概率统计第四章答案2

概率统计第四章答案2
概率统计第四章答案2

概率论与数理统计作业

班级 姓名 学号 任课教师

第四章 随机变量的数字特征

教学要求:

一、理解随机变量数学期望和方差的概念,掌握数学期望和方差的性质与计算方法;

二、了解0-1分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期望及方差;

三、了解矩、协方差、相关系数的概念及性质,并会计算.

重点:数学期望与方差的概念和性质. 难点:相关系数.

练习一 一维随机变量的数字特征

1. 填空题

(1)将三个球随机地放到5个盒子中去,则有球的盒子数的数学期望为 61/25 .

(2)若随机变量X 的分布律{})2,1,0(! ===k k B A k X P k

且a X E =)(,则a e A -=,a B =.

(3)设随机变量),(~p n B X ,且45.0)(,5.0)(==X D X E ,则5=n ,1.0=p . (4)已知连续型随机变量X 的概率密度为)(,1

)(1

22

+∞<<-∞=

-+-x e x f x x

π

则=)(X E 1 ,=)(X D 1/ 2 .

(5)设随机变量X 表示10次重复独立射击命中目标的次数,且每次射击命中目标的概率

为0.4,则=)(2

X E ()()[]4.62

=+X E X D .

(6)设随机变量X 服从参数为λ)0(>λ的泊松分布,且已知1)]2)(1[(=--X X E ,则

=λ 1 .

2.在射击比赛中,每人射击4次,每次一发子弹,规定4弹全都不中得0分,只中一弹得15分,中2弹得30分,中3弹得55分,中4弹得100分.某人每次射击的命中率为0.6.求他期望得多少分?

解:设X 表示射击4次得的分数,则X 的所有可能取值为.1005530150;;;;

且 ()()()0256.06.016.004

04

=-?==C X P , ()()()1536.06.016.0153

1

1

4=-==C X P , ()()()3456.06.016.0302

2

2

4

=-==C X P , ()()()3456.06.016.0551

3

34=-==C X P ,

()()()1296.06.016.01000

4

4

4

=-==C X P , 所以

3.设随机变量X 的概率密度为()??

???

≥<-=.

1,0,1,112x x x

x f π求)(),(X D X E .

解: ()()0111

1

1

21

12=????

???

?--

=-==--∞

+∞-??ππx dx x x dx x xf X E 由于 则

4.已知随机变量X

()

53)(),(),(22+X E X D X E X E 及求.

解: ()()2.03.023.004.021-=?+?+?-==

∑+∞

=i i

i

p x X E ;

()()8.23.023.004.022221

2

2

=?+?+?-==∑+∞

=i i i

p x

X

E ;

()()

()[]76.22

2=-=X E X E X D ;

()()

4.1358.23535322=+?=+=+X E X E .

5.设随机变量X 的概率密度为()?

??≤>=-;0,0,

0,x x e x f x 求(1)2Y X =的期望;(2)

x e Y 2-=的期望.

解:(1) ()()()()[]

212200=+-===

++∞

-+∞

∞-?

?x e dx xe dx x f x g Y E x

x (2) ()()()3131030

2=??????-===+∞

-+∞

--+∞

∞-??x x

x e dx e e dx x f x g Y E

6.对球的直径做近似测量,设其值均匀分布在区间),(b a 内,求球的体积的均值.

中北大学概率统计习题册第四章完整答案(详解)资料

中北大学概率统计习题册第四章完整答案 (详解)

1. 填空 1)设~(,)X B n p ,则EX =np ,DX = npq 。 2)设~()X P λ,则EX =λ, DX =λ。 3)设~()X E λ,则EX = 1λ ,DX = 2 1 λ。 4)设[]~,X U a b ,则EX = 2 a b +,DX = () 2 12 b a -。 5)设2~(,)X N μσ,则EX =μ, DX =2σ。 6)设(,)~(1,1;2,9;0.5)X Y N ,则 EX =1,DX = 1 ,EY = 2,DY = 9 ,(,)Cov X Y = 1.5 。 7)已知螺钉的重量服从()250, 2.5N ,则100个螺钉总重量服从分布()5000, 625N 。 2. 已知在一定工序下,生产某种产品的次品率0.001。今在同一工序下,独立生产5000件这种产品,求至少有2件次品的概率。 解:设X 表示5000件产品中的次品数,则 ()~5000,0.001X B 。 50000.0015λ=?=,则 ()()()2100P X P X P X ≥=-=-= 5000499910.99950000.0010.999=--?? 0155 5510!1! e e --≈--10.006740.033690.95957=--= 注:实际上 5000499910.99950.9990.95964--?= 3. 设某商店中每月销售某种商品的数量服从参数为7的泊松分布,问在月初进货时应至少进多少件此种商品,才能保证当月不脱销的概率为0.999。 解:设进货数件数为N ,当月销售需求为X ,则由题意知()~7X P ,且 {}7 07e 0.999! k N k P X N k -=≤=≥∑ 查泊松分布的数值表,可得16N ≥. 4 . 地下铁道列车的运行间隔时间为五分钟,一个旅客在任意时刻进入月台,求候车时间的数学期望与方差。 解:设旅客在地铁进站之前的X 时刻到达,即旅客候车时间也为X ;其数学期望和 分别为()~[0,5]X U , 52EX = ;2512 DX =。 5.设(){ }3.02010,,10~2=<

