塑胶性能与注塑工艺

塑胶性能与注塑工艺
塑胶性能与注塑工艺

PE工程培训资料(之一)

玩具产品常用塑料的性能及其啤塑工艺的了解

★常用(热塑性)塑料主要有以下几种:

1.聚苯乙烯(PS)及改良性聚苯乙烯(HIPS) 等

2.丙烯晴---丁二烯---苯乙烯聚合物(ABS)

3.聚甲醛(POM)

4.聚乙烯(PE)

5.聚丙烯(PP)

6.聚氯乙烯(PVC)

7.聚碳酸酯(PC)

8.聚酰胺(PA)

9.聚甲基丙烯酸甲酯(PMMA)

★各塑料的性能及啤塑工艺要求如下:

一. 聚苯乙烯(PS)及改良性聚苯乙烯(HIPS) 等

※聚苯乙烯(PS或GPPS)即俗称之“硬胶”属非结晶性塑料,其主要性质如下:

1. 透明、良好光泽、容易着色。

2. 溶于有机溶剂(丙醇、三氯乙烯等), 便于喷油上色.

3. 成型收缩率小(0.4%左右), 尺寸稳定性好.

4. 质脆不耐冲击, 表面易擦花, 胶件包装要求高.

5. 耐酸性差: 遇酸、醇、油脂易应力开裂。

※改良性聚苯乙烯即高抗冲击聚苯乙烯(HIPS),即俗称之“不碎胶”,其主要性质如下:

1.在GPPS中加入适量(5~20%)丁二烯橡胶改性,从而改善了硬胶的抗冲击性能.

2.颜色:不透明之乳白或略显黄色.

3.HIPS与GPPS根据需要可混合啤塑,GPPS成份越多制品表面亮泽越好,流动性能越好. 例如:组份比HIPS:GPPS=7:3或8:2,

可保持足够强度及良好外观质量.

4.其它主要性质同GPPS.

※其它聚苯乙烯改良性物主要有:

1. MBS聚甲基丙烯酸酯---丁二烯-苯乙烯共聚物, 即透明ABS.

主要性质:透明、韧性好、耐酸碱、流动性好、易于成型及着色、尺寸稳定。

2. SBS苯乙烯与二烯聚合物即K料(常见有KRO1, KRO3).

主要性质:透明、较好弹性、方便成型。

3. AS丙烯睛与苯乙烯聚合物, 即SAN料.

主要性质:提高抗冲击力、耐腐蚀性较好、苯乙烯系中流动性最差.与其它同系塑料相容性不好.

※聚苯乙烯的成型工艺了解

1. GPPS成型温度范围大(成型温度距降解温度较远), 加热流动及固化速度快, 故成型周期短.在能够流动充满型腔前提下, 料

筒温度宜稍低.温度参数: 前料筒温度200℃, 喷嘴后料筒160℃左右.

2. GPPS流动性好, 成型中不需要很高的啤塑压力(70~130Mpa), 压力太高.反而使半制件残留内应力增加---尤其在喷油后胶件

易开裂. (注: 改良性聚苯乙烯类的流动性均稍差于GPPS).

3. 注射速度宜高些, 以减弱熔接痕(夹水纹), 但因注射速度受注射压力影响大, 过高的速度可能会产生飞边(披锋) 或出模时

碎裂等.

4. 适当背压:当啤机背压太低, 螺杆转动易卷入空气, 料微筒内料粒密度小, 塑化效果不好.

5.模温:30℃~50℃.

6.聚苯乙烯因吸湿性小,一般成型前不需干燥,而改良性聚苯乙烯需干燥处理:温度60~80℃;干燥时间2HRS.

二. 丙烯晴—丁二烯-苯乙烯聚合物(ABS)

主要性质如下:

1. 三种组份的作用

丙烯晴(A)-----使制品表面较高硬度,提高耐磨性、耐热性。

丁二烯(B)-----加强柔顺性,保持材料韧性弹性及耐冲击强度.

苯乙烯(S)-----保持良好成型性(流动性、着色性)及保持材料刚性。

(注:根据组份不同派生出多种规格牌号)。

2. ABS具有良好电镀性能, 也是所有塑料中电镀性能最好的.

3. 因组份中丁二烯的作用, ABS较GPPS抗冲击强度亦显著提高.

4. ABS原料浅黄色不透明, 制品表面光泽度好.

5. ABS收缩率小0.5%, 尺寸稳定性良好.

6. 不耐有机溶剂, 如溶于酮、醛、酯及氯代烃而形成乳浊液(ABS胶桨).

7.材料共混性能(ABS+PVC)~提高韧性、耐燃性、抗老化能力。

(ABS+PC)~提高抗冲击强度、耐热性。

※ABS的成型工艺了解

1.成型加工之前需充分干燥,使含水率<0.1%.干燥条件:温度85℃;时间3HRS以上.

2.ABS流动性较好,易产生啤塑披锋,注射压力在70~100Mpa左右,不可太大.

3.料筒温度不宜超过250℃.

温度参数:前料筒温180~210℃.中料筒温170~190℃.,后料筒温160~180℃..过高温会引致橡胶成份分解反而使流动性降低.

4.模具温度40~80℃.,外观要求较高的制品,模温取较高.

5.注射速度取中、低速为主;注射压力根据制件形状、壁厚,胶料品级选取,一般为80~130Mpa.

6.ABS内应力检验以制品浸入煤油中2分钟不出现裂纹为准.

三. 聚甲醛(POM)

※聚甲醛俗称“赛钢”,属结晶性材料,主要性质如下:

1. 聚甲醛为乳白色塑料, 有光泽.

2. 具有良好综合力学性能, 硬度、刚性较高, 耐冲击性好且具有优良的耐磨性及自润滑性.

3. 耐有机溶剂性能好, 性能稳定.

4. 成型后尺寸比较稳定, 受温度环境影响较小.

※聚甲醛的成型工艺了解

1.聚甲醛吸湿性小(吸水率<0.5%,成型前一般不予干燥或短时干燥.

2.成型温度范围窄,热稳定性差, 250℃以上分解出甲醛单体(溶料颜色变暗).故单凭提高温度改善流动性有害且无效果.正常啤

塑宜采用较低的料筒温度及较短的滞留时间而提高注射压力能改善熔料的流动性及制品表面质量(熔体流动性对剪切速率较敏感)

.温度参数: 前料筒190~210℃,中料筒180~205℃,后料筒150~175℃

压力参数: 注射压力100Mpa左右,背压0.5Mpa。

3.模具温度控制在80~100℃为宜(一般运热油机).

4.POM冷却收缩率很大(2~2.5%),易出现啤塑“缩水”,故必须用延长保压时间来补缩.

四. 聚乙烯(PE)

※聚乙烯(PE)俗称“花料”属结晶性塑料,其主要性质如下:

1. 聚乙烯分高密度(HDPE) 和低密度(DDPE) 两种, 随着密度的增高, 透明度减弱.

2. 聚乙烯为半透明粒子, 胶件外观呈乳白色.

