检测蛋白质与蛋白质之间相互作用的实验技术

检测蛋白质与蛋白质之间相互作用的实验技术
检测蛋白质与蛋白质之间相互作用的实验技术

一、检测蛋白质与蛋白质相互作用

① 技术()

, ,即荧光共振能量转移技术。该技术的原理是用一种波长的光激发某种荧光蛋白后,它释放的荧光刚好又能激发另一 种荧光蛋白,使其释放另一波长的荧光,如下图所示:

CFP=蓝堀邑荧光蛋白 丫?肥苗色荧光蛋白

以下图为例,若要利用检测两种蛋白是否有相互作用,需将两种蛋白的基因分别与这两种荧光蛋白的基因融合,并在细 胞内表达出两种融合蛋白。然后只需用紫外光对进行激发,并检测是否放出绿色荧光。如果能检测到绿色荧光,那么可以说明

这两种蛋白可能有相互作用;反之,则是这两种蛋白没有相互作用

酵母双杂交系统主要用于考察两种蛋白是否有相互作用,其原理是典型的真核生长转录因子,如 4、4等都含有二个不同的 结构域,即和。这些转录因子只有同时具有这两个结构域时才能起始转录。由此,设计不同的两个载体,一个含有基因(假设 为A 载体),另一个含有基因(假设为 B 载体)。

一般将一个已知蛋白的基因连在 B 载体上,作为诱饵(),将未知蛋白的基因连在 A 载体上,将这两个载体都转到特定的酵 母细胞内,看未知蛋白与已知蛋白是否有相互作用。如果两者有相互作用,那么就可以启动报告基因的转录,从而使这个酵母 细胞能在选择培养基上显现出来或者生存下来;如果两者无相互作用,那么报告基因就无法表达,那么这个酵母细胞就无法在 择培养基上显现出来或者生存下来,如下图所示:

酵母双杂交系统

400-430 nm 470-4SO nm

530 nm

敢岀绿光

(B )设有蛋白质相互作用

绿色荧光蛋白未被激发?只

检涮到蓝光

② 酵母双、三杂交技术() (C )蛋白质相互作用 编色荧光蛋白披激发.检撫到 绿色荧光

由于酵母双杂交系统不能鉴定膜蛋白间的相互作用, 因此又发展出了分离泛素酵母双杂 交系统。该系统的原理如下图所示:

如图所示,将泛素蛋白拆分为两个片段,即

C 端段()和N 端段(),并在C 端段的N 端接上一个16转录因子,此时它并 不能激活基因转录(因为它被限制在了 C 端段上,不能进入细胞核发挥作用)。

将该C 端段连到一个膜蛋白上,将 N 端段连接到另一个膜蛋白上。若两个膜蛋白有相互作用,那么两个膜蛋白在相互靠 近时会使泛素蛋白的N 端段和C 端段靠近结合,形成一个完整的泛素蛋白。此时泛素蛋白酶体会将这一段被泛素标记的片段降 解,那么连接C 端段的16转录因子掉落,即可进入细胞核启动标记基因的表达。

酵母三杂交的原理与双杂交一样,只是它研究的是两个蛋白和第三个成分间的相互作用,通过第三个成分使两个蛋白相 互靠近。第三个成分可以是:蛋白、或小分子,如下图所示:

四丨 ,r ?无转录

如上图所示,在加入第三种成分前,蛋白 X 与蛋白Y 之间并无直接相互作用,因此无法使和靠近,报告基因不能表达;当 加入第三种成分后,蛋白 X 与蛋白Y 的距离被拉近,和靠近,报告基因表达,从而可以被检测到。

③ 技术()

,即蛋白沉降技术,它是建立在蛋白质 亲和层析的基础上的一种检测蛋白质间相互作用的分析方法。亲和层析的原理如下 图所示,无转录 无转录 转录启动

不同蛋白对配体的亲和程度不同,因此可以先将非特异结合的蛋白用低浓度缓冲液给清洗出去,只剩目的蛋白与层析柱结合,然后再用洗脱液将目的蛋白洗脱下来,达到纯化目的蛋白的作用。

技术利用的是亲和层析技术以及特异的配体(如或者镍) 。以下图为例,将的基因与蛋白 X 的基因融合,表达出融合蛋白 将该融合蛋白的溶液过带有配体的层析柱,那么这一融合蛋白就能结合在配体上,然后将待测蛋白的溶液过柱,并让其与融合 蛋白反应一段时间

X 无相互作用,那么在开始清洗的时候就会被洗下来;如果在用洗脱液洗脱后才

是基于 发展而来,其原理如下图所示。将样品蛋白用 非变性的胶 分离,然后转膜、

封闭、洗膜,加入待测蛋白,使其与

已在膜上的样品蛋白进行相互作用。接着加入带有标记(如)的待测蛋白的抗体反应,最后进行显色(如加入的底物)

,观察实 验

结果 高浓度洗脱液

「洗脱液)

?杂蛋白

接着开始进行洗脱。如果待测蛋白与蛋白 能在收集到的样品中发现待测蛋白(以及蛋白

X ),说明待测蛋白与蛋白X 可能有相互作用

加人筠蛋日;[肓吗互作.甲的

螢白

用娥脱菠斡这一扳白复合休 忧

脱下来.弁进行检明

⑤免疫共沉淀()()

免疫共沉淀是探测活体细胞内蛋白间的相互作用的一门技术。 它的原理是当细胞在非变

性条件下被裂解时,完整细胞内存在的许多蛋白质一蛋白质间的相互作用被保留了下来。

如 果用蛋白X 的抗体免疫沉淀 X ,那么与X 在体内有相互作用的蛋白 Y 也能沉淀下来。

的原理如下图所示,首先从细胞中提取蛋白质,获得蛋白提取液,并将其与抗体孵育, 使抗体与蛋白X 结合。将预处理过的 G 琼脂糖珠()加入到抗体与蛋白提取液的孵育液中 反应,使抗体与 G 结合。通过离心将琼脂糖珠沉降到管底,去除上清液,然后再用缓冲液 将琼脂糖珠冲洗数次,最后用 (或)进行检测。

1、检测蛋白质与相互作用

① ()

的原理如下图所示。将的一个 3'端用32p 标记,然后将分成两份,一份直接用

I 进行不完全酶切;另一份先与待测蛋白 混合反应一段时间,然后再用 I 进行不完全酶切。然后将两份样品用 变性的胶进行电泳,观察电泳结果。下图中,由于待测蛋

2.将电泳后的蛋白进行转膜

3封闭膜(用BSA 或脱脂奶 掰,

然石洗膜

RANE

int

6.将膜与HRP 的底物一起孵

进行显色,获得结

Copynqht Visiscience.cDm FAR WESTERN BLOT HRP :辫根过氧化物酶

5-将膜与目的蛋白的抗体 (含HRF 标记)一同进行 孵肓

4.仙入特测蛋白’让它 与己在膜上的蛋白进 行相互作用

白与结合的部位无法被 I 酶切降解,因此它的电泳结果中与直接用

I 进行处理的样品相比,会缺少一段;如果待测蛋白与无

相互作用,那么这两组的电泳结果应当一致。 ②()

