随机过程知识点

随机过程知识点
随机过程知识点

随机过程知识点

标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

第一章:预备知识

§ 概率空间

随机试验,样本空间记为Ω。

定义 设Ω是一个集合,F 是Ω的某些子集组成的集合族。如果 (1)∈ΩF ;

(2)∈A 若 F ,∈Ω=A A \则F ; (3)若∈n A F , ,,21=n ,则 ∞

=∈1n n A F ;

则称F 为-σ代数(Borel 域)。(Ω,F)称为可测空间,F 中的元素称为事件。 由定义易知:

.

216\,,)5)4(1

1

1

F A A A i F A F B A F B A F i i n

i i n

i i i ∈=∈∈∈∈?∞

=== ,,则,,,)若(;

则若(;

定义 设(Ω,F)是可测空间,P(·)是定义在F 上的实值函数。如果

()()()()∑∞=∞==???? ???=?≠=Ω≤≤∈1

121,,,31210,)1(i i i i j i A P A P A A j i A A P A P F A 有时,当)对两两互不相容事件(;

)(;任意

则称P 是()F ,Ω上的概率,(P F ,,Ω)称为概率空间,P(A)为事件A 的概率。

定义 设(P F ,,Ω)是概率空间,F G ?,如果对任意

G A A A n ∈,,,21 , ,2,1=n 有: (),1

1∏===????

??n

i i n i i A P A P

则称G 为独立事件族。

§ 随机变量及其分布

随机变量X ,分布函数)(x F ,n 维随机变量或n 维随机向量,联合分布函数,

{}T t X t ∈,是独立的。

§随机变量的数字特征

定义 设随机变量X 的分布函数为)(x F ,若

?

-∞<)(||x dF x ,则称

)(X E =?∞

-)(x xdF

为X 的数学期望或均值。上式右边的积分称为Lebesgue-Stieltjes 积分。 方差,()()[]EY Y EX X E B XY --=为X 、Y 的协方差,而 DY

DX B XY

XY =ρ

为X 、Y 的相关系数。若,0=XY

ρ则称X 、Y 不相关。

(Schwarz 不等式)若,,22

∞<∞

().2

22

EY EX EXY ≤

§ 特征函数、母函数和拉氏变换

定义1. 10 设随机变量的分布函数为F (x ),称

()()(),

jtX

jtx g t E e

e dF x t ∞

-∞

=-∞<<∞?

为X 的特征函数

随机变量的特征函数具有下列性质: (1)(0)1,()1,()()g g t g t g t =≤-=1

( 2 ) g (t )在()∞∞-, 上一致连续。(3)()(0)()k k k g i E X =

(4)若12,,,n X X X 是相互独立的随机变量,则12n X X X X =+++的特征函数12()()()()n g t g t g t g t =,其中()i g t 是随机变量X i 的特征函数,1,2,,i n =.

定义1 . 11 设 12(,,,)n X X X X =是n 维随机变量,t = (12,,,n t t t ) ,R ∈ 则

121

()(,,

,)()[exp()]n

itX n k k k g t g t t t E e

E i t X '

====∑,

为X 的特征函数。

定义 设X 是非负整数值随机变量,分布列 () ,2,1,===k x X P p k k

则称

)()(X

def s E s P ==k k k s P ∑∞

=0

为X 的母函数。

§ n 维正态分布

定义 若n 维随机变量),,,(21n X X X X =的联合概率密度为

})()(21exp{)2(1),,,()(12/2

/21T

n n n a x B a x B x x x f x f ---==-π 式中,),,,(21n a a a a =是常向量,n n ij b B ?=)(是正定矩阵,则称X 为n 维正态随机变量或服从n 维正态分布,记作),(~B a N X 。

可以证明,若),(~B a N X ,则X 的特征函数为

}2

1

exp{),,,()(21t iB t ia t t t g t g n '-'==

为了应用的方便,下面,我们不加证明地给出常用的几个结论。 性质1 若),(~B a N X 则n l b B a X E kl X X k k l k ,,2,1,,)( ===。

性质2 设),(~B a N X ,XA Y =,若BA A '正定,则),(~BA A aA N Y '。即正态随机变量的线性变换仍为正态随机变量。

性质3 设),,,(4321X X X X X =是四维正态随机变量,4,3,2,1,0)(==k X E k ,则

)()()()()()()(3241423143214321X X E X X E X X E X X E X X E X X E X X X X E ++=

§ 条件期望

给定Y=y 时,X 的条件期望定义为

??===dx y x xf y x xdF y Y X E )|()|()|(

由此可见除了概率是关于事件{Y=y }的条件概率以外,现在的定义与无条件的情况完全一样。

E(X|Y=y)是y 的函数,y 是Y 的一个可能值。若在已知Y 的条件下,全面地考虑X 的均值,需要以Y 代替y ,E(X|Y)是随机变量Y 的函数,也是随机变量,称为 X 在 Y 下的条件期望。

条件期望在概率论、数理统计和随机过程中是一个十分重要的概念,下面我们介绍一个极其有用的性质。

性质 若随机变量X 与Y 的期望存在,则

?===)()|()]|([)(y dF y Y X E Y X E E X E Y --------(1) 如果Y 是离散型随机变量,则上式为

∑===y

y Y P y Y X E X E }{)|()(

如果Y 是连续型,具有概率密度f(x),则(1)式为

?+∞

-==dy y f y Y X E X E )()|()(

第二章 随机过程的概念与基本类型

§ 随机过程的基本概念

定义 设(P F ,,Ω)是概率空间,T 是给定的参数集,若对每个t ∈T ,有一个随机变量X (t ,e )与之对应,则称随机变量族}),,({T t e t X ∈是(P F ,,Ω)的随机过程,简记为随机过程}),({T t t X ∈。T 称为参数集,通常表示时间。

通常将随机过程}),,({T t e t X ∈解释为一个物理系统。X(t)表示在时刻t 所处的状态。X(t)的所有可能状态所构成的集合称为状态空间或相空间,记为I 。

