(完整)初中数学行程问题专题

(完整)初中数学行程问题专题
(完整)初中数学行程问题专题

初中列方程解应用题(行程问题)专题

行程问题是指与路程、速度、时间这三个量有关的问题。我们常用的基本公式是:

路程=速度×时间;速度=路程÷时间;时间=路程÷速度.

行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。下面我们将行程问题归归类,由易到难,逐步剖析。

1. 单人单程:

例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从h km /80提高到h km /100,运行时间缩短了h 3。甲,乙两城市间的路程是多少?

【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的运行时间为h x 80,提速后的运行时间为h x 100. 【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间. 【列出方程】3100

80=-x x .

例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40。求火车的速度和长度。

【分析】如果设火车的速度为x s m /,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图:

【等量关系式】火车min 1行驶的路程=桥长+火车长;

火车s 40行驶的路程=桥长-火车长 【列出方程组】???-=+=y

x y x 100040100060

2.单人双程(等量关系式:来时的路程=回时的路程):

例1:某校组织学生乘汽车去自然保护区野营,先以h km /60的速度走平路,后又以h km /30的速度爬坡,共用了h 5.6;返回时汽车以h km /40的速度下坡,又以h km /50的速度走平路,共用了h 6.学校距自然保护区有多远。

【分析】如果设学校距自然保护区为x km ,由题目条件:去时用了h 5.6,则有些同学会认为总的速度为h km x /5

.6,然后用去时走平路的速度+去时爬坡的速度=总的速度,得出方程5

.63060x =+,这种解法是错误的,因为速度是不能相加的。不妨设平路的长度为x km ,坡路的长度为y km ,则去时走平路用了h x 60

,去时爬坡用了h y 30

,而去时总共用了h 5.6,这时,时间是可以相加的;回来时汽车下坡用了h y 40,回来时走平路用了50

x ,而回来时总共用了h 6.则学校到自然保护区的距离为km y x )(+。

【等量关系式】去时走平路用的时间+去时爬坡用的时间=去时用的总时间 回来时走平路用的时间+回来时爬坡用的时间=回来时用的

总时间 【列出方程组】640

505.63060=+=+y x y x

3.双人行程:

(Ⅰ)单块应用:只单个应用同向而行或背向而行或相向而行或追击问题。

1)同时同地同向而行:A,B 两事物同时同地沿同一个方向行驶

例:甲车的速度为h km /60,乙车的速度为h km /80,两车同时同地出发,同向而行。经过多少时间两车相距km 280。

【分析】如果设经过x h 后两车相距km 280,则甲走的路程为xkm 60,乙走的路程为xkm 80,根据题意可画出如下示意图:

乙 甲

【列出方程】x x 28028060=+

2)同时同地背向而行:A ,B 两事物同时同地沿相反方向行驶

例:甲车的速度为h km /60,乙车的速度为h km /80,两车同时同地出发,背向而行。经过多少时间两车相距km 280。

【分析】如果设经过x h 后两车相距km 280,则甲走的路程为xkm 60,乙走的路程为xkm 80,根据题意可画出如下示意图:

甲 乙

280 km

【等量关系式】甲车行驶的距离+乙车行驶的距离=280

【列出方程】2808060=+x x

3)同时相向而行(相遇问题):

例:甲,乙两人在相距km 10的A,B 两地相向而行,乙的速度是甲的速度的2倍,两人同时处发h 5.1后相遇,求甲,乙两人的速度。

【分析】如果设甲的速度为h xkm /,则乙的速度为h xkm /2,甲走过的路程为x 5.1km ,乙走过的路程为x 25.1?km ,根据题意可画出如下示意图:

甲乙

280 km

【等量关系式】甲车行驶的距离+乙车行驶的距离=10

【列出方程】1025.15.1=?+x x

4)追及问题:

例:一对学生从学校步行去博物馆,他们以h km /5的速度行进min 24后,一名教师骑自行车以h km /15的速度按原路追赶学生队伍。这名教师从出发到途中与学生队伍会合共用了多少时间?

