室外通信电源产品的热设计

室外通信电源产品的热设计
室外通信电源产品的热设计

室外通信电源产品的热设计

3G时代的到来,通信网络更趋向全面化覆盖、智能化管理等方面发展,通信电源伴随着通信主设备的发展而迅速发展,10多年来通信(特别是移动通信)正从城市逐步走向城镇和农村地区。在城市通信设备通常设置在市区的室内,通信电源也放置在室内,运营商一般采用自建机房或租赁;而在城镇、农村等非城市化地区,人员相对分散,自然条件相对恶劣,为了节省建设成本、加快建设周期,往往不采用建设机房的方式(包括移动方舱),主设备及电源设计采用室外机型,直接安置在户外。这种发展趋势越来越明显,因此运营商越来越重视室外电源的投资建设。

室外电源产品关键技术

1、室外防护技术

室外产品大多数场合下处于露天环境,需要进行防水、防雨、防尘等设计,往往电源柜部分要求防护等级达到IP55等级,电池柜部分至少要达到IP44等级,因此在产品设计中要力求达到以上指标,还要兼顾热设计效率、系统成本等多种因素。

2、热设计技术

对于室外电源,如果采取一体化机柜,电源仓部分和电池仓部分都要进行散热、加热处理,机柜内部的温度控制成为技术难点。高、低温控制技术是一项复杂的技术,高温控制可以采用空调、热交换器或者风扇等,低温控制采用加热器等技术,但是空调、热交换器、加热器的供电问题又是一个主要问题。一般来说直流供电的空调、加热器设备较少,采用交流供电方式居多,但是一旦交流停电或者其它交流故障,空调、加热器无法正常工作,机柜内部的温度偏离通信设备、蓄电池的正常工作温度,设备会自动关机保护、电池的使用寿命受到影响。目前行业的趋势是,普遍采用直流供电的热交换器或者风扇散热,加热采用交流供电的加热管;对于电池仓部分目前采用风扇散热、加热膜加热来控制电池仓温度。

伴随着通信主设备与电源产品的技术不断发展,其适应环境温度能力不断扩大,可以达到-45℃~70℃,工作温度较蓄电池的正常工作温度范围(~25℃左右)要宽得多,并且蓄电池的正常工作温度范围包括在设备工作温度范围之内,因此可以考虑产品可以分为设备仓、电池仓区别对待、处理,产品的设备仓、电池仓的隔离结构设计也为灵活的热设计方案提供了便利。

3、风道设计技术

设计良好的风道可以使冷空气或者热量均匀地流动,达到机柜内部温度平衡,因此在热设计时需要使用一些计算机辅助工具,进行热设计仿真,模拟实际使用环境。以目前的设计技术,热交换器散热方式下,环境温度和机柜内部温度达到10~11℃温差;风扇散热方式下,环境温度和机柜内部温度达到3~5℃温差。

通信电子产品热设计

在通信电子设备中,热功率损失通常以热能耗散的形式表现,而任何具有电阻的元件都是一个内部热源。当通信电子设备进行工作时,由于功率损失,器件本身温度会有所上升,同时通信设备周围的环境温度亦会影响设备内部温度,从而影响到电子器件工作的可靠性。随着通讯技术的发展,通信设备热设计越来越受到重视。正确的热设计是设备可靠性保证的主要方法之一。

1、通信电子设备热设计的一般流程

所谓热设计就是把设备输入的热量降至最低,并提高散热效果,把设备内部有害的热量排出到设备的外部环境当中,获得合适的工作温度使其不超过可靠性规定的限值,确保设备可靠、安全的工作。通信设备的热设计可分为3个层次,如图1所示。

图1 通信电子设备热设计的层次

对通信设备机箱、机柜及方舱等系统级别的热设计,即系统级(SYSTEMS)的热设计;对于电子模块、散热器、PCB板级别的热设计,即封装级(PACKAGES)的热设计;对于元器件级别的热设计,即组件级(COMPONENTS)的热设计。

系统级的热设计主要研究电子设备所处环境的温度对其影响,环境温度是电路板级热分析的重要边界条件,其热设计是采取措施控制环境温度,使电子设备在适宜的温度环境下进行工作,环境对通信电子设备失效的影响如图2所示。

图2 环境对通信电子设备失效的影响

通信电子设备封装级的电子模板和PCB电路板热设计是与设备的电路设计、结构设计密切相关同步进行的。对于PCB电路板基材进行适当的选择是电子设备封装级热设计的重要内容,除了一般要求的强度、绝缘、介质系数等外,耐温特性与导热性能是重点考虑项。

通信设备各个部件是由各种不同材料的元器件组成,其热膨胀系数各不相同,温度变化会在不同材料的交界面上产生压缩或拉伸应力,因此产生了热不匹配应力,简称热应力。材料热性质不匹配是产生热应力的内因,而温度变化是产生热应力的外因。通信电子设备元器件级的热设计是为了防止器件出现过热或温度交变而失效。

通信电子设备的热设计步骤可概括为:1)确定设备的加热、冷却需求;2)边界条件确定、初始数据计算;3)模型建立、分析;4)选择材料、热设计方式;5)制定程序调试、分析;6)输出文件、温度分布图验证。

2、通信电子设备冷却方式及其选择

通信电子设备的冷却方式可分为2类形式:自然冷却和强制冷却散热。根据具体情况,选择适当的冷却方式是热设计的重要方面。冷却方式的选择取决于很多因素,如:设备总发热量、设备的允许热量、工作环境及设备元器件的组装方式及布局等。

2.1、自然冷却散热

自然冷却是利用设备中各个元器件的空隙以及机壳的热传导、对流和辐射来达到冷却目的,此方法广泛应用在中小功率设备上。自然对流依赖于流体的密度变化,所要求的驱动力不很大,因此在流动路径中容易受到障碍和阻力的影响而降低流体的流量和冷却速率。因此在清晰干净且畅通的情况下,自然对流是一种比较有效的冷却方式。在功率密度越来越大的通信设备中用此种冷却方式往往满足不了需求。

2.2、强制冷却散热

强制冷却分为空气和液体两种方式。很多通信设备的冷却采用强制对流风冷却形式,这是因为空气强制对流冷却的换热量比自然对流和辐射的要大到10倍。这也是当前通信设备较普遍的一种散热方式。

空气强迫对流冷却技术较自然冷却减小了电子设备冷却系统的体积,使其具有更高的功率密度和更高的热点温度。通常,风源的产生有两种方法:1)设备内部用风扇(常见的有离心、轴流、螺旋桨等形式),以加大空气流量,强化器件、部件、设备的散热;可以直接将热空气排放至外界环境,也可以通过热交换器形式,通过内部、外界两个循环风道进行热交换散热;2)风源不在设备内部,这种形式只使用在移动式通信设备上,机体本身开设了多个通风孔,在运动过程中外部气源经通风孔鼓风,从而达到冷却的效果。

目前液冷技术正沿着两个不同的方向发展:一是用来处理设备产生的热量使器件温度和器件温差限制在可接受的水平上;另一个是使器件和电路处于极低的温度状态下以提高器件开关速度和降低金属布线电阻,从而提高电子设备的性能。超低温冷却技术为液冷应用开辟了一个新的领域,是在特定的条件下提高电子设备性能的有效手段。