从数学的观点来说,随机过程}),,({T t e t X ∈是定义在T ×Ω上的二元函数。对固定的t ,X (t ,e )是定义在T 上的普通函数,称为随机过程}),,({T t e t X ∈的一个样本函数或轨道,样本函数的全体称为样本函数的空间。

§ 随机过程的函数特征

t X ={X (t ),t ∈T }的有限维分布函数族。

有限维特征函数族:

}1,,,,:),,,({2121,,1≥∈=Φn T t t t g n n t t n θθθ 其中:

)})((ex p{),,,(121,,1k n

k k n t t t x i E g n ∑==θθθθ

定义 设t X ={X (t ),t ∈T }的均值函数def t m X )()]([t X E ,T t ∈。 二阶矩过程,协方差函数:T ,)]()([),()(2∈-=t t m t X E def t t B t D X X X 相关函数: =),(t s R X )]()([t X s X E

定义 设{X (t ),t ∈T },{Y (t ),t ∈T }是两个二阶矩过程,

互协方差函数,互相关函数。

§ 复随机过程

定义 设},{T t X t ∈,},{T t Y t ∈是取实数值的两个随机过程,若对任意T t ∈ t t t iY X Z +=,

其中 1-=i ,则称},{T t Z t ∈为复随机过程.

定理 复随机过程},{T t X t ∈的协方差函数 ),(t s B 具有性质

(1)对称性:),(),(s t B t s B =;

(2)非负定性

§ 几种重要的随机过程

一、正交增量过程

定义 设(){}T ∈X t t ,是零均值的二阶矩过程,若对任意的,4321T ∈<≤

()()[]()()[]03412=X -X X -X E t t t t ,

则称()t X 正交增量过程。

()()()()t s t s R t s ,min ,,2

X X X ==B σ

二、独立增量过程

定义 设(){}T ∈X t t ,是随机过程,若对任意的正整数n 和,21T ∈<<

定义 设(){}T ∈X t t ,是平稳独立增量过程,若对任意,t s <随机变量()()s t X -X 的分布仅依赖于s t -,则称(){}T ∈X t t ,是平稳独立增量过程。

三、马尔可夫过程

定义设(){}T t t X ∈,为随机过程,若对任意正整数n 及

n t t t << ,21,()()0,,)(1111>==--n n x t X x t X P ,且其条件分布

()(){}1111,,|)(--===n n n n x t X x t X x t X P =(){}11|)(--==n n n n x t X x t X P , 则称(){}T t t X ∈,为马尔可夫过程。

四、正态过程和维纳过程 定义 设(){}T t t X ∈,是随机过程,若对任意正整数n 和

T t t t ∈∈ ,,21,(()() ,,21t X t X ,()n t X )是n 维正态随机变量,则称(){}T t t X ∈,是正态过程或高斯过程。

定义 设{

}∞<<-∞t t W ),(为随机过程,如果 (1)0)0(=W ;

(2)它是独立、平稳增量过程;

(3)对t s ,?,增量()0,||,0~)()(22>--σσs t N s W t W ,则称{}∞<<-∞t t W ),(为维纳过程,也称布朗运动过程。

定理 设{

}∞<<-∞t t W ),(是参数为2σ的维纳过程,则 (1) 任意t ),(∞-∞∈,()||,0~)(2t N t W σ; (2) 对任意∞<<<∞-t s a ,,

[]),m in())()())(()((2a t a s a W t W a W s W E --=--σ, 特别: ()()t s t s Rw ,m in ,2σ=。

五、平稳过程

定义 设(){}T t t X ∈,是随机过程,如果对任意常数τ和正整数,n 当T ∈++T ∈ττn n t t t t ,,,,,11 时,()()()()n t t t X X X ,,21

与()()()()τττ+X +X +X n t t t ,,,21 有相同的联合分布,则称(){}T t t X ∈,为严平稳

过程,也称狭义平稳过程。

定义 设(){}T t t X ∈,是随机过程,如果 (1)(){}T t t X ∈,是二阶矩过程;

(2)对于任意()()[]=X E =T ∈X t t m t ,常数;

(3)对任意的()()s t R t s R t s -=T ∈X X ,,,,则称(){}T t t X ∈,为广义平稳过程,简称为平稳过程。

若T 为离散集,则称平稳过程(){}T t t X ∈,为平稳序列。

第三章 泊松过程

§3.1 泊松过程的定义和例子

定义 计数过程

定义 称计数过程}0),({≥t t X 为具有参数λ>0的泊松过程,若它满足下列条件

(1) X(0)= 0;

(2) X(t)是独立增量过程;

(3) 在任一长度为t 的区间中,事件A 发生的次数服从参数λt >0的泊松分布,即对任意s,t >0,有

)1.3(),2,1,0(,!

)(})()({ ===-+-n n t e

n s X t s X P n

t λλ 注意,从条件(3)知泊松过程是平稳增量过程且t t X E λ=)]([。由于,

t

t X E )]

([=λ表示单位时间内事件A 发生的平均个数,故称λ为此过程的速率或强度。

定义 称计数过程}0),({≥t t X 为具有参数λ>0的泊松过程,若它满足下列条件

(1) X(0)= 0;

(2) X(t)是独立、平稳增量过程;

(3) X(t) 满足下列两式:

)

(}2)()({),

(}1)()({h o t X h t X P h o h t X h t X P =≥-++==-+λ

定理 定义与定义是等价的。

泊松过程的基本性质

一、数字特征

设}0),({≥t t X 是泊松过程,

s

t m s m t s R t s B t s t X s X E t s R t

t X D t t

t X E t m X x X X X X X λλλλσλ=-=+======)()(),(),()

1())()((),())(()())(()(2

一般泊松过程的有),m in(),(t s t s B X λ=。

有特征函数定义,可得泊松过程的特征函数为

)}1(ex p{][)()(-==iu t iuX X e t e E u g λ

二、时间间隔与等待时间的分布

n W 为第n 次事件A 出现的时刻或第n 次事件A 的等待时间,n T 是第n 个时间间隔,它们都是随机变量。

定理 设}0),({≥t t X 是具有参数λ的泊松分布,)1(≥n T n 是对应的时间间隔序列,则随机变量),2,1( =n T n 是独立同分布的均值为λ/1的指数分布。