概率论与数理统计第四章习题及答案

概率论与数理统计习题 第四章 随机变量的数字特征 习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的). 解:设表示一次抽检的10件产品的次品数为ξ P =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)] 查二项分布表 1-=. 因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=??? ? ??04×× =. P (X =1)=???? ??14××=, P (X =2)= ???? ??24××=. P (X =3)=???? ??34××=, P (X =4)= ??? ? ??44××=. 从而 E (X )=np =4×= 习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==???? ??-=+j j X P j j j ,说明X 的数学期望不存在. 解: 由于 1 11 1133322(1) ((1))3j j j j j j j j j P X j j j j ∞ ∞∞++===-=-==∑∑∑,而级数1 12j j ∞ =∑发散,故级数1 11 33(1) ((1))j j j j j P X j j ∞ ++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X -2 0 2 k p 求)53(),(),(2 2 +X E X E X E . 解 E (X )=(-2)+0+2= 由关于随机变量函数的数学期望的定理,知 E (X 2)=(-2)2+02+22= E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[3 22 +5] = 如利用数学期望的性质,则有 E (3X 2+5)=3E (X 2)+5=3+5=

概率统计二

概率统计(二) 1.某批零件的尺寸X 服从正态分布()210,N σ,且满足()1 98 P x <=,零件的尺寸与10的误差不超过1即合格,从这批产品中抽取n 件,若要保证抽取的合格零件不少于2件的概率不低于0.9,则n 的最小值为 2.网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x =1”表示2015年,“x =2”表示2016年,依次类推;y 表示人数): (1)试根据表中的数据,求出y 关于x 的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人; (2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是12 ,方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从k 到1k +)若掷出偶数遥控车向前移动两格(从k 到 2k +) ,直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第(119)n n ≤≤格的概率为n P ,试证明{}1n n P P --是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值. 附:在线性回归方程???y bx a =+中,1 22 1???,n i i i n i i x y nx y b a y b x x nx ==-==--∑∑. 3.湖南省会城市长沙又称星城,是楚文明和湖湘文化的发源地,是国家首批历史文化名城.

概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =??==733 103.07.0}3{C P ξ0.0090 至少命中3炮的概率, 为1减去命中不到3炮的概率, 为 =??-=<-=≥∑=-2 010103.07.01}3{1}3{i i i i C P P ξξ0.9984 因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为 =??=≤∑=-2 0101099.001.0}2{i i i i C P ξ0.9999 3. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此 2061.02.08.0}18{}15 270 {}27015{}270{20 18 2020=??==≥=≥ =≥=≥∑=-i i i i C P P P P ξξξη 4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不 大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此 ∑=-??=≤=≤=≤3 20209.01.0}3{}15.020 { }15.0{i i i i C P P P ξξ η=0.867 5. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20 件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率 } 2{} 23{}2|3{≥≥?≥= ≥≥ξξξξξP P P 因事件}3{}2{≥?≥ξξ, 因此2}23{≥=≥?≥ξξξ 因此

概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编-程述汉-舒兴明-第四章

概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编-程述汉-舒兴明-第四章

第四章习题解答 1.设随机变量X ~B (30, 6 1),则E (X )=( D ). A.6 1 ; B. 65; C.6 25; D.5. 1 ()3056 E X np ==?= 2.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )=( A ). A. 3; B. 6; C. 10; D. 12. ()1()3E X E Y == 因为随机变量X 和Y 相互独立所以()()()3E XY E X E Y == 3.设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X 2的数学期望E (X 2)=____18.4______. (10,0.4)()4() 2.4X B E X D X ==: 22()(())()18.4E X E X D X =+= 4.某射手有3发子弹,射一次命中的概率为3 2,如果命中了就停止射击,否则一直射到子弹用尽.设表示X 耗用的子弹数.求E (X ). 解: X 1 2 3 P 2/3 2/9 1/9 22113()233999 E X = +?+?= 5.设X 的概率密度函数为 , 01()2,120,x x f x x x ≤≤?? =-<≤??? 其它 求2() ,().E X E X 解:12 20 1 ()()(2)1E X xf x dx x dx x x dx +∞-∞ ==+-=? ??, 12 22320 1 7 ()()(2)6 E X x f x dx x dx x x dx +∞ -∞ ==+-= ? ??.