【分析】如果设这名教师从出发到途中与学生队伍会合共用了x h ,则教师走过的路程为x 15km ,学生走过的路程为教师出发前走过的路程加上教师出发

后走过的路程,而学生在教师出发前走过的路程为km 60

245?,学生在教师出发后走过的路程为x 5km ,又由于教师走过的路程等于学生走过的路程。根据题意可画出如下示意图:

学生 教师

师出发后走过的路程

【列出方程】x x 560

24515+?=

5)不同时同地同向而行(与追击问题相似):

例:甲,乙两人都从A 地出发到B 地,甲出发h 1后乙才从A 地出发,乙出发h 3后甲,乙两人同时到达B 地,已知乙的速度为h km /50,问,甲的速度为多少?

【分析】如果设甲的速度为x h km /,则乙出发前甲走过的路程为x km ,乙出发后甲走过的路程为x 3km ,甲走过的路程等于乙出发前甲走过的路程加上乙出发后甲走过的路程,而乙走过的路程为km 350?,甲走过的路程等于乙走过的路程。根据题意可画出如下示意图:

【等量关系式】乙走过的路程=乙出发前甲走过的路程加上乙出发后甲走过

的路程

【列出方程】x x 3350+=?

6)不同时相向而行

例:甲,乙两站相距km 448,一列慢车从甲站出发,速度为h km /60;一列快车从乙站出发,速度为h km /100。两车相向而行,慢车先出发min 32,快车开出后多少时间两车相遇?

【分析】如果设快车开出后x h 两车相遇,则慢车走过的路程为

60

326060?+x km ,快车走过的路程为100x km 。根据题意可画出如下示意图:

快车

448km

【等量关系式】总路程=快车出发前慢车走过的路程+快车出发后慢车走过

的路程+快车走过的路程

【列出方程】x x 1006060

3260448++?= 注:涉及此类问题的还有同时不同地同向而行、不同时不同地背向而行、不同时不同地同向而行、不同时不同地背向而行,与上面解法类似,只要画出示意图问题就会迎刃而解,就不再一一给出解答了,此类问题会在后面练习中给出习题。

(Ⅱ)结合应用:把同向而行、背向而行、相向而行、追击问题两两结合起来应用。

1) 相向而行+背向而行

例:A ,B 两地相距km 36,小明从A 地骑自行车到B 地,小丽从B 地骑自行车到A 地,两人同时出发相向而行,经过h 1后两人相遇;再过h 5.0,小明余下的路程是小丽余下的路程的2倍。小明和小丽骑车的速度各是多少?

【分析】如果设小明骑车的速度为x ,小丽骑车的速度为y ,相遇前小明走过的路程为x ,小丽走过的路程为y ;相遇后两人背向而行,小明走过的路程为x 5.0,小丽走过的路程为y 5.0。根据题意可画出如下示意图:

小明 小丽

相遇前

B

【等量关系式】相遇前小明走过的路程+相遇前小丽走过的路程=总路程 相遇后小明余下的路程=2×相遇后小丽余下的路程

【列出方程组】?

??-?=-=+)5.0(25.036y x x y y x

2)同向而行+相向而行

例:一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,直到与其他队员会合。1号队员从离队开始到与其他队员重新会合,经过了多长时间?

【分析】由题意“1号队员以45千米/时的速度独自行进,行进10千米后

掉转车头”可知1号队员从离队到调转车头前的时间为h 45

10,不妨设1号队员从调转车头到与其他队员重新回合的时间为x h 。根据题意可画出如下示意图:

1

10km

【等量关系式】1号队员从离队到调转车头这段时间所有队员走的路程+1号队员从调转车头到与其他队员重新回合这段时间内所有队员走的路程+1号队员从调转车头到与其他队员重新回合这段时间内1号队员走的路程=10。

【列出方程】10453545

1035=++?x x 4.行程问题中的工程问题:

乍一看,题目中就时间已知,速度、路程都未知,此类问题同学们做起来觉得无从下手。其实只要把路程看做单位“1”(至于为什么,结合以下例题讲解),这就相当于把行程问题转化为工程问题。