3. 聚乙烯其柔软性、抗冲击性、延伸性和耐磨性、低温韧性好。

4. 常温下不溶于任何溶剂, 化学性能稳定; 另一方面, PE难以粘结.

5.机械强度不高,热变形温度低,表面易划伤.

6.聚乙烯亦常用于吹塑制品.

※聚乙烯的成型工艺了解

1.流动性好,成型温度范围宽,易于成型.

2.注射压力及保压压力不宜太高,避免啤件内残留大的应力而致变形及开裂.注射压力60~70Mpa.

3.吸水性低,加工前可不必干燥处理.

注塑零件设计要求

注塑件设计要点 1、开模方向和分型线 2、脱模斜度 3、零件壁厚 4、加强筋 5、圆角和孔 6、抽芯机构及避免 7、塑件的变形 8、一体铰链 9、嵌件 10、气辅注塑 11、综合考虑工艺性和零件性能

注塑件设计要点 1、利用注塑工艺生产产品时,由于塑料在模腔中的不均匀冷却和不均匀收缩以及产品结构设计的不合理,容易引起产品的各种缺陷: 缩印、熔接痕、气孔、变形、拉毛、顶伤、飞边。 2、为得到高质量的注塑产品,我们必须在设计产品时充分考虑其结构工艺性,下面结合注塑产品的主要结构特点分析避免注塑缺陷的方法。 2.1开模方向和分型线 每个注塑产品在开始设计时首先要确定其开模方向和分型线,以保证尽可能减少抽芯机构和消除分型线对外观的影响。 2.1.1开模方向确定后,产品的加强筋、卡扣、凸起等结构尽可能设计成与开模方向一 致,以避免抽芯减少拼缝线,延长模具寿命。 2.1.2例如:保险杠的开模方向一般为车身坐标χ方向,如果开模方向设计成与χ轴 不一致,则必须在产品图中注明其夹角。 2.1.3开模方向确定后,可选择适当的分型线,以改善外观及性能。 2.2脱模斜度 2.2.1适当的脱模斜度可避免产品拉毛。光滑表面的脱模斜度应大于0.5度,细皮纹表 面大于1度,粗皮纹表面大于1.5度。 2.2.2适当的脱模斜度可避免产品顶伤。 2.2.3深腔结构产品设计时外表面斜度要求小于内表面斜度,以保证注塑时模具型芯 不偏位,得到均匀的产品壁厚,并保证产品开口部位的材料密度强度。 2.3产品壁厚 2.3.1各种塑料均有一定的壁厚范围,一般0.5~4mm,当壁厚超过4mm时,将引起冷 却时间过长,产生缩印等问题,应考虑改变产品结构。 2.3.2壁厚不均会引起表面缩印。 2.3.3壁厚不均会引起气孔和熔接痕。 2.4加强筋 2.4.1加强筋的合理应用,可增加产品刚性,减少变形。 2.4.2加强筋的厚度必须小于产品壁厚的1/3,否则引起表面缩印。 2.4.3加强筋的单面斜度应大于1.5°,以避免顶伤。 2.5圆角

常用塑料注塑工艺参数

浅述冷/热模注塑成型技术 2010-2-25来源: 网络文摘 【全球塑胶网2010年2月25日网讯】?所谓的“冷/热模注塑成型”技术,是一种可在注塑成型周期内,使模腔表面温度实现冷热循环的工艺。其特点是:在注射前,先加热模腔,使其表面温度达到加工材料的玻璃化转变温度(Tg)以上;当模腔填满后,迅速冷却模具,以使制件在脱模前完全冷却。? 这种冷/热模注塑成型工艺可以大幅度地改善注塑制品的外观质量,而且可以省去某些二次加工(如旨在掩 盖表面缺陷的底漆和磨砂处理)过程,从而降低整体生产成本。在某些情况下,甚至还可以省去上漆或粉末涂布工艺。在那些对表面光泽度有较高要求的应用中,冷/热模注塑成型工艺还允许使用玻纤增强材料。该工艺的其他优势还包括:降低注塑内应力、减少甚至消除喷射痕和可见的熔接线,以及增强树脂的流动性,从而生产出薄壁产品等。 ?通常情况下,冷/热模注塑成型工艺适用于所有的传统注塑机。但是,如果希望模具表面得到快速加热或冷却,还需要配合使用特定的辅助系统,目前常用的辅助系统是高温热水系统和高温蒸汽系统。这些辅助系统中的蒸汽,要么来自外部锅炉,要么由其自身的控制设备产生。早在几年前,沙伯基础创新塑料就开始在日本研究冷/热模注塑成型技术。目前,该公司在其亚太区的开发中心中使用的是高温蒸汽系统,而在位于马萨诸塞州匹兹菲尔德的聚合物加工开发中心(PP DC)中,该公司则使用了德国Single Temperiertechnik公司的高温热水系统,它可以提供200℃的高温热水。??为了实现有效的工艺控制,模具必须配备热电偶,并且热电偶最好被安置在靠近模腔表面的位置,以便监控温度。为了确保工艺的稳定性,注塑模具、注塑机和冷/热控制器还必须集成在一起。沙伯基础创新塑料在该工艺的生产体系中配备了一台控制设备,以将各个要素有效地集成在一起。??在该工艺的开始阶段,利用在模内循环的蒸汽或高温热水来加热模腔表面,使其温度达到高于被加工树脂的玻璃化转变温度10~30℃的水平。一旦模腔表面达到这一温度值,系统便向注塑机发出信号,以将塑料注射到模腔中。当模腔被填满(注射阶段完成)后,冷水开始在模具中循环流动,以快速带走热量,从而使注塑部件在脱模前完全冷却。利用一个阀站,即可方便地实现从蒸汽或高温热水到冷水的切换,反之亦然。当部件冷却后,模具打开,部件被顶出,然后重复上述过程。??工艺优化:模具的设计和构造?冷/热模注塑成型技术的循环周期除了取决于所加工的材料外,模具的设计和构造对其则有极大的影响。一般,加热模具所需的时间取决于模具用钢的总量,因此尽量减少所要加热和冷却的钢材量非常重要。为了做到这一点,最好是将模腔和模芯嵌入到模板中,而不是穿过模板。为了减小热损失并提高效率,还应在任何可能的条件下,利用气隙和隔热材料,将这些嵌入件与模腔和模芯固定板隔开。 ?除了尽可能地减少必须进行冷/热循环的钢的用量外,还应考虑使用具有高导热性的金属,如铍铜合金或其他具有良好导热性的合金来制作模具。这些金属有助于缩短加热/冷却模腔表面所需的时间。此外,在模腔表面附近布置水路管线也可以加快响应速度。然而,多数情况下,制品的几何形状不允许这样做。尽管如此,共形冷却方法却极适合这种工艺,这是因为,其管线的布置可以与部件表面形状保持一致。因此,共形冷却方法可以极大地缩短最重要位置(即模腔表面)的热响应时间。? 就共形冷却技术而言,它往往涉及到注塑模的制造,或者更确切地说是镶嵌块的制造。一般,通过优化冷却道的设置,可以优化冷却效率,缩短生产周期。而传统的冷却方法很难做到这一点,因为一般制品的形状都很复杂,且常规的冷却通道只能被钻成直线形。? 目前,有多种模具制造技术可实现共形冷却,如激光烧结和直接金属沉积法。为了开发用于该工艺的测试模具,沙伯基础创新塑料的PP DC选择了位于美国密歇根州特洛伊市的Fast4m Tooling公司作为其模具供应商。Fast4mTooling采用钢板层压构造技术,设计并制造了带有共形冷却通道的模腔和模芯组