概率统计习题及答案(2)

作业2(修改2008-10) 4. 掷一枚非均匀的硬币,出现正面的概率为(01)p p <<,若以X 表示直至掷到正、反面 都出现为止所需投掷的次数,求X 的概率分布. 解 对于2,3, k =,前1k -次出现正面,第k 次出现反面的概率是1(1)k p p --,前1k -次 出现反面,第k 次出现正面的概率是1(1)k p p --,因而X 有概率分布 11()(1)(1)k k P X k p p p p --==-+-,2,3, k =. 5. 一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布. 第1个能正确回答的概率是5/8, 第1个不能正确回答,第2个能正确回答的概率是(3/8)(5/7)15/56=, 前2个不能正确回答,第3个能正确回答的概率是(3/8)(2/7)(5/6)5/56=, 【 前3个不能正确回答,第4个能正确回答的概率是(3/8)(2/7)(1/6)(5/5)1/56=, 前4个都不能正确回答的概率是(3/8)(2/7)(1/6)(0/5)0=. 设在得到正确的回答以前不能正确回答问题的学生个数为X ,则X 有分布 6. 设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是,问一天中他至少收到4位朋友的电子邮件的概率是多少试用二项分布公式和泊松近似律分别计算. 解 设一天中某人收到X 位朋友的电子邮件,则~(100,0.04)X B ,一天中他至少收到4位朋友的电子邮件的概率是(4)P X ≥. 1) 用二项分布公式计算 3 1001000(4)1(4)10.04(10.04)0.5705k k k k P X P X C -=≥=-<=--=∑. 2) 用泊松近似律计算 331004 1000 04(4)1(4)10.04(10.04)10.5665! k k k k k k P X P X C e k --==≥=-<=--≈-=∑ ∑ . !

概率论第四章课后习题解答

概率论第四章习题解答 1(1)在下列句子中随机地取一个单词,以X 表示取到的单词所饮食的字母个数,写出X 的分布律并求数学期望()E X 。 “THE GIRL PUT ON HER BEAUTIFUL RED HAT ” (2)在上述句子的30个字母中随机地取一个字母,以Y 表示取到的字母所在单词所包含的字母数,写出Y 的分布律并求()E Y (3)一人掷骰子,如得6点则掷第二次,此时得分为6加第二次得到的点数;否则得分为第一次得到的点数,且不能再掷,求得分X 的分布律。 解 (1)在所给的句子中任取一个单词,则其所包含的字母数,即随机变量X 的取值为:2,3,4,9,其分布律为 所 以 151115()234988884 E X =?+?+?+?=。 (2)因为Y 的取值为2,3,4,9 当2Y =时,包含的字母为“O ”,“N ”,故 1 21 {2}3015 C P Y == =; 当3Y =时,包含的3个字母的单词共有5个,故 当4Y =时,包含的4个字母的单词只有1个,故 当9Y =时,包含的9个字母的单词只有1个,故

112314673 ()234915215103015 E Y =? +?+?+?== 。 (3)若第一次得到6点,则可以掷第二次,那么他的得分为:X =7,8,9,10,11,12; 若第一次得到的不是6点,则他的得分为1,2,3,4,5。由此得X 的取值为: 1,2,3,4,5,7,8,9,10,11,12。 2 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如果发现其中的次品多于1,就去调整设备。以X 表示一天中调整设备的次数,试求()E X 。(设诸产品是否为次品是相互独立的。) 解 (1)求每次检验时产品出现次品的概率 因为每次抽取0件产品进行检验,且产品是否为次品是相互独立的,因而可以看作是进行10次独立的贝努利试验,而该产品的次品率为,设出现次品的件数为 Y ,则(10,0.1)Y B :,于是有 1010{}(0.1)(0.9)k k k P Y k C -== (2 )一次检验中不需要调整设备的概率 则需要调整设备的概率 {1}1{}10.73610.2639P Y P Y >=-≤=-= (3)求一天中调整设备的次数X 的分布律

(完整版)概率论第四章答案

习题4-1 1. 设随机变量X 求()E X ;E (2-3 X ); 2()E X ;2(35)E X +. 解 由定义和数学期望的性质知 2.03.023.004.0)2()(-=?+?+?-=X E ; (23)23()23(0.2) 2.6E X E X -=-=-?-=; 8.23.023.004.0)2()(2222=?+?+?-=X E ; 4.1358.235)(3)53(22=+?=+=+X E X E . 2. 设随机变量X 的概率密度为 ,0,()0, 0.x e x f x x -?>?=???≤ 求X e Z X Y 22-==和的数学期望. 解 ()(2)2()22x E Y E X E X x x ∞ -====?e d , 220 1 ()()3 X x x E Z E e e e dx ∞ ---==?= ?. 3. 游客乘电梯从底层到电视塔顶观光, 电梯于每个整点的第5分钟、第25分钟和第 55分钟从底层起行. 假设一游客在早八点的第X 分钟到达底层侯梯处, 且X 在区间[0, 60] 上服从均匀分布. 求该游客等候电梯时间的数学期望. 解已知X 在[0,60]上服从均匀分布, 其概率密度为 1 ,060,()600, .x f x =?????≤≤其它 记Y 为游客等候电梯的时间,则 5,05,25,525,()55,2555,65, 5560. X X X X Y g X X X X X -<-<==-<-