随机信号分析期末总复习提纲重点知识点归

第 一 章 1.1不考 条件部分不考 △雅柯比变换 (随机变量函数的变换 P34) △随机变量之间的“不相关、正交、独立” P51 (各自定义、相关系数定义 相互关系:两个随机变量相互独立必定互不相关,反之不一定成立 正交与不相关、独立没有明显关系 结合高斯情况) △随机变量的特征函数及基本性质 (一维的 P53 n 维的 P58) △ 多维高斯随机变量的概率密度和特征函数的矩阵形式、三点性质 P61 ( )()() () ( ) ()()2 2 1 () 2112 2 22 11 ,,exp 2 2exp ,,exp 22T T x m X X X X X n n X T T jU X X X X X n X M X M f x f x x U U u Q u j m Q u u E e jM U σπσμ---?? --??= = -????? ? ?? ?? ?? ??=-==- ?? ??? ????? ?? C C C u u r u u r u u r u u r u u r u u r L u r u r u u r u r L 另外一些性质: []()20XY XY X Y X C R m m D X E X m ??=-=-≥??

第二章 随机过程的时域分析 1、随机过程的定义 从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ?→→∞的推广 2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系? 3、随机过程的概率密度P7 4、特征函数P81。(连续、离散) 一维概率密度、一维特征函数 二元函数 4、随机过程的期望、方差、自相关函数。(连续、离散) 5、严平稳、宽平稳的定义 P83 6、平稳随机过程自相关函数的性质: 0点值,偶函数,周期函数(周期分量),均值 7、自相关系数、相关时间的定义 P88 2 2 2() ()()()()(0)()X X X X X X X X X X C R m R R R R τττρτσ σ--∞= = -∞= 非周期 相关时间用此定义(00()d τρττ∞ =?) 8、两个随机过程之间的“正交”、“不相关”、“独立”。 (P92 同一时刻、不同时刻) 9、两个随机过程联合平稳的要求、性质。P92

随机过程期末题

2011 1.(8分)设随机过程X 具有概率分布: X 0 1 2 Pk 1/2 1/3 1/6 试求其特征函数)(t g x 。 2.(8分)设随机变量X 的特征函数为it t g x -= 11)(,试求X 的数学期望E(X)和 方差D(X)。 3.(8分)设迷宫中某处有三个出口。若选择路口1,则3小时可走出迷宫;若选择路口2,则5小时后又回到原处;若选择路口3,则7小时后又回到原处;并设每次选择各个路口的概率是等可能的。求走出迷宫所需时间的期望值。 4.(8分)设},2,1,{ =i X i 是一独立随机变量序列,且有相同的两点分布 i X 0 1 i p 1/3 2/3 令∑== n i i n X Y 1 ;试求随机过程},2,1,{ =n Y n 的均值函数和相关函数。 5.(8分)设}0),({≥t t X 是一参数为λ的泊松过程,若t s <<0,对n k <<0,求 })(|)({n t X k s X P == 6.(10分)设齐次马氏链},2,1,{ =n X n 的状态空间为}4,3,2,1{=I ,其初始分布和转移概率矩阵为: 4 ,3,2,1,4/1}{0====i i X P p i ??? ? ?? ? ? ?= 4/14 /14 /14/18/34/18/14/14/14/14/14/14/14/14/14/1P 试求}41,1|4{103<<==X X X P 7.(10分)设有随机相位过程ωω,),cos()(a t a t X Θ+=为常数,Θ为)2,0(π上服从均匀分布的随机变量。试证明随机过程)(t X 为各态历经过程。 8.(10分)一质点在1,2,3点上做随机游动。若在时刻t 质点位于这三点之一,

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X,分布函数F(x)P(X x) 离散型随机变量X的概率分布用分布列p k P(X x)分布函数F(x)p k k 连续型随机变量X的概率分布用概率密度f(x)分布函数 x F(x)f(t)dt 2.n维随机变量X(X1,X2,,X n) 其联合分布函数()(1,x,,x n)P(X x,X x,,X n x n,) F x F x 21122 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X E X x k p连续型随机变量X EX xf(x)dx k 方差:2() 2 2 DX E(X EX)EX EX反映随机变量取值的离散程度 协方差(两个随机变量X,Y):B XY E[(X EX)(Y EY)]E(XY)EX EY 相关系数(两个随机变量X,Y): B XY XY若0,则称X,Y不相关。 DX DY 独立不相关0 itX 4.特征函数g(t)E(e)离散g(t)e连续g(t)e f x dx itx p itx() k k 重要性质:g(0)1,g(t)1,g(t)g(t),k i k EX g(0) k 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布P(X1)p,P(X0)q EX p DX pq 二项分布k k n k P(X k)C n p q EX np DX n p q k 泊松分布P(X k)e EX DX均匀分布略 k!

2正态分布N(a,) 2 (x a) 1 2 f(x)e EX a 2 2 D X2

指数分布f(x) e 0, x1 ,x0 EX x0 DX 1 2 6.N维正态随机变量(X1,X,,X n) X的联合概率密度X~N(a,B) 2 f( 11 T1 x1,x,,x)exp{(x a)B(x a)} 2n n1 2 22 (2)|B| a(a1,a2,,a n),x(x1,x2,,x n),B(b ij)n n正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设 (,P)是概率空间,T是给定的参数集,若对每个t T,都有一个随机变量X与之对应, 则称随机变量族X(t,e),t T是(,P)上的随机过程。简记为X(t),t T。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规 律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当 t固定时,X(t,e)是随机变量。当e固定时,X(t,e)时普通函数,称为随机过程的一个样本 函数或轨道。 分类:根据参数集T和状态空间I是否可列,分四类。也可以根据X(t)之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳 过程等 。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程X(t),t T的一维分布,二维分布,?,n维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征 的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些 统计特征 来取代。 (1)均值函数 m X(t)EX(t)表示随机过程X(t),t T在时刻t的平均值。 (2)方差函数2 D X(t)E[X(t)m X(t)]表示随机过程在时刻t对均值的偏离程度。 (3)协方差函数B X (s,t)E[(X( E[X s) (s) m ( s ) ) (t) (s) m X m X (t) (t))] 且有 B(t,t)D(t) X X

