屏蔽线接地方法及原理

屏蔽线的一端接地,另一端悬空。当信号线传输距离比较远的时候,由于两端的接地电阻不同或PEN线有电流,可能会导致两个接地点电位不同,此时如果两端接地,屏蔽层就有电流行成,反而对信号形成干扰,因此这种情况下一般采取一点接地,另一端悬空的办法,能避免此种干扰形成。两端接地屏蔽效果更好,但信号失真会增大

请注意:两层屏蔽应是相互绝缘隔离型屏蔽!如没有彼此绝缘仍应视为单层屏蔽!

最外层屏蔽两端接地是由于引入的电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压;

而最内层屏蔽一端接地,由于没有电位差,仅用于一般防静电感应。下面的规范是最好的佐证!《GB 50217-1994电力工程电缆设计规范》——3.6.8 控制电缆金属屏蔽的接地方式,应符合下列规定:

(1)计算机监控系统的模拟信号回路控制电缆屏蔽层,不得构成两点或多点接地,宜用集中式一点接地。

(2)除(1)项等需要一点接地情况外的控制电缆屏蔽层,当电磁感应的干扰较大,宜采用两点接地;静电感应的干扰较大,可用一点接地。双重屏蔽或复合式总屏蔽,宜对内、外屏蔽分用一点,两点接地。

(3)两点接地的选择,还宜考虑在暂态电流作用下屏蔽层不致被烧熔。

《GB50057-2000建筑物防雷设计规范》——第6.3.1条规定:……当采用屏蔽电缆时其屏蔽层应至少在两端等电位连接,当系统要求只在一端做等电位连接时,应采用两层屏蔽,外层屏蔽按前述要求处理。

其原理是:1.单层屏蔽一端接地,不形成电位差,一般用于防静电感应。2.双层屏蔽,最外层屏蔽两端接地,内层屏蔽一端等电位接地。此时,外层屏蔽由于电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压。

如果是防止静电干扰,必须单点接地,不论是一层还是二层屏蔽。因为单点接地的静电放电速度是最快的。

但是,以下两种情况除外:

1、外部有强电流干扰,单点接地无法满足静电的最快放电。

如果接地线截面积很大,能够保证静电最快放电的话,同样也要单点接地。当然了,真是那样,也没有必要选择两层屏蔽。

否则,必须两层屏蔽,外层屏蔽主要是减少干扰强度,不是消除干扰,这时必须多点接地,虽然放不完,但必须尽快减弱,要减弱,多点接地是最佳选择。比如,企业中的电缆桥架其实就是外屏蔽层,它是必须多点接地的,第一道防线,减小干扰源的强度。内层屏蔽层(其实,大家不会买双层的电缆,一般是外层就是电缆桥架,内层才是屏蔽电缆的屏蔽层)必须单点接地,因为外部强度已经减少,尽快放电,消除干扰才是内层的目的。

2、外部电击和防雷等安全的要求。

这种情况必须要两层防护,外层不是用来消除干扰的,是出于安全的考虑的,保证人身和设备安全的,必须多点接地。内层才是防止干扰的,所以必须单点接地。

1 屏蔽的定义屏蔽可通过各种屏蔽体来吸收或反射电磁场骚扰的侵入, 达到阻断骚扰传播的目的; 或者屏蔽体可将骚扰源的电磁辐射能量限制在其内部, 以防止其干扰其它设备。(对两个空间区域之间进行金属的隔离, 以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。)1. 一种是主动屏蔽, 防止电磁场外泄; 2. 一种是被动屏蔽, 防止某一区域受骚扰的影响。屏蔽就是具体讲, 就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来, 防止干扰电磁场向外扩散; 用屏蔽体将接收电路、设备或系统包围起来, 防止它们受到外界电磁场的影响。因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗) 、反射能量(电磁波在屏蔽体上的界面反射) 和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波) 的作用, 所以屏蔽体具有减弱干扰的功能。

2.屏蔽的分类屏蔽可分为电场屏蔽、电磁屏蔽和磁屏蔽三类。电场屏蔽又包括静电场屏蔽和交变电场屏蔽; 磁场屏蔽又包括静磁屏蔽和交变磁场屏蔽。 1. 静电屏蔽常用于防止静电耦合和骚扰, 即电容性骚扰; 2. 电磁屏蔽主要用于防止高频电磁场的骚扰和影响;