相变过程伴随有大量热量的释放和吸收,采用相变冷却的方法可以对电子设备进行有效的温度控制。利用相变材料的相变过程作为热控制的基本形式有两种:液体的气化和固体的熔化。液体的气化冷却是一种很有效的冷却方式,主要应用于高能量密度的部件或者处于常温蒸浴状态的电子器件。固体的熔化冷却是采用一种合适的材料作为冷却手段,如塑性化合物,当它从发热部件吸收大量的热量时就熔化。材料熔化时温度并没有升高,所吸收的热量转化为材料的熔化热,起到冷却发热电子部件的作用。这种冷却方法的优点是原理简单,并且不耗费能源。因为熔化过程是可逆的,若发热器件的温度降下来,则已融化的物质可以再凝固。缺点是冷却能力限制在吸热材料的热容量以内。这种冷却方法特别适用于处于脉冲工作状态下的电子器件设备。选择相变材料时应注意材料的熔化点,其数值应等于或接近于发热部件的正常工作温度。

2.3、其它冷却技术

2.3.1、热管技术

热管是一种密封结构的空心管,管内含有蒸发时传递大量热量的液体以及冷凝时将液体带回起点的吸液芯。整个过程是在没有外部动力,没有机械运动零件,没有噪声的情况下完成的,而且设计极为简单有效,传递的热量比固态金属大几百倍,因此热管在电子设备冷却技术领域得到了广泛的应用。

热管是一个圆筒形的中空容器,在其管壁内填充烧结金属、金属毡等材料,主要是利用其毛吸力较大的特性,使液体由上面冷凝部回流到下部蒸发部。当蒸发部受热后使工作液蒸发,这种蒸汽快速地向冷凝部转移,并迅速带走热量,在冷凝段冷却而使蒸气凝聚成液体并积累。由于蒸发部的液体在缺乏毛吸力的作用下使工作液回流,这样工业液的蒸发(吸热过程)→蒸气的移动(输送热量)→凝结(放热过程)→液体回流,自动完成了容器的导热过程。这种冷凝散热器有很多优点,不仅导热性十分优异、热响应快、受热部分和散热部分可以隔离、构造简单、重量轻、使用寿命长、故障率低、可在无重力情况下使用、还具有热二极管及热开关的特性。特别是,一般的固体传导热量与传导通路长度呈反比例减少,而热管具有其他固体传热所不具有的特性。在电子设备中使用时,其一端可以连接多个发热部件,另一端可连接散热器、机壳其它冷却器件,散热效果十分理想。

2.3.2、热电制冷技术

当电流通过N型半导体和P型半导体所形成的电偶时,一个接头上放出热量,而另一个接头上吸收热量。利用这一原理做成典型应用的有冷热水机、电子器件的冷却。热电制冷技术的制冷温度范围为-20 ℃~常温。应用热电制冷技术作为电子设备的冷却措施,设计包括以下内容:设置一个电子器件需要的冷面、提供一个比环境高的热表面以及设置一个从冷面至热面泵出热量的制冷系统。

图3所示为热电制冷器的示意图,通常由P型和N型半导体片、导电接片、电绝热片、冷板和散热器组成。由于单级热电制冷器的制冷量较小,为了获得更大的制冷量和更低的制冷温度,常采用多级温差电器件串联、并联或者串并联结合的形式来对电子设备进行冷却。

图3 热电制冷工作原理示意图

3、计算机辅助热设计

随着计算机技术的发展,在通信电子行业计算机辅助设计也逐渐成熟,热设计作为电子设备设计的一部分也得到了充分的发展。在我国电子设备热设计领域主要是利用计算流体动力学(CFD)方法来进行的。国外已经有较多的商业软件来进行计算机辅助热设计:FLUENT/Icepack,PHOENICS/Hobox,ANSYS,NATA,CINDA,NATFIN,CATS,TANS,FLOWTHERM,ICEPAK,CoolitTM等。进行热分析的数学基础是有限元法、有限容积法、有限差分法以及边界元法。热分析就是根据工程实际来对模型简化,建立数学模型,求解非线性方程,编制和调试分析程序,最后得到可视化的温度分布图。

4、通信电子设备热设计的发展方向

电子设备热设计是一项十分复杂的工作,电子设备的计算机辅助热设计还有待于进一步的完善和发展,与设备结构的设计有机的结合起来。由于电子设备微型化的趋势,电子设备热设计需要从微尺度换热的角度来考虑进行有效的热传递。另外液体冷却和热管等技术在电子设备上的应用也是今后电子设备热设计的发展方向。

中兴室外电源产品应用

1、中兴室外电源产品应用特征

?室外产品有电源柜与电池柜一体的一体化柜、分开的分体式柜,有风扇与热交换器散热两种形式,热电制冷及其它形式在研发过程中,有加热及保温的选择配置,有温度控制功能,满足IP55的防护等级,满足世界大部分地区的使用环境需求、温度范围需求;

?室外电源产品(如ZXDU58 W121系列)配置了监控设备,对于高温炎热的国家地区采用温控开关控制风扇的启停。温控开关启动控制在35℃,关断控制在30℃,控制精度不超过±2℃。风扇的安装位置、风道设计保证机柜内外环境的热交换效果;

?室外电源产品应用于不同温度环境

适合高温国家、地区(如巴基斯坦、重庆等)应用的室外电源产品采用的是室外热电制冷方式、热交换器方式,主动散热、散热能力是其典型功能。

对于一般高温地区(赤道附近、中国长江流域、南方地区),应用的室外电源产品采用的是风扇或热交换器进行主动散热。

对于温差较大且突出地区(一年中有最高月平均气温超过28℃的高温环境,也有最低月平均气温低于-10℃

低温环境,如中国长春),应用的室外电源产品采用的是热交换器进行主动散热,也有加热器进行加热、保温。

对于市场特殊需求,如要求减少占地面积,降低征地费用,保证基站设备用电量及蓄电池备电时间等,中兴室外电源产品用一个对应热设计的室外柜能解决上述问题。

2、不同热设计方式的室外电源产品应用指南

1) 了解产品使用地区的气候特征;

2) 选择产品热设计类型――风扇型、热交换器型、热电制冷型,以及是否需要加热;

3)选择电池柜热设计类型――强制散热、加热保温;

4)结合温度选择:气温最高月的平均最高气温超过28℃的区域选择散热,气温最低月的平均最低气温低于-10℃的区域选择加热、保温。

航空器电子产品热设计

航空器电子产品热设计 现代机(弹)载电子设备由于受条件限制,都要求重量轻、体积小。另外,为了提高电子产品的工作性能,其功率往往很大,也就是说电子元器件的发热量非常大,一般电子元器件的正常工作温度要求低于100°C。根据美国空军的统计,在机(弹)载电子设备失效的原因中,有超过50%是由于温度引起的,因此电子产品的热设计是电子产品可靠性设计的最主要内容。 机(弹)载电子产品的冷却可采用循环水冷(二次冷却)和风冷,而风冷又有自然风冷和强迫风冷。 图7-1、7-2采用ANSYS CFX对某机载电子产品进行水冷分析,图示为散热冷板上的温度分布和冷却水的流线图。 传统的机(弹)载电子产品的热设计以经验设计为主,根据机(弹)载电子产品热设计手册,利用半经验、半解析的估算公式确定冷却方式、流量(压差)及流道,然后制造相应的1:1模型进行测试验证。这种热设计的成功率主要取决于设计者的经验,由于试验验证成本高、周期长,设计者只能选取少数几种自己认为最可行的设计方案进行试验,从而可能疏漏了更好的设计方案。另外,如果测试验证后发现了设计中的问题,回过来重新更改设计,再测试验证,这样的设计周期就更长,这与激烈的市场竞争不相适应。