理论力学期末考试试题.pdf

理论力学期末考试试题 1-1、自重为P=100kN的T字形钢架ABD,置于铅垂面内,载荷如图所示。其中转矩M=,拉力F=400kN,分布力q=20kN/m,长度l=1m。试求固定端A的约束力。 解:取T型刚架为受力对象,画受力图. 1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA上的气动力按梯形分布: q=60kN/m,2q=40kN/m,机翼重1p=45kN,发动机重2p=20kN,发动机螺旋桨的反作用力1 偶矩M=。求机翼处于平衡状态时,机翼根部固定端O所受的力。 解:

1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=,各尺寸如图。求固定端A处及支座C的约束力。

1-4 已知:如图所示结构,a, M=Fa, F F F, 求:A,D处约束力. 12 解: 1-5、平面桁架受力如图所示。ABC为等边三角形,且AD=DB。求杆CD的内力。

1-6、如图所示的平面桁架,A端采用铰链约束,B端采用滚动支座约束,各杆件长度为1m。在节点E和G上分别作用载荷 F=10kN,G F=7 kN。试计算杆1、2和3的内力。 E 解:

2-1 图示空间力系由6根桁架构成。在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45o角。ΔEAK=ΔFBM。等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,。若F=10kN,求各杆的内力。 又EC=CK=FD=DM

2-2 杆系由铰链连接,位于正方形的边和对角线上,如图所示。在节点D沿对角线LD方向作用力D F。在节点C沿CH边铅直向下作用力F。如铰链B,L和H是固定的,杆重不计,求各杆的内力。

随机过程知识点汇总

第一章 随机过程得基本概念与基本类型 一.随机变量及其分布 1.随机变量, 分布函数 离散型随机变量得概率分布用分布列 分布函数 连续型随机变量得概率分布用概率密度 分布函数 2.n 维随机变量 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量得数字特征 数学期望:离散型随机变量 连续型随机变量 方差: 反映随机变量取值得离散程度 协方差(两个随机变量): 相关系数(两个随机变量): 若,则称不相关。 独立不相关 4.特征函数 离散 连续 重要性质:,,, 5.常见随机变量得分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布 均匀分布略 正态分布 指数分布 6.N维正态随机变量得联合概率密度 )}()(2 1ex p{||)2(1 ),,,(121221a x B a x B x x x f T n n ---=-π ,,正定协方差阵 二.随机过程得基本概念 1.随机过程得一般定义 设就是概率空间,就是给定得参数集,若对每个,都有一个随机变量与之对应,则称随机变量族就是上得随机过程。简记为。 含义:随机过程就是随机现象得变化过程,用一族随机变量才能刻画出这种随机现象得全部统计规律性。另一方面,它就是某种随机实验得结果,而实验出现得样本函数就是随机得。 当固定时,就是随机变量。当固定时,时普通函数,称为随机过程得一个样本函数或轨道。 分类:根据参数集与状态空间就是否可列,分四类。 也可以根据之间得概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程得分布律与数字特征 用有限维分布函数族来刻划随机过程得统计规律性。随机过程得一维分布,二维分布,…,维分布得全体称为有限维分布函数族。随机过程得有限维分布函数族就是随机过程概率特征得完整描述。在实际中,要知道随机过程得全部有限维分布函数族就是不可能得,因此用某些统计特征来取代。 (1)均值函数 表示随机过程在时刻得平均值。

期末随机过程试题及标准答案

《随机过程期末考试卷》 1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) 1.设A,B,C 为三个随机事件,证明条件概率的乘法公式: P(BC A)=P(B A)P(C AB)。 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

《理论力学》期末考试试题(A)

A 卷 第 1页 蚌埠学院2013—2014学年第一学期 《理论力学Ⅱ》期末考试试题(A ) 注意事项:1、适用班级:2012级土木工程班、2012级水利水电班、2012级车辆工 程班 2、本试卷共2页。满分100分。 3、考试时间120分钟。 4、考试方式:“闭卷” 一、判断题(每小题2分,共20分) ( )1.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线 相同,大小相等,方向相反。 ( )2.已知质点的质量和作用于质点的力,质点的运动规律就完全确定。 ( )3.质点系中各质点都处于静止时,质点系的动量为零。于是可知如果质点系的动 量为零,则质点系中各质点必都静止。 ( )4.刚体在3个力的作用下平衡,这3个力不一定在同一个平面内。 ( )5.用解析法求平面汇交力系的平衡问题时,所建立的坐标系x ,y 轴一定要相互 垂直。 ( )6.一空间任意力系,若各力的作用线均平行于某一固定平面,则其独立的平衡方 程最多只有3个。 ( )7.刚体的平移运动一定不是刚体的平面运动。 ( )8.说到角速度,角加速度,可以对点而言。 ( )9.两自由运动质点,其微分方程完全相同,但其运动规律不一定相同。 ( )10.质点系总动量的方向就是质点系所受外力主矢的方向。 二、选择题(每小题2分,共10分) 1.若平面力系对一点A 的主矩等于零,则此力系 。 A.不可能合成为一个力 B.不可能合成为一个力偶 C.一定平衡 D.可能合成为一个力偶,也可能平衡 2.刚体在四个力的作用下处于平衡,若其中三个力的作用线汇交于一点,则第四个力的作用线 。 A.一定通过汇交点 B.不一定通过汇交点 C.一定不通过汇交点 D.可能通过汇交点,也可能不通过汇交点 3.加减平衡力系公理适用于 。 A.变形体 B.刚体 C.刚体系统 D.任何物体或物体系统 4.在点的复合运动中,牵连速度是指 。 A.动系原点的速度 B.动系上观察者的速度 C.动系上与动点瞬时相重合的那一点的速度 D.动系质心的速度 5.设有质量相等的两物体A 和B ,在同一段时间内,A 作水平移动,B 作铅直移动,则 两物体的重力在这段时间里的冲量 。 A.不同 B.相同 C.A 物体重力的冲量大 D.B 物体重力的冲量大 三、计算题(每小题14分,共70分) 1.质量为 100kg 的球,用绳悬挂在墙壁上如图所示。平衡时绳与墙壁间夹角为 30°,求墙壁反力和绳的张力 2.某三角拱,左右两个半拱在C 由铰链连接,约束和载荷如图所示,如果忽略拱的重量,求支座A 和B 的约束反力。 装 订 线 内 不 要 答 题