注塑产品结构设计规范

注塑产品结构设计规范 1.目的 旨在规范注塑产品结构设计,使公司注塑产品设计有明确的、统一的要求,从而保证产品质量。 2.适用范围 适用于本公司所有注塑产品结构设计。 3.规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款,其最新版本适用于本规范。 产品3D建模设计规范 产品标记作业指导书 4.定义无 5.内容 5.1厚度设计 5.1.1 壁厚 Wall Thickness 5.1.1.1 最小壁厚 就传统注射成形而言,实用的最小壁厚在0.55到1.00mm之间。如果要采用更薄的壁厚,却又缺乏实际的经验,可以借助CAE作科学的决定。 5.1.1.2 壁厚变化 产品设计中壁厚不均带来的麻烦比任何其它问题设计带来者都要严重。这些麻烦包括了雾斑、喷流痕、气痕、焦痕、缩痕和缩孔、短射、熔接痕、迟滞痕、应力痕、翘曲变形以及周期时间长等。这些麻烦都可用CAE以直接或间接的方式预测。 设计高收缩率的结晶性注塑成型品时,设计者应将壁厚变化限制在10%以內。就低收缩率的非结晶性塑料而言,容许壁厚变化可到25%。厚度需在公称厚度的50%或67%或75%之间作一抉择。 下面是某一产品的壁厚变化引起的其它注塑参数变化的比较: 当壁厚改变时,阶梯式的断然变化应当避免,从厚到薄应以斜坡式的缓冲带过渡,该过渡区的长度以厚壁厚度的3倍为宜。看下图

5.1.1.3 掏空厚壁 Coring Out Thick Section 掏空厚壁以消除缩痕 差[Poor] 改善[Improved]

5.2 转角设计 5.2.1转角半径Corner Radius 尖锐的转角应力集中。塑料中,如尼龙和聚碳酸酯者,是对V字型刻痕敏感的,较之不敏感的塑料,如ABS和聚乙烯者,成型时会在内圆角上产生高的应力。 当一90°转角的内圆角半径小于公称厚度的25%时,角落就会有高的应力集中。内圆角的半径增加到公称厚度的75%时,二壁相交处就能进而强化。可接受的平均内圆角半径是公称厚度的50%。 内圆角半径图表Fillet Radius 5.2.2 转角设计实例 上图及中图中根部尖角,易开裂根部园角,开裂问题解决

常用塑料注塑工艺参数表样本

常见塑料注塑工艺参数表:

常见塑料注塑工艺参数( 2) -06-16 20:02:13| 分类: 个人日记 | 标签: |字号大中小订阅聚甲醛加工参数聚甲醛的成型收缩率聚甲醛的后收缩九、 PC注塑工艺特性与工艺参数的设定1、聚集态特性属于无定型塑料, Tg为149~150℃; Tf为215~225℃; 成型温度为250~310℃; 2、热稳定性较好, 并随分子量的增大而提高。但PC高温下遇水易降解, 成型时要求水分含量在0.02%以下。高温下水分对PC特别有害。在成型前, PC树脂必须进行充分干燥( 而且应当充分注意防止干燥过的物料再吸湿) 。干燥效果的快速检验法, 是在注塑机上采用”对空

注射”。3、熔体粘度高, 流动性较差, 其流动特性接近于牛顿流体, 熔体粘度受剪切速率影响较小, 而对温度的变化十分敏感, 在适宜的成型加工温度范围内调节加工温度, 能有效地控制PC的粘度。4、由于粘度高, 注射压力较高, 一般控制在80~120MPa。对于薄壁长流程、形状复杂、浇口尺寸较小的制品, 为使熔体顺利、及时充模, 注射压力要适当提高至120~150MPa。保压压力为80~100MPa。5、成型时, 冷却固化快, 为延迟物料冷凝, 需控制模温为80~120℃。6、 PC分子主链中有大量苯环, 分子链的刚性大, 注塑中易产生较大的内应力, 使制品开裂或影响制品的尺寸稳定性; ( 在100℃以上作长时间热处理, 它的刚硬性增加, 内应力降低) 。PC的典型干燥曲线台湾奇美典型牌号加工参数: 十、 PA及玻纤增强PA注塑工艺特性与工艺参数设定1、常见品种及其熔点: q 品种: 尼龙-66; 尼龙-610; 尼龙-1010; 尼龙-1212; 尼龙-46尼龙-6; 尼龙-7; 尼龙-9; 尼龙-11; 尼龙-12; 尼龙-66/6、尼龙-66/610; 尼龙-6∕66∕1010; 尼龙-66/6/610q 熔点: 尼龙n系列: 尼龙-6 215~220℃; 尼龙-12为178℃; 尼龙m,n系列: 尼龙- 46 295 ℃; 尼龙-66 255~265℃; 尼龙-610 215~223℃; 尼龙-1010 200℃; 共缩聚尼龙: 由于分子链的规整性较差, 结晶性和熔点一般较低, 如尼龙-6∕66∕1010的熔点仅为155~175℃, 但其有较好的透明性和弹性。2、熔点高, 熔化范围窄( 约10℃) 。考虑到PA熔点高、热稳定性较差, 故加工温度不宜太高, 一般高于熔点30℃左右即可。3、吸湿性大, 且酰胺基易于高温水解, 引起分子量严重降低; ( 须严格干燥至含水量低于0.05%, 特别是回料使用时更应严格干燥, 必要时可添加”增粘剂”。) 4、熔体粘度低, 表观粘度对温度敏感, 由于熔体的冷却速率快, 要防止塑料堵塞喷孔、流道、浇口等。为阻止熔体逆流, 螺杆头应装有止逆环; 另外, 为防止喷嘴处熔体的”流涎”现象, 应选用自锁式喷嘴。5、注射PA时不需高的注射压力, 一般选取范围为70~100MPa, 一般不超过120MPa。注射速率宜略快些, 这样可防止因冷却速率快而造成波纹及充模不足等问题。6、模具温度一般控制在40~90℃。模具温度对制品的性能影响较大。7、酰胺基在高温下