计算流体动力学(CFD)的飞速发展和计算机性能的提高为机(弹)载电子产品热设计的数值仿真提供了保障。ANSYS CFX流体分析功能就是利用基于有限元的有限体积法求解三维湍流Navier-Stokes方程。ANSYS CFX是热、流耦合计算软件,在流体单元中求解质量、动量、能量方程,而同时在固体单元中耦合求解能量方程,由此可得出流场中的速度、压力、温度分布,固体中的温度分布,同时可得出流、固表面的对流换热系数(图7-4)和热流密度。 图7-5采用ANSYS CFX对某机载电子设备机箱进行强迫风冷分析,图示结果为机箱内外表面的对流换热系数分布。 机(弹)载电子产品的冷却效率取决于流、固表面对流换热系数的大小,因此热设计仿真分析的最主要任务是准确求解对流换热系数。对流换热系数的大小与近壁面的流体温度分布梯度成正比,而近壁面的流体温度分布梯度与近壁面的流体速度分布有关,因此,要得到准确的对流换热系数,必须精确求解流体速度分布,尤其是近壁面附面层内的速度分布。八十年代末九十年代初,由于受计算机速度的限制,直接求解三维复杂流场的湍流Navier-Stokes方程从而得到准确的流体速度分布几乎是不可能,因此发展了一些半经验、半解析的电子系统冷却分析软件,这些分析中的流体剖面速度分布是根据经验给定的解析式,对于简单流场,这样的解析表达式能较好地符合,而对于真实复杂流场,误差较大。ANSYS CFX通过直接求解三维湍流Navier-Stokes方程来得到准确的流体速度分布,从而能准确给出对流换热系数

电力通信电源系统维护及管理策略解析

电力通信电源系统维护及管理策略解析 发表时间:2019-07-31T10:45:02.963Z 来源:《中国电业》2019年第07期作者:申卫宾 [导读] 社会经济的快速发展对电力通信行业进步提供了新的契机支持。 国家电网山西省电力公司太原供电公司山西太原030012 摘要:近些年,我国的科学技术水平不断提升。电力通信电源系统的运行安全性和稳定性直接影响电力通信网的顺利运行。因此,概述了电力通信电源系统,研究了电力通信电源系统维护工作的要点,分析了电力通信电源系统故障检修和处理的要点,探讨了电力通信电源系统维护和检修的策略。 关键词:电力通信;电源系统;维护管理 引言 社会经济的快速发展对电力通信行业进步提供了新的契机支持。但是,从当前发展实际情况来看,电力通信电源系统在应用过程中深受外界因素影响,系统运行和维护管理存在一定的问题。为此,结合社会发展对电力通信电源系统应用提出的要求,需要相关人员从多个角度强化对电力通信电源系统的运行维护和管理,在系统运行维护管理的过程中打造科学合理的制度和体系,强化对相关人员的培训,从而确保整个系统的稳定运行和发展。 1电力通信系统概述 电力通信系统构成复杂,电源形式和基本构成错综混乱,因此在应用电力通信电源系统时为了提升系统的安全性和有效性,人们一般会选择220V的单向交流电。从整个电力通信电源系统的运行维护复杂实际情况来看,系统的核心是整流器。整流器的存在不仅能够为有电力需求的企业提供足够的电力资源,而且能够对蓄电池充电。在社会科技的发展支持下,电力通信电源系统开始使用高频开关整流器(电压区别大、体积小),一定程度上提升了电流信息的综合转换效率,强化了对整个电力通信电源系统的有效监控。另外,蓄电池在整个电力通信电源系统发展的过程中至关重要。在具体运行操作时,如果蓄电池出现问题,将会使整个电力通信系统出现断电现象,严重影响系统通信。结合电力通信系统发展实际情况,电力通信企业可以应用阀控蓄电池,将阀控蓄电池和电力通信系统的通信设备组合,为电力通信系统的稳定运行打造一个良好的环境。 2电力通信电源系统维护及管理存在的问题 2.1通信电源系统规划建设存在问题 通信电源系统的规划和使用是提升整个通信电源系统安全性和稳定性的重要环节。但是,从发展实际情况来看,当前电力通信电源系统的设计存在仅仅考虑通信设备、电源可靠性的现象,忽视了外界因素对整个系统稳定运行的干扰和影响。 2.2电源问题 电源问题一直是困扰电力系统通信的常见问题,当前大部分的电力企业的通信系统都采用的是直流蓄电池作为其主要的电源,而直流蓄电池如果适用的时间过长可能会导致电池内部温度异常升高,一旦超过其所能程度的最高温度时就会出现直流蓄电池失效的问题。与此同时,电力设备在进行充电过程中所产生的化学反应对板栅具有一定的腐蚀性,久而之久就会造成蓄电池失水的问题。如果这类电源问题得不到有效的解决,则会对电力系统通信运维与检修工作的开展产生严重的不良影响,同时也制约着电力企业整体经济效益的提升。 2.3机房运行环境因素 通信机房的运行环境在通信设备和通信电源中起着重要作用。许多机房除了安装常规防雷接地设备以外,其他辅助防护设备明显不足,不能满足电源稳定运行的基本要求。机房“三防”处理也不到位,通信机房温湿度的变化都可能会引起设备的连锁反应,导致设备不能正常运行,然而目前很多电源室没有安装空调、排风机等温湿度调节设备,机房的防尘、防潮措施并不能有效满足需求,机房环境不能满足通信电力设备的长期可靠工作,增加了发生通信故障的风险。 3电力通信电源系统维护及管理措施 3.1蓄电池的维护和管理 蓄电池是电力通信电源系统的重要零部件,对电力系统的运行起着十分重要的作用。但是,受外界因素的影响,蓄电池在长期使用过程中会出现一些质量问题。为了确保电力通信电源系统稳定运行,需要做好对蓄电池的维护管理。蓄电池使用中,相关人员需要全面掌握电力通信电源系统电压数据变化情况,密切关注电力通信电源系统的电流和电压使用情况,不断积累蓄电池维护工作经验。发现蓄电池维护管理出现松动或者渗透问题时,相关人员需要结合以往的工作经验找出解决故障问题的适合措施。 3.2做好对通信电源的运维与检修工作 与其他电力设备的运维检修不同,对电力系统通信电源的运维、检修首先要检查蓄电池是否符合相关的规定的电源标准,其次再检查电源线路接口及外壳包装是否完好,最后查看蓄电池是否有因腐蚀有电解液渗漏的现象。与此同时,在电源蓄电池出现电流少于15%,电压低于2.18V,全浮充运行超过既定时就需要对蓄电池进行必要的运维充电检修。另外,对于新安装的蓄电池而言,运维人员不仅需要对其进行电容测定,而且还需要测定电阻测定,并根据测定的数据结果检验其是否能够达到电力系统通信所需的平均值。例如,某电力企业在进行通信电源选择过程中,选择了稳定性较强的两组蓄电池作为电力系统的通信电源,而没有选择运行功率较大的单组蓄电池,有效的提高电池系统的稳定性和和安全性,促使该电力系统通信质量和运行效率大幅提升。 3.3电力系统通信电源故障应急预案 除日常维护管理外,还要制定切实可行的应急预案,并在合适的时间进行模拟演练,以检验矫正预案。例如,某电力系统运行中,监控中心发现某无人值守电源设备电压异常下降,需立即联系相关负责人,确认线路情况。若在短时间内无法恢复正常供电,需采取以下应急措施。首先,安排维护人员到现场处理,根据设备重要性进行供电处理,不重要的设备可先行断电;其次,按照蓄电池容量和设备耗电量预估蓄电池的可持续供应时间,为后续工作提供参考(假设蓄电池容量为300Ah,所有设备用电量为10A/h,蓄电池使用三年,效率为0.85,那么两组蓄电池可持续供电51h);最后,安排柴油发电机备用发电,并配置稳压设备。采取应急措施后,可按照先抢通、再维修及更换故障模块等原则进行故障处理。 3.4改善机房通信电源运行环境 如今的通信设备和电源设备对工作环境温度、湿度和清洁度有很高的要求。因此必须做好机房“三防”工作,改善电力通信电源系统机