通信原理知识点归纳

1.2.1 通信系统的一般模型 1.2.3 数字通信的特点 (1) 抗干扰能力强,且噪声不积累 (2) 传输差错可控 (3) 便于处理、变换、存储,将来自不同信源的信号综合到一起传输 (4) 易于集成,使通信设备微型化,重量轻 (5) 易于加密处理,且保密性好 1.3.1 通信系统的分类 按调制方式分类:基带传输系统和带通(调制)传输系统 。调制传输系统又分为多种 调制,详见书中表1-1。 按信号特征分类:模拟通信系统和数字通信系统 按传输媒介分类:有线通信系统和无线通信系统 3.1.2 随机过程的数字特征 均值(数学期望): 方差: 相关函数 3.2.1 平稳随机过程的定义 (1)其均值与t 无关,为常数a ; (2)自相关函数只与时间间隔τ 有关。 把同时满足(1)和(2)的过程定义为广义平稳随机过程。 3.2.2 各态历经性 如果平稳过程使下式成立 则称该平稳过程具有各态历经性。 3.2.4 平稳过程的功率谱密度 非周期的功率型确知信号的自相关函数与其功率谱密度是一对傅里叶变换。这种关系对平稳随机过程同样成立,即有 []∫∞∞?=dx t x xf t E ),()(1ξ} {2)]()([)]([t a t E t D ?=ξξ2121212212121),;,()] ()([),(dx dx t t x x f x x t t E t t R ∫∫ ∞∞?∞∞?==ξξ???==)()(τR R a a ∫∫ ∞ ∞?∞∞??==ω ωπτττωωτξωτξd e P R d e R P j j )(21)()()(

3.3.2 重要性质 广义平稳的高斯过程也是严平稳的。 高斯过程经过线性变换后生成的过程仍是高斯过程。 3.3.3 高斯随机变量 (1)f (x )对称于直线 x = a ,即 (2) 3.4 平稳随机过程通过线性系统 输出过程ξo (t )的均值: 输出过程ξo (t )的自相关函数: 输出过程ξo (t )的功率谱密度: 若线性系统的输入是平稳的,则输出也是平稳的。 如果线性系统的输入过程是高斯型的,则系统的输出过程也是高斯型的。 3.5 窄带随机过程 若随机过程ξ(t )的谱密度集中在中心频率f c 附近相对窄的频带范围Δf 内,即满足Δf << f c 的条件,且 f c 远离零频率,则称该ξ(t )为窄带随机过程。 3.7 高斯白噪声和带限白噪声 白噪声n (t ) 定义:功率谱密度在所有频率上均为常数的噪声 - 双边功率谱密度 - 单边功率谱密度 4.1 无线信道 电磁波的分类: 地波:频率 < 2 MHz ;距离:数百或数千千米 天波:频率:2 ~ 30 MHz ;一次反射距离:< 4000 km 视线传播:频率 > 30 MHz ;距离: 4.3.2 编码信道模型 P(0 / 0)和P(1 / 1) - 正确转移概率,P(1/ 0)和P(0 / 1) - 错误转移概率 P (0 / 0) = 1 – P (1 / 0) P (1 / 1) = 1 – P (0 / 1) 2)(0 n f P n =)(+∞<

随机过程知识点

第一章:预备知识 §1、1 概率空间 随机试验,样本空间记为Ω。 定义1、1 设Ω就是一个集合,F 就是Ω的某些子集组成的集合族。如果 (1)∈ΩF; (2)∈A 若F ,∈Ω=A A \则F; (3)若∈n A F , ,,21=n ,则 ∞=∈1n n A F; 则称F 为-σ代数(Borel 域)。(Ω,F )称为可测空间,F 中的元素称为事件。 由定义易知: . 216\,,)5)4(111F A A A i F A F B A F B A F i i n i i n i i i ∈=∈∈∈∈?∞ === ,,则,,,)若(; 则若(; 定义1、2 设(Ω,F )就是可测空间,P(·)就是定义在F 上的实值函数。如果 ()()()()∑∞ =∞==???? ???=?≠=Ω≤≤∈1121,,,31210,)1(i i i i j i A P A P A A j i A A P A P F A 有 时,当)对两两互不相容事件(; )(; 任意 则称P 就是()F ,Ω上的概率,(P F ,,Ω)称为概率空间,P(A)为事件A 的概率。 定义1、3 设(P F ,,Ω)就是概率空间,F G ?,如果对任意 G A A A n ∈,,,21 , ,2,1=n 有: (),1 1∏===???? ??n i i n i i A P A P 则称G 为独立事件族。 §1、2 随机变量及其分布 随机变量X ,分布函数)(x F ,n 维随机变量或n 维随机向量,联合分布函 数,{}T t X t ∈,就是独立的。 §1、3随机变量的数字特征 定义1、7 设随机变量X 的分布函数为)(x F ,若?∞ ∞-∞<)(||x dF x ,则称 )(X E =?∞ ∞-)(x xdF 为X 的数学期望或均值。上式右边的积分称为Lebesgue-Stieltjes 积分。 方差,()()[]EY Y EX X E B XY --=为X 、Y 的协方差,而 DY DX B XY XY = ρ 为X 、Y 的相关系数。若,0=XY ρ则称X 、Y 不相关。 (Schwarz 不等式)若,,22∞<∞