例:甲开汽车从A 地到B 地需要h 6,乙开汽车从A 地到B 地需要h 4,如果甲,乙两人分别从A ,B 两地出发,相向而行,经过多少小时后两车相遇。

【分析】题目中就时间已知,速度、路程都未知,有些同学想如果知道A 与B 的距离,就可以得出A 与B 的速度,那么问题就迎刃而解了,可是路程未知呀!是不是路程无论取什么值,都经过相同的时间两车相遇呢?为此,我们不妨设A 与B 的距离为a ,经过xh 后两车相遇。我们可以立马得出关系式:a x a x a =?+?46,可以把两边的a 消去,得到方程146=+x x ,立马得出512=x 。说明路程无论取什么值,都经过相同的时间两车相遇。遇到类似问题,我们往往把路程看做单位“1”。

5.环形跑道问题:

环形跑道问题也是形成问题的一种,环形跑道问题就是闭路线上的追击问题。在环形问题中,若两人所走同时同地出发,同向而行,当第一次相遇时,两人所走路程差为一周长;相向而行,第一次相遇时,两人所走路程和为一周长。

例1:运动场跑道周长m 400,小红跑步的速度是爷爷的3

5倍,他们从同一地点沿跑道的同一方向同时出发,min 5后小红第一次追上了爷爷。你知道他们的跑步速度吗?那是不是再过min 5两人第二次相遇呢?如果不是,请说明理由;如果是,用方程式表示。

【分析】不妨设爷爷的跑步速度为x min /m ,则小红的跑步速度为x 3

5min /m 【等量关系式】小红跑的路程—爷爷跑的路程=400m 【列出方程】40053

55=-?x x 注:再过min 5两人第二次相遇,用上面那个方程式就可以表示出来。

例2:甲,乙两车分别以均匀的速度在周长为m 600的圆形轨道上运动。甲车的速度较快,当两车反向运动时,每s 15相遇一次;当两车同向运动时,每min 1相遇一次,求两车的速度。

【分析】设甲,乙两车的速度分别为x s m /和y s m /。

【等量关系式】同向而行甲所走的路程-同向而行乙所走的路程=一周长 反向而行甲所走的路程+同向而行乙所走的路程=一周长

【列出方程组】?

??=+=-60060606001515y x y x 6.水流问题

一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,

它的特点主要是考虑水速在逆行和顺行中的不同作用。基本概念和公式有:

船速:船在静水中航行的速度

水速:水流动的速度

顺水速度:船顺流航行的速度

逆水速度:船逆流航行的速度

顺速=船速+水速

逆速=船速-水速

船行速度=(顺水速度+ 逆流速度)÷2

流水速度=(顺流速度—逆流速度)÷2

路程=顺流速度× 顺流航行所需时间

路程=逆流速度×逆流航行所需时间

例1:某船在km 80的航道上航行,顺流航行需h 6.1,逆流航行需h 2。求船在静水中航行的速度和水流的速度。

【分析】设船在静水中航行的速度和水流的速度分别为x 和y ,顺流的速度为h km /6.180,逆流的速度为h km /2

80,再利用上面的公式。 【等量关系式】顺速=船速+水速

逆速=船速-水速 【列出方程】y x y x -=+=2

806.180

例2:甲,乙两艘货船,甲船在前30千米处逆水而行,乙船在后追赶。甲乙两人的静水速度分别是36千米/小时和42千米/小时,水流速度是4千米/小时,求甲船行多少时间被乙船追上?