3. 磁屏蔽主要用于防止低频磁感应, 即电感性骚扰。 2.1静电场屏蔽和交变电场屏蔽用来防止静电

耦合产生的感应。屏蔽壳体采用高导电率材料并良好接地,以隔断两个电路之间的分布电容偶合,达到屏蔽作用。静电屏蔽的屏蔽壳体必须接地。以屏蔽导线为例,说明静电屏蔽的原理。静电感应是通过静电电容构成的,因此,静电屏蔽是以隔断两个电路之间的分布电容。静电感应,既两条线路位于地线之上时,若相对于地线对导体1 加有V1的电压,则导体2 也将产生与V1成比例的电V2。由于导体之间必然存在静电电容,若设电容为C10、C12 和C20,则电压V1 就被C12 和C20 分为两部分,该被分开的电压就为V2,可用下式加以计算;导体1 和2 之间加入接地板便可构成静电屏蔽。这样,在接地板与导体1、导体2之间就产生了静电电容C`10 和C`20。等效电路,增加了对地静电电容,消除了导体1、2 之间直接偶合的静电电容。按示2.1,由于C12=0,故与V 1 无关,V2=0。这就是静电屏蔽的原理。

我们若用金属壳体将干扰源屏蔽起来, C1 为干扰源与屏蔽壳体之间的电容, C2 为电子设备与屏蔽壳体之间的电容, Zm 为屏蔽壳体对地阻抗。可求得屏蔽后电子设备上的耦合干扰电压:V sm = ω2 C1 C2 Zm ZsV N / { (ω2 C1 C2 Zm Zs - 1)- jω[ ( C1 + C2) Zm + C2 Zs ]} (2) 如果将屏蔽壳体理想接地,即Zm = 0 ,则V sm= 0 ,耦合干扰可完全消除, 也就是说, 要想完全消除上述干扰的必要条件是要求屏蔽壳体良好接地,在实际工作中, 一般要求接地电阻小于2mΩ就可以了。

如果我们使用了屏蔽壳体,但不接地时,此时Zm = ∞,且C1 < C , C2 < C ,则可断定V sm > V s ,

可知屏蔽后的耦合干扰, 不但不能抑制, 反而更加严重。同样, 如果干扰源不屏蔽, 而将电子设备屏蔽,结果与上述屏蔽效果类似。在实际工作中,是屏蔽干扰源还是屏蔽受感器,建议进行综合全盘考虑,应根据简便、经济、操作方便、场地等具体情况而定。对于平行导线, 由于分布电容较大, 耦合干扰尤其严重, 需采用同轴电缆导线。有关同轴电缆导线的抗干扰问题,后面将另行分析讨论。耦合干扰的大小与频率有关,频率升高,干扰增加。故此,频率越高,采用屏蔽越有必要,屏蔽后的效果越明显。 2.2电磁屏蔽电磁屏蔽的机理就是电磁感应现象。在外界交变电磁场作用下,通过电磁感应屏蔽壳体内产生感应电流,而这感应电流在屏蔽空间又产生了与外界电磁场方向相反的电磁场,从而抵消了外界电磁场,产生屏蔽效果。因此,电磁屏蔽较适用于高频。低频时感应电流小,屏蔽效果差;应保证屏蔽壳体各部分具有良好的电气连续,使感应电流能在壳体中流畅,以便产生足够大的感应电磁场来抵消外界电磁场,否则将影响屏蔽效果。所谓电磁感应,即回路与

回路之间的电磁偶合。当电流i1、i2 通过导线1 和2 时,若分别构成回路,则相互之间就产生电磁偶合。所谓偶合,即在导体2 流过i1 的成分,在导体1又流过i2成分。对导体1来说,i2为不需要的电流,因此,它只能是对i1 的噪声成分。回路1与回路2之间的磁通便不相连接,这样即可完成屏蔽。但是,实际上,在防骚扰措施上很少采用装入磁性材料的方法来进行屏蔽。这是因为适当的带状高性能磁带比较昂贵的缘故。真正有效而实用的办法是尽可能避免组成回路。以上谈到的屏蔽问题,重要的是要分清骚扰究竟是源于电压还是起源于电流。必须按照不同的情况来决定采用静电屏蔽还是采用电磁屏蔽。