, ,又称凝胶阻滞实验。其原理是与蛋白质结合的在胶(非变性胶)上比没有结合蛋白的移动速率要慢,因此通过电泳

即可看到的变化,如下图所示。

该方法又成为原位筛选法,用于检测文库中的蛋白与探针之间的相互作用。其原理和实验流程如下图所示,首先是用噬菌

体()侵染大肠杆菌,然后将这些大肠杆菌涂到平板上。接着进行转膜,将膜泡于水溶液中数小时,然后将该膜放于平板上,

培养数小时(能诱导大肠杆菌表达文库蛋白)。将膜取出,进行变性、复性和封闭(过夜),然后与放射性标记的探针进行反应, 最后洗膜、晾干并用胶片曝光。如果胶片上出现了条带,说明该文库蛋白与探针有相互作用;反之则说明两者无相互作用。

艮卩标记的片段

凝胶电泳观察结果

无蛋白 1D 蛋白

不经变性

因弓蛋白结合,

DMA 的飯储

率下降

未与蚩白齬合加DM

蛋白质工程重点

一、名词解释 1、蛋白质工程(Protein Engineering)——以蛋白质分子的结构规律及其生物功能的关系作为基础,通过化学、物理和分子生物学的手段进行基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人类对生产和生活的需求的工程技术。 2、结构模体(supersecondary structure,motif)——介于蛋白质二级结构和三级结构之间的空间结构,指相邻的二级结构单元组合在一起,彼此相互作用,排列形成规则的、在空间结构上能够辨认的二级结构组合体,并充当三级结构的构件(block building),其基本形式有αα、βαβ和βββ等。 3、结构域(domain)——是在二级结构或超二级结构的基础上形成三级结构的局部折叠区,它是相对独立的紧密球状实体。 4、蛋白质的折叠(protein folding)——从体内新生的多肽链或体外变性的多肽链的一维线性氨基酸序列转化为具有特征三维结构的活性蛋白质的过程。 5、分子伴侣(molecular chaperone)——一大类相互之间没有关系的蛋白质,它们具有的共同功能是帮助其他含蛋白质的结构在体内进行非共价的组装和卸装,但不是这些结构在发挥其正常的生物学功能时的永久组成部分。 6、晶胞(Unit cell)——空间点阵的单位(大小和形状完全相同的平行六面体),是晶体结构的最小单位。 7、核磁共振现象(nuclear magnetic resonance ,NMR)——指核磁矩不为零的核,在外磁场的作用下,核自旋能级发生塞曼分裂(Zeeman splitting),共振吸收某一特定频率的射频辐射(radio frequency, RF)的物理过程。 8、化学势(位)移()——在有机化合物中,各种氢核周围的电子云密度不同(结构中不同位置)共振频率有差异,即引起共振吸收峰的位移,这种现象称为化学位移。 9、耦合常数(J)——由于自旋裂分形成的多重峰中相邻2峰间的距离。用以表征2核之间耦合作用的大小,单位赫兹Hz。 10、蛋白质组(proteome)——一个基因组、一种生物或一种细胞/ 组织所表达的全套蛋白质。

蛋白质相互作用的研究方法

举世瞩目的基因组计划使大量的新基因不断被发现,然而单纯的基组DNA序列尚不能解答许多生命问题。基因是相对静态的,而基因编码的产物-蛋白质则是动态的,具有时空性和调节性,是生物功能的主要体现者和执行者。蛋白质的表达水平、存在方式以及相互作用等直接与生物功能相关。 在所有生命活动中,蛋白质之间的相互作用是必不可少的,它是细胞进行一切代谢活动的基础。细胞接受外源或是内源的信号,通过其特有的信号途径,调节其基因的表达,以保持其生物学特性。在这个过程中,蛋白质占有很重要的地位,它可以调控,介导细胞的许多生物学活性。 虽然有一些蛋白质可以以单体的形式发挥作用,但是大部分的蛋白质都是和伴侣分子一起作用或是与其他蛋白质形成复合物来发挥作用的。因此,为了更好地理解细胞的生物学活性,必须很好地理解蛋白质单体和复合物的功能,这就会涉及到蛋白质相互作用的研究。在现代分子生物学中,蛋白质相互作用的研究占有非常重要的地位。因此,揭示蛋白质之间的相互作用关系、建立相互作用关系的网络图,已成为蛋白质组学研究中的热点。 一、生物物理学方法 1. 融合蛋白pull-down实验 融合蛋白pull-down技术基本原理是将一种蛋白质固定于某种基质上(如Sepharose),当细胞抽提液经过该基质时,可与该固定蛋白相互作用的配体蛋白被吸附,而没有被吸附的“杂质”则随洗脱液流出。 被吸附的蛋白可以通过改变洗脱液或洗脱条件而回收下来。为了更有效地利用pull-down技术,可以将待纯化地蛋白以融合蛋白地形式表达,即将“诱饵”蛋白与一种易于纯化地配体蛋白相融合。1988年Smith等利用谷胱甘肽-S-转移酶(glutathione-S-transferase ,GST)融合标签从细菌中一步纯化出GST融合蛋白。从此GST融合蛋白在蛋白质相互作用研究领域里得到了极大的推广。 GST融合蛋白在经过固定有GST(glutathione)的色谱柱时,就可以通过GST与GSH的相互作用而被吸附。当再有细胞抽提物过柱,就可以得到能够与“诱饵”蛋白相互作用的兴趣蛋白。一般来说,GST融合蛋白pull-down方法用于两个方面:一是鉴定能与已知融合蛋白相互作用的未知蛋白质;二是鉴定两个已知蛋白质之间是否存在相互作用。 该方法比较简便,避免了使用同位素等危险物质,在蛋白质相互作用研究中有很广泛的应用。类似的融合蛋白很多,如与葡萄球菌蛋白A融合的“诱饵”蛋白可以通过固定有IgG的色谱柱进行纯化;与寡聚组氨酸肽段融合的“诱饵”蛋白可以通过结合Ni2+的色谱柱进行纯化;与二氢叶酸还原酶融合的“诱饵”蛋白可以通过固定有氨甲喋呤的色谱柱进行纯化等等。 2. 亲和印迹 亲和印迹是将聚丙烯酰胺凝胶电泳分离后的蛋白样品转移到硝酸纤维素膜上,然后检测哪种蛋白能与标记了的“诱饵”蛋白发生作用。此方法所要考虑的是如何保持膜上蛋白的生物活性,如何得到纯化的“诱饵”蛋白等。 3. 免疫共沉淀