【分析】已知甲乙两人的静水速度和水流速度,可以分别求出甲乙两人的逆水速度,分别为32千米/小时和38千米/小时。不妨设甲船行x 小时后被乙船追上,再根据公式路程=逆流速度×逆流航行所需时间,则甲行驶的路程为x 32千米,乙行驶的路程为x 38千米,这样就可以把此问题转化为追击问题。

【等量关系式】甲行驶的路程+30=乙行驶的路程

【列出方程】x x 383032=+

1、甲、乙两人在同一直线噵路上同起点,同方向同进出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到达终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y (米)与出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙距离终点 ______________米。 2、如图,贝贝和欢欢同时从学校放学,两人以各自速度匀速步行回家,贝贝的家在学校的正西方向,欢欢的家在学校的正东方向,贝贝准备一回家就开始做作业,打开书包是发现错拿了欢欢的练习册,于是立即跑步去追欢欢,终于在途中追上了欢欢并交还了练习册,然后再以先前的速度步行回家,(贝贝在家中耽搁和交还练习册的时间忽略不计)结果贝贝比欢欢晚回到家.如图是两人之间的距离米与他们从学校出发的时间分钟的函数关系 图.则贝贝的家和欢欢的家相距___________米. 3、如图,已知A地在B地正南方3千米处,甲乙两人同时分别从A,B两地向正北方向匀速直行,他们与A地的距离s(千米)与所行的时间t(小时)之间的函数关系图象用如图所示的AC和BD表示,当他们行走3小时后,他们之间的距离为_____千 米. 4、快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地后停留了45分钟,立即按原路以另一速度匀速返回,直至与慢车相遇.已知慢车的速度为60千米/

时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,则快 车从乙地返回时的速度为__________千米/时 5、甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x 秒,y与x之间的关系如图所示.若丙也从甲出发的地方沿相同的方向骑自行车行驶,且与甲的速度相同,当甲追上乙后45秒时,丙也追上乙,则丙比甲晚出发__ 秒. 6、从A地到B地需修一条公路,该工程由甲、乙两队共同完成,甲、乙两队分别从A 地、B地同时开始修路,设修路的时间为x(天),未修的路程为y(米),图中的折线表示甲乙两个工程队从开始施工到工程结束的过程中y与x之间的函数关系.已知在修路过程中,甲工程队因设备升级而停工5天,则设备升级后甲工程队每天修路比原来多米. 7、在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以a km/h,b km/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:

2016中考数学专题讲座 几何与函数问题 【知识纵横】 客观世界中事物总是相互关联、相互制约的。几何与函数问题就是从量和形的侧面去描述客观世界的运动变化、相互联系和相互制约性。函数与几何的综合题,对考查学生的双基和探索能力有一定的代表性,通过几何图形的两个变量之间的关系建立函数关系式,进一步研究几何的性质,沟通函数与几何的有机联系,可以培养学生的数形结合的思想方法。 【典型例题】 【例1】已知24AB AD ==,,90DAB ∠=,AD BC ∥(如图).E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点. (1)设BE x =,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段 BE 的长; (3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求线段BE 的长. 【思路点拨】(1)取AB 中点H ,联结MH ;(2)先求出 DE; (3)分二种情况讨论。 【例2】()已知:如图(1),在Rt ACB △中,90C ∠=,4cm AC =, 3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为(s)t (02t <<),解答下列问题: (1)当t 为何值时,PQ BC ∥? (2)设AQP △的面积为y (2 cm ),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使线段PQ 恰好把Rt ACB △的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由; (4)如图(2),连接PC ,并把PQC △沿QC 翻折,得到四边形PQP C ', B A D M E C B A D C 备用图

初中数学动点问题练习题 1、(宁夏回族自治区)已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在 ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒. 1、线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形 MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 2、如图,在梯形ABCD 中,3545AD BC AD DC AB B ====?∥,,,.动点 M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长. (2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形. 3、如图,在平面直角坐标系中,四边形OABC 是梯形,OA ∥BC ,点A 的坐标为(6,0),点B 的坐标为(4,3),点C 在y 轴的正半轴上.动点M 在OA 上运动,从O 点出发到A 点;动点N 在AB 上运动,从A 点出发到B 点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒). (1)求线段AB 的长;当t 为何值时,MN ∥OC ? (2)设△CMN 的面积为S ,求S 与t 之间的函数解析式, 并指出自变量t 的取值范围;S 是否有最小值? C P Q B A M N C B