电子产品散热设计概述(doc 45页)

电子产品散热设计概述(doc 45页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

YEALINK 行业 dell

电子产品的散热设计 一、为什么要进行散热设计 在调试或维修电路的时候,我们常提到一个词“**烧了”,这个**有时是电阻、有时是保险丝、有时是芯片,可能很少有人会追究这个词的用法,为什么不是用“坏”而是用“烧”?其原因就是在机电产品中,热失效是最常见的一种失效模式,电流过载,局部空间内短时间内通过较大的电流,会转化成热,热**不易散掉,导致局部温度快速升高,过高的温度会烧毁导电铜皮、导线和器件本身。所以电失效的很大一部分是热失效。 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 那么问一个问题,如果假设电流过载严重,但该部位散热极好,能把温升控制在很低的范围内,是不是器件就不会失效了呢?答案为“是”。 由此可见,如果想把产品的可靠性做高,一方面使设备和零部件的耐高温特性提高,能承受较大的热应力(因为环境温度或过载等引起均可);另一方面是加强散热,使环境温度和过载引起的热量全部散掉,产品可靠性一样可以提高。 二、散热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。 三、散热设计的方法 1、冷却方式的选择 我们机电设备常见的是散热方式是散热片和风扇两种散热方式,有时散热的程度不够,有时又过度散热了,那么何时应该散热,哪种方式散热最合适呢?这可以依据热流密度来评估,热流密度=热量 / 热通道面积。 按照《GJB/Z27-92 电子设备可靠性热设计手册》的规定(如下图1),根据可接受的温升的要求和计算出的热流密度,得出可接受的散热方法。如温升40℃(纵轴),热流密度0.04W/cm2(横轴),按下图找到交叉点,落在自然冷却区内,得出自然对流和辐射即可满足设计要求。

通信电源系统配置设计参数

电源系统配置设计参数 一、电池容量配臵 1、确定机房的中期用电负荷=总功耗(W)/48(V)=总负载电流(A); 2、确定蓄电池的后备时间=10小时(以10小时为例); 3、根据公式计算出蓄电池容量=总负载电流*10*1.42=蓄电池组总容量(AH); 通常设两组蓄电池,两组电池总容量必须大于计算所得蓄电池组总容量。 二、开关电源容量配臵 开关电源设计中要确定两个问题:一是蓄电池容量;二是开关电源规格。 1、蓄电池容量=负载功率/电压*电池备用时间(AH),这是近似计算公式; 2、高频开关电源容量=蓄电池充电电流+负载电流=0.1*蓄电池容量+负载电流(A); 3、高频开关电源整流模块数=高频开关电源容量/单个模块输出电流,该结果只能进位不能舍去,同时考虑N+1备份; 高频开关组合电源机架按远期容量配臵,整流模块按近期负荷配臵,高频开关电源中整流模块数按n+1冗余方式确定,其中n为主用,n<=10时,1块为备用;n>10时,每10块备用1块。主用整流模块总容量应按负荷电源和均充电流(10小时率充电电流)之和确定。

例:当蓄电池为2组300AH时,充电电流A=2*300/10=60A 负荷电流=31.25A 总电流=60+31.25=91.25A 根据计算即可求的需要配多大的开关电源。要是机房没什么发展,只需要配臵100A组合开关电源即满足需要。 三、高阻柜相关问题 在通信设备供电系统中,有低阻配电和高阻配电两种配电方式。在采用高阻配电的供电系统中,每一路负载支路都具有高阻抗,远大于电源电阻,所以某一支路的负载短路所引起的电源瞬间变化电压能 够被限制在一定的范围内,不会影响其他支路负载的工作。 每一负载分路由空气开关、高阻片(含短接片)、输出接线端子组成,可实现多路小电流输出。当负载电流过大时,空气开关可起到保护作用。如果负载发生短路,高阻片上可产生一定压降,防止由于少数负载短路导致其它负载支路输出电压严重下降的后果。但是需要注意的是因为高阻片有一定的阻值,在负载电流较大时,需要关注高阻片的发热问题,特别是DSLAM机柜通常是单路输入,电流通常较大,单框负载电流超过5A,早期设备甚至超过10A。若负载电流较大需要考虑短路高阻片或者增加-48V接入支路数。配电线距离较长更现场更需要全程压降指标。

电子产品热设计、热分析及热测试

电子产品热设计、热分析及热测试培训 各有关单位: 随着微电子技术及组装技术的发展,现代电子设备正日益成为由高密度组装、微组装所形成的高度集成系统。电子设备日益提高的热流密度,使设计人员在产品的结构设计阶段必将面临热控制带来的严酷挑战。热设计处理不当是导致现代电子产品失效的重要原因,电子元器件的寿命与其工作温度具有直接的关系,也正是器件与PCB中热循环与温度梯度产生热应力与热变形最终导致疲劳失效。而传统的经验设计加样机热测试的方法已经不适应现代电子设备的快速研制、优化设计的新需要。因此,学习和了解目前最新的电子设备热设计及热分析方法,对于提高电子设备的热可靠性具有重要的实用价值。所以,我协会决定分期组织召开“电子产品热设计、热分析及热测试讲座”。现具体事宜通知如下 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 一、课程提纲:课程大纲以根据学员要求,上课时会有所调整,具体以报到时的讲义为准。 一、热设计定义、热设计内容、传热方法 1 热设计定义 2 热设计内容 3 传热方法简介 二、各种元器件典型的冷却方法 1 哪些元器件需要热设计

2 冷却方法的选择 3.常用的冷却方法及冷却极限各种元器件典型的冷却方法 4. 冷却方法代号 5 各种冷却方法的比较 三、自然冷却散热器设计方法 1 自然冷却散热器设计条件 2 热路图 3 散热器设计计算 4 多个功率器件共用一个散热器的设计计算 5 正确选用散热器 6 自然冷却散热器结温的计算 7 散热器种类及特点 8 设计与选用散热器禁忌 四、强迫风冷设计方法 1 强迫风冷设计基本原则 2 介绍几种冷却方法 3. 强迫风冷用风机 4. 风机的选择与安装原则 5 冷却剂流通路径的设计 6 气流倒流问题及风道的考虑 7 强迫风冷设计举例(6个示例) 五、液体冷却设计方法