概率统计2

概率统计模拟题 2 一、 填空题: .____2 1 )1,0(.1的概率为两数之差小于中随机地取两个数,则在区间 .________),()(),2,6(~.22=<=≥k k X P k X P N X 则常数且设 . __________)1(_________,)(,0, 00 ,1)(.32=≤=???≤>-=-X P x f X x x e x F X x 的密度函数则 的分布函数为设 . __________),,0(.42==+=ξηρηξσ的相关系数-和 则分布相互独立且都服从正态和设随机变量bY aX bY aX N Y X 当___________________,==βα时,X 和Y 相互独立。 二、 选择题: 23 ,21)(23,21)(32 ,32)(52,53)(_________ )()()(.)()(.1212121- ===-== =-==-=b a D b a C b a B b a A x bF x aF x F X X x F x F 布函数,则也是某一随机变量的分若的分布函数与分别为随机变量与设 2 12 121212122)()()()(____ __________}3{},2{)3,(),2,(~.2p p D p p C p p B p p A Y P p X P p N Y N X =><=-≤=+≥==的个别值,有对,有对任意实数,有对任意实数,有对任意实数则, ,记设随机变量μμμμμμμμ9 .18)D (2 .15)C (8.14)B (6.12)A (__ __________)2(4.0,10(~),3.0,10(~,.32=-Y X E B Y B X Y X ),则 相互独立,且设随机变量 3 )(5 1 )D () 53 ()C () (5)B () 35()A (______)(35)(.4++-=y F y F y F y F y F X Y x F X X X X X Y X 为的分布函数-,则的分布函数为已知随机变量

概率统计练2

0 1 -1 10.3 0.3 0.3 概率论与数理统计练习(二) 一、填空题 1、A、B是两个随机事件,已知,则 (1) 若互斥,则 ; (2) 若独立,则 ; (3) 若,则 . 2、袋子中有大小相同的红球7只,黑球3只, (1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 。 (2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为:。 (3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再 取第二只球,则第一、二次取到球颜色不同的概率为: . 3、设随机变量X服从泊松分布,则 . 4、设随机变量X服从B(2,0. 8)的二项分布,则___ , Y服从B(8,0. 8)的二项分布, 且X与Y相互独立,则=____,_ 。 5 设某学校外语统考学生成绩X服从正态分布N(75,25),则该学校学生的及格率为 __ ,成绩超过85分的学生占比为 __。 其中标准正态分布函数值. 6、设二维随机向量的分布律是有 则__,的数学期望_________,的相关系数 _______。 7、设及分别是总体的容量为16,8的两个独立样本,分别为样本均值, 分别为样本方差。 则:, __,= , ____,。 此题中 8、设是总体的样本,下列的统计量中,__ 是的无偏统计量,的无偏统计量中统计量最有效。

A. B. C. D. 9. 设某商店一天的客流量X是随机变量,服从泊松分布,为总体的样本,的矩估计量为____,160,168,152,153,159,167,161为样本观测值,则的矩估计值为 10、在假设检验中,容易犯两类错误,第一类错误是指:____,也称为_____错误。 二、已知随机变量X的密度函数 求:(1)常数,(2)(3)X的分布函数F(X)。 三、设随机变量X,Y的概率密度分别为: ,且随机变量X,Y相互独立。 (1)求(X,Y)的联合概率密度为: (2)计算概率值。 (3)求概率密度 四、从总体~中抽取容量为25的一个样本,样本均值和样本方差分别是:, 求u的置信度为0.95的置信区间和的置信度为0.95的置信区间。 五、设总体X服从均匀分布,是X的一个样本,求的矩估计量 六、某地区参加外语统考的学生成绩近似服从正态分布,该校校长声称学生平均成绩为70分,现抽取16名学生的成绩,得平均分为68分,标准差为3分,请在显著水平下,检验该校长的断言是否正确。(此题中)七、设某衡器制造厂商的数显称重器读数近似服从正态分布,现他声称他的数显称重器读数的标准差为不超过10克, 现检验了一组16只数显称重器,得标准差12克,试检验制造商的言是否正确(取),此题中。 八、某工厂要求供货商提供的元件一级品率为90%以上,现有一供应商有一大批元件,经随机抽取100件,经检验发现有84件为一级品,试以5%的显著性水平下,检验这个供应商提供的元件的一级品率是否达到该厂方的的要求。(已知,提示用中心极限定理)

概率论习题解答(第4章)

概率论习题解答(第4章)