理论力学期末考试试卷(含答案)B

工程力学(Ⅱ)期终考试卷(A ) 专业 姓名 学号 题号 一 二 三 四 五 六 总分 题分 25 15 15 20 10 15 100 得分 一、填空题(每题5分,共25分) 1. 杆AB 绕A 轴以=5t ( 以rad 计,t 以s 计) 的规律转动,其上一小环M 将杆AB 和半径为 R (以m 计)的固定大圆环连在一起,若以O 1 为原点,逆时针为正向,则用自然法 表示的点M 的运动方程为_Rt R s 102 π+= 。 2. 平面机构如图所示。已知AB //O 1O 2,且 AB =O 1O 2=L ,AO 1=BO 2=r ,ABCD 是矩形板, AD =BC =b ,AO 1杆以匀角速度绕O 1轴转动, 则矩形板重心C '点的速度和加速度的大小分别 为v =_ r _,a =_ r 。 并在图上标出它们的方向。

3. 两全同的三棱柱,倾角为,静止地置于 光滑的水平地面上,将质量相等的圆盘与滑块分 别置于两三棱柱斜面上的A 处,皆从静止释放, 且圆盘为纯滚动,都由三棱柱的A 处运动到B 处, 则此两种情况下两个三棱柱的水平位移 ___相等;_____(填写相等或不相等), 因为_两个系统在水平方向质心位置守恒 。 4. 已知偏心轮为均质圆盘,质心在C 点,质量 为m ,半径为R ,偏心距2 R OC =。转动的角速度为, 角加速度为 ,若将惯性力系向O 点简化,则惯性 力系的主矢为_____ me ,me 2 ;____; 惯性力系的主矩为__2 )2(22α e R m +__。各矢量应在图中标出。 5.质量为m 的物块,用二根刚性系数分别为k 1和k 2 的弹簧连接,不计阻尼,则系统的固有频率 为_______________,若物体受到干扰力F =H sin (ωt ) 的作用,则系统受迫振动的频率为______________ 在____________条件下,系统将发生共振。 二、计算题(本题15分)

2017 2018期末随机过程试题及答案

《随机过程期末考试卷》 1 ?设随机变量X服从参数为■的泊松分布,则X的特征函数为 ___________ 。 2?设随机过程X(t)二Acos(「t+「),-::vt<::其中「为正常数,A和门是相互独立的随机变量,且A和“服从在区间10,1 1上的均匀分布,则X(t)的数学期望为。 3?强度为入的泊松过程的点间间距是相互独立的随机变量,且服从均值为_ 的同一指数分布。 4?设「W n ,n 一1是与泊松过程:X(t),t - 0?对应的一个等待时间序列,则W n服从分布。5?袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回, r 对每一个确定的t对应随机变量x(t)=」3’如果t时取得红球,则这个随机过 e t, 如果t时取得白球 程的状态空间__________ 。 6 ?设马氏链的一步转移概率矩阵P=(p j),n步转移矩阵P(n)=8(;)),二者之间的关系为。 7?设汉.,n -0?为马氏链,状态空间I,初始概率P i二P(X。二i),绝对概率 P j(n)二P^X n二j?,n步转移概率p j n),三者之间的关系为_____________ 。 8 .设{X(t),t 一0}是泊松过程,且对于任意t2t^ 0则 P{X ⑸= 6|X (3) = 4} = _______ t 9?更新方程K t二H t ? .°K t-s dF s解的一般形式为__________________ 。10?记二-EX n,对一切a 一0,当t—一:时,M t+a -M t > ____________ 3.设]X n,n — 0?为马尔科夫链,状态空间为I,则对任意整数n—0,仁I

理论力学 期末考试试题 A卷

理论力学 期末考试试题 A 卷 1-1、自重为P=100kN 的T 字形钢架ABD,置于铅垂面内,载荷如图所示。其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m 。试求固定端A 的约束力。 解:取T 型刚架为受力对象,画受力图. 1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA 上的气动力按梯形分布: 1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作 用力偶矩M=18kN.m 。求机翼处于平衡状态时,机翼根部固定端O 所受的力。 解:

1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸如图。求固定端A处及支座C的约束力。

1-4 已知:如图所示结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束力. 解: 1-5、平面桁架受力如图所示。ABC 为等边三角形,且AD=DB 。求杆CD 的内力。

1-6、如图所示的平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。在节点E 和G 上分别作用载荷E F =10kN ,G F =7 kN 。试计算杆1、2和3的内力。 解:

2-1 图示空间力系由6根桁架构成。在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45o角。ΔEAK=ΔFBM。等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=DM。若F=10kN,求各杆的内力。

随机过程期末试题答案A卷(10年12月)

一.填空题(每空2分,共20分) 1.设随机变量X~U(a,b),则X 的特征函数为 itb ita e e i(b-a)t -。 2.设随机过程X(t)=Asint,-0,且 12P ()= 3 ω,21P ()= 3 ω,则这个随机过程的状态空间I=[]a,a -。 6.马氏链{}n X ,n 0≥,状态空间I ,记初始概率i 0p P(X =i)=,绝对概率j n p (n )P(X =j)=,n 步 转移概率(n) ij p ,则j p (n )= (n)i ij i I p p ∈∑ 7.设{} n X ,n 0≥为马氏链,状态空间I ,记初始概率i 0p P(X =i)=,一步转移概率{}ij n+1n p p X j X i ===,则{}0011n n P X =i ,X =i ,,X i == 00112n-1n i i i i i i i p p p p 8.在马氏链{}n X ,n 0≥中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=≠≤≤==≥ (n) ij ij n=1 f f ∞ = ∑,若ii f 1=,称状态i 为_常返____________。 9.遍历状态的定义为不可约非周期的正常返状态。 10.如果状态j 非常返或零常返,则(n) ij n lim p →∞ =__0_____,i I ?∈。 二.证明题(每题6分,共24分) 1.概率空间(,,P)ΩF ,事件序列{}n E ,n 1≥单调,证明:n n n n lim P(E )=P(lim E )→∞ →∞ 。 证明:不妨设{}n E ,n 1≥单调增加,则n n n n=1 lim E E ∞ →∞ =?,令11F =E ,n n n-1F =E E -(n 2≥),