通信电源专业维护知识考试题

通信专业知识八、通信电源专业 第一章通信电源供电系统 一、填空题 1.直流供电系统向各种通信设备提供(直流电源)。 2.经由市电或备用发电机组含移动电站提供的低压交流电为通信局用的(交流基础电源)。 3.通信局的基础电源分交流基础电源和(直流基础电源)两大类。 4.直流供电系统目前广泛应用(并联浮充)供电方式。 5.高压熔断器用于对输电线路和变压器进行(过流保护)。 6.高压断路器具有(分断)和接通高压正常负荷电流及承受一定时间的短路电流的功能。 7.隔离开关用于隔离检修设备与(高压电源)。 8.机电制交换机采用汇流排把基础电源直接馈送到机房机架,这种方式称为汇流式馈电,又因汇流排电阻很低,也称为(低阻配电)方式。9.各机架电源负馈线,均用高阻电缆从公共配电点引出至程控交换机的配电方式为(高阻配电)方式,又称辐射式馈电。 10.熔断器应有备用,不应使用(额定电流)不明或不合规定的熔断器。 11.引入通信局的交流高压电力线应采取高、低压(多级避雷)装置。 12.交流用电设备采用三相四线制引入时在零线上除电力变压器近端接地外,用电设备和机房近端应(重复接地)。 13.为了确保通信电源不中断、无瞬变,近年来,在某些通信系统中,已采用交流(不间断电源)。 14.变电站和备用发电机组构成的交流供电系统一般都采用(集中)供电方式。 15.隔离开关无特殊的灭弧装置,因此它的接通或切断不允许在有(负荷电流)的情况下进行。 16.高压室禁止无关人员进入,在危险处应设防护栏,并设明显的(告警牌),如“高压危险,不得靠近”等字样。 17.配电屏四周的维护走道净宽应保持规定的距离,各走道均应铺上(绝缘胶垫)。 18.在距离l0kV~35kV导电部位(lm)以内工作时,应切断电源,并将变压器高低压两侧断开,凡有电容的器件应先放电。 19.电流互感器在运行过程中二次线圈回路不能(开路)。

电力系统通信电源应用分析 苏建胜

电力系统通信电源应用分析苏建胜 摘要:所谓的通信电源就是为通信设备提供直流电以及交流电的一种电能源, 在整个通信网中都具有重要地位。近些年来电力通信网的虽然在以高歌猛进的势 头发展,但是相应的也给这一行业带来了不少新问题,随着现代科技的不断进步,电源设备处于更新换代、新老并存的时期。本文主要就电力系统通信电源的各方 面运用来进行分析,并且对电力系统通信电源的结构和功能来进行研究。并结合 分析所得出的经验来对通信电源的应用提供一些有用的对策,希望能对该行业的 发展有所帮助。 关键词:电力系统;通信电源;应用分析;对策 近些年来,我国的通信行业得到了飞速发展,通信网不仅覆盖面得到大大提高,而且各功能也日渐完善,随着固话、手机等通信工具的不断增加,通信网络 也越来越成为我们生活中的重要组成部分,因此继续保持和促进通信网络的发展 是完全有必要的,而且意义重大。电力系统靠通信电源来提供能源,通信电源如 果出现故障,那么势必影响整个电力系统工作的正常运行,因此通过先进技术来 改善和提升通信电源功能有着重要作用,也会促进我国通信网络的发展。 1.通信电源发展现状及发展趋势 通信电源作为通信系统的一个重要组成部分,虽然在整个行业所占的份额较小,但是它却是整个通信系统的重要基础设施,也是通信网的一个不可或缺的专 业组成部分。近年,因为我国的科技水平日益得到提高。各种电磁材料以及功率 转换等各种技术的不断发展,通信电源的系统可靠性以及安全稳定性都得到极大 提高,使得在通信电源应用方面取得的成就也越来越大。通信电源的本身设计动 力是为电力通信系统提供优质、高效、安全以及稳定的能源输出设备,因此在今 后的通信电源的开发研究道路中,将会把创造优质、安全、高性能的能源设备作 为重要目标。而当今正处于互联网时代,计算机等技术的普遍发展和运用也为通 信电源的发展带来重大契机。总而言之,通信电源将会随着时代需求不断发展, 不仅为人们的生活带来便利,也将是反映社会进步的重要部分。 2.电力系统通信电源组成 2.1高频开关电源 随着电力电子技术和自动化控制技术的发展,晶体管开关电源的频率从早期 的20 Hz 提高到数百kH z,形成了通信领域里广泛采用的高频开关电源。高频开 关电源是将交流输入电源变换为设备所需的直流电源装置,主要由输入整流模块、高频变换模块、输出电源整流滤波模块和控制调整模块组成。交流输入电压经滤波、整流得到一个直流电压,通过高频变换器将直流电压变换成高频交流电压, 最后经输出整流滤波模块,将高频交流电压整流滤波成直流电压。 在电力系统通信网中高频开关电源一般由高频开关电源的输出端和蓄电池并 接在一起向通信设备供电。通信设备正常工作时是开关电源供电,同时开关电源 向蓄电池进行充电。如果故障出现在交流系统或开关电源设备上,那么通信设备 将由蓄电池提供电能。通信电源在故障被消除后恢复正常工作状态。 2.2变电站一体化电源 变电站一体化电源是继电保护、自动化装置和事故照明系统通常使用的供电 方式,也可以为通信设备供电。变电站一体化电源是将交流输人电源经开关电源 转换后输出直流2 0 v 或直流1 10 v 电源,一方面向变电站使用的蓄电池等供电,另一方面通过直流电源变换器和电源逆变器将直流电源转换成直流48 v 和交流2

电子产品热设计规范

电子产品热设计规范 1概述 1.1热设计的目的 采用适当可靠的方法控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行的可靠性。 1.2热设计的基本问题 1.2.1耗散的热量决定了温升,因此也决定了任一给定结构的温度; 1.2.2热量以导热、对流及辐射传递出去,每种形式传递的热量与其热阻成反比; 1.2.3热量、热阻和温度是热设计中的重要参数; 1.2.4所有的冷却系统应是最简单又最经济的,并适合于特定的 电气和机械、环境条件,同时满足可靠性要求; 1.2.5热设计应与电气设计、结构设计、可靠性设计同时进行,当出现矛盾时,应进行权衡分析,折衷解决; 1.2.6热设计中允许有较大的误差; 1.2.7热设计应考虑的因素:包括 结构与尺寸 功耗 产品的经济性

与所要求的元器件的失效率相应的温度极限 电路布局 工作环境 1.3遵循的原则 1.3.1热设计应与电气设计、结构设计同时进行,使热设计、结构设计、电气设计相互兼顾; 1.3.2热设计应遵循相应的国际、国内标准、行业标准; 1.3.3热设计应满足产品的可靠性要求,以保证设备内的元器件均能在设定的热环境中长期正常工作。 1.3.4每个元器件的参数选择及安装位置及方式必须符合散热要求; 1.3.5在规定的使用期限内,冷却系统(如风扇等)的故障率应比元件的故障率低; 1.3.6在进行热设计时,应考虑相应的设计余量,以避免使用过程中因工况发生变化而引起的热耗散及流动阻力的增加。 1.3.7热设计不能盲目加大散热余量,尽量使用白然对流或低转速风扇等可靠性局的冷却方式。使用风扇冷却时,要保证噪首指标符合标准要求。 1.3.8热设计应考虑产品的经济性指标,在保证散热的前提下使其结构简单、可靠且体积最小、成本最低。 1.3.9冷却系统要便于监控与维护 2热设计基础 2.1术语 2.1.1 温升