第4章习题答案 三、解答题 1. 设随机变量X 的分布律为 求)(X E ,)(2 X E ,)53(+X E . 解:E (X ) = ∑∞ =1 i i xp = ()2-4.0?+03.0?+23.0?= -0.2 E (X 2 ) = ∑∞ =1 2 i i p x = 44.0?+ 03.0?+ 43.0?= 2.8 E (3 X +5) =3 E (X ) +5 =3()2.0-?+5 = 4.4 2. 同时掷八颗骰子,求八颗骰子所掷出的点数和的数学期望. 解:记掷1颗骰子所掷出的点数为X i ,则X i 的分布律为 6 ,,2,1,6/1}{Λ===i i X P 记掷8颗骰子所掷出的点数为X ,同时掷8颗骰子,相当于作了8次独立重复的试验, E (X i ) =1/6×(1+2+3+4+5+6)=21/6 E (X ) =8×21/3=28 3. 某图书馆的读者借阅甲种图书的概率为p 1,借阅乙种图书的概率为p 2,设每人借阅甲乙

{}k X == λ λ-e k k ! ,k = 1,2,... 又P {}5=X =P {}6=X , 所以 λ λ λλ--= e e ! 6!56 5 解得 6=λ,所以 E (X ) = 6. 6. 设随机变量 X 的分布律为 ,,4,3,2,1,6 }{2 2Λ--== =k k k X P π问X 的数学期望是否存在? 解:因为级数∑∑∑∞ =+∞ =+∞ =+-=-=?-1 1 2 1 211 221 1 )1(6)6)1(()6) 1((k k k k k k k k k k πππ, 而 ∑∞ =11k k 发散,所以X 的数学期望不存在. 7. 某城市一天的用电量X (十万度计)是一个随机变量,其概率密度为 ?????>=-.0 ,0,9 1)(3 /其它x xe x f x 求一天的平均耗电量. 解:E (X ) =??? ∞ -∞ -∞∞ -==0 3/20 3/9191)(dx e x dx xe x dx x f x x x =6. 8. 设某种家电的寿命X (以年计)是一个随机变量,其分布函数为 ?????>-=.0 , 5,25 1)(2 其它x x x F 求这种家电的平均寿命E (X ).

最新谢寿才版概率统计第四章习题及其解答

习题四 1 1.设随机变量X 的分布律为 2 X -1 0 1 2 k p 0.1 0.2 0.3 p 求p ,)(X E ,)12(-X E . 3 答案:4.0=p ,1)(=X E ,1)12(=-X E ; 4 2.设随机变量X 的分布律为 5 X -1 0 1 p 1p 2p 3p 且已知1.0)(=X E ,9.0)(2=X E ,求1p ,2p ,3p . 6 【解】因1231P P P ++=……①, 7 又12331()(1)010.1E X P P P P P =-++=-=……②, 8 2222 12313()(1)010.9E X P P P P P =-++=+=……③ 9 由①②③联立解得1230.4,0.1,0.5.P P P === 10 3.设随机变量X 的概率密度为 11

=)(x f ?? ? ??≤≤-<≤.,0,21,2,10,其它x x x x 12 求)(X E ,)(X D . 13 【解】1 2 20 1 ()()d d (2)d E X xf x x x x x x x +∞ -∞ ==+-? ?? 14 2 1 3 32011 1.33x x x ?? ??=+-=??????? ? 15 1 2 2 2 3 20 1 7 ()()d d (2)d 6 E X x f x x x x x x x +∞ -∞ ==+-= ? ?? 16 故 221 ()()[()].6D X E X E X =-= 17 4.设随机变量X 的概率密度为 18 ???? ?<≥=-. 0, 0,0,e )(2 2x x cx x f x k 19 求(1)c ;(2))(X E ;(3))(X D . 20 【解】(1) 由22 2 0()d e d 12k x c f x x cx x k +∞ +∞ --∞ == =? ?得2 2c k =. 21 (2) 22 20 ()()d()2e d k x E X xf x x x k x x +∞ +∞ --∞ ==? ? 22 22 220 π2e d .k x k x x +∞ -== ? 23 (3) 22 2 2 222 1()()d()2e .k x E X x f x x x k x k +∞ +∞ --∞ ==? ? 24 故 2 22221π4π ()()[()].24D X E X E X k k k ?-=-=-= ?? 25

谢寿才版概率统计第四章习题及其解答

习题四 1.设随机变量X 的分布律为 求p 答案:4.0=p ,1)(=X E ,1)12(=-X E ; 2.且已知1.0)(=X E ,9.0)(2 =X E ,求1p ,2p ,3p . 【解】因1231P P P ++=……①, 又12331()(1)010.1E X P P P P P =-++=-=……②, 2222 12313()(1)010.9E X P P P P P =-++=+=……③ 由①②③联立解得1230.4,0.1,0.5.P P P === 3.设随机变量X 的概率密度为 =)(x f ?? ? ??≤≤-<≤.,0,21,2, 10,其它x x x x 求)(X E ,)(X D . 【解】1 2 2 1 ()()d d (2)d E X xf x x x x x x x +∞ -∞ = =+-? ?? 2 1 3 32011 1.33x x x ?? ??=+-=??????? ? 12 22320 1 7 ()()d d (2)d 6 E X x f x x x x x x x +∞ -∞ ==+-= ? ?? 故 2 2 1()()[()].6 D X E X E X =-= 4.设随机变量X 的概率密度为 ???? ?<≥=-. 0, 0,0,e )(2 2x x cx x f x k 求(1)c ;(2))(X E ;(3))(X D .