A B C D E O l A ′ 中考动点专题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 例1(2005年·)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F. (1)求证: △ADE ∽△AEP. (2)设OA=x ,AP=y ,求y 关于 x 的函数解析式,并写出它的定义域. (3)当BF=1时,求线段AP 的长. (二)线动问题 在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于点E. (1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F ,且AO = 4 1 AC ,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值围; ②探索:是否存在这样的x ,以A 为圆心,以-x 4 3 长为半径的圆与直 线l 相切,若存在,请求出x 的值;若不存在,请说明理由. (2)①92+=x AC ,9412+=x AO ,)9(121 2+=x AF ,x x AE 49 2+= ∴AF 2 1 ?=?AE S AEF x x 96)9(22+= ,x x x S 96)9(322+-= A 3(2) O 3(1)

行程问题无论怎么变化,都离不开“三个量,三个关系”: 这三个量是:路程(s)、速度(v)、时间(t) 三个关系: 简单行程:路程=速度×时间 相遇问题:路程和=速度和×时间 追击问题:路程差=速度差×时间 流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速 静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2 甲、乙两人分别从相距100 米的 A 、B 两地出发,相向而行,其中甲的速度是 2 米每秒,乙的速度是 3 米每秒。一只狗从 A 地出发,先以 6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。问在此过程中狗一共跑了多少米? 1.甲、已两个车站相距168千米,一列慢车从甲站开出,速度为36千米/小时,一列快车从乙站开出,速度为48千米/小时。 (1)两列火车同时开出,相向而行,多少小时相遇? (2)慢车先开1小时,相向而行,快车开几小时与慢车相遇? 2.甲、乙两人从同地出发前往某地。甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲? 3.甲、乙两人练习50米短距离赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米。 (1)几秒后,甲在乙前面2米? (2)如果甲让乙先跑4米,几秒可追上乙?

4甲、乙两人在400米的环行形跑道上练习跑步,甲每秒跑5.5米,乙每秒跑4.5米。 a)乙先跑10米,甲再和乙同地、同向出发,还要多长时间首次相遇? b)乙先跑10米,甲再和乙同地,背向出发,还要多长时间首次相遇? c)甲、乙同时同地同向出发,经过多长时间二人首次相遇? d)甲先跑10米,乙再和甲同地、同向出发,还要多长时间首次相遇? 5、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码 头的之间的距离? 6、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔 1 3 3 分钟相遇一次,,如果反向跑,则每隔40 秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度? 7、甲、乙两人骑自行车,同时从相距65千米两地相向而行,甲的速度为17.5千米每小时,乙的速度为15千米每小时,经过了几小时两人相距32.5千米?

初中列方程解应用题(行程问题)专题 行程问题是指与路程、速度、时间这三个量有关的问题。我们常用的基本公式是: 路程=速度×时间;速度=路程÷时间;时间=路程÷速度. 行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。下面我们将行程问题归归类,由易到难,逐步剖析。 1. 单人单程: 例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速 度从h km/80提高到h km/100,运行时间缩短了h 3。甲,乙两城市间的路程是多少? 【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的 运行时间为h x 80,提速后的运行时间为h x 100 . 【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间. 【列出方程】3100 80x x . 例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40。求火车的速度和长度。 【分析】如果设火车的速度为x s m/,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图: y 1000 60x 1000 y 40x 【等量关系式】火车min 1行驶的路程=桥长+火车长; 火车s 40行驶的路程=桥长-火车长 【列出方程组】y x y x 100040100060