随机过程知识点汇总

随机过程知识点汇总

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 ) (k k x X P p == 分 布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞ -=x dt t f x F )()( 2.n 维随机变量) ,,,(2 1 n X X X X Λ= 其联合分布函数) ,,,,(),,,()(2211 2 1 n n n x X x X x X P x x x F x F ≤≤≤==ΛΛ 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随 机变量X ?∞ ∞-=dx x xf EX )( 方差:2 22 )() (EX EX EX X E DX -=-= 反映随机变量取值的 离散程度 协方差(两个随机变量Y X ,): EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,): DY DX B XY XY ?= ρ 若 0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ

4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞ -=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ =EX λ =DX 均匀分布 略 正态分布),(2 σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2 σ=DX 指数分布 ?? ?<≥=-0, 00,)(x x e x f x λλ λ 1 = EX 2 1 λ = DX 6.N维正态随机变量) ,,,(2 1 n X X X X Λ=的联合概率密度 ),(~B a N X )} ()(2 1 ex p{| |)2(1),,,(12 12 21a x B a x B x x x f T n n ---= -πΛ ) ,,,(21n a a a a Λ=,),,,(2 1 n x x x x Λ=,n n ij b B ?=)(正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设) , (P Ω是概率空间,T 是给定的参数集,若对每 个T t ∈,都有一个随机变量X 与之对应,则称随机变量

(完整版)应用随机过程期末复习资料

第一章 随机过程的基本概念 一、随机过程的定义 例1:医院登记新生儿性别,0表示男,1表示女,X n 表示第n 次登记的数字,得到一个序列X 1 , X 2 , ···,记为{X n ,n=1,2, ···},则X n 是随机变量,而{X n ,n=1,2, ···}是随机过程。 例2:在地震预报中,若每半年统计一次发生在某区域的地震的最大震级。令X n 表示第n 次统计所得的值,则X n 是随机变量。为了预测该区域未来地震的强度,我们就要研究随机过程{X n ,n=1,2, ···}的统计规律性。 例3:一个醉汉在路上行走,以概率p 前进一步,以概率1-p 后退一步(假设步长相同)。以X(t)记他t 时刻在路上的位置,则{X(t), t ≥0}就是(直线上的)随机游动。 例4:乘客到火车站买票,当所有售票窗口都在忙碌时,来到的乘客就要排队等候。乘客的到来和每个乘客所需的服务时间都是随机的,所以如果用X(t)表示t 时刻的队长,用Y(t)表示t 时刻到来的顾客所需等待的时间,则{X(t), t ∈T}和{Y(t), t ∈T}都是随机过程。 定义:设给定参数集合T ,若对每个t ∈T, X(t)是概率空间),,(P ?Ω上的随机变量,则称{X(t), t ∈T}为随机过程,其中T 为指标集或参数集。 E X t →Ω:)(ω,E 称为状态空间,即X(t)的所有可能状态构成的集合。 例1:E 为{0,1} 例2:E 为[0, 10] 例3:E 为},2,2,1,1,0{Λ-- 例4:E 都为), 0[∞+ 注:(1)根据状态空间E 的不同,过程可分为连续状态和离散状态,例1,例3为离散状态,其他为连续状态。 (2)参数集T 通常代表时间,当T 取R, R +, [a,b]时,称{X(t), t ∈T}为连续参数的随机过程;当T 取Z, Z +时,称{X(t), t ∈T}为离散参数的随机过程。 (3)例1为离散状态离散参数的随机过程,例2为连续状态离散参数的随机过程,例3为离散状态连续参数的随机过程,例4为连续状态连续参数的随机过程。 二、有限维分布与Kolmogorov 定理 随机过程的一维分布:})({),(x t X P x t F ≤= 随 机 过 程 的 二 维 分 布 : T t t x t X x t X P x x F t t ∈≤≤=21221121,,},)(,)({),(21 M

(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布 X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x) p k f (t)dt 分布函数 k x X 的概率分布用概率密度 f (x) F(x) 分布函数 连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,) 其联合分布函数 1 2 n 1 1 2 离散型 联合分布列 连续型联合概率密度 3.随机变量 的数字特征 数学期望:离散型随机变量 X EX x p k k X EX xf (x)dx 连续型随机变量 2 DX E(X EX) 2 EX (EX) 2 方差: 反映随机变量取值 的离散程度 协方差(两个随机变量 X ,Y ): B E[( X EX)(Y EY)] E(XY) EX EY XY B XY 相关系数(两个随机变量 X,Y ): 0,则称 X ,Y 不相关。 若 XY DX DY 独立 不相关 itX g(t) E(e ) itx e p k 连续 g(t) k e itx f (x)dx 4.特征函数 离散 g(t) 重要性质: g(0) 1, g(t) 1 g( t) g(t) , , g (0) i EX k k k 5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布 P( X 1) p,P( X 0) q EX p DX pq P(X k) C p q n k k k EX np DX n p q n k 泊松分布 P( X k) e k! EX DX 均匀分布略 ( x a)2 1 2 N(a, ) f (x) 2 2 2 EX a 正态分布 e DX 2