【解】(1) 由 22 2 ()d e d 12k x c f x x cx x k +∞ +∞ --∞ == =? ?得22c k =. (2) 22 20 ()()d()2e d k x E X xf x x x k x x +∞ +∞ --∞ = =? ? 22 2 20 2e d 2k x k x x k +∞ -== ? (3) 22 2 2 22 2 1()()d()2e .k x E X x f x x x k x k +∞ +∞--∞ = =? ? 故 2 22 2214π()()[()].24D X E X E X k k k ?-=-=-= ?? 5. 过单位圆上一点P 作任意弦PA ,PA 与直径PB 的夹角θ服从区间?? ? ??-2,2ππ上的均匀分布,求弦PA 的长度的数学期望. 解:弦PA 的长为随机变量X ,由任意θ的密度函数为 π θπθθθθπθπ πθπ π4 1cos 2)cos 2(cos 2cos ,02 2,1)(22 = =====?????≤≤-=?-d E EX PB X PA p 故其他 6.设X 服从柯西分布,其密度函数为 +∞<<-∞+= x x x f ,) 1(1 )(2 π 问)(X E 是否存在? 解:因为 ∞=+? +∞ ∞ -dx x x 2 11 1 π 所以EX 不存在。 7.一汽车需要通过三个设置红绿灯路口的一段路,每个路口出现什么信号灯是相互独立的,且红绿两种信号显示时间相同,以X 表示该汽车首次遇到红灯前已经通过路口的个数,求?? ? ??+X E 11. 答案: 96 67 8.设随机变量X 服从区间??? ?? - 21,21上的均匀分布,求)sin(X Y π=的数学期望与方差.

概率论习题第四章答案

第四章 大数定律与中心极限定理 4.1 设D(x)为退化分布: D(x)=?? ?≤>, 0,00 ,1x x 讨论下列分布函数列的极限是否仍是分布函数? (1){D(x+n)}; (2){D(x+ n 1)}; (3){D(x-n 1 )},其中n=1,2,…。 解:(1)(2)不是;(3)是。 4.2 设分布函数列Fn(x)如下定义: Fn(x)=?? ?????>≤<-+-≤n x n x n n n x n x ,1 ,2 ,0 问F(x)=∞ →n lim Fn(x)是分布函数吗? 解:不是。 4.3 设分布函数列{ Fn(x)}弱收敛于分布函数F(x),且F(x)为连续函数,则{Fn(x)}在(∞∞-,)上一致收敛于F(x)。 证:对任意的ε>0,取M 充分大,使有 1-F(x)<ε,;M x ≥? F(x)<ε, ;M x ≤? 对上述取定的M ,因为F(x)在[-M ,M]上一致连续,故可取它的k 分点:x 1=MN 时有 <-)()(i i n x F x F ε,0≤i ≤k+1 (2) 成立,对任意的x ∈(∞∞-,),必存在某个i (0≤i ≤k ),使得],(1+∈i i x x x ,由(2)知当n>N 时有 +<≤++)()()(11i i n n x F x F x F ε, (3) ->≥)()()(i i n n x F x F x F ε, (4) 有(1),(3),(4)可得 +-<-+)()()()(1x F x F x F x F i n ε)()(1i i x F x F -≤++ε<2ε, )()(x F x F n ->--)()(x F x F i εε2)()(1->--≥+δi i x F x F , 即有<-)()(x F x F n 2ε成立,结论得证。

《概率论与数理统计》习题及答案第四章

《概率论与数理统计》习题及答案 第 四 章 1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解(,)X Y 的分布列为 其中(1,1)(1)(1|1)0P X Y P X P Y X ======= 余者类推。 2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。解一枚硬币连掷三次相当于三重贝努里试验,故 1~(3, ).2X B 331 ()(),0,1,2,32 k P X k C k ===,于是(,)X Y 的分布列和边缘分布为 01013818i p ? 其中(0,1)(0)(1|0)0P X Y P X P Y X =======, 13 313(1,1)(1)(1|1)()128 P X Y P X P Y X C =======?=,