通信电源课程基本概述

一、课程基本概述 通信电源系统是整个通信设备的重要组成部分,通常被称为通讯设备的“心脏”,稳定可靠的通信电源供电系统,是保证通信系统安全、可靠运行的关键,一旦通信电源系统故障引起对通讯设备的供电中断,通讯设备就无法运行,就会造成通信电路中断、通信系统瘫痪,从而造成极大的经济和社会效益损失。因此,通信电源系统中占据十分重要的位置。 《通信电源》分成概述、交流系统篇、直流系统篇和综合测试篇等四大篇章。在概述中介绍通信电源系统的总体概念,简要说明了各分支专业如何组成一个整体,构成一个满足通信正常运行所要求的电源系统:交流系统篇介绍高低压配电、油机发电、交流配电以及空调设备的一些基础和维护,不同场合使用不同的空调设备;直流系统篇介绍整流交换、蓄电池、UPS、直配;综合测试篇介绍接地和防雷、环境的集中控制,以及通信电源系统的日常测试维护原理和步骤。 关于高低压配电系统,我们知道发电厂、电力线路、变电站和电力用户组成了电力系统,通信局属于电力系统中的电力用户,市电从生产到引入通信局要经过生产、输送、变换和分配等四个环节。在电力系统中,各级电压的电力线路以及相联系的变电站就是我们所说的电网,根据供电范围大小电网可以分为区域电网,国家电网,地方电网等种类。由于大型发电厂的建成投产及输电距离的增加,为了减少线路能耗和压降以及节约有色金属和降低线路的工程造价,必须经发电厂中的升压变电所升压至35kv~500kv。 高低压配方式包括放射式配电、树干式配电以及环状式配电方式三种接电方式,不同的接地方式有不同的优缺点,适用于不同的场合。例如,对于环状式配电方式其优缺点是运行灵活,供电可靠性较高。(当线路的任何地方出现故障时,只要将故障邻近的两侧隔离开关断开,切断故障点,便可恢复供电。)另外为了避免环状线路上发生故障时影响整个电网,所以在正常情况下呈“开环”状态。而对于树干式配电方式的优点是:降压变电所6-10kv 的高压配电装置数量减少,投资相应可以减少,缺点是供电可靠性差——只要线路上任意一段发生故障,线路上变电所都将断电。 常用的高压电器包括高压熔断器、高压断路器、高压隔离开关、避雷器等。高压开关柜就是高压开关及相应的控制、信号、测量、保护盒调节装置的组合。 对于空调,我们再熟悉不过了,但我们对于空调知识又有多少了解呢,家里有空调,对于那些大型、小型商场也有空调,是佛偶知道是挂壁式海事落地式的?是单冷型还是热泵型等?我们只知道,为了改善环境条件以满足生活舒适和工艺设备的要求,我们选择了空调,我们可以制冷、制热、加湿以及除湿。通过学习,我们知道空调器主要由制冷系统;风路系统;电气系统;箱体与面板四部分组成,知道了关于空调设备的工作原理。 在通信局中,接地占有很重要的地位,它不仅关系到和维护人员的安全,同时还影响到通信的质量。掌握理解接地的基础知识,正确选择和维护接地设备,具有很重要的意义。所谓“接地”,就是为了工作或保护的目的,将电气设备或通信设备中的接地端子,通过接地装置与大地作良好地电气连接,并将该部位的电荷注入大地,达到降低危险电压和防止电磁干扰的目的,所以在很多建筑物上安装有避雷设施以保护我们的设备免受雷击。 当然,对于电源设备,我们除了防雷,最主要的还是日常的维护,我们要防尘和定期除尘。特别是气候干燥的地区,空的灰粒较多,灰尘将在机内沉积,当遇到空气潮湿时会引起主机控制絮乱造成主机工作失常,并发生不准确告警。另外大量灰尘也会造成器件散热不好。一般每季度应彻底清洁一次。其次就是在除尘时检查各连接件和插接件有无松动和接触不牢的情况。我们还有加强一些防水保护盒防嗮保护,为确保产品长期安全可靠的运行,防潮、防霉、防烟雾也是十分重要的。 二、学习总结 2.1 通过学习本书,我学到了不少的知识,我想着对于我以后的学习专业知识有很大的帮助,现在社会是一个电的社会,学习通信电源,对于我们学习其他的知识有很大的关系,随着通信技术的飞速发展,通信业务的不断拓展和通信市场的日益开放,通信类的专业具有很高的从业素质,以增强产业的竞争力。我是学习通信专业的,以后要从事相关专业,必须懂得怎样使用电,怎样输送电力,怎样保护和维护电力系统,这是最基本的。 2.2 通过学习,我个人不能说全会,但是对于一些基本的知识我还是有一定的了解,不管以后从事哪种行业,我认为通信电源对我们的生活影响都很大,现在生活中到处都有电,电已经成为我们生活中不可缺少的一部分。我们熟悉家电,熟悉空调,你懂得它的构造,运行基本原理吗?你不会,你不懂,我们只知道的仅是一些皮毛,我们只知道空调可以制冷、制热、加湿以及除湿,对于其他的就不了解了。我们熟悉蓄电池,但我们不懂它的原理构造,不懂它的寿命周期,怎样处理一般的故障。通过学习,我们可以知道最基本的通电源知识,了解生活中常见的一些

通信电源的管理与维护

通信电源的管理与维护 1 通信电源系统的组成 电源是通信系统的重要组成部分。一个完整的通信电源系统由5个部分组成:交流配电单元、整流模块、直流配电单元、蓄电池组、监控系统。 2 对通信电源系统的基本要求和特点 对通信电源系统的基本要求是可靠性和稳定性。一般通信设备发生故障的影响面比较小,是局部性的,但如果通信电源系统一旦发生故障,通信系统将全部中断,所以电源系统要应有备份设备,电源设备要有备品备件,市电要有双路或多路输入,交流和直流互为备用。我国对通信电源的要求是:防雷措施要求完善,设备允许的交流输入电压波动范围大,多重备用系统以防止电源系统发生电源完全中断故障。由于电网分布和利用市电的条件存在千差万别,许多地方的市电电压波动范围很大。特别是一些变电站、微波站、光通信站和模块站等,有时交流电电压波动范围达±30%以上。为提高市电的可用度,要求电源设备具有更宽的工作电压范围,否则就要增加稳压装置。 3 通信电源的管理 3.1 加强对电源设备的重视 电源设备与通信网中的其它设备(如交换、传输等)有较大的不同,本质上,电源设备是机电设备而非通信设备。正因为如此,在通信中,它得不到充分的重视,无论是在组织机构、人员、资金还是管理上,都得不到相应的保证。然而,必须看到,通信电源作为整个通信电信网中的能量保证,它的作用是整体和全局性的。虽然它不是通信网主流设备,但它却是通信网中最重要、最关键的设备。 3.2 加强电源管理上的专业化 对通信电源要求通信网上的各级管理层次和建设、维护方面应该有独立的电源专业管理机构和人员。因为通信电源是一个专业,而且是个包括多种系统和学科的大专业,因此,应该对它作相应的专业管理,由其它专业人员来兼管电源专业是不够的,也是不科学的。 3.3 重视通信电源系统初期的设计、安装 电源系统设计时应充分考虑容量大小、地理位置、空间布置、未来发展、设备质量、工作勘察与设计、运行方式选择、建设管理、运行维护管理等各个环节。其中对于设备选择、方案设计、工程管理等环节尤其要加强重视和管理。