在交变场中, 电场和磁场总是同时存在的, 这时屏蔽要考虑对电磁场的屏蔽, 也就是电磁屏蔽。电磁屏蔽不是电场屏蔽和磁场屏蔽的简单叠加。在前面所述的4种情况中, 把高频和低频电场或磁场分开讨论本身也是一种简化, 因为低频和高频中间的过渡是非常复杂的。一般情况, 在频率较低的范围内, 电磁干扰一般出现在近场区(感应场) 。而近场根据干扰源的性质不同, 电场和磁场的大小有很大差别。如高电压小电流的干扰源以电场干扰为主, 磁场干扰可忽略不计,只考虑电场屏蔽即可; 而低电压高电流干扰源则以磁场干扰为主, 电场干扰可以忽略不计, 这时只考虑磁场屏蔽即可。当频率较高时, 干扰源的电磁辐射能力增加, 会产生辐射电磁场即远场区(辐射场) 。远场干扰中的电场干扰和磁场干扰都不可忽略, 需要同时实行电场和磁场屏蔽, 一般的做法是采用电阻率和磁导率都低的导体做成屏蔽盒并良好接地。 2.3 磁场屏蔽当干扰源以电流形式出现时,此电流所产生的磁场通过互感耦合对临近信号形成干扰。抑制这类干扰,有效办法是施行磁场屏蔽。磁场屏蔽首先应注意到干扰源的频率高低,因为随干扰频率的不同,屏蔽原理也不同,它将涉及到屏蔽材料的选用以及屏蔽壳体设计、制作等诸方面的问题,若不加分析就不可能达到抑制干扰的效果。

2.3.1 低频磁场屏蔽这里所指低频一般在100kHz 以下。设相近的两平行导线1 和导线2。导线1 对导线2 的磁场耦合干扰为: U2=jωMI1 式中:M为两导线间的分布互感,M=Φ/I1;I1 为导线1 流过的电流;Φ为电流;I1 产生的对导线2 交连的磁通。为抑制磁场耦合干扰,应尽量减少分布互感M,也就是减少干扰源与被干扰电路之间的交连磁通Φ。屏蔽对策屏蔽此类干扰,建议选用具有高导磁率的铁磁材料做成屏蔽壳体,将干扰源屏蔽起来,这样能使干扰源产生的磁通被引导至铁磁材料中,从而不与被干扰的电路交连。同理,也可将被干扰的电路屏蔽起来。

有关屏蔽壳体的制作,应注意下列事项: 1. 所选用材料磁路的磁阻Rm 越小越好Rm=L/μS (L 为磁路长度;S 为磁路横切面积;μ为导磁率)。选用μ值高的铁、硅钢片、坡莫合金等;

2. 在屏蔽壳体设计时,应使壳体有足够的厚度以增大S,达到增加屏蔽效果的目的;在垂直于磁通方向不能开口,以免增大磁阻;

3. 为了更好地提高屏蔽效果,有时采用多层屏蔽,在安装时要注意将屏蔽壳体拧紧。

2.3.2 高频磁场屏蔽频率在100kHz 以上高频磁场的屏蔽原理是利用电磁感应现象在屏蔽壳体表面所产生的涡流的反磁场来达到目的。上述铁磁材料在高频情况下,其磁性损耗太大,不利于在屏蔽壳体上形成尽量大的涡流,达不到有效消除高频磁场干扰的目的。一个良导体制成的屏蔽壳体对一个电子线路的屏蔽等效电路图。 L 为电子电路的电感;M为电子电路与屏蔽壳体的互感;Ls 为屏蔽壳体的电感;I 为电子电路的电流;Rs 为屏蔽壳体的电阻。从而可得出屏蔽壳体上形成的涡流为:Is=jωMI/(Rs+jωLs) 当频率高时,ωLs>>Rs,此时Rs 可忽略不计,则可简化为Is≈

MI/Ls 当频率低时,ωLs<

1. 涡流随频率升高而增大,这说明高频磁场屏蔽应选用导电材料。

2. 在高频段,涡流大小与频率无关,即涡流随频率升高增大到一定程度后,继续升高频率其屏蔽效果就不再增强了。

3. 在低频段,ω低,Is 小,其屏蔽效果差;Rs 小,Is 大,屏蔽效果好,而且屏蔽损耗也少,

这就要求屏蔽材料选用良导体。由于高频集肤效应,涡流仅在屏蔽壳体表面薄层流过,因此,在设计高频屏蔽壳体时,与低频屏蔽壳体不同,无需做得很厚,只需保证一定的机械强度即可,一般为0.2~0.8mm。对于屏蔽导线,通常采用多股线编织网,因其在相同体积下有更大的表面积

3.屏蔽常用分析因同轴电缆线在实际中应用非常普遍,对它的屏蔽问题, 单独进行讨论是非常必要的。在电场中采用同轴电缆对抑制容性耦合是十分有效的,但在磁耦合中, 同轴电缆线的抗干扰问