检测两种蛋白质之间相互作用

检测两种蛋白质之间相互作用得实验方法比较 1、生化方法 ●免疫共沉淀免疫共沉淀就是以抗体与抗原之间得专一性作用为基础得用于研究蛋白质相互作用得经典方法.改法得优点就是蛋白处于天然状态,蛋白得相互作用可以在天然状态下进行,可以避免认为影响;可以分离得到天然状态下相互作用得蛋白复合体。缺点:免疫共沉淀同样不能保证沉淀得蛋白复合物时候为直接相互作用得两种蛋白。另外灵敏度不如亲与色谱高。 ●Far—Western 又叫做亲与印记。将PAGE胶上分离好得凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素得诱饵蛋白发生作用,最后显影。缺点就是转膜前需要将蛋白复性。2?、等离子表面共振技术(Surfaceplasmonresonance)该技术就是将诱饵蛋白结合于葡聚糖表面,葡聚糖层固定于几十纳米厚得技术膜表面。当有蛋白质混合物经过时,如果有蛋白质同“诱饵”蛋白发生相互作用,那么两者得结合将使金属膜表面得折射率上升,从而导致共振角度得改变。而共振角度得改变与该处得蛋白质浓度成线性关系,由此可以检测蛋白质之间得相互作用。该技术不需要标记物与染料,安全灵敏快速,还可定量分析。缺点:需要专门得等离子表面共振检测仪器。 3、双杂交技术原理基于真核细胞转录因子得结构特殊性,这些转录因子通常需要两个或以上相互独立得结构域组成.分别使结合

域与激活域同诱饵蛋白与猎物蛋白形成融合蛋白,在真核细胞中表达,如果两种蛋白可以发生相互作用,则可使结合域与激活域在空间上充分接近,从而激活报告基因.缺点:自身有转录功能得蛋白会造成假阳性.融合蛋白会影响蛋白得真实结构与功能。不利于核外蛋白研究,会导致假隐性. 5、荧光共振能量转移技术指两个荧光法色基团在足够近(〈100埃)时,它们之间可发生能量转移得现象。荧光共振能量转移技术可以研究分子内部对某些刺激发生得构象变化,也能研究分子间得相互作用。它可以在活体中检测,非常灵敏,分辩率高,能够检测大分子得构象变化,能够定性定量得检测相互作用得强度。缺点此项技术要求发色基团得距离小于100埃。另外设备昂贵,还需要融合GFP给蛋白标记。?此外还有交联技术(cross-linKing),蛋白质探针技术,噬菌体展示技术(Phage display)以及生物信息学得方法来检测蛋白质之间相互作用。 1,酵母双杂交 1-5 酵母双杂交系统就是将待研究得两种蛋白质得基因分别克隆到酵 体,从表达产物分析两种蛋白质相互作用得系统 酵母双杂交得原理就是,把报告基因HIS3与l a c Z 整合到酵母细胞基因组中,并受转录因子

研究蛋白质与蛋白质相互作用方法总结-实验步骤

研究蛋白质与蛋白质相互作用方法总结-实验步骤 蛋白质与蛋白质之间相互作用构成了细胞生化反应网络的一个主要组成部分,蛋白-蛋白互作网络与转录调控网络对调控细胞及其信号有重要意义。把原来spaces空间上的一篇蛋白质与蛋白质间相互作用研究方法转来,算是实验技巧分类目录的首篇。(另补充2:检测两种蛋白质之间相互作用的实验方法比较) 一、酵母双杂交系统 酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。Angermayr等设计了一个SOS蛋白介导的双杂交系统。可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。此外,酵母双杂交系统的作用也已扩展至对蛋白质的鉴定。 二、噬茵体展示技术 在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体特异性结合,这被称为噬菌体展示技术。此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cDNA文库,并分离出了人上皮生长因子信号传导途径中的信号分子。 三、等离子共振技术 表面等离子共振技术(Surface Plasmon Resonance,SPR)已成为蛋白质相互作用研究中的新手段。它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。SPR技术的优点是不需标记物或染料,反应过程可实时监控。测定快速且安全,还可用于检测蛋白一核酸及其它生物大分子之间的相互作用。

01【课堂笔记】《蛋白质与酶工程》-酶的分离与纯化02部分

第一章酶的分离提取与纯化 1.1离心分离和层析分离 1.1.1酶的提取方法 离心是利用离心机旋转所产生的的离心力以及物质的沉降系数或浮力密度的差异,进行分离浓缩和提纯生物样品的一种方法。 离心分离时,要根据待分离物质以及杂志的颗粒大小、密度和特性的不同,选择适当的离心机、离心方法和离心条件。 1.1.1.1离心机的种类与用途 常速离心机,高速离心机,超速离心机 1)常速离心机:转速<8000 r/min 用途:分离细胞、细胞碎片、培养基残渣 及粗结晶等较大颗粒 2)高速离心机:转速:1~2.5*104 r/min 用途:分离各种沉淀物、细胞碎片 及较大的细胞器 3)超速离心机:转速:2.5~12*104 r/min 用途:用于DNA、RNA、蛋白质 等生物大分子以及细胞器、病毒的分离纯化 1.1.1.2离心方法 差速离心,密度梯度离心,等密度梯度离心 1)差速离心:原理:是采用不同的离心速度和离心时间,是沉降速度不同的颗 粒分不分离的方法。用途:分离沉降系数相差较大的蛋白质分子 2)密度梯度离心原理:不同颗粒之间存在沉降系数差时,在一定离心力作用 下,颗粒各自以一定速度沉降,在密度梯度不同区域上形成区带的方法。 常用介质:蔗糖、甘油 3)等密度梯度离心:原理:当待分离的不同颗粒的密度范围在离心介质的密 度梯度范围内时,不同浮力密度的颗粒在离心力作用下一直移动到与各自浮力密度相等的位置,形成区带。介质:铯盐 1.1.1.3层析分离技术 又称色谱技术,是一种物理的分离方法。利用混合物中的各组分的物理化学性质(分子的大小和形状,分子极性,吸附力,分子亲和力)的不同,使各组分以不同的程度分布在两个相中,其中一个相为固定的(固定相),另一个相则流过固定相(流动相)并使各组分以不同速度一定,从而达到分离 根据分离原理分类 吸附层析、分配层析、离子交换层析、凝胶层析和亲和层析等 1)吸附层析 原理:是利用吸附剂对不同物质的吸附力不同,而使混合物中各组分分离的方法。 2)分配层析 原理:在一个有两相同时存在的溶剂系统中,根据不同物质的分配系数不同而达到分离目的的一种层析技术。