余者类推。 3.设(,)X Y 的概率密度为 又(1){(,)|1,3}D x y x y =<<;(2){(,)|3}D x y x y =+<。求{(,)}P X Y D ∈ 解(1)1 3 21 {(,)}(6)8P x y D x y dxdxy ∈ = --? =32 1 (6)8 x x y dxdy --- = )落在圆222 ()x y r r R +≤<内的概率. 解(1)222 23 20 1(R x y R C R dxdy C R C r drd ππθ+≤==-??? ? 33 3233R R C R C πππ??=-=??? ?, ∴3 3 C R π=. (2)设2 2 2 {(,)|}D x y x y r =+≤,所求概率为 322 3 23232133r r r Rr R R R πππ???? =-=-?????? ?? . 5.已知随机变量X 和Y 的联合概率密度为 求X 和Y 的联合分布函数. 解1设(,)X Y 的分布函数为(,)F x y ,则 解2由联合密度可见,,X Y 独立,边缘密度分别为 边缘分布函数分别为(),()X Y F x F y ,则 设(,)X Y 的分布函数为(,)F x y ,则 6.设二维随机变量(,)X Y 在区域:0D x <<求边缘概率密度。 解(,)X Y 的概率密度为 关于X 和Y 的密度为

李贤平_《概率论与数理统计_第四章》答案

概率论 数字特征与特征函数 2、袋中有k 号的球k 只,n k ,,2,1 =,从中摸出一球,求所得号码的数学期望。 3、随机变量μ取非负整数值0≥n 的概率为!/n AB p n n =,已知a E =μ,试决定A 与B 。 7、袋中有n 张卡片,记号码1,2,…,n,从中有放回地抽出k 张卡片来,求所得号码之和μ的数学期望及方差。 9、试证:若取非负整数值的随机变量ξ的数学期望存在,则∑∞ =≥= 1 }{k k P E ξξ。 11、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(| |∞<<∞-=--x e x p x λ μλ 0>λ。试求 ξE ,ξD 。 13、若21,ξξ相互独立,均服从),(2 σa N ,试证π σξξ+ =a E ),max (21。 17、甲袋中有a 只白球b 只黑球,乙袋中装有α只白球β只黑球,现从甲袋中摸出()c c a b ≤+只球放 入乙袋中,求从乙袋中再摸一球而为白球的概率。 20、现有n 个袋子,各装有a 只白球b 只黑球,先从第一个袋子中摸出一球,记下颜色后就把它放入第 二个袋子中,再从第二个袋子中摸出一球,记下颜色后就把它放入第三个袋子中,照这样办法依次摸下去,最后从第n 个袋子中摸出一球并记下颜色,若在这n 次摸球中所摸得的白球总数为n S ,求 n S 。 21、在物理实验中,为测量某物体的重量,通常要重复测量多次,最后再把测量记录的平均值作为该体 质重量,试说明这样做的道理。 24、若ξ的密度函数是偶函数,且2 E ξ<∞,试证ξ与ξ不相关,但它们不相互独立。 25、若,ξη的密度函数为22 221,1 (,)0,1 x y p x y x y π?+≤?=??+>?,试证:ξ与η不相关,但它们不独立。 27、若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立。 26、若,U aX b V cY d =+=+,试证,U V 的相关系数等于,X Y 的相关系数。 28、若123,,ξξξ是三个随机变量,试讨论(1)123,,ξξξ两两不相关;

概率论答案 - 李贤平版 - 第四章

第四章 数字特征与特征函数 1、设μ是事件A 在n 次独立试验中的出现次数,在每次试验中p A P =)(,再设随机变量η视μ取偶 数或奇数而取数值0及1,试求ηE 及ηD 。 2、袋中有k 号的球k 只,n k ,,2,1 =,从中摸出一球,求所得号码的数学期望。 3、随机变量μ取非负整数值0≥n 的概率为 !/n AB p n n =,已知a E =μ,试决定A 与B 。 4、袋中有n 张卡片,记号码1,2,…,n,从中有放回地抽出k 张卡片来,求所得号码之和μ的数学期望及方差。 5、试证:若取非负整数值的随机变量ξ的数学期望存在,则∑∞ =≥=1 }{k k P E ξξ 。 6、若随机变量ξ服从拉普拉斯分布,其密度函数为,,21)(| |∞<<∞-=--x e x p x λμλ 0>λ。试求 ξE ,ξD 。 7、若21,ξξ相互独立,均服从),(2σa N ,试证π σξξ+ =a E ),max(21。 8、甲袋中有a 只白球b 只黑球,乙袋中装有α只白球β只黑球,现从甲袋中摸出()c c a b ≤+只球放 入乙袋中,求从乙袋中再摸一球而为白球的概率。 9、现有n 个袋子,各装有a 只白球b 只黑球,先从第一个袋子中摸出一球,记下颜色后就把它放入第 二个袋子中,再从第二个袋子中摸出一球,记下颜色后就把它放入第三个袋子中,照这样办法依次摸下去,最后从第n 个袋子中摸出一球并记下颜色,若在这n 次摸球中所摸得的白球总数为n S ,求 n S 。 10、在物理实验中,为测量某物体的重量,通常要重复测量多次,最后再把测量记录的平均值作为该体 质重量,试说明这样做的道理。 11、若ξ的密度函数是偶函数,且2 E ξ <∞,试证ξ与ξ不相关,但它们不相互独立。 12、若,ξη的密度函数为22 221,1 (,)0,1x y p x y x y π?+≤?=??+>? ,试证:ξ与η不相关,但它们不独立。 13、若ξ与η都是只能取两个值的随机变量,试证如果它们不相关,则独立。 14、若,U aX b V cY d =+=+,试证,U V 的相关系数等于,X Y 的相关系数。