电力系统通信直流电源设计探讨

电力系统通信直流电源设计探讨 王伟勇,左向红,刘毅梅,王婷婷 北京电力设计院,北京市宣武区广安门车站西街15号(邮编:100055) Discussion on The Design of Communication Direct Current Power Supply in Electricity Power System Wang Wei-yong,Zuo Xiang-hong,Liu Yi-mei,Wang Ting-ting Beijing Electric Power Design Institute,No.15 Guang An Men Xi Jie Xuan Wu District Beijing 100055,china Abstract:Communication power supply is an important component of communication system. Being a infrastructure construction that is necessary for communication equipment working regularly, superior or inferior in communication power supply will have direct impact to communication quality and reliability of communication system, hence adequate attention should be given to the design of communication power supply in a scheme for electricity power system communication. In this paper we first briefly introduce the function of a single substation in electricity power system and the difference between communication and secondary emergency discharge time. Then analysis has been emphatically carried out on four kinds of Direct Current Supply schemes for communication equipment from aspects of technology, reliability, investment, operation and maintenance. Finally advantages and disadvantages of various kinds of Direct Current Supply have been drawn a conclusion. Key word: Direct Current Power Supply; Discharge Time; Design; Energy Utilization Rate 摘要:通信电源是通信系统的重要组成部分,作为通信设备正常工作必备的基础设施,通信电源的优劣将直接影响到通信系统的通信质量和通信可靠性,故通信电源的设计在电力系统通信设计中应予以足够的重视。文章首先简要介绍了单个变电站在电力系统中的作用及通信与二次事故放电时间的不同,然后重点从技术、可靠性、投资、运维等方面对通信设备4种直流供电方案进行了分析,比较得出各直流供电方式的优缺点。 关键词:直流电源;放电时间;设计;能源利用率 0 引言 电力通信网作为电网发展的基础设施,在保障电网安全、稳定、经济运行,提高电网企业信息化水平等方面发挥着越来越重要的作用。通信电源是向通信设备不间断地提供直流电或交流电的电能源,任何通信系统的正常运行都离不开通信电源,常被誉为通信系统的“心脏”。通信质量的高低,固然与通信系统中各种通信设备的性能、质量息息相关,但与通信电源系统供电质量的优劣也是分不开的,如果通信电源系统供电质量不符合相关技术指标的要求,将会引起电

通信机房电源及配套专业勘察设计要点

本说明将详细叙述通信工程机房电源及配套专业的前期准备、实际勘察步骤,勘察过程给通信运营商提供的设备采购清单和勘察完毕后设计的全部过程中注意的各细节问题,围绕以机房核心动力源展开叙述。 一、前期准备及勘察阶段 1.1 前期准备 我们设计院将接下来的通信电源工程设计任务书下发的设计部门,设计部门经过确定后再发到项目组成员,项目组成员要详细的琢磨任务书上写明的每一句话,每一个字,领会此工程即将要做什么〔是搬迁利旧还是新建电源设备等等〕,要求做到什么程度〔确定本次工程设计的分工界面:与外市电引入的分工、与建筑专业设计分工、与传输、交换、数据等专业分工〕。 A、了解电源专业的电源系统组成、基本术语及明白各种图标和图例〔新设计的大型通信局(站)原则上采用分散供电方式〕 交直流电源系统组成:〔交流引入――交变直转换――直流输出〕 交流电引入:市电分为三相四线制〔TN-C系统:U/V/W/N〕和三相五线制〔TN-S 系统:U/V/W/N/G〕,其中U/V/W为火线,N为零线,G为保护地线;市电供应的等级〔四个等级:一类市电/二类市电/三类市电/四类市电;它们的区别主要是根据通信局址所处的级别和重要性,市电的高、低要求标准不同,导致允许停电时间长短不同〕及电费费率体制〔照明和通信系统用电是单独计费还是统一计费,会导致设计中

交流电源线接法不同;比如现在局方照明系统和通信系统费率体制相同,则照明系统和通信系统直接可以在同一个交流配电输出柜内引接;如果它们费率体制不相同,则照明系统和通信系统则不可以在同一交流输出柜内引接,照明系统或通信系统其一应该在另装计费器(电表)下的交流系统输出端子引接〕。 N W V U(火) 交流电源线选取:现代通信通常选择RVVZ 1000和RVVZ22 1000两种电源线型号。RVVZ 1000表示高阻燃铜芯聚氯乙烯绝缘聚氯乙烯护套软电缆(电缆耐压1000V),适用于通信机房内绝大部分场合;RVVZ22 1000表示锴装高阻燃铜芯聚氯乙烯阻燃聚氯乙烯护套软电缆(电缆耐压1000V),适用于通信机房地槽、地沟等易于挤压破损的场合。在机房设备搬迁改造工程设计中,如果遇到通信机房内的电源线采用BV等系列的情况,除非运营商特殊要求,搬迁改造后新增的电源线首选RVVZ系列。 下图体现了RVVZ 1000(3芯+1芯)电源线缆的内部结构,内含4条线,例如:RVVZ 1000(3*25+1*16)mm2表示这条电源线内含3条25 mm2的电源线和1条16 mm2的电源线,共计4条线;如果采用RVVZ 1000(3芯+2芯)的电源缆线,则电缆内应含5条线,表示方法同上所述。如果在通信工程中采用RVVZ

电子产品热设计

目录 摘要: (2) 第1章电子产品热设计概述: (2) 第1.1节电子产品热设计理论基础 (2) 1.1.1 热传导: (2) 1.1.2 热对流 (2) 1.1.3 热辐射 (2) 第1.2节热设计的基本要求 (3) 第1.3节热设计中术语的定义 (3) 第1.4节电子设备的热环境 (3) 第1.5节热设计的详细步骤 (4) 第2章电子产品热设计分析 (5) 第2.1节主要电子元器件热设计 (5) 2.1.1 电阻器 (5) 2.1.2 变压器 (5) 第2.2节模块的热设计 (5) 电子产品热设计实例一:IBM “芯片帽”芯片散热系统 (6) 第2.3节整机散热设计 (7) 第2.4节机壳的热设计 (8) 第2.5节冷却方式设计: (9) 2.5.1 自然冷却设计 (9) 2.5.2 强迫风冷设计 (9) 电子产品热设计实例二:大型计算机散热设计: (10) 第3章散热器的热设计 (10) 第3.1节散热器的选择与使用 (10) 第3.2节散热器选用原则 (11) 第3.3节散热器结构设计基本准则 (11) 电子产品热设计实例三:高亮度LED封装散热设计 (11) 第4章电子产品热设计存在的问题与分析: (15) 总结 (15) 参考文献 (15)