酶与蛋白质工程实验及复习题

实验部分 稀释倍数意思就是你得到的最后的活性要换算成最初样品的活性。比如粗酶液是30ml,再取1ml稀释到10ml(最后用移液枪取10ul做微量活性测定)。那么稀释倍数就是 10/1*30=300。 公式里面就有两个体积,一个是反应总体积,一个是酶样液体积。反应总体积是指你最后测定时候,每个试管最终的体积3 ml酶样液体积是你加入试管的SOD的体积,比如微量法就是0.01ml(10ul)。 样液速率是30秒的,需乘以2。 理论部分复习题大纲 (给大家的只是复习的大纲,还有一些由于时间仓促,上课时强调的重点内容有些没在这个大纲上,但仍然是考试内容,希望大家能认真复习。) 一.名词解释8个,每题3分 1.酶工程 2.凝胶过滤层析 3.离子交换层析 4.亲和层析 5.酶的生产 6.酶的改性 7.生物酶工程 8.化学酶工程 9.酶分解代谢物阻遏作用 10.酶生物合成的诱导作用 11.酶生物合成的反馈阻遏作用 12.密度梯度离心 13.等密度梯度离心 14.酶分子修饰: 15.酶大分子结合修饰 16.酶侧链基团修饰 17.酶反应器 18.流化床反应器鼓 19.泡式反应器 20.定点诱变技术 21.蛋白质工程 二.填空每空1分10分 1.化学酶工程研究的主要内容是(酶的制备)、(酶的分离纯化)、(酶与细胞的固定化技术)、(酶分子修饰)、(酶反应器)和(酶的应用)。 2.在酶的发酵生产中,为提高产酶率和缩短发酵周期,最理想的合成模式是(延续合成型)。 3.常用的酶或蛋白质干燥的方法有真空干燥、(冷冻干燥)、气流干燥、(喷雾干燥)和吸附干燥。

4.(葡萄唐氧化酶)是一种有效地食品除氧保鲜剂。 5. 通过检测()的酶活性,可以诊断癌症。 6.(X-射线衍射法)是测定蛋白质晶体结构的极其重要方法。 7.确定蛋白质分子在溶液中结构信息的方法是(核磁共振技术)。 8.酶反应器的操作方式可分为()反应器、()反应器和流加分批式反应器。 9.细胞固定化的方法有(吸附法)和(包埋法)。 10.1982年,Thomas R.Cech等人发现四膜虫细胞的26S rRNA前体具有自我剪接功能,将这种具有催化活性的天然RNA称为( )。 11.酶的生产方法主要有(),()和()。 12 微生物发酵产酶中使用的两种培养基是()和()。 13 针对胞内酶的分离提取,细胞破碎的方法有()、物理破碎、() 和()。 14.利用有机溶剂沉淀法分离酶或蛋白质时常用有机溶剂有丙酮、()、 ()和()。 15.离子交换剂由()、()和()构成。 16.凝胶过滤层析中常用的凝胶材料有()、()和 ()。 17. 常用的蛋白质序列数据库英文简写:()和()。 18.1926年,美国康乃尔大学的Sumner博士从刀豆中提取出( )结晶,并证明 具有蛋白质的性质。 19.常见产酶微生物种类()、()、()和()。 18. 酶的主要提取方法有酸提取法、()、()和()。 19. 吸附层析中常用的强吸附剂:()和()。 20.离子交换层析中常用的阳离子交换基团是()和 ()。 21.典型的双水相萃取系统:()和()。22. 常用的基因组数据库英文简写:()、()和 ()。 23.过滤分离的种类有、、和。 24.根据酶分子大小、形状的不同可选择的分离方法有、 或。 25.酶的固定化方法有、、和。 26. 固体发酵产酶的方法有、和。 27. 密度梯度离心常用的梯度介质是和。 28. 凝胶过滤层析中凝胶可分为凝胶、凝胶和凝胶。 29. 典型的双水相萃取系统:和。 30. 根据酶分子电荷性质的不同可选择的分离法是或。 31. 酶制剂有四种类型即液体酶制剂,酶制剂,酶制剂和 酶制剂。 32.CO2超临界萃取的临界温度,临界压力。 33.1902年,亨利根据蔗糖酶催化蔗糖水解的实验结果,提出()学说。 34.1960年,雅各和莫诺德提出了()学说,阐明了酶生物合成的基本调节机制。三.选择(5个,每个2分)

检测蛋白质与蛋白质之间相互作用的实验技术

一、检测蛋白质与蛋白质相互作用 ①FRET技术(in vivo) FRET,Fluorescence resonanceenergy transfer,即荧光共振能量转移技术。该技术得原理就是用一种波长得光激发某种荧光蛋白后,它释放得荧光刚好又能激发另一种荧光蛋白,使其释放另一波长得荧光,如下图所示: 以下图为例,若要利用FRET检测两种蛋白就是否有相互作用,需将两种蛋白得基因分别与这两种荧光蛋白得基因融合,并在细胞内表达出两种融合蛋白。然后只需用紫外光对CFP进行激发,并检测GFP就是否放出绿色荧光.如果能检测到绿色荧光,那么可以说明这两种蛋白可能有相互作用;反之,则就是这两种蛋白没有相互作用。 ②酵母双、三杂交技术(in vivo) 酵母双杂交系统主要用于考察两种蛋白就是否有相互作用,其原理就是典型得真核生长转录因子,如GAL4、GCN4等都含有二个不同得结构域,即AD与BD.这些转录因子只有同时具有这两个结构域时才能起始转录.由此,设计不同得两个载体,一个含有AD基因(假设为A载体),另一个含有BD基因(假设为B载体)。 一般将一个已知蛋白得基因连在B载体上,作为诱饵(Bait),将未知蛋白得基因连在A载体上,将这两个载体都转到特定得酵母细胞内,瞧未知蛋白与已知蛋白就是否有相互作用.如果两者有相互作用,那么就可以启动报告基因得转录,从而使这个酵母细胞能在选择培养基上显现出来或者生存下来;如果两者无相互作用,那么报告基因就无法表达,那么这个酵母细胞就无法在择培养基上显现出来或者生存下来,如下图所示:

由于酵母双杂交系统不能鉴定膜蛋白间得相互作用,因此又发展出了分离泛素酵母双杂交系统。该系统得原理如下图所示: 如图所示,将泛素蛋白拆分为两个片段,即C端段(Cub)与N端段(NubG),并在C端段得N端接上一个LexA—VP16转录因子,此时它并不能激活基因转录(因为它被限制在了C端段上,不能进入细胞核发挥作用)。 将该C端段连到一个膜蛋白上,将N端段连接到另一个膜蛋白上。若两个膜蛋白有相互作用,那么两个膜蛋白在相互靠近时会使泛素蛋白得N端段与C端段靠近结合,形成一个完整得泛素蛋白。此时泛素蛋白酶体会将这一段被泛素标记得片段降解,那么连接C端段得LexA-VP16转录因子掉落,即可进入细胞核启动标记基因得表达。 酵母三杂交得原理与双杂交一样,只就是它研究得就是两个蛋白与第三个成分间得相互作用,通过第三个成分使两个蛋白相互靠近。第三个成分可以就是:蛋白、RNA或小分子,如下图所示: 如上图所示,在加入第三种成分前,蛋白X与蛋白Y之间并无直接相互作用,因此无法使BD与AD靠近,报告基因不能表达;当加入第三种成分后,蛋白X与蛋白Y得距离被拉近,BD与AD靠近,报告基因表达,从而可以被检测到。 ③ Pulldown技术(invitro) Pulldown,即蛋白沉降技术,它就是建立在蛋白质亲与层析得基础上得一种检测蛋白质间相互作用得分析方法.亲与层析得原理如下图所示,不同蛋白对配体得亲与程度不同,因此可以先将非特异结合得蛋白用低浓度缓冲液给清洗出去,只剩目得蛋白与层析柱结合,然后再用洗脱液将目得蛋白洗脱下来,达到纯化目得蛋白得作用。

检测两种蛋白质之间相互作用

检测两种蛋白质之间相互作用的实验方法比较 1. 生化方法 ●免疫共沉淀免疫共沉淀是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。改法的优点是蛋白处于天然状态,蛋白的相互作用可以在天然状态下进行,可以避免认为影响;可以分离得到天然状态下相互作用的蛋白复合体。缺点:免疫共沉淀同样不能保证沉淀的蛋白复合物时候为直接相互作用的两种蛋白。另外灵敏度不如亲和色谱高。 ●Far-Western 又叫做亲和印记。将PAGE胶上分离好的凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素的诱饵蛋白发生作用,最后显影。缺点是转膜前需要将蛋白复性。 2. 等离子表面共振技术(Surface plasmon resonance)该技术是将诱饵蛋白结合于葡聚糖表面,葡聚糖层固定于几十纳米厚的技术膜表面。当有蛋白质混合物经过时,如果有蛋白质同“诱饵”蛋白发生相互作用,那么两者的结合将使金属膜表面的折射率上升,从而导致共振角度的改变。而共振角度的改变与该处的蛋白质浓度成线性关系,由此可以检测蛋白质之间的相互作用。该技术不需要标记物和染料,安全灵敏快速,还可定量分析。缺点:需要专门的等离子表面共振检测仪器。 3. 双杂交技术原理基于真核细胞转录因子的结构特殊性,这些转录因子通常需要两个或以上相互独立的结构域组成。分别使结合域和

激活域同诱饵蛋白和猎物蛋白形成融合蛋白,在真核细胞中表达,如果两种蛋白可以发生相互作用,则可使结合域和激活域在空间上充分接近,从而激活报告基因。缺点:自身有转录功能的蛋白会造成假阳性。融合蛋白会影响蛋白的真实结构和功能。不利于核外蛋白研究,会导致假隐性。 5. 荧光共振能量转移技术指两个荧光法色基团在足够近(<100埃)时,它们之间可发生能量转移的现象。荧光共振能量转移技术可以研究分子内部对某些刺激发生的构象变化,也能研究分子间的相互作用。它可以在活体中检测,非常灵敏,分辩率高,能够检测大分子的构象变化,能够定性定量的检测相互作用的强度。缺点此项技术要求发色基团的距离小于100埃。另外设备昂贵,还需要融合GFP给蛋白标记。 此外还有交联技术(cross-linKing),蛋白质探针技术,噬菌体展示技术(Phage display)以及生物信息学的方法来检测蛋白质之间相互作用。 1,酵母双杂交 1-5 酵母双杂交系统是将待研究的两种蛋白质的基因分别克隆到酵母表达质粒的转录激活因子(如GAL4等)的DNA结合结构域基因和转录激活因子(如GAL4等)激活结构域基因,构建成融合表达载体,从表达产物分析两种蛋白质相互作用的系统

蛋白质与酶工程复习资料

酶工程复习提纲 第一章绪论 1.酶及酶工程的概念。 酶:是生物体内一类具有催化活性和特殊空间构象的生物大分子物质。 酶工程:利用酶的催化作用,在一定的生物反应器中,将相应的原料转化成所需产品的一门工程技术。(名词解释) 2.了解酶学的发展历史,尤其是一些关键事件。 1833年,Payen和Persoz发现了淀粉酶。1878年,Kuhne首次将酵母中进行乙醇发酵的物质称为酶。给酶一个统一的名词,叫Enzyme,这个词来自希腊文,其意思“在酵母中”。 1902年,Henri提出中间产物学说。1913年,Michaelis and Menton推导出酶催化反应的基本动力学方程,米氏方程:V=VmS/(Km+S)。1926年,Summer分离纯化得到脲酶结晶。人们开始接受“酶是具有生物催化功能的蛋白质”。Cech and Altman于1982和1983年发现具有催化活性的RNA即核酸类酶,1989年获诺贝尔化学奖。现已鉴定出5000多种酶,上千种酶已得到结晶,而且每年都有新酶被发现。 3.了解酶在医药、食品、轻工业方面的应用。 医药:(1)用酶进行疾病的诊断:通过酶活力变化进行疾病诊断,谷丙转氨酶/谷草转氨酶用于诊断肝病、心肌梗塞等,酶活力升高;葡萄糖氧化酶用于测定血糖含量,诊断糖尿病。 (2)用酶进行疾病的治疗:来源于蛋清、细菌的溶菌酶用于治疗各种细菌性和病毒性疾病;来源于动物、蛇、细菌、酵母等的凝血酶用于治疗各种出血病;来源于蚯蚓、尿液、微生物的纤溶酶用于溶血栓。 (3)用酶制造各种药物:来源于微生物的青霉素酰化酶用于制造半合成青霉素和头孢菌素;来源于动物、植物、微生物的蛋白酶用于生产L-氨基酸。 食品:生产低聚果糖,原料为蔗糖,所需酶为果糖基转移酶、蔗糖酶α(黑曲霉、担子菌);生产低聚异麦芽糖,原料为淀粉,所需酶为α-淀粉酶、β-淀粉酶、真菌α-淀粉酶(米曲霉)、α-葡萄糖苷酶(黑曲霉)、普鲁兰酶、糖化型α-淀粉酶(枯草杆菌)。 轻工业:用酶进行原料处理;用酶生产各种轻工、化工产品;用酶增强产品的使用效果。