《理论力学》期末考试试卷A

D 《理论力学》期末考试试题A 卷 一、选择题(本题共12分,每小题3分,请将答案的序号填入括号) 1. 物块重P ,与水面的摩擦角o 20m ?=,其上作用一力Q ,且已知P =Q ,方向如图,则物块的状态为( C )。 A 滑动状态 B 临界平衡状态 C 静止(非临界平衡)状态 D 不能确定 2. 一个平面任意力系加一个平行于此平面力系所在平面的平行力系组成的空间力系的独立平衡方程数目为( B )。 A 3个 B 4个 C 5个 D 6个 3. 图示偏心轮顶杆机构中,轮心为C ,ω=常量。选杆端A 为动点,在C 点固连平移系(动系), 则牵连速度和牵连加速度的方向分别为( B )。 A 垂直于AO ,沿AO 方向 B 垂直于CO ,沿CO 方向 C 沿AO 方向,垂直于AO D A 点切线方向,沿AC 方向 4、正方形薄板由铰链支座A 支承,并由挡板B 限制,使AB 边呈铅垂位置,如图所示。若将挡板B 突然撤去,则在该瞬时支座A 的反力的铅垂分量的大小将( C )。 A 不变 B 变大 C 变小 D 无法确定

二、填空题(本题共26分,请将答案填入括号) 1(本小题4分). 如图所示,沿长方体不相交且不平行的棱上作用三个大小等于F 的力。问棱长a ,b ,c 满足( 0c b a --= )关系时,该力系能简化为一个力。 2(本小题4分). 正方形板ABCD 以匀角速度ω绕固定轴z 转动,点1M 和点2M 分别沿对角线BD 和边线CD 运动,在图示位置时相对板的速度分别为1v 和1v ,则点1M 和点2M 科氏加速度大小分别为( 12v ω )和( 0 )。 y x z O c b a 3 F 2 F 1 F

随机过程知识点总结

第一章: 考试范围1.3,1.4 1、计算指数分布的矩母函数. 2、计算标准正态分布)1,0(~N X 的矩母函数. 3、计算标准正态分布)1,0(~N X 的特征函数. 第二章: 1. 随机过程的均值函数、协方差函数与自相关函数 2. 宽平稳过程、均值遍历性的定义及定理 3. 独立增量过程、平稳增量过程,独立增量是平稳增量的充要条件 1、设随机过程()Z t X Yt =+,t -∞<<∞.若已知二维随机变量(,)X Y 的协方差矩阵为2122σρρσ?????? ,求()Z t 的协方差函数. 2、设有随机过程{(),}X t t T ∈和常数a ,()()()Y t X t a X t =+-,t T ∈,计算()Y t 的自相关函数(用(,)X R s t 表示). 3、设12()cos sin X t Z t Z t λλ=+,其中212,~(0,)Z Z N σ是独立同分布的随机变量,λ为实数,证明()X t 是宽平稳过程. 4、设有随机过程()sin cos Z t X t Y t =+,其中X 和Y 是相互独立的随机变量,它们都分别以0.5和0.5的概率取值-1和1,证明()Z t 是宽平稳过程. 第三章: 1. 泊松过程的定义(定义3.1.2)及相关概率计算 2. 与泊松过程相联系的若干分布及其概率计算 3. 复合泊松过程和条件泊松过程的定义 1、设{(),0}N t t ≥是参数3λ=的Poisson 过程,计算: (1). {(1)3}P N ≤; (2). {(1)1,(3)3}P N N ==; (3). {(1)2(1)1}P N N ≥≥. 2、某商场为调查顾客到来的客源情况,考察了男女顾客来商场的人数. 假设男女顾客来商场的人数分别独立地服从每分钟2人与每分钟3人的泊松过程. (1).试求到某时刻t 时到达商场的总人数的分布;

理论力学期末考试题20121

大 连 理 工 大 学 课程名称: 理论力学 试卷:A 考试形式:闭卷 授课院系: 力学系 考试日期:2012年1月5日 试卷共6页 一、简答题,写出求解过程。 (共25分, 每题5分) 1.(5分)求图示平面桁架各杆内力。 2.(5分)均质圆轮A 与均质杆AB 质量均为m ,在A 点铰接,杆AB 长为4R ,轮A 的半径为 R ,在斜面上作纯滚动。系统由静止开始运动,初始瞬时轮心A 的加速度为a ,杆的角加速度为 ,试利用达朗贝尔原理求系统的惯性力并画在图上。 装 订 线 题一.1图 题一.2图

3.(5分)如图所示构件中,均质圆环圆心为O ,半径为r ,质量为2m ,其上 焊接钢杆OA ,杆长为r ,质量为m 。构件质心C 点距圆心O 的距离为4 r ,求 此构件对过质心C 与圆环面垂直轴的转动惯量C J 。 4.(5分)曲柄滑道机构如图所示,已知圆轮半径为r ,绕O 轴匀速转动,角速度为ω,圆轮边缘有一固定销子C ,可在滑槽中滑动,带动滑槽DAB 沿水平滑道运动,初始瞬时OC 在水平线上,求滑槽DAB 的运动方程、速度方程和加速度方程。 5.(5分)杆CD 与轮C 在轮心处铰接,在D 端施加水平力F ,杆AB 可绕A 轴转动,杆AB 与C 轮接触处有足够大的摩擦使之不打滑,轮C 的半径为r , 在杆AB 上施加矩为M 的力偶使系统在图示位置处于平衡。设力F 为已知,利用虚位移原理求力偶矩M 的大小。 A A 题一.3图 题一.4图 题一.5图

二.(15分)图示正圆锥体底面半径为r ,高为h ,可绕其中心铅垂轴z 自由转动,转动惯量为J z 。当它处于静止状态时,一质量为m 的小球自圆锥顶A 无初速度地沿此圆锥表面的光滑螺旋槽滑下。滑至锥底B 点时,小球沿水平切线方向脱离锥体。一切摩擦均可忽略。求刚脱离瞬时,小球的速度v 和锥体的角速度ω。 三.(15分)长度均为2l 的两直杆AB 和CD ,在中点E 以铰链连接,使两杆互成直角。两杆的A 、C 端各用球铰链固结在铅垂墙上,并用绳子BF 吊住B 端,使两杆维持在水平位置,如图所示。F 和C 点的连线沿铅垂方向,绳子的倾角 45=∠FBC 。在D 端挂一物体重N 250=P ,杆重不计,求绳的张力及支座A 、C 的约束反力。 装 订 线 y

相关文档
最新文档