电子产品热设计 摘要: 电子产品工作时,其输出功率只占产品输入功率的一部分,其损失的功率都以热能形式散发出去,尤其是功耗较大的元器件,如:变压器、大功耗电阻等,实际上它们是一个热源,使产品的温度升高。因此,热设计是保证电子产品能安全可靠工作的重要条件之一,是制约产品小型化的关键问题。另外,电子产品的温度与环境温度有关,环境温度越高,电子产品的温度也越高。由于电子产品中的元器件都有一定的温度范围,如果超过其温度极限,就将引起产品工作状态的改变,缩短其使用寿命,甚至损坏,使电子产品无法稳定可靠地工作。 第1章电子产品热设计概述: 电子产品的热设计就是根据热力学的基本原理,采取各种散热手段,使产品的工作温度不超过其极限温度,保证电子产品在预定的环境条件下稳定可靠地工作。 第1.1节电子产品热设计理论基础 热力学第二定律指出:热量总是自发的、不可逆转的,从高温处传向低温处,即:只要有温差存在,热量就会自发地从高温物体传向低温物体,形成热交换。热交换有三种模式:传导、对流、辐射。它们可以单独出现,也可能两种或三种形式同时出现。 1.1.1 热传导: 气体导热是由气体分子不规则运动时相互碰撞的结果。金属导体中的导热主要靠自由电子的运动来完成。非导电固体中的导热通过晶格结构的振动实现的。液体中的导热机理主要靠弹性波的作用。 1.1.2 热对流 对流是指流体各部分之间发生相对位移时所引起的热量传递过程。对流仅发生在流体中,且必然伴随着有导热现象。流体流过某物体表面时所发生的热交换过程,称为对流换热。 由流体冷热各部分的密度不同所引起的对流称自然对流。若流体的运动由外力(泵、风机等)引起的,则称为强迫对流。 1.1.3 热辐射 物体以电磁波方式传递能量的过程称为热辐射。辐射能在真空中传递能量,且有能量方

电力系统通信电源应用分析

电力系统通信电源应用分析 发表时间:2017-12-04T10:39:14.157Z 来源:《基层建设》2017年第25期作者:程晓庆[导读] 摘要:在整个通信的行业中,通信电源技术所占比例并不大,但是它也是不可忽视的基础设施,是完整且独立的存在行业当中,其作用也不可小觑。 国网河南省电力公司登封市供电公司河南登封 452470 摘要:在整个通信的行业中,通信电源技术所占比例并不大,但是它也是不可忽视的基础设施,是完整且独立的存在行业当中,其作用也不可小觑。社会的发展,对通信电源技术也提出了新的发展要求,如今社会对环境的重视,也要求通信电源的设备具有环保节能的特性,这将成为电源技术发展的新方向,同时对其的管理、控制和维护等都在不断的完善,相信在未来一段时间里,电源技术的发展和配套 设施将更加符合规定和需要。本文对电力系统通信电源应用进行了探讨。 关键词:电力系统;通信电源;应用电力通信电源技术被广泛运用于生产经营活动中,有效保障工农业领域的正常运转。只有不断加大对通信电源技术的重视程度,研究新型电源设备,促进技术朝着分散供电、免维修、智能监控等方向发展,才能更好地确保电力输送过程的稳定性和持续性,提升我国经济水平。 1电力通信电源技术概念 1.1电力通信电源技术原理 随着我国电力通信理论体系及技术体系的不断健全,各种电力通信新型电源技术不断得到应用,在这种趋势中,分散供电、组网监控等使其主要的发展方向。在电力通信电源的传统工作模块,集中式供电方法是常见的工作模式,这种模式方法具备一定的局限性。在集中供电模式应用中,需要将电力电源设备集中安装在电池室内,通过对集中式电力电源的应用,实现向其他通信设备的供电,在这个过程中,普通铅蓄电池是其重要的供电使用设备,这种电力供电设备的整体体积比较大,整体比较笨重,在工程模块中,会发出一系列的噪声,其产生的酸雾对周围的环境造成一定的污染性。在实践模块中,电力电源设备需要安装在指定的电池室内。 1.2分散供电模式的优势 整体来看,在工作过程中,通信负荷中心与集中式电力电源设备的距离较远,在工作模块中,其通常要损耗大量的直流电力资源,该系统不具备良好的工作可靠性,在该类电力电源设备的安装过程中,其需要花费大量的人力、物力等,不利于进行该环节施工成本的控制。随着社会经济的不断发展,电力通信电源新型技术不断得到研发及应用,实现了免维护蓄电池、开关整流器等的广泛性应用,这也一定程度推动了电力供电模式的更新,实现了分散供电模式的应用,在这个模块中,交流电源系统实现了集中供电方法的应用。 在传统工作模块中,集中供电模式具备较高的工作成本,其不利于进行电力供电成本的控制,相比于集中供电模式,分散供电模式具备良好的工作效益,其电力电源整体安装费用比较低,具备较高的运行可靠性,能够满足现阶段电力通信电源智能化管理的要求。在工程实践中,分散供电模式存在一定的局限性,随着工作规模的不断扩大,电力通信电源所需蓄电池的个数不断增加,其整体成本呈现不断上升的趋势,对于电源可靠性及维护人员工作素质的要求比较高。 2电力通信电源新技术要求 2.1可靠性。可靠性是保证电力通信系统畅通的前提条件,电力通信电源系统运行过程中,不允许有一丝一毫的间断。一般情况下,电力通信电源系统需要为众多的通信设备供电,如果电源系统发生故障,就会对整个通信系统运行造成影响。采用整流器与电池并联浮充供电方式,在直流供电系统中使用,有效的提升了系统供电的可靠性。 2.2小型。在科技发展过程中,集成电路小型化发展已成为必然的趋势,为了满足电力通信事业的发展,电源装置也需要不断的向着小型化、微型化的方向发展,电源设备小型化,在体积、质量等方面更加灵活,使用过程中也更加灵便。 2.3高频率。随着通信设备的容量日趋增加,电源系统的负荷不断增大,为节约电能,必须设法提高电源装置的效率。节能主要措施是采用高效率通信电源设备,以往,通信设备大多采用相控型整流器,这种源效率较低,变压器损耗较大。而高频开关电源效率较高,因此采用高频开关电源可以节约能源。 3电力系统通信电源的应用 3.1高频开关电源 高频开关电源是通过IGBT 或者MOSFET 高频工作而使电源高效率以及小型化得以实现。通常情况下,控制其开关频率在50—100kHz 之间。高频开关电源选择全桥逆变换流技术,使电源整体性能能够保持稳定,并且也保证有可靠的质量。对于在实际运用过程中所出现过压、过流以及短路、超温及缺相等相关问题,整机能够实现自动保护报警,具备软启动功能,并且在机器中还能够安装时间控制以及计算机接口。在当前电力通信中所使用的高频开关电源大多都是SFG 系列,其选择冷风式设计,在安装方面比较方便,并且在该电源装置中配备远控装置,操作比较简单,开关机时可带负载执行,可使调节中的一些烦琐程序大大减少。 3.2变电一体化电源 变电一体化电源所指的就是对直流电源、逆变电源及不间断电源与通信用直流变换电源进行合理组合,使其成为蓄电池组,同时还能够统一监控。对于变电一体化电源而言,对于通信供电部分,通常情况下选择直流供电模式,要成为通信电源需要进行变换。但是,当直流电源有故障出现时,变电所所使用电源为通信设备提供电能将无法正常实现。对于一体化电源而言,在接地模式方面通常在直流部分操作上选择不接地方式。在维护模式方面,将电源设备测量在监控系统中集中,从而统一进行管理以及维护。 3.3校正通信电源功率因数 在电力通信电源工作模块,其开关整流器通常需要进行两级变换形式的应用,在整流器运行过程中,其首先经过ACDC整流,然后再经过滤波电路书屋交流电,实现直流的转换。在DC-DC 环节,其会被转变为相应的直流电。在电力通信电源工作模块,开关整流器扮演着重要的容性负载角色,其实现了电力通信电网供电效率的提升,该技术具有功率因数校正的功能,能够避免因为过热、误操作、烧毁等事故而导致的变压器损耗状况,满足了现阶段电力通信系统工作的要求。 3.4应用免维护蓄电池

相关文档
最新文档