题就复杂多了。其复杂所在是同轴电缆线由中心导线与屏蔽层组成,在一定的条件下能形成屏蔽层与

中心导线的磁耦合。现进行分析如下: (1) 铜轴电缆的中心导线是受感器时, 为分析方便, 视中

心导线无电流通过, 而屏蔽层有均匀轴向电流IS 流过。这时屏蔽层产生的自感为L s =φ/ Is ,屏蔽层与中心导线之间产生的互感M = φ/ Is ,由于IS 所产生的磁通全部包围着中心导线,故上述两式中的φ相等。V s是外界因素在屏蔽层上感应的电压, Is 是V s所产生的电流,加之屏蔽层自

感L s 和电阻Rs 的存在, 使得Is对中心导线产生了感应电压V n。V N = jωMIs ,Is = V s/

( Rs + jωL s) 将式(6) 代入式(7) ,且L s = M =

V n ,此电压在频率ω≥5ωc 时接近于屏蔽层上的电压V S ,并随着频率升高而增大。我们将屏蔽层

两端接地并不能抑制磁耦合干扰,因为屏蔽层中的电流所产生的磁通会与中心导线交连。通常只将屏

蔽层上感应的电荷泄放入地,起到电场屏蔽作用。 (2) 同轴电缆的中心导线是干扰源时,即中心导线有电流流过。这时如将屏蔽层的一端接地,那么中心导线在屏蔽层上感应的电荷被泄放入地,起到了电场屏蔽作用,但对磁场来说,其作用是非常小的。如果将屏蔽两端接地,所示, 由A RSL SB 支路

到方程:( Rs + jωL s) Is - jωMI1 = 0由于M = L s , 代入可得:IS = jωI1/ ( jω + ωC) 及 I = Is/ 1 + (ωc/ ω) 2如果中心导线电流I1 的频率ω远大于屏蔽层的截止频率ωc 时, 屏蔽层电流IS 将接近于外部磁场近于互相抵消, 起到了防磁辐射的目的。而低频时, 效果欠佳。当然,

这种连接方法不能使IS 全等于I1 ,因为地电流IC 还有分路作用。为了使IS = I1 ,则可采用连接

方式,I1 除IS 外无别的返回支路,使得IS 与I1 大小相等,方向相反。两者所产生的磁场互相抵消, 从而起到抑制磁场辐射的目的。这种连接无论高频还是低频都有良好的屏蔽效果。一微弱信号经放大器的示意图,其中E1 是信号源与其输入端大地的共模噪声电压, E2 是信号源端地与放大器端地的电

位差噪声信号, C 是屏蔽层或屏蔽罩对地分布电容。图 (a) 所示电路, 导线屏蔽层与屏蔽罩

相连并在信号端接地。图中由E1 、E2 及屏蔽层和屏蔽罩耦合进来的噪声等信号引起的地线干扰电

流只流过导线屏蔽层和放大器屏蔽罩, 干扰电压对放大器不造成干扰,这种接法是合理的。 (b) 所示电路,是导线屏蔽层未接到信号源端地。则由E1 、E2 及屏蔽层和屏蔽罩耦合进来的噪声等信号

引起的干扰电流将流经信号源到放大器的信号线, 对放大器造成极大干扰,导线屏蔽层相当于未接,

没有起到预期的屏蔽效果,故B 接法不合理。 (c) 所示电路,放大器未与屏蔽罩相连接,存在

从放大器的输出端到输入端的寄生反馈, 这种反馈可能引起振荡。对放大器造成极大干扰, 屏蔽罩也不起作用,这种接法也不合理。由上述分析,我们得出在信号源接地、放大器浮地时,要得到期望的屏蔽效果应做到:第一,导线屏蔽层应在信号接地处与零信号参考电位点相连接;第二,必须将屏蔽罩内电路的零信号参考电位点与屏蔽罩相连接。在信号源浮地、放大器接地时,也可相应得到:导线屏蔽层应连接到放大器的输入参考端。

4.电子仪器的屏蔽根据上述电磁屏蔽的原理,在设计中,应根据设备的具体要求和生产工艺

条件对屏蔽进行整体设计。考虑干扰源的性质、频率,区分是近场区还是远场区,分析仪器本身的辐射发射以及耦合方式,找出敏感组件,确定屏蔽要求,再开始电磁屏蔽的设计,对于电子仪器的屏蔽,主要