蛋白质工程的现状发展及展望

蛋白质工程的现状发展及展望 摘要: 蛋白质工程是用分子生物学手段对蛋白质进行分子改造的技术。介绍了蛋白质工程的几种常用方法及其基本原理和研究进展。 关键词: 蛋白质工程;定点诱变; 定向进化 20世纪70年代以来, 对蛋白质的分子改造渐渐进入研究领域, 通过对蛋白质分子进行突变, 得到具有新的表型和功能或者得到比原始蛋白相对活力更高的突变体,对蛋白质的分子改造技术逐渐纯熟。蛋白质工程的主要技术分为理性进化和非理性进化,已经在农业、工业、医药等领域取得了较大的进展。 1.理性进化 理性进化主要是利用定点诱变技术, 通过在已知DNA序列中取代、插入或缺失一定长度的核苷酸片段达到定点突变氨基酸残基的目的。运用该技术已有不少成功改造蛋白质的例子。Markus Roth通过同源性比对和定点突变技术, 对EcoR DNA甲基化酶进行改造,使其对胞嘧啶的亲和性增加了22倍。定点突变还主要应用于蛋白质结构和功能的研究方面。酰基载体蛋白(ACP)的主要作用是在单不饱和脂肪酸的特定位置引入双键, Caho通过定点突变研究, 发现将五个氨基酸残基置换之后的酶, 由6- 16 : 0- ACP脱氢酶变成9- 18 : 0- ACP脱氢酶。Van den Burg利用蛋白同源建模和定点突变技术结合的方法将从Bacillus stear other mophilus分离出来的嗜热菌蛋白酶突变, 得到的突变体稳定性提高了8倍, 100 在变性剂存在的情况下还能发挥作用,但是大部分单个氨基酸的改变对于整个蛋白的影响比较小,很难在高级结构上改变蛋白质的三级结构, 从而造成很大的影响, 所以在定点突变的基础上又出现了许多新的技术, 用于改造蛋白质分子。[1] 2.非理性进化 非理性蛋白质进化, 又称定向进化或者体外分子进化,在实验室中模拟自然进化过程, 利用分子生物学手段在分子水平增加分子多样性, 结合高通量筛选技术, 使在自然界中需要千百万年才能完成的进化过程大大缩短,在短期内得到理想的变异。这种方法不用事先了解蛋白质结构、催化位点等性质, 而是人为地制造进化条件, 在体外对酶的编码基因进行改造, 定向筛选, 获得具有预期特征的改良酶, 在一定程度上弥补了定点诱变技术的不足, 具有很大的实际应用价值。一个比较成功应用定向进化的例子是对红色荧光蛋白的改造。绿色荧光蛋白由于

蛋白质工程(1)

蛋白质工程:以蛋白质的结构与功能为基础,利用基因修饰或基因合成而改造现存蛋白质或组建新型蛋白质的现代生物技术,是基因工程的深化和发展。 蛋白质结构:一级结构:蛋白质多肽链中氨基酸残基的排列顺序。 二级结构:一段连续的肽单位借助氢键排列成具有周期性结构的构象。 三级结构:蛋白质多肽链在各种二级结构的基础上,进一步盘曲折叠形成具有一定规律的三维空间。 四级结构:由两条或两条以上具有独立三级结构的多肽链组成的蛋白质的寡居蛋白,通过肽链间的次级键相互结合形成的空间结构。 蛋白质超二级结构:相邻的二级结构单元组合在一起,彼此相互作用,形成规则排列的组合体,以同一结构模式出现在不同的蛋白质中,这些组合体称为超二级结构,或结构模体。 结构域:指二级结构和结构模体以特定的方式组织连接,在蛋白质分子中形成两个或多个在空间上可以明显区分的三级折叠实体。结构域是蛋白质折叠中的一个结构层次,介于超二级结构和三级结构之间,是蛋白质三级结构的基本单位,也是蛋白质功能的基本单位。 蛋白质变性:天然蛋白质分子受到某些物理因素(热、紫外线、高压)或化学因素(有机溶剂、脲、胍、酸、碱)的影响,引起蛋白质天然结构的破坏,导致生物活性的降低或完全丧失。 蛋白质折叠:蛋白质因所含氨基酸残基的亲水性、疏水性、带正电、带负电……等等特性通过残基间的相互作用而折叠成一立体的三级结构。 蛋白质定向进化:在实验室中模仿自然进化的关键步骤-突变、重组和筛选,在较短时间内完成漫长的自然进化过程,有效地改造蛋白质,使之适于人类的需要。 蛋白质的分子设计:蛋白质的分子设计就是为有目的的蛋白质工程改造提供设计方案,确保获得比天然蛋白质性能更加优越的新型蛋白质。 第二遗传密码:氨基酸顺序与蛋白质三维结构之间存在着对应关系,人们称之为第二遗传密码或折叠密码。蛋白质的化学修饰:凡通过活性基团的引入或去除,而使蛋白质一级结构发生改变的过程。 蛋白质组:基因组表达全部蛋白质及其存在方式,或基因组、一个细胞或一种生物表达的所有蛋白质。 蛋白质组学:定量检测蛋白质水平上的基因表达,从而揭示生物学行为,以及基因表达调控的机制的学科。双向电泳:是等电聚焦电泳和SDS-PAGE的组合,即先进行等电聚焦电泳(按照pI分离),然后再进行SDS-PAGE(按照分子大小),经染色得到的电泳图是个二维分布的蛋白质图。 蛋白质芯片:也叫蛋白质微阵列,是将大量蛋白质有规则地固定到某种介质载体上,利用蛋白质与蛋白质、酶与底物、蛋白质与其他小分子之间的相互作用检测分析蛋白质的一种芯片。 噬菌体表面展示技术:噬菌体展示技术是将外源基因或一组一定长度的随机寡居核苷酸片段克隆到特定的表达载体内,使其表达产物与外膜蛋白或噬菌体外壳蛋白以融合蛋白的形式呈现在细胞表面或噬菌体表面。 基因工程抗体:利用基因重组技术对编码抗体的基因按不同需求进行加工改造和重新装配,引入适当的受体细胞,由其编码产生出预期的抗体分子。 抗体酶:通过改变抗体与抗原结合的微环境,并在适当的部位引入相应的催化基团,所产生的具有催化活性的抗体。既有抗体的高度选择性,又有酶的高效催化效率。 单克隆抗体:由一种抗原决定簇激活,并具有相应抗原受体的B细胞产生的针对这一抗原决定簇的抗体。