塑料件设计技巧

注塑件设计要点 利用注塑工艺生产产品时,由于塑料在模腔中的不均匀冷却和不均匀收缩以及产品结构设计的不合理,容易引起产品的各种缺陷: 缩印、熔接痕、气孔、变形、拉毛、顶伤、飞边。 为得到高质量的注塑产品,我们必须在设计产品时充分考虑其结构工艺性,下面结合注塑产品的主要结构特点分析避免注塑缺陷的方法。 2.1 开模方向和分型线 每个注塑产品在开始设计时首先要确定其开模方向和分型线,以保证尽可能减少抽芯机构和消除分型线对外观的影响。 2.1.1 开模方向确定后,产品的加强筋、卡扣、凸起等结构尽可能设计成与开模方向一致,以避免抽芯减少拼缝线,延长模具寿命。 2.1.2 例如:保险杠的开模方向一般为车身坐标χ方向,如果开模方向设计成与χ轴不一致,则必须在产品图中注明其夹角。 2.1.3 开模方向确定后,可选择适当的分型线,以改善外观及性能。 2.2 脱模斜度 2.2.1 适当的脱模斜度可避免产品拉毛。光滑表面的脱模斜度应大于0.5度,细皮纹表面大于1度,粗皮纹表面大于1.5度。 2.2.2 适当的脱模斜度可避免产品顶伤。 2.2.3 深腔结构产品设计时外表面斜度要求小于内表面斜度,以保证注塑时模具型芯不偏位,得到均匀的产品壁厚,并保证产品开口部位的材料密度强度。 2.3 产品壁厚 2.3.1 各种塑料均有一定的壁厚范围,一般0.5~4mm,当壁厚超过4mm时,将引起冷却时间过长,产生缩印等问题,应考虑改变产品结构。 2.3.2 壁厚不均会引起表面缩印。 2.3.3 壁厚不均会引起气孔和熔接痕。 2.4 加强筋 2.4.1 加强筋的合理应用,可增加产品刚性,减少变形。 2.4.2 加强筋的厚度必须小于产品壁厚的1/3,否则引起表面缩印。 2.4.3 加强筋的单面斜度应大于1.5°,以避免顶伤。 2.5圆角 2.5.1 圆角太小可能引起产品应力集中,导致产品开裂。 2.5.2 圆角太小可能引起模具型腔应力集中,导致型腔开裂。 2.5.3 设置合理的圆角,还可以改善模具的加工工艺,如型腔可直接用R刀铣加工,而避免低效率的电加工。 2.5.4 不同的圆角可能会引起分型线的移动,应结合实际情况选择不同的圆角或清角。

塑料产品设计规范

塑料产品设计规范 塑料制品设计特点﹕ 塑料产品的设计与其它材料如钢,铜,铝,木材等的设计有些是类似的;但是,由于塑料材料组成的多样性,结构﹑形状的多变性,使得它比起其它材料有更理想的设计特性;特别是它的形状设计,材料选择,制造方法选择,更是其它大部分材料无可比拟的.因为其它的大部分材料,其设计者在外形或制造上,都受到相当的限制,有些材料只能利用弯曲﹑熔接等方式来成形.当然,塑料材料选择的多样性,也使得设计工作变得更为困难,如我们所知,目前已经有一万种以上的不同塑料被应用过,虽然其中只有数百种被广泛应用,但是,塑料材料的形成并不是由单一材料所构成,而由一群材料族所组合而成的,其中每一种材料又有其特性,这使得材料的选择,应用更为困难. 塑料制品设计原则﹕ 1.依成品所要求的机能决定其形状﹐尺寸﹐外观﹐材料 2.设计的成品必须符合模塑原则﹐既模具制作容易﹐成形及后加工容易﹐但仍保持成品的机能 塑料制品设计程序: 为了确保所设计的产品能够合理而经济,在产品设计的初期,在外观设计者﹐机构工程师,制图员,模具制造者,成形厂以及材料供应厂之间的紧密合作是必须的,因为没有一个设计者,能够同时拥有如此广泛的知识和经验,而从不同的事业观点所获得的建议,将是使产品合理化的基本前提;除此之外, 一个合理的设计考虑程序也是必须的;以下将就设计的一般程序作出说明: 一.确定产品的功能需求,外观. 在产品设计的初始阶段,设计者必须列出对该产品的目标使用条件和功能要求;然后根据实际的考虑,决定设计因子的范围,以避免在稍后的产品发展阶段造成可能的时间和费用的漏失.下表为产品设计的核对表,它将有助于确认各种的设计因子. 产品设计的核对表 一般数据: 1.产品的功能? 2.产品的组合操作方式? 3.产品的组合是否是可以靠着塑料的应用来简化? 4.在制造和组合上是否可能更为经济有效? 5.所需要的公差? 6.空间限制的考虑? 7.界定产品使用寿命? 8.产品重量的考虑? 9.有否承认的规格? 10.是否已经有相类似的应用存在? 结构考虑: 1.使用负载的状态? 2.使用负载的大小? 3.使用负载的期限? 4.变形的容许量? 环境: 1.使用在什么温度环境? 2.化学物品或溶剂的使用或接触? 3.温度环境? 4.在该种环境的使用期限? 外观: 1.外形 2.颜色 3.表面加工如咬花,喷漆等. 经济因素: 1.产品预估价格? 2.目前所设计产品的价格? 3.降低成本的可能性? 二.绘制预备性的设计图: 当产品的功能需求,外观被确定以后,设计者可以根据选定的塑料材料性质,开始绘制预备性的产品图,以作为先期估价,检讨以及原则模型的制作.