考虑以下因素: 结构形式: 仪器结构采取哪种结构形式,应根据屏蔽要求进行选择,对于屏蔽要求较高的仪器,可选用双层屏蔽,仪器的结构应注意整体的电气连续性,在结构设计中,一些结构细节对仪器的力学性能也许没有影响,但对屏蔽效果却很重要。对中间装置,以前往往采用底板和盖板薄板形式,用螺钉将它们与框架连接起来,为了密封在它们与框架之间垫上橡胶垫,这样,不但底板和盖板与框架之间增加了一道缝,而且其间的电气连续性也只能通过螺钉来联系,大大降低了其屏蔽效果,如果底板与盖板之间采用金属接触,缝隙宽度会降到最小,屏蔽效果得以提高。材料选择材料的电导率、磁通率越高,屏蔽效果越好,但材料的选用还受到强度、重量、散热性、工艺性等因素的制约。当屏蔽效果不太好时,可考虑对其进行表面处理。壁厚的选择壁厚增大,对电磁流的吸收损耗越大,屏蔽效果越好,但壁厚受重量等因素的制约,应综合权衡。缝隙缝隙引起电磁波的泄漏,缝隙越长,泄漏越多,设计时主要考虑: 1) 减少缝隙数量。采用合理的结构使缝隙数量最小。2) 增加缝隙深度。增加缝隙深度可增大缝隙的传输损耗。 3) 减少缝隙长度。可以减少电磁波的泄漏。 4) 改变缝隙的形式。如将平缝改为坡缝,可增大电磁波的反射损耗和传输损耗。 5) 用导电垫代替普通垫。导电垫的变形量控制在15 %左右,可发挥较好作用。表面处理表面处理

直接影响到壳体表面的导电性,影响接触面的接触电阻,影响整体壳体的电气连续性,从而影响仪器的屏蔽效果,如果用化学导电氧化代替阳极氧化,既可防腐,又有较好的屏蔽效果。接插件与电缆

接插件和电缆是传导干扰的重要途径,插座孔还是电磁泄漏的重要部位。因此对于电磁兼容要求主的仪器,除选用屏蔽电缆外,还应选用具有屏蔽效果和滤波能力的接插件。接地仪器壳体要具有完好的屏蔽效果,还必须接地良好,这对电屏蔽来说尤为重要。当抑制外界对同轴电缆线的干扰时,应采取屏蔽层一端接地,另一端悬空的连接方法。当同轴电缆中心导线是干扰源时,应采取屏蔽层一端接地,另一端串联一个电阻的方法。这时无论是高频还是低频,对磁屏蔽都能收到良好的效果

接地技术讨论 1.1地的概念“地”是电子技术中一个很重要的概念。由于“地”的分类与

作用有多种“接地”有设备内部的信号接地和设备接大地,两者概念不同,目的也不同。

“地”的经典定义是“作为电路或系统基准的等电位点或平面”。信号“地”又称参考“地”,就是零电位的参考点,也是构成电路信号回路的公共端。 (1) 直流地:直流电路“地”,零电位参考点。 (2) 交流地:交流电的零线。应与地线区别开。 (3) 功率地:大电流网络器件、功放器件的零电位参考点。 (4) 模拟地:放大器、采样保持器、A/D转换

器和比较器的零电位参考点。 (5) 数字地:也叫逻辑地,是数字电路的零电位参考点。(6) “热地”:开关电源无需使用工频变压器,其开关电路的“地”和市电电网有关,即所谓的“热地”,它是带电的。 (7) “冷地”:由于开关电源的高频变压器将输入、输出端隔离;又由于其反馈电路。常用光电耦合器,既能传送反馈信号,又将双方的“地”隔离;所以输出端的地称之为“冷地”,它不带电

1.2接地的方法在复杂的大系统中,既有高频信号,又有低频信号;既有强电电路,又有弱电电路;既有频繁开关动作的设备,又有极为敏感的弱信号装置. 这样的综合性系统,仅仅将电路按需要设置接地方式是不能满足电磁兼容性要求的,还必须采用分门别类的方法将不同类型的信号电路分成若干类型,以同类电路构成接地系统.