2.单人双程(等量关系式:来时的路程=回时的路程): 例1:某校组织学生乘汽车去自然保护区野营,先以h km/60的速度走平路,后又以h km/30的速度爬坡,共用了h 5.6;返回时汽车以h km/40的速度下坡,又以h km/50的速度走平路,共用了h 6.学校距自然保护区有多远。 【分析】如果设学校距自然保护区为x km ,由题目条件:去时用了h 5.6,则 有些同学会认为总的速度为h km x /5 .6,然后用去时走平路的速度+去时爬坡的速度=总的速度,得出方程5 .63060x ,这种解法是错误的,因为速度是不能相加的。不妨设平路的长度为x km ,坡路的长度为y km ,则去时走平路用了h x 60 ,去时爬坡用了h y 30 ,而去时总共用了h 5.6,这时,时间是可以相加的;回来时汽车下坡用了h y 40,回来时走平路用了50 x ,而回来时总共用了h 6.则学校到自然保护区的距离为km y x )(。 【等量关系式】去时走平路用的时间+去时爬坡用的时间=去时用的总时间 回来时走平路用的时间+回来时爬坡用的时间=回来时用的 总时间 【列出方程组】6 40505.63060y x y x 3.双人行程: (Ⅰ)单块应用:只单个应用同向而行或背向而行或相向而行或追击问题。 1)同时同地同向而行:A,B 两事物同时同地沿同一个方向行驶 例:甲车的速度为h km/60,乙车的速度为h km/80,两车同时同地出发,同向而行。经过多少时间两车相距km 280。 【分析】如果设经过x h 后两车相距km 280,则甲走的路程为xkm 60,乙走的路程为xkm 80,根据题意可画出如下示意图: 80x km 乙 甲60x km 280km 【等量关系式】甲车行驶的距离+280=乙车行驶的距离 【列出方程】x x 28028060

初中数学几何基本图形初中数学图形与几何导读:就爱阅读网友为您分享以下“初中数学图形与几何”资讯,希望对您有所帮助,感谢您对https://www.360docs.net/doc/e017827271.html,的支持! 课程简介 初中数学图形与几何 【课程简介】 本模块主要研讨数学课程标准修订稿中“初中数学空间与图形”部分的内容要求,目的是通过研讨,使教师们明确本模块内容的具体要求,并提出教学实施过程中的一些建议。总体分为六个部分: 1. 图形与几何内容结构分析——主要探讨图形与几何部分的整体结构框架和三条主要线索; 2. 图形的性质内容与教学分析——主要探讨图形的性质部分的内容要求、与实验稿的变化以及教学实施中注意的问 1 题; 3. 图形的变化内容与教学分析——主要探讨图形的变化部分的内容要求、与实验稿的变化以及教学实施中注意的问题; 4. 图形与坐标内容与教学分析——主要探讨图形与坐标部分的内容要求、与实验稿的变化以及教学实施中注意的问题; 5. 空间观念与几何直观——主要探讨核心概念空间观念与几何直观的含义,以及在图形与几何的教学中如何培养学生的空间观念与几何直观能力; 6. 推理能力——主要探讨核心概念推理能力的含义,以及在图形与几何的教学中如何培养学生的推理能力。

课程既有理论指导,又有大量的教学实例,同时还有主讲教师间的相互交流,给教师们提供了较为广阔的思考空间。 【学习要求】 1(对“初中数学空间与图形”模块的内容结构和主线有清楚 2 的认识,能够说出这些线索之间的区别与联系; 2(了解图形的性质部分的研究的图形有哪些,认识图形的哪些方面,以及在这部分中是如何认识这些图形的; 3(体会图形的变化是研究图形的又一个途径和角度,明确它的学习意义,了解其内容组成; 4(体会图形与坐标是研究图形的又一个途径和角度,明确它的学习意义,了解其内容组成; 5(能够结合自己的教学实践,举出相应的实例,说明图形的性质、图形的变化和图形与坐标的教学经验和方法; 6(理解核心概念——空间观念、几何直观和推理能力的具体含义,体会它们与知识技能的区别和联系,能够借助具体实例说出培养学生上述能力的途径和方法。 专题讲座 初中数学图形与几何 刘晓玫(首师大数学,教授) 史炳星(北京教育学院,副教授 ) 章巍(河北保定三中分校,高级教师 ) 3 一、图形与几何内容结构分析