蛋白质相互作用

蛋白质相互作用的概述 一、为什么要研究蛋白质相互作用 二、蛋白质相互作用亲和力:K d=[A][B]/[AB] 三、蛋白质相互作用的应用 A、利用抗原和抗体的相互作用:Western blot,免疫共沉淀,染色质沉淀,抗体筛库 B、利用已知的相互作用建立tag:GST pull down,Biotin-Avidin结合, C、直接利用蛋白质的相互作用:蛋白质亲和层析,酵母双杂交,phage display,Bait蛋白质筛表达库,蛋白质组 四、相互作用的生物学意义:蛋白质间的相互作用是细胞生命活动的基础。 五、生物学功能的研究:获得功能或失去功能 I、一些常用蛋白质相互作用技术 ?Traditional co-purification (chromatography co-purification and co-sedimentation) ?Affinity chromatography:GST pull down,Epitope-tag ?(co-)Immunoprecipitation ?Western和Far-Western blot Surface Plasmon Resonance Two-Hybrid System Fluorescence Resonance Energy Transfer (FRET) (实验过程及原理,注意事项,优缺点) III、研究实例讨论 一、酵母双杂交系统 作用:发现新的相互作用蛋白质;鉴定和分析已有的蛋白质间的相互作用;确定蛋白质相互作用的功能基团 具体过程:见书本 优点:是酵母细胞的in vivo相互作用;只需要cDNA,简单;弱的相互作用也能检测到 缺点:都是融合蛋白,万一融合出新的相互作用;酵母的翻译后修饰不尽相同,尤其是蛋白质的调控性修饰;自身激活报告基因;基因库德要求比较高,单向1/3是in frame 蛋白质毒性;第三者Z插足介导的相互作用;假阳性 酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂

蛋白质与酶工程教学大纲

《蛋白质与酶工程》教学大纲 课程名称:蛋白质与酶工程 学分:2 学时:32 先修课程:生物化学 适用专业:生物工程 开课系部:生命科学学院 一、课程性质、目的和培养目标 课程性质:专业选修课 课程目的:本课程是生物工程本科专业选修课,目的是让学生在学习了普通生化的基础上,进一步对蛋白质和酶工程进行深入系统的学习。并对于酶在生产实践中的应用,也能有一些感性和理性的认识。 课程培养目标:采用多媒体课件和国内外最新的教学参考书、教案,灵活运用多种教学方法,因材施教,使学生在牢固掌握基础知识和基本概念的同时,得到科学研究、科学思维和科学方法的良好训练,为其他专业基础课和专业课的学习及日后的研究工作打下基础。 二、课程内容和建议学时分配 第一章绪 论 2课时 (一)教学基本要求 掌握蛋白质工程和酶工程的定义,了解其发展史,以及应用前景。 (二)教学内容 第一节蛋白质工程概论 第二节蛋白质工程的应用 第三节蛋白质工程展望 第四节酶工程简介 一酶工程 二组成:酶的产生;酶的分离纯化;酶的固定化;生物反应器。 三分类:化学酶工程;生物酶工程。 第五节酶与酶工程的发展简史 一酶学研究简史 二酶工程研究简史

(三)教学重点和难点 重点:蛋白质与酶工程定义; 难点:酶工程的组成分类 第二章蛋白质的结构与功能 2课时(一)教学基本要求 掌握蛋白质的基本结构组成及功能 (二)教学内容 第一节蛋白质的基本结构与功能 一蛋白质的组成 二蛋白质的一级结构 三蛋白质一级结构与功能的关系 第二节蛋白质的空间结构与功能 一蛋白质的二级结构 二超二级结构和结构域 三蛋白质的三级结构 四蛋白质空间结构与功能的关系 五蛋白质-蛋白质相互作用 (三)教学重点和难点 重点:蛋白质的空间结构;难点:蛋白质间的相互作用; 第三章蛋白质的修饰和表达4课时(一)教学基本要求 掌握蛋白质的化学修饰途经,了解蛋白质改造的一些途经等。 (二)教学内容 第一节蛋白质修饰的化学途径 一功能基团的特异性修饰 1多位点取代 2 3 二基于蛋白质片段的嵌合修饰 第二节蛋白质改造的分子生物学途径 一编码基因的专一性位点和区域性定向突变 1 2 二基因融合和基因剪接 三tRNA介导定点搀入非天然氨基酸 第三节重组蛋白质的表达

蛋白相互作用-ThermoFisher

Thermo Scientific Pierce Th S i tifi Pi
蛋 蛋白相互作用的研究方法和实践 实
罗 莎 Rosa Luo Ph.D. Application Scientist Biosciences Division Thermo Fisher Scientific China

酵母蛋白质相互作用图谱
Thick blue lines represent literature-derived interactions from PreBIND+MIPS in the HMS-PCI dataset. Thin orange lines represent potential novel interactions. Courtesy MDS Proteomics
2

蛋白质相互作用技术
Genetic Two Hybrid Phage Display Mutational analysis M t ti l l i Biochemical Immunoprecipitation (IP) Co-Immunoprecipitation (C IP) C I i it ti (Co-IP) Pull-Down Assays Far Western FRET (Fluorescence Resonance Energy Transfer) Chemical Crosslinking Label-transfer FeBABE F BABE mapping i Fluorescent Immunofluorescence colocalization
3

蛋白质与酶工程复习资料

第一章 1、蛋白质工程的产生: 1,最早的蛋白工程是福什特(Forsht)等在1982-1985年间对酪氨酰-t-RNA合成酶的分子改造工作。2,佩里(Perry)1984年通过将溶菌酶中Ile(3)改成Cys(3),并进一步氧化生成Cys(3)-Cys(97)二硫键,使酶热稳定性提高,显著改进了这种食品工业用酶的应用价值。3,1987年福什特通过将枯草杆菌蛋白酶分子表面的Asp(99)和Glu(156)改成Lys,而导致了活性中心His(64)质子pKa从7下降到6,使酶在pH=6时的活力提高10倍。 二,蛋白质工程的内容 1、定义:广义上来说,蛋白质工程是通过物理、化学、生物和基因重组等技术改造蛋白质或设计合成具有特定功能的新蛋白质。 2、内容:确定蛋白质的化学组成、空间结构与生物功能之间的关系。根据需要合成具有特定氨基酸序列和空间结构的蛋白质 三,蛋白质工程的程序 蛋白质分子设计基因改造方案基因成或突变 分离纯化蛋白质结构蛋白质分子基因克隆与表达 目的基因和功能测定 改造的蛋白质分子 四,酶工程的应用范围 (1)对生物宝库中存在天然酶的开发和生产; (2)自然酶的分离纯化及鉴定技术; (3)酶的固定化技术(酶和细胞固定化); (4)酶反应器的研制和应用; (5)与其他生物技术领域的交叉和渗透。 其中固定化酶技术是酶工程的核心。实际上有了酶的固定化技术,酶在工业生产中的利用价值才真正得以体现。 五,医用药物酶应用的问题:1)异体蛋白引起免疫反应;2)酶不纯,引起各种副作 3)酶在体内降解,时间短; 4)药物无法定向分布。 解决办法: 1) 制成微胶囊; 2) 制成衍生物;3) 制成脂质体包埋与免疫系统隔开(酶蛋白);4) 酶上引入一定基团,起导向作用。 五,分子酶学与酶工程 1、酶——由活细胞产生的具有催化功能的蛋白质(或其它类型的生物大分子),是生物体进行代谢、维持生命活动的必需物质,没有酶就没有生命,因此研究酶的结构与功能、性质与作用机理,对于阐明生命现象的本质具有重要意义。