一般有两种分类法:四类法和三类法. 四类法是将所有电路按信号特性分成四类,分别接地,形成四个独立的接地系统,每个“地”系统可能采用不同的接地方式. 四类法的第一类是敏感信号和小信号“地”系统. 包括低电平电路、弱信号检测电路、传感器输入电路、前级放大电路、混频器等,由于这些电路工作电平低,信号幅度弱项,特别容易受到干扰而失效或降级,因此它们的地线应避免混杂于其他电路中. 第二类是不敏感信号和大信号电路的的线系统. 它包括高电平电路、末级放大

器、大功率电路等. 因为在这些电路中,工作电流都比较大,地线系统中的电流也比较大,因此必须和

小信号电路的地线分开设置,否则通过地线的耦合作用必然对小信号电路造成干扰,使电路不能正常工作. 第三类是干扰源设备地系统,它包括电动机、继电器、接触器等. 由于这类元件在工作时产生火

花或冲击电流等,往往对电子电路产生严重的干扰,除了要采取屏蔽隔离技术外,地线必须和电子电路

分开设置. 第四类是金属构件地. 它包括机壳、底板、机门、面板等. 为了防止发生人身触电事

故、雷击事故、外界电磁场的干扰以及摩擦产生静电等,必须将机壳等接地. 由于“四类法”中四

种电路的地都分别设置,因此可以较完善地达到接地的设计要求. “三类法”与“四类法”的分类

原则相同,只是将上述第一类和第二类的地线分别集中连接到机壳,并略去第四类,成为三类地系统. 在工程实践中,按电路性质分类接地的措施还包括数字信号地和模拟信号地分别设置,交流电源的地和

直流电源的地分开等分门别类的措施. 它们都是抑制干扰行之有效的方法. 在同类电路中,有一个

共同的接地导线系统(或接地面) ,根据各种电路接地点的连接方式不同,通常可以分成四种接地系统.

1) 单点接地:单点接地是为许多在一起的电路提供公共电位参考点的方法,这样信号就可以在不

同的电路之间传输。若没有公共参考点,就会出现错误信号传输。单点接地要求每个电路只接地一

次,并且接在同一点。该点常常一地球为参考。实际上接地的三条连接导线会有两种布线方案:1. 三

条线各自引向接地点;2. 三条线串联后连向接地点. 不管怎么布线,导线上均有一定电阻,分析这些电

阻的影响,会有两种可能的实际等效电路. 当三条线分别引到接地点焊接时,其等效电路如图 (a) 所示,图中R1 , R2 , R3 分别为三条引线的电阻,此时各电路的电位分别为UA = R1 I1 , UB = R2

I2 , UC = R3 I3 . 这种情况下,各设备(或各支路) 的地电位仅与各自的地电流I 及地线电阻有关,

不受其他电路影响,对防止各电路之间的相互干扰及地回路干扰是很有效的. 特别是当电路频率较

低、连接导线比较短的场合,经常采用这种接地方式. 它的缺点是不适用于高频电路. 对于并列设备(或支路) 很多的情况,需要很多根连接地线,结构笨重. 设备越多,势必布局分散,就会使地线导线加长,引起阻抗增加,还会由于各地线间相互耦合,使线间电感耦合和电容耦合增大. 单点接地的另

一种实际布线的等效电路如图 (b) 所示. 图中接地点至A 点的一段线为电路1 、电路2 、电路3

的共用地线, AB 段为电路2 和电路3 的共用地线. 设R1 为接地点至A 点的等效电阻, R2 , R3

分别为AB 和BC 段的等效电阻, I1 , I2 , I3 分别为电路1 、电路2 、电路3 的电流,则各接地

点之地电位为: A 点 UA = ( I1 + I2 + I3) R1 B 点 UB = ( I1 + I2 + I3) R1 + ( I2 + I3)

R2 C 点 UC = ( I1 + I2 + I3) R1 + ( I2 + I3) R2 + I3 R3 由此可见, A , B , C 各点的电

位不仅不为零,且受其它电路的影响. 因此,从防止噪声和抑制干扰角度,这种接地方式不适用. 但这

种接地方式的结构比较简单,各电路的接地线短电阻较小,所以在设备机柜中是常用的一种接地方式.

当然,如果各电路的地线中电流相差很大时就不能使用,因为各电路会通过接地线相互影响. 在采取这

种接地方式时还必须注意要把最低电平电路放在最靠近接地点的A 处,以使B 点及C 点的电位受影

响最小 2) 多点接地:设备内电路都以机壳为参考点,而各个设备的机壳又都以地为参考

点。这种接地结构能够提供较低的接地阻抗,这是因为多点接地时,每条地线可以很短;并且多根导

线并联能够降低接地导体的总电感。在高频电路中必须使用多点接地,并且要求每根接地线的长度小

于信号波长的1/20。多点接地的等效电路如图 (b) 所示. 设每个电路接至机壳或地线系统的

地线电阻为Ri ,电感为L i ,地电流为Ii ,则电路对地的电位Ui 为: Ui = ( Ri + jwL i) Ii .