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

初中数学知识点精选汇总 ----------(行程问题)专题 行程问题是指与路程、速度、时间这三个量有关的问题。我们常用的基本公式是: 路程=速度×时间;速度=路程÷时间;时间=路程÷速度. 行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。下面我们将行程问题归归类,由易到难,逐步剖析。 1. 单人单程: 例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从h km /80提高到h km /100,运行时间缩短了h 3。甲,乙两城市间的路程是多少? 【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的运行时间为h x 80,提速后的运行时间为h x 100. 【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间. 【列出方程】3100 80=-x x . 例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40。求火车的速度和长度。 【分析】如果设火车的速度为x s m /,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图: 【等量关系式】火车min 1行驶的路程=桥长+火车长; 火车s 40行驶的路程=桥长-火车长

【列出方程组】???-=+=y x y x 100040100060 举一反三: 1.小明家和学校相距km 15。小明从家出发到学校,小明先步行到公共汽车站,步行的速度为60min /m ,再乘公共汽车到学校,发现比步行的时间缩短了min 20,已知公共汽车的速度为h km /40,求小明从家到学校用了多长时间。 2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高km 260.求提速后的火车速度。(精确到h km /1)

中考动点专题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式 例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=3 2 NH=2132?OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴ 2362 1 21x OH MH -== . 在Rt △MPH 中, . 222223362 1 419x x x MH PH MP +=- +=+=H M N G P O A B 图1 x y

初中(行程问题)专题 行程问题是指与路程、速度、时间这三个量有关的问题。我们常用的基本公式是: 路程=速度×时间;速度=路程÷时间;时间=路程÷速度. 行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。下面我们将行程问题归归类,由易到难,逐步剖析。 1. 单人单程: 例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从h km /80提高到h km /100,运行时间缩短了h 3。甲,乙两城市间的路程是多少? 【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的运行时间为h x 80,提速后的运行时间为h x 100. 【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间. 【列出方程】3100 80=-x x . 例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40。求火车的速度和长度。 【分析】如果设火车的速度为x s m /,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图: ??-=y x 100040 举一反三: 1.小明家和学校相距km 15。小明从家出发到学校,小明先步行到公共汽车站,步行的速度为60min /m ,再乘公共汽车到学校,发现比步行的时间缩短了min 20,已知公共汽车的速度为h km /40,求小明从家到学校用了多长时间。 2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高km 260.求提速后的火车速度。(精确到h km /1) 3.徐州至上海的铁路里程为km 650,从徐州乘”C “字头列车A ,”D ”字头列

初中数学平面几何建系专题 一.创设问题情境,引入新课 1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。 2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。 3.某人买了一张8排6号的电影票,很快找到了自 己的座位。 分析以上情景,他们分别利用那些数据找到位置 的。 你能举出生活中利用数据表示位置的例子吗? 二、新课讲授 1、由学生回答以下问题: (1)引入:影院对观众席所有的座位都按“几排几号”编号,以便确定每 个座位在影院中的位置,观众根据入场券上的“排数”和“号数”准确入座。 (2)根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面 图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。” 学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置. 思考: (1)怎样确定教室里坐位的位置? (2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2 )在同一

位置。 (3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。 让学生讨论、交流后得到以下共识: (1)可用排数和列数两个不同的数来确定位置。 (2)排数和列数先后顺序对位置有影响。(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。因而这一对数是有顺序的。(3)让学生到黑板贴出的表格上指出讨论同学的位置。 2、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示 不同的含义,我们把这种有顺序的两个数a与b组成的数 对,叫做有序数对,记作(a,b) 利用有序数对,可以很准确地表示出一个位置。 3、常见的确定平面上的点位置常用的方法 (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。 (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。(以后学习) 巩固练习:1、教材65页练习 2.如图,马所处的位置为(2,3). (1)你能表示出象的位置吗? (2)写出马的下一步可以到达的位置。

动点问题专题训练 1、如图,已知A B C △中,10A B A C ==厘米,8B C =厘米,点D 为A B 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,B P D △与 CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使B P D △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿A B C △三边运动,求经过多长时间点P 与点Q 第一次在A B C △的哪条边上相遇? 2、直线364 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发, 同时到达A 点,运动停止.点Q 沿线段O A 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485 S = 时,求出点P 的坐标,并直接写出以点 O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是 正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A 的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

