围岩强度的影响程度,围岩的风化特性等。 (5) 锚杆锚固力用井下施工中要采用的锚杆,以端部锚固的方式,在顶板和两帮设计锚固长度范围内进行拉拔试验,锚固力满足设计要求时,方能在井下使用。 2.4 巷道围岩地质力学参数,包括地应力、围岩强度和围岩结构应采用先进的测试方法进行测试。目前根据国内外的技术水平和科研成果,应采用下列井下实测的方法确定。 (1) 地应力可采用水压致裂法或应力解除法测量。 (2) 巷道围岩强度可采用井下围岩强度测定装置直接在钻孔中测量,也可在井下巷道中取岩芯,在实验室制成岩样进行测量。 (3) 围岩结构应采用巷道表面观察,钻孔取芯测量和钻孔窥视相结合的方法进行。 2.5 巷道围岩地质力学参数有一定的适用范围。当在一个地点获取的参数用于同一煤层的其它地点时,应进行充分的现场调研,以保证两地点条件的相似性。 2.6 当巷道围岩岩性、结构和应力条件发生较大变化时,如遇到大型

相关文档
最新文档