为了降低电路的地电位,每个电路的地线应尽可能缩短,以便降低地线阻抗. 在导体截面积相同的情况下,矩形截面之周边较圆形截面之周边长. 为了减少电阻,常用矩形截面导体作地线带,通常还在地线

上镀银,以提高其表面电导率. 多点接地系统的优点是电路构成比单点接地简单,而且由于接地线短,接地线上可能出现的高频驻波现象显著减小. 但由于多点接地后,设备内部会增加许多地线回路,它们

对较低电平的电路

会引起干扰,带来不良影响. 综上所述,可以把低频和高频接地系统选择准则归纳如下: 对于低频( < 1MHz ) 和公共接地面尺寸小的情况( l <λ/ 20) ,要选用单点接地方式. 对于高频( > 10MHz) 和公共接地面尺寸大的情况( l >λ/ 20) ,要选用多点接地方式. 频率为1MHz - 10MHz 及接地面尺寸为l≈λ/ 20 时,一般可采用单点和多点的混合接地方式. 3) 混合接地:混合接地既包含了单点接地的特性,又包含了多点接地的特性。例如,系统内的电源需要单点接地,而射频信号又要求多点接地,这时就可以采用混合接地。对于直流,电容是开路的,电路是单点接地,对于射频,电容是导通的,电路是多点接地。混合接地使接地系统在低频和高频时呈现不同的特性,这在宽带敏感电路中是必要的。电容对低频和直流有较高的阻抗,因此能够避免两模块之间的地环路形成。当将直流地和射频地分开时,将每个子系统的直流地通过10~100nF的电容器接到射频地上,这两种地应在一点有低阻抗连接起来,连接点应选在最高翻转速度(di/dt)信号存在的点。

在工程实践中,除认真考虑设备内部的信号接地外,通常还将设备的信号地,机壳与大地连在一起,以大地作为设备的接地参考点。设备接大地的目的是 1)保护地,保护接地就是将设备正常运行时不带电的金属外壳(或构架)和接地装置之间作良好的电气连接。为了保护人员安全而设置的一种接线方式。保护“地”线一端接用电器外壳,另一端与大地作可靠连接。

2)防静电接地,泄放机箱上所积累的电荷,避免电荷积累使机箱电位升高,造成电路工作的不稳定。

3)屏蔽地,避免设备在外界电磁环境的作用下使设备对大地的电位发生变化,造成设备工作的不稳定。

4)浮地:即该电路地与大地无导体连接。(虚地:没有接地,却和地等电位的点) 其优点是该电路不受大地电性能的影响。浮地可使功率地(强电地)和信号地(弱电地)之间的隔离电阻很大,所以能阻止共地阻抗电路性耦合产生的电磁干扰。其缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加了对模拟电路的感应干扰。一个折衷方案是在浮地与公共地之间跨接一个阻值很大的泄放电阻,用以释放所积累的电荷。注意控制释放电阻的阻抗,太低的电阻会影响设备泄漏电流的合格性。 1)交流电源地与直流电源地分开一般交流电源的零线是接地的。但由于存在接地电阻和其上流过的电流,导致电源的零线电位并非为大地的零电位。另外,交流电源的零线上往往存在很多干扰,如果交流电源地与直流电源地不分开,将对直流电源和后续的直流电路正常工作产生影响。因此,采用把交流电源地与直流电源地分开的浮地技术,可以隔离来自交流电源地线的干扰。 2)放大器的浮地技术对于放大器而言,特别是微小输入信号和高增益的放大器,在输入端的任何微小的干扰信号都可能导致工作异常。因此,采用放大器的浮地技术,可以阻断干扰信号的进入,提高放大器的电磁兼容能力。 3)浮地技术的注意事项i. 尽量提高浮地系统的对地绝缘电阻,从而有利于降低进入浮地系统之中的共模干扰电流。

ii. 注意浮地系统对地存在的寄生电容,高频干扰信号通过寄生电容仍然可能耦合到浮地系统之中。

iii. 浮地技术必须与屏蔽、隔离等电磁兼容性技术相互结合应用,才能收到更好的预期效果。

iv. 采用浮地技术时,应当注意静电和电压反击对设备和人身的危害。

1.3接地的原因当许多相互连接的设备体积很大(设备的物理尺寸和连接电缆与任何存在的干扰信号的波长相比很大)时,就存在通过机壳和电缆的作用产生干扰的可能性。当发生这种情况时,干扰电流的路径通常存在于系统的地回路中。在考虑接地问题时,要考虑两个方面的问题,一个是系统的自兼容问题,另一个是外部干扰耦合进地回路,导致系统的错误工作。由于外部干扰常常是随