关于电饭煲注塑件的结构设计的分析

关于电饭煲注塑件的结构设计的分析 摘要:塑料与钢铁、水泥、木材并称为四大工程材料。随着科学技术的进步, 塑料的运用变得越来越广泛。与金属相比,塑料具有耐腐蚀、电绝缘、重量轻和 成本低等优点;且塑料材质丰富、形状多变,使其具有很理想设计特性,既避免 金属件必要的价格不低的二次加工和表面处理,又减少了成型对设计的限制,扩 大了设计自由(注塑件可以将几个零件功能集合到某一个零件中)。电饭煲产品中,为了成型方便、降低成本,除了发热盘、内锅、外锅、加强板等需要耐高温 或刚性强的零件使用金属材料,大部分的机体零件使用各种塑料材料进行设计。 由于塑料的机械性能随温度等因素影响很大,如高温使塑料的刚度和强度会降低,低温使塑料变脆;不同温度下,塑料的收缩量也不同;同时因为模具结构也有限制,不合理的设计会致一些试模及装配阶段才会发现的隐形问题,加大研发成本 及耽误项目进度。基于此,本文从选材、常规设计、模具的工艺性、变形等不同 方面介绍电饭煲的注塑件的结构设计。 关键词:结构设计;电饭煲;注塑件 1、电饭煲的概述 电饭煲又称作电锅、电饭锅。是利用电能转变为内能的炊具,使用方便,清洁卫生,还 具有对食品进行蒸、煮、炖、煨等多种操作功能。常见的电饭锅分为保温自动式、定时保温 式以及新型的微电脑控制式三类。如下图所示。 2、电饭煲注塑件的结构设计的要点 2.1材料选择 作为一个产品设计师,尤其设计结构部分,选择合理的材料是一项非常关键的工作,是 成功设计一款产品、每个零件的前提条件。通常来说,不是材料不好,而是各种材料有不同 的特定性能,需要设计师根据零件的使用环境、性能要求选择合适的材料。塑料的种类繁多,性能各异,而且还添加有各种增强剂、色母等填料;同时各种材料的性能数据都是在特定条 件下的测试数据,与实际工作情况下有一定差别,这些都影响着材料种类的选择。虽然材料 选择具有复杂性,但是在选材时也是有简单规律可参考。对于注塑件,通常首先考虑零件的 工作条件,比如载荷、耐温等条件,以缩小选材范围,同时配合零件的成型工艺、外观方面 要求、装配方式等要求,比如透明性、运动部件的耐磨性等确定材料选定。电饭煲为加热产品,有运动部件,同时也有食品安全要求,作为小家电,对外观配合也要求美观精良。有经 验的结构设计师通常参考成熟产品、根据以往经验或者考虑供应商的推荐来选择合适的材料。电饭煲产品常用的几种塑料为PP、ABS、POM。例如,面盖、底座、内盖、支撑环等零件因 为要求耐温,一般都选择食品级的PP料;装饰板、电镀件通常都选择ABS;开盖按钮推块等 运动部件则都选择POM;一些需要特别耐高温的部件则选择尼龙或者PET材料;一些特殊要 求的部件比如电路板支架需要选择具有阻燃性能的塑料。 2.2壁厚合理设计 合理设计壁厚对一个注塑件来说是非常关键的,注塑件的壁厚数值一般为2~3mm。一 般壁厚过薄则强度和刚度弱,同时成型困难;壁厚过厚则容易缩水、成型时间长、浪费成本,对于壁厚偏厚的地方要掏胶等做防缩水工艺性设计。同时制品壁厚的设计应该均匀、圆滑过渡,若不均匀容易出现翘曲变形或者缩水等不良外观问题。电饭煲产品中,通过经验总结, 底座、支撑环、内盖等对刚度和强度要求高的部件一般设计壁厚为2.5或者2.8mm厚,面盖 等部件一般设计2.2mm厚,个别透明件或者无载荷的零件设计壁厚低于2mm。 2.3加强筋设计 在注塑件设计中,为了增加零件的刚度和强度,通常设计加强筋来满足要求,这样既减 少塑料用量又减轻重量,在结构上也能防止注塑件翘曲变形,成型时辅助塑料流动。加强筋 的设计通常要注意三个要点:第一是厚度,厚度过薄起不到加强作用也难以填充,厚度过厚

注塑件结构设计要点

注塑件结构设计要点 吕文果 塑料是四大工程材料(钢铁、木材、水泥和塑料)之一,它是以高分子量的合成树脂为主要成份,在一定条件下可塑制成一定形状且在常温下保持形状不变的材料。塑料总体分为热固性和热塑性两种,区分两种塑料的规则一般是在一定温度加热一段时间或加入硬化剂后有无发生化学反应而硬化,发生化学反应而硬化的叫热固性塑料,反之则叫热塑性塑料。它广泛应用于工业、农业、国防等行业。但是塑料与其它材料相比又具有自己的一些特有的性能,这些性能决定它的一些特有的使用场合、加工方法、生产工艺等。一般来说塑料的成型方法有以下几种:注射成型、挤压成型、压铸成型、发泡、吹塑、真空吸塑、中空成型、机加工等。 由于塑料的种类及性能、使用场合、成型工艺等条件的影响,对塑料件的结构设计也就自然会产生一些特殊的要求及方法。由于热固性塑料与热塑性塑料最终的形态不同,结构设计过程中的好多要求也就不一样,涉及的范围相当之大。下面我们就针对注射成型的热塑性塑料件的结构设计从胶模斜度、塑件的壁厚、加强筋、支承柱、孔、公差等方面作一些初略的讨论。 一、 壁厚 合理确定塑件的壁厚是非常重要的,其它的形体和尺寸如加强筋和圆角等都是以壁厚为参照的。塑料产品的壁厚主要决定于塑料的使用要求,即产品需要承受的外力、是否作为其他零件的支撑、承接柱

位的数量、伸出部份的多少以、选用的塑胶材料、重量、电气性能、尺寸稳定性以及装配等各项要求而定。如果壁厚不均匀,会使塑料熔体的充模速度和冷却收缩不均匀,由此会引起凹陷、真空泡、翘曲、甚至开裂。壁厚均匀是塑料件设计的一大原则。 一般的热塑性塑料壁厚设计在1~6mm范围。最常用的为2~3mm。大型件也有超过6mm的。表1是一些热塑性塑料壁厚的推荐值。在取较小壁厚时,要考虑制品在使用和装配时的强度和刚度。从经济角度来看,过厚的产品不但增加物料成本,还延长生产周期。尽量使塑件各处的壁厚均匀,否则会引起收缩不均匀使塑件产生变形和气泡、凹陷的工艺问题。厚胶的地方比旁边薄胶的地方冷却得慢,因而产生缩痕。更甚者导致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下,如下图1: 图1 其实大部份厚胶的设计可使用加强筋来改变总壁厚。除了可节省物料来节省生产成本外,还可以节省冷却时间,冷却时间大概与壁成

常用塑料注塑工艺参数表

常用塑料注塑工艺参数表:

常用塑料注塑工艺参数(2)?? 2010-06-16 20:02:13|??分类:个人日记|??标签:|字号大中小?订阅 聚甲醛加工参数聚甲醛的成型收缩率聚甲醛的后收缩九、PC注塑工艺特性与工艺参数的设定1、聚集态特性属于无定型塑料,Tg 为149~150℃;Tf为215~225℃;成型温度为250~310℃;?2、热稳定性较好,并随分子量的增大而提高。?但PC高温下遇水易降解,成型时要求水分含量在0.02%以下。高温下水分对PC特别有害。在成型前,PC树脂必须进行充分干燥(并且应当充分注意防止干燥过的物料再吸湿)。干燥效果的快速检验法,是在注塑机上采用“对空注射”。??3、熔体粘度高,流动性较差,其流动特性接近于牛顿流体,熔体粘度受剪切速率影响较小,而对温度的变化十分敏感,在适宜的成型加工温度范围内调节加工温度,能有效地控制PC的粘度。4、由于粘度高,注射压力较高,一般控制在80~120MPa。对于薄壁长流程、形状复杂、浇口尺寸较小的制品,为使熔体顺利、及时充模,注射压力要适当提高至120~150MPa。保压压力为80~100MPa。?5、成型时,冷却固化快,为延迟物料冷凝,需控制模温为80~120℃。6、PC分子主链中有大量苯环,分子链的刚性大,注塑中易产生较大的内应力,使制品开裂或影响制品的尺寸稳定性;(在100℃以上作长时间热处理,它的刚硬性增加,内应力降低)?。PC的典型干燥曲线?台湾奇美典型牌号加工参数:十、PA及玻纤增强PA注塑工艺特性与工艺参数设定?1、常用品种及其熔点:q??品种:尼龙-66;尼龙-610;尼龙-1010;尼龙-1212;尼龙-46尼龙-6;尼龙-7;尼龙-9;尼龙-11;尼龙-12;尼龙-66/6、尼龙-66/610;尼龙-6∕66∕1010?;尼龙-66/6/610q??熔点:尼龙n系列:尼龙-6?215~220℃;尼龙-12为178℃;尼龙m,n系列:尼龙-46?295?℃;尼龙-66?255~265℃;尼龙-610?215~223℃;尼龙-1010?200℃;共缩聚尼龙:由于分子链的规整性较差,结晶性和熔点一般较低,如尼龙-6∕66∕1010的熔点仅为155~175℃,但其有较好的透明性和弹性。2、熔点高,熔化范围窄(约10℃)?。考虑到PA熔点高、热稳定性较差,故加工温度不宜太高,一般高于熔点30℃左右即可。?3、吸湿性大,且酰胺基易于高温水解,引起分子量严重降低;(须严格干燥至含水量低于0.05%,尤其是回料使用时更应严格干燥,必要时可添加“增粘剂”。)4、熔体粘度低,表观粘度对温度敏感,由于熔体的冷却速率快,要防止塑料堵塞喷孔、流道、浇口等。为阻止熔体逆流,螺杆头应装有止逆环;另外,为防止喷嘴处熔体的“流涎”现象,应选用自锁式喷嘴。5、注射PA时不需高的注射压力,一般选取范围为70~100MPa,通常不超过120MPa。注射速率宜略快些,这样可防止因冷却速率快而造成波纹及充模不足等问题。?6、模具温度一般控制在40~90℃。模具温度对制品的性能影响较大?。?7、酰胺基在高温下对氧敏感,容易发生氧化变色(必要时可添加尼龙专用的热稳定剂);?8、高结晶性,成型收缩率大,易产生结晶应力,并且明显随制品的厚度增大而增加;9、成型后制品的缓慢吸湿易引起尺寸精度的较大变化。这点也被利用来进行调湿处理,通常可在沸水或醋酸钾水溶液(醋酸钾与水的比例为1.25∶1,沸点为121℃)中进行。?10、熔体着色所适用的有机颜料品种较少(酰胺基具有还原性,加之成型温度高)。尼龙吸水率尼龙及玻纤增强尼龙成型温度?PA46安全加工温度-时间组合图玻璃纤维增强尼龙(GF-PA)工艺特性1、GF-PA中由于含大量玻纤,注塑中存在四大问题:(1)流动性差。(2)收缩率小,且各向异性明显。(3)制品性能易出现波动。(4)制品表面粗糙度数值大。?2、由于流动性差,且加入玻纤后的熔体冷凝硬化快,需要比未加玻纤时提高温度约10-30?℃;3、应采用较大的注射速率和较高的注射压力;?4、由于大量玻纤引起的高粘度,增强尼龙可用通用喷嘴;5、对机筒的磨损大;6、为使增强尼龙制品有较高的强度,需要注意尽可能地保护玻纤的长度,减少玻纤损伤;(从螺杆、喷嘴、浇口等装备因素到注塑工艺条件)7、玻纤增强料成型加工中最常有缺陷:“浮纤”或称“玻纤外露”;玻纤取向引起的各向异性;熔接痕处强度特低;?纤维取向不同厚度处的取向状况皮-芯效应与熔接痕前锋料遇到障碍后分流-合流-熔接玻纤含量与熔接痕强度十一、PMMA注塑工艺特性与工艺参数的设定?PMMA树脂俗称“压克力”,国内着名商品牌号有372#(实为MS)1、PMMA无定形聚合物,Tg为105℃,熔融温度大于160℃,而分解温度高达270℃以上,成型的温度范围较宽;2、PMMA树脂颗粒易吸收水份,而这些水分的存在,在成型过程中由于受热挥发,导致熔体起泡、膨胀、使制品出现银丝、气泡、透明度变差、有糊斑等问题。PMMA在热风循环干燥设备上的干燥,其干燥工艺参数:温度为70~80℃,时间为2~4h;3、?PMMA熔体粘度对温度变化比较敏感。注射温度的改变对熔体流动长度的影响要比注射压力与比注射速率明显些,更比模具温度显着得多。故在成型时改变PMMA的流动性主要是从注射温度着手。

塑料产品结构设计准则

产品结构设计准则--壁厚篇 基本设计守则 壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。一般的热塑性塑料壁厚设计应以4mm为限。从经济角度来看,过厚的产品不但增加物料成本,延长生产周期”冷却时间〔,增加生产成本。从产品设计角度来看,过厚的产品增加引致产生空穴”气孔〔的可能性,大大削弱产品的刚性及强度。 最理想的壁厚分布无疑是切面在任何一个地方都是均一的厚度,但为满足功能上的需求以致壁厚有所改变总是无可避免的。在此情形,由厚胶料的地方过渡到薄胶料的地方应尽可能顺滑。太突然的壁厚过渡转变会导致因冷却速度不同和产生乱流而造成尺寸不稳定和表面问题。 对一般热塑性塑料来说,当收缩率”Shrinkage Factor〔低於0.01mm/mm时,产品可容许厚度的改变达;但当收缩率高於0.01mm/mm时,产品壁厚的改变则不应超过。对一般热固性塑料来说,太薄的产品厚度往往引致操作时产品过热,形成废件。此外,纤维填充的热固性塑料於过薄的位置往往形成不够填充物的情况发生。不过,一些容易流动的热固性塑料如环氧树脂”Epoxies〔等,如厚薄均匀,最低的厚度可达0.25mm。 此外,采用固化成型的生产方法时,流道、浇口和部件的设计应使塑料由厚胶料的地方流向薄胶料的地方。这样使模腔内有适当的压力以减少在厚胶料的地方出现缩水及避免模腔不能完全充填的现象。若塑料的流动方向是从薄胶料的地方流向厚胶料的地方,则应采用结构性发泡的生产方法来减低模腔压力。 平面准则 在大部份热融过程操作,包括挤压和固化成型,均一的壁厚是非常的重要的。厚胶的地方比旁边薄胶的地方冷却得比较慢,并且在相接的地方表面在浇口凝固後出现收缩痕。更甚者引致产生缩水印、热内应力、挠曲部份歪曲、颜色不同或不同透明度。若厚胶的地方渐变成薄胶的是无可避免的话,应尽量设计成渐次的改变,并且在不超过壁厚3:1的比例下。下图可供叁考。

注塑成型工艺参数说明

注塑成型注塑成型工艺参数工艺参数工艺参数说明说明说明 一.干燥温度 定义:为保证成型质量而事先对聚合物进行干燥所需要的温度 作用:1.去除原料中的水份.2.确保成品质量 设定原则: 1.聚合物不致于分解或结块(聚合) 2.干燥时间尽量短,干燥温度尽量低而不致于影响其干燥效果. 3.干燥温度和时间因不同原料而异. 注:1,A 表示用热风干燥机. 2,D 表示用除湿干燥机. 3,*表示通常不需干燥. 4,**表示干燥依条件类别而定,最好材料供货商确认. 二.料温 定义: 为保证成型顺利进行而设加在料管上之温度. 作用: 保证聚合物塑化(熔胶)良好,顺利充模,成型. 设定原则: (1)不致引起塑料分解碳化. (2)从加料断至喷嘴依次上升. (3)喷嘴温度应比料筒前断温度略低. (4)依材料种类不同而所需温度不同. (5)不至对制品产生坏的质量影响. 三.模温 定义: 制品所接触的模腔表面温度 作用: 控制影响产品在模腔中的冷却速度,以及制品的表观质量. 设定原则: (1)考虑聚合物的性质. (2)考虑制品大小和形状. (3)考虑模具的结构.浇道系统. 四.注射速度 定义: 在一定压力作用下,熔胶从喷嘴注射到模具中的速度 . 作用: (1)注射速度提高将使充模压力提高. (2)提高注射速度可使流动长度增加,制质量量均匀. (3)高速射出时粘度高,冷速快,适合长流程制品. (4)低速时流动平稳,制品尺寸稳定.