1 图7 O C B A 初中数学几何复习专题 【典型例题】 一、填空题 1、(08)如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°,则∠AN M= °; 2、(07)如图2,AD 是⊙O 的直径,AB ∥CD ,∠AOC=60°,则∠BAD=______度. 3、(08)如图3,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧 BC 于点D ,连接DC ,则∠DCB= °. 4、(08佛山市)如图4,已知P 是正方形ABCD 对角线BD 上一点, 且BP = BC ,则∠ACP 度数是 . 5、(07广州市)如图5,点D 是AC 的中点,将周长为4㎝的菱形 ABCD 沿对角线AC 方向平移AD 长度得到菱形OB ’C ’D ’,则四边 形OECF 的周长是 ㎝ 6、(08茂名市)如图6,点A 、B 、C 在⊙O 上,AO ∥BC ,∠AOB = 50°, 则∠OAC 的度数是 . (1) (08梅州市) 如图7,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD=30米,则AB=______米. (2) (08梅州市) 如图8, 点 P 到∠AOB 两边的距离相等,若∠POB=30°,则 ∠AOB=_____度. (3) (09广东省) 已知⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠BAC=30°,则BC=_________cm. 图2O D C B A A M N B C 图1 O B D C A 图3 图4 B C D A P O C B A 图6 图8 图9 图5

初中数学压轴题---几何动点问题专题训练 1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==?=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵厘米, ∴835PC =-=厘米8PC BC BP BC =-=,, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ············································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间4 33 BP t ==秒, ∴515 443 Q CQ v t = ==厘米/秒. · ································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得 15 32104 x x =+?,

初中数学几何动点问题分类专题汇总全书近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。

初中数学平面几何建系专题 一.创设问题情境,引入新课 1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。 2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。 3.某人买了一张8排6号的电影票,很快找到了自己的座位。 分析以上情景,他们分别利用那些数据找到位置的。 你能举出生活中利用数据表示位置的例子吗? 二、新课讲授 1、由学生回答以下问题: (1)引入:影院对观众席所有的座位都按“几排几号”编号,以便确定每 个座位在影院中的位置,观众根据入场券上的“排数”和“号数”准确入座。 (2)根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面 图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。” 学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置. 思考: (1)怎样确定教室里坐位的位置 ?

(2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2)在同一位置。 (3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。 让学生讨论、交流后得到以下共识: (1)可用排数和列数两个不同的数来确定位置。 (2)排数和列数先后顺序对位置有影响。(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。因而这一对数是有顺序的。(3)让学生到黑板贴出的表格上指出讨论同学的位置。 2、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示 不同的含义,我们把这种有顺序的两个数a与b组成的数 对,叫做有序数对,记作(a,b) 利用有序数对,可以很准确地表示出一个位置。 3、常见的确定平面上的点位置常用的方法 (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。 (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。(以后学习) 巩固练习:1、教材65页练习 2.如图,马所处的位置为(2,3). (1)你能表示出象的位置吗? (2)写出马的下一步可以到达的位置。

例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=32NH=2 1 32?OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴ 2362 1 21x OH MH -== . 在Rt △MPH 中, . ∴y =GP= 32MP=23363 1x + (0

中考数学专题 动态几何问题 第一部分 真题精讲 【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒). C M B (1)当MN AB ∥时,求t 的值; (2)试探究:t 为何值时,MNC △为等腰三角形. 【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。 【解析】 解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形. A B M C N E D ∵AB DE ∥,AB MN ∥. ∴DE MN ∥.(根据第一讲我们说梯形辅助线的常用做法,成功将MN 放在三角形,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =.(这个比例关系就是将静态与动态联系起来的关键) ∴ 1021035t t -=-.解得5017 t =. 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式 )如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=3 2 NH=2132?OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴ 2362 1 21x OH MH -== . 在Rt △MPH 中, . 222223362 1 419x x x MH PH MP +=- +=+=H M N G P O A B 图1 x y

相关文档
最新文档