检测蛋白质与蛋白质之间相互作用的实验技术

一、检测蛋白质与蛋白质相互作用 ① FRET技术(in vivo) FRET,Fluorescence resonance energy transfer,即荧光共振能量转移技术。该技术的原理是用一种波长的光激发某种荧光蛋白后,它释放的荧光刚好又能激发另一种荧光蛋白,使其释放另一波长的荧光,如下图所示: 以下图为例,若要利用FRET检测两种蛋白是否有相互作用,需将两种蛋白的基因分别与这两种荧光蛋白的基因融合,并在细胞内表达出两种融合蛋白。然后只需用紫外光对CFP进行激发,并检测GFP是否放出绿色荧光。如果能检测到绿色荧光,那么可以说明这两种蛋白可能有相互作用;反之,则是这两种蛋白没有相互作用。 ②酵母双、三杂交技术(in vivo) 酵母双杂交系统主要用于考察两种蛋白是否有相互作用,其原理是典型的真核生长转录因子,如GAL4、GCN4等都含有二个不同的结构域,即AD和BD。这些转录因子只有同时具有这两个结构域时才能起始转录。由此,设计不同的两个载体,一个含有AD基因(假设为A载体),另一个含有BD基因(假设为B载体)。 一般将一个已知蛋白的基因连在B载体上,作为诱饵(Bait),将未知蛋白的基因连在A载体上,将这两个载体都转到特定的酵母细胞内,看未知蛋白与已知蛋白是否有相互作用。如果两者有相互作用,那么就可以启动报告基因的转录,从而使这个酵母细胞能在选择培养基上显现出来或者生存下来;如果两者无相互作用,那么报告基因就无法表达,那么这个酵母细胞就无法在择培养基上显现出来或者生存下来,如下图所示:

由于酵母双杂交系统不能鉴定膜蛋白间的相互作用,因此又发展出了分离泛素酵母双杂交系统。该系统的原理如下图所示: 如图所示,将泛素蛋白拆分为两个片段,即C端段(Cub)和N端段(NubG),并在C端段的N端接上一个LexA-VP16转录因子,此时它并不能激活基因转录(因为它被限制在了C端段上,不能进入细胞核发挥作用)。 将该C端段连到一个膜蛋白上,将N端段连接到另一个膜蛋白上。若两个膜蛋白有相互作用,那么两个膜蛋白在相互靠近时会使泛素蛋白的N端段和C端段靠近结合,形成一个完整的泛素蛋白。此时泛素蛋白酶体会将这一段被泛素标记的片段降解,那么连接C端段的LexA-VP16转录因子掉落,即可进入细胞核启动标记基因的表达。 酵母三杂交的原理与双杂交一样,只是它研究的是两个蛋白和第三个成分间的相互作用,通过第三个成分使两个蛋白相互靠近。第三个成分可以是:蛋白、RNA或小分子,如下图所示: 如上图所示,在加入第三种成分前,蛋白X与蛋白Y之间并无直接相互作用,因此无法使BD和AD靠近,报告基因不能表达;当加入第三种成分后,蛋白X与蛋白Y的距离被拉近,BD和AD靠近,报告基因表达,从而可以被检测到。 ③ Pulldown技术(in vitro) Pulldown,即蛋白沉降技术,它是建立在蛋白质亲和层析的基础上的一种检测蛋白质间相互作用的分析方法。亲和层析的原理如下图所示,不同蛋白对配体的亲和程度不同,因此可以先将非特异结合的蛋白用低浓度缓冲液给清洗出去,只剩目的蛋白与层析柱结合,然后再用洗脱液将目的蛋白洗脱下来,达到纯化目的蛋白的作用。

蛋白质与酶工程选择与解答

一、选择题 1.下列不属于Prion蛋白特点的是(C) A.没有核酸 B.没有病毒形态 C.在120℃高温及2h高压下可灭活 D.病毒潜伏期长 2.蛋白质工程研究的核心内容是(A) A.蛋白质结构分析 B.蛋白质结构预测 C.改造蛋白质 D.创造新蛋白质 3.蛋白质工程的最终目的是(C) A.研究蛋白质的结构组成 B.创造新理论 C.生产具有新性能的蛋白质 D.研究蛋白质的氨基酸组成 4.蛋白质分子设计中“小改”是指(B) A.对来源于不同蛋白的结构域进行拼接组装 B.对已知结构的蛋白质进行少数几个残基的替换 C.完全从头设计全新的蛋白质 D.对蛋白质中的一个肽段进行替换 5.可用于蛋白质功能分析的方法是(D) A.X射线晶体衍射技术 B.圆二色谱法 C.显微技术 D.蛋白质芯片技术 6.以下那种方法,可以方便地在溶液中研究分子结构,并且是唯一可以使试样不经受任何破坏的结构分析方法?(B) A. X射线晶体衍射技术 B.核磁共振技术 C.圆二色谱法 D.电镜三维重构法 7.以下不属于根据分子大小不同进行蛋白质纯化的方法的是(D) A.超滤 B.透析 C.密度梯度离心 D.盐析 8.Western-Blotting是对(B)进行印迹分析的方法。 A.RNA B.单向电泳后的蛋白质分子 C.DNA D.双向电泳后的蛋白质分子 9.以下不属于酶的固定化方法中非化学结合法的是(A) A.交联法 B.结晶法 C.吸附法 D.离子结合法 10.最常用的交联剂是(A) A.戊二醛 B.聚乙二醇

C.异氰酸酯 D.双重氮联苯胺 11.世界上生产规模最大,应用最成功的固定化酶是(C) A.氨基酰酶 B.天冬酰胺酶 C.葡萄糖异构酶 D.胆固醇氧化酶 12.抗体酶是( A ) A、具有催化活性的抗体分子 B、具有催化活性的RNA分子 C、催化抗体水解的酶 D、催化抗体生成的酶 13.以天然蛋白质或酶为母体,用化学或生物学方法引进适当的活性部位或催化基团,或改变其结构而形成一种新的人工酶是(C) A.胶束酶 B.肽酶 C.半合成酶 D.抗体酶 14.制备游离酶可选用的酶反应器是(B) A.填充床反应器 B.喷射式反应器 C.连续搅拌罐反应器 D.流化床反应器 15.金属离子置换修饰是将( D)中的金属离子用另一种金属离子置。 A.酶液 B.反应介质 C.反应体系 D.酶分子 16.被称为“分子手术刀”和“分子针线”的酶分别是(A) A.限制性内切酶、DNA连接酶 B.DNA解旋酶、DNA连接酶 C.DNA聚合酶、限制性内切酶 D.DNA解旋酶、DNA聚合酶 17.当前生产酶制剂所需的酶主要的来自(C) A.动物组织和器官 B.植物组织和器官 C.微生物发酵 D.基因工程 18.溶菌酶的作用对象是(A) A.革兰氏阳性菌 B.酵母

相关文档
最新文档