设定原则: (1) 防止撑模及避免产生溢边. (2)防止速度过快导致烧焦. (3)保证制品质量的前提下尽量选择高速充填,以缩短成型周期. 五.熔胶速度 定义: 塑化过程中螺杆熔胶时的转速 . 作用: 影响塑化能力,塑化质量的重要参数,速度越高,熔体温度越高,塑化能力越强 . 设定原则: (1)熔胶速度调整时一般由低向高逐渐调整. (2)螺杆直径大于50MM之机台转速应控制在50RPM以下,小于50MM之机台应控制在100RPM以下为宜. 六.射压 定义: 螺杆先端射出口部位发生之最大压力,其大小与射出油缸内所产生油压紧密关连 . 作用: 用以克服熔体从喷嘴--流道--浇口--型腔的压力损失,以确宝型腔被充满,获得所需的制品. 设定原则: (1)必在注塑机的额定压力范围内. (2)设定时尽量用低压. (3)尽量避免在高速时采用高压,以免异常状况发生 七.背压 定义: 塑料在塑化过程建立在熔腔中的压力 . 作用: (1)提高熔体的比重. (2)使熔体塑化均匀. (3)使熔体中含气量降低.提高塑化质量 设定原则: (1)背压的调整应考虑塑料原料的性质. (2)背压的调整应参考制品的表观质量和呎寸精度 八.锁模压力 定义: 合模系统为克服在注射和保压阶段使模具分开的胀模力而施加在模具上的闭紧力. 作用: (1)保证注射和保压过程中模具不致于被胀开 (2)保证产品的表观质量. (3)保证产品的尺寸精度. 设定原则: (1)合模力的大小依据产品的大小,机台的大小而定. (2)一般来说,在保证产品不出毛头的情况下,合模力 要求越小越好. (3)合模力的设定不应超出机台之额定压力.

【塑料橡胶制品】塑料结构件设计规范

(塑料橡胶材料)塑料结构 件设计规范

塑料制品的结构设计 塑料制品的结构设计又称塑料制品的功能特性设计或塑料制品的工艺性。 §1.1塑料制品设计的一般程序和原则 1.1.1塑料制品设计的一般程序 1、详细了解塑料制品的功能、环境条件和载荷条件 2、选定塑料品种 3、制定初步设计方案,绘制制品草图(形状、尺寸、壁厚、加强筋、孔的位置等) 4、样品制造、进行模拟试验或实际使用条件的试验 5、制品设计、绘制正规制品图纸 6、编制文件,包括塑料制品设计说明书和技术条件等。 1.1.2塑料制品设计的一般原则 1、在选料方面需考虑:(1)塑料的物理机械性能,如强度、刚性、韧性、弹性、吸水性以及对应力的敏感性等;(2)塑料的成型工艺性,如流动性、结晶速率,对成型温度、压力的敏感性等;(3)塑料制品在成型后的收缩情况,及各向收缩率的差异。 2、在制品形状方面:能满足使用要求,有利于充模、排气、补缩,同时能适应高效冷却硬化(热塑性塑料制品)或快速受热固化(热固性塑料制品)等。 3、在模具方面:应考虑它的总体结构,特别是抽芯与脱出制品的复杂程度。同时应充分考虑模具零件的形状及其制造工艺,以便使制品具有较好的经济性。 4、在成本方面:要考虑注射制品的利润率、年产量、原料价格、使用寿命和更换期限,尽可能降低成本。

§1.2塑料制品的收缩 塑料制品在成型过程中存在尺寸变小的收缩现象,收缩的大小用收缩率表示。 式中S——收缩率; L0——室温时的模具尺寸; L——室温时的塑料制品尺寸。 影响收缩率的主要因素有: (1)成型压力。型腔内的压力越大,成型后的收缩越小。非结晶型塑料和结晶型塑料的收缩率随内压的增大分别呈直线和曲线形状下降。 (2)注射温度。温度升高,塑料的膨胀系数增大,塑料制品的收缩率增大。但温度升高熔料的密度增大,收缩率反又减小。两者同时作用的结果一般是,收缩率随温度的升高而减小。 (3)模具温度。通常情况是,模具温度越高,收缩率增大的趋势越明显。 (4)成型时间。成型时保压时间一长,补料充分,收缩率便小。与此同时,塑料的冻结取向要加大,制品的内应力亦大,收缩率也就增大。成型的冷却时间一长,塑料的固化便充分,收缩率亦小。 (5)制品壁厚。结晶型塑料(聚甲醛除外)的收缩率随壁厚的增加而增加,而非结晶型塑料中,收缩率的变化又分下面几种情况:ABS和聚碳酸酯等的收缩率不受壁厚的影响;聚乙烯、丙烯腈—苯乙烯、丙烯酸类等塑料的收缩率随壁厚的增加而增加;硬质聚氯乙烯的收缩率随壁厚的增加而减小。 (6)进料口尺寸。进料口尺寸大,塑料制品致密,收缩便小。 (7)玻璃纤维等的填充量。收缩率随填充量的增加而减小。 表2-1、表2-2、表2-3为常用塑料的成型收缩率。