概率论与数理统计第四章测试题

第4章 随机变量的数字特征 一、选择题 1.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量3X-2Y 的方差是 (A) 8 (B) 16 (C) 28 (D) 44 2.若随机变量X 和Y 的协方差(),0Cov X Y =,则以下结论正确的是( ) (A) X 与Y 相互独立 (B) D(X+Y)=DX+DY(C) D(X-Y)=DX-DY (D) D(XY)=DXDY 3.设随机变量X 和Y 相互独立,且()()22 1122,,,X N Y N μσμσ, 则2Z X Y =+( ) (A) ()221212,2N μμσσ++ (B) () 22 1212,N μμσσ++ (C) () 2212122,4N μμσσ++ (D) ()2212122,4N μμσσ-- 4.设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y 与η=X-Y 不相关的充要条件为 (A) EX=EY (B) E(X 2)- (EX)2= E(Y 2)- (EY)2 (C) E(X 2)= E(Y 2) (D) E(X 2)+(EX)2= E(Y 2)+ (EY)2 5.设X 、Y 是两个相互独立的随机变量且都服从于()0,1N ,则()max ,Z X Y =的数学 期望()E Z =( ) (A) (B) 0 (C) (D) 6.设X 、Y 是相互独立且在()0,θ上服从于均匀分布的随机变量,则()min ,E X Y =????( ) (A) 2θ (B) θ (C) 3θ (D) 4 θ 7.设随机变量X 和Y 的方差存在且不等于0,则D(X+Y)=DX+DY 是X 和Y ( ) (A) 不相关的充分条件,但不是必要条件 (B) 独立的充分条件,但不是必要条件 (C) 不相关的充分必要条件 (D) 独立的充分必要条件 8.若离散型随机变量X 的分布列为(){ }()112 1,2, 2n n n P X n =-?==, 则()E X =( ) (A) 2 (B) 0 (C) ln2 (D) 不存在 9.将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于 (A )-1 (B )0 (C )2 1 (D )1

概率统计2

1. 已知随机变量X 的密度函数为:,0()1/4, 020,2 x Ae x x x x ??? ,求系数A= , X 的密度函数()x ?= ,概率{00.25}P X ≤≤= ; 4. 设连续型随机变量X 的密度函数为: 1(1),11()20, x x x ??+-≤≤?=???其它 求:1){||0.5}P X <; 2)21Y X =-的密度函数()Y y ? 5.设在测量某产品的规格尺寸中,其测量误差2~(0,10)X N ,求在100次重复测量中至少有2次测量误差绝对值大于19.6的概率。(注:(1.96)0.975Φ=) 6. 设连续型随机变量X 的密度函数为???=0 )(2 Ax x ? []其它2,0∈x ,求: (1)常数A (2)X 的分布函数)(x F ; (3){||1}P X <; (4)2Y X =的密度函数)(y Y ? 7. 设一批产品有12件,其中2件次品,10件正品,现从这批产品中任取3件,若用X 表 示取出的3件产品中的次品件数,则X 的分布律为 。 8.设连续型随机变量X 的分布函数为 ()arctan(),F x A B x x R =+∈

则(,)A B = ,X 的密度函数()x ?= 。 9.设随机变量~[2,2]X U -,则随机变量112 Y X =+的密度函数()Y y ?= 。 10. 设随机变量X 的概率密度,01()0,k bx x x ??<<=?? 其它,0,0b k >>其中,且1{}0.752 P X >=,则k = ;b = 。 11..设随机变量X 的概率密度为: 2(2)4()x x ?--= 则Y=f (X)= 服从分布N(0, 1); 12设离散型随机变量X 的分布律为:,...)2,1,0(! 3)(===k k a k X P k ,则a =_______,=≤)1(X P 13、若连续型随机变量X 的分布函数为???????>≤<-+-≤=3,133,3arcsin 3,0)(x x x B A x x F 则常数=A ,=B ,密度函数=)(x ? ;. 14. 设随机变量X 的密度为 34,01()0,x x x ??<<=??其它,则使{}{}P X a P X a >=<成立的常数a = ;{0.5 1.5}P X <<= ; 15. 设2~(,)X N a σ,则3 2X Y -=服从的分布为 。 16.设连续型随机变量X 的密度为: ,0()0, 0x ce x x x ?-?>=?≤? (1)求常数c ; (2)求分布函数()F x ; (3)求21Y X =+的密度()Y y ? 17.设随机变量2~(,)X N a σ,则(0,Y cX b c b =+≠是常数)的概率密度函数为()Y y ?= 18. 设每年袭击某地的台风次数~()X P λ,且{1}{2}P X P X ===, 则

相关文档
最新文档