塑料件结构设计要点说明

产品开发的结构设计原则: a、结构设计要合理:装配间隙合理,所有插入式的结构均应预留间隙;保证有足够的强度和刚度(安规测试),并适当设计合理的安全系数。 b、塑件的结构设计应综合考虑模具的可制造性,尽量简化模具的制造。 c、塑件的结构要考虑其可塑性,即零件注塑生产效率要高,尽量降低注塑的报废率。 d、考虑便于装配生产(尤其和装配不能冲突)。 e、塑件的结构尽可能采用标准、成熟的结构,所谓模块化设计。 f、能通用/公用的,尽量使用已有的零件,不新开模具。 g、兼顾成本 大略的汇总下结构中常见的问题注意点,期抛砖引玉,共同提高。 1、关于塑料零件的脱模斜度: 一般来说,对模塑产品的任何一个侧面,都需有一定量的脱模斜度,以便产品从模具中顺利脱出。脱模斜度的大小一般以0.5度至1度间居多。具体选择脱模斜度注意以下几点: a、塑件表面是光面的,尺寸精度要求高的,收缩率小的,应选用较小的脱模斜度,如0.5°。 b、较高、较大的尺寸,根据实际计算取较小的脱模斜度,比如双筒洗衣机大桶的筋板,计算后取0.15°~0.2°。 c、塑件的收缩率大的,应选用较大的斜度值。 d、塑件壁厚较厚时,会使成型收缩增大,脱模斜度应采用较大的数值。 e、透明件脱模斜度应加大,以免引起划伤。一般情况下,PS料脱模斜度应不少于2.5°~3°,ABS及PC料脱模斜度应不小于1.5°~2°。 f、带皮纹、喷砂等外观处理的塑件侧壁应根据具体情况取2°~5°的脱模斜度,视具体的皮纹深度而定。皮纹深度越深,脱模斜度应越大。 g、结构设计成对插时,插穿面斜度一般为1°~3°(见后面的图示意)。 2、关于塑件的壁厚确定以及壁厚处理: 合理的确定塑件的壁厚是很重要的。塑件的壁厚首先决定于塑件的使用要求:包括零件的强度、质量成本、电气性能、尺寸稳定性以及装配等各项要求,一般壁厚都有经验值,参考类似即可确定(如熨斗一般壁厚2mm,吸尘器大体为2.5mm),其中注意点如下: a、塑件壁厚应尽量均匀,避免太薄、太厚及壁厚突变,若塑件要求必须有壁厚变化,应采用渐变或圆弧过渡,否则会因引起收缩不均匀使塑件变形、影响塑件强度、影响注塑时流动性等成型工艺问题。 b、塑件壁厚一般在1—5mm范围内。而最常用的数值为2—3mm。 c、常用塑料塑件的最小壁厚及常用壁厚推荐值:(mm)

常用塑料的注塑工艺参数一

常用塑料的注塑工艺参数 一、高密度聚乙烯(HDPE) 料筒温度喂料区30~50℃(50℃) 区1 160~250℃(200℃) 区2 200~300℃(210℃) 区3 220~300℃(230℃) 区4 220~300℃(240℃) 区5 220~300℃(240℃) 喷嘴220~300℃(240℃) 括号内的温度建议作为基本设定值,行程利用率为35%和65%,模件 流长与壁厚之比为50:1到100:1 熔料温度220~280℃ 料筒恒温220℃ 模具温度20~60℃ 注射压力具有很好的流动性能,避免采用过高的注射压力80~140MPa(800~1400bar); 一些薄壁包装容器除外可达到180MPa (1800bar) 保压压力收缩程度较高,需要长时间对制品进行保压,尺寸精度是关键因素,约为注射压力的30%~60% 背压5~20MPa(50~200bar);背压太低的地方易造成制品重量和色散不均 注射速度对薄壁包装容器需要高注射速度,中等注射速度往往比较适用于其它类的塑料制品 螺杆转速高螺杆转速(线速度为1.3m/s)是允许的,只要满足冷却时间结束前就完成塑化过程就可以;螺杆的扭矩要求为低 计量行程0.5~4D(最小值~最大值);4D的计量行程为熔料提供足够长的驻留时间是很重要的 残料量2~8mm,取决于计量行程和螺杆直径 预烘干不需要;如果贮藏条件不好,在80℃的温度下烘干1h就可以 回收率可达到100%回收 收缩率 1.2~2.5%;容易扭曲;收缩程度高;24h后不会再收缩(成型后收缩) 浇口系统点式浇口;加热式热流道,保温式热流道,内浇套;横截面面积相对小,对薄截面制品已足够 机器停工时段无需用其它材料进行专门的清洗工作;PE耐温升 料筒设备标准螺杆,标准使用的三段式螺杆;对包装容器类制品,混合段和切变段几何外形特殊常用塑料的注塑工艺参数二 二、聚丙烯(PP) 料筒温度喂料区30~50℃(50℃) 区1 160~250℃(200℃)

注塑成型的塑料连接件设计

文章编号:100523360(2004)0420010205 注塑成型的塑料连接件设计 李 树1,揣成智1,刘风芝2 (1.天津科技大学,天津300222;2.太原市物产集团,山西太原030002) 摘 要: 介绍常用注塑成型连接件的材料选择、连接原理、基本类型、尺寸和形状设计要点及实际使用情况等。 关键词: 塑料连接件;连接原理;连接类型 中图分类号:T Q320.662;T Q320.74 文献标识码:B 收稿日期:2004203216 1 前言 注射成型连接件的设计是塑料制品设计中不可缺 少的内容。它和大多数塑料注塑件一样,都是产品的组成部分,它们既可以互相组装成一个制品,也可以与其他材料的零部件组装成制品。如果不采用塑料连接件连接,而采用金属的螺钉、销钉等连接件会使塑料制品尺寸变大且结构不合理;用带螺纹的金属嵌件作为塑料件的连接件,会给制品的成型带来困难,也不能自动化的生产制品,特别是用注塑成型的方法生产制品,此缺点更为突出,它使注塑模具的结构更为复杂,产品的成本也相应提高[1]。而利用塑料的良好弹性,柔软性、优良的抗疲劳等特性可设计出各种实用可靠的连接件。它们具有结构简单,安装牢固、装配容易、加工方便、不附加紧固件、价格便宜等优点,可用于仪表、仪器、家用电器等行业。通常使用的注塑成型塑料连接件可分为两种结构形式[2]:一种为可拆卸连接;另一种为不可拆卸连接。现主要讨论这两种连接的连接原理、连接尺寸及制品的形状设计。 2 可拆卸连接 可拆卸连接是指拆开连接件时,构成连接的所有 零件都不发生破坏。同时要求可拆卸连接的结构在使用期的工作条件下,在多次拆卸2连接后零件的相应位 置和相关尺寸仍保持一定的精度。利用塑料材料本身具有的良好弹性、韧性等特点,可设计出多种实用的可拆卸连接的塑料件。 2.1 搭接连接 搭接连接是一种允许有较大弹性形变的紧密连接方式[3]。全部连接基本上都是在一个制品上模塑出凸台、凸耳或倒钩臂,将其插入到另一个模塑制件上相应的凹口、倒陷或孔中。它是塑料制品中最廉价、最方便的连接方式之一,用于可拆卸连接。下面介绍几种常用的搭接连接。2.1.1 夹环连接 图1为夹环连接,夹环提供了柔软的没有轴向装配的连接,它允许连接处多方向自由弯折。用于盖和底的夹环连接可在塑料件上设计凸起或沟槽来辅助准确定位。它可以用任何柔性塑料制造,如聚乙烯、聚丙烯、软聚氯乙烯等 。 图1 盖和底成一体的夹环连接   2.1.2 搭扣连接 图2为搭扣连接,图中有三种不同的搭扣和孔眼形状。主要用于塑料布和片材的搭接,所有用于注塑成型的塑料材料都可以采用这种连接方式。 2.2 卡夹连接 卡夹连接是利用塑料的弹性变形,实现两个零件 1 塑料科技 P LASTICS SCI.&TECH NO LOGY № 4(Sum.162) August 2004

注塑成型工艺流程及工艺参数

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成

相关文档
最新文档