机的,因此解决起来往往更难。要求接地的理由很多,下面列出几种: 1) 安全接地:使用

交流电的设备必须通过黄绿色安全地线接地,否则当设备内的电源与机壳之间的绝缘电阻变小时,会

导致电击伤害。 2) 雷电接地:设施的雷电保护系统是一个独立的系统,由避雷针、下导体和

与接地系统相连的接头组成。该接地系统通常与用做电源参考地及黄绿色安全地线的接地是共用的。

雷电放电接地仅对设施而言,设备没有这个要求。 3) 电磁兼容接地:出于电磁兼容设计而要

求的接地,包括: a) 屏蔽接地:为了防止电路之间由于寄生电容存在产生相互干扰、电路辐

射电场或对外界电场敏感,必须进行必要的隔离和屏蔽,这些隔离和屏蔽的金属必须接地。 b)

滤波器接地:滤波器中一般都包含信号线或电源线到地的旁路电容,当滤波器不接地时,这些电容就

处于悬浮状态,起不到旁路的作用。 c) 噪声和干扰抑制:对内部噪声和外部干扰的控制需要

设备或系统上的许多点与地相连,从而为干扰信号提供“最低阻抗”通道。 d) 电路参考:电

路之间信号要正确传输,必须有一个公共电位参考点,这个公共电位参考点就是地。因此所有互相连

接的电路必须接地。电磁兼容接地:出于电磁兼容设计而要求的接地,它包括: (1) 屏蔽接地为

了防止电路之间由于寄生电容存在产生干扰、电路辐射电场或对外界电场敏感,必须进行必要的隔离

和屏蔽,这些隔离和屏蔽的金属必须接地; (2) 滤波器接地:滤波器中一般都包含信号线或电源线到

地的旁路电容,当滤波器不接地时,这些电容就处于悬浮状态,起不到旁路的作用; (3) 噪声和干扰

抑制:对内部噪声和外部干扰的控制需要设备或系统上的许多点与地相连,从而为干扰信号提供“最

低阻抗”通道; (4) 电路参考:电路之间信号要正确传输,必须有一个公共电位参考点,这个公共电

位参考点就是地. 因此所有互相连接的电路必须接地. 1.4接地的应用 2. 1 信号电缆的接地

技术电缆的屏蔽层必须接地,如不接地,由于寄生耦合,其干扰程度反而比不带屏蔽层严重,使导

线增加干扰。 (1) 1MHz下低频电缆的接地技术。低频信号电缆的屏蔽层应一点接地。屏蔽层单端

接地时,流过屏蔽层的信号电流大小相等、方向相反,它们产生的磁场干扰相互抵消;屏蔽层两端接地

时,屏蔽层上流过的是信号电流与地环电流的叠加,不能完全抵消信号电流所产生的磁场干扰。因此,

屏蔽层单端接地对电磁场干扰具有很好的抑制作用,而屏蔽层两端接地抑制电磁场耦合干扰的能力比

单端接地要差。故低频信号电缆以采取单端接地的屏蔽双绞线的抗电磁干扰效果最佳。至于接地点, a) 当电路中有一个不接地的信号源与一个接地的放大器相连时,输入端的屏蔽层应接至放大器的

公共端 b) 当一个不接地的放大器与一个接地的信号源相连时,应在信号源的输

出端接地,这样放大器输入端没有干扰电压。在光缆传输系统中,各监控点的光

端机外露导电部分、光缆加强芯等都采用一点接地,一般与系统的接地装置相连。因为光缆传输信号

是在微弱的电流下进行的,要求各级工作电路都有良好的信噪比,采用这种方法接地可以加强屏蔽,防

止干扰。 (2) 1MHz以上高频电缆的接地技术。对于屏蔽双绞线对电缆,高频集肤效应使干扰电

流在屏蔽层外表面流动,而信号电流在屏蔽层内表面流动,从而减少屏蔽层上信号电流和干扰电流的耦

合。为了保证屏蔽层为地电位, 1 MHz以上高频电缆通常采用多点接地技术

1.5抑制接地干扰

1.应用隔离变压器通过隔离变压器阻隔地回路的形成来抑制地回路干扰。电路1 的输出信

号经变压器耦合到电路 2 ,而地环路则被变压器所阻隔。但是,变压器绕组间存在分布电容,通过

此分布电容形成地环路的等效电路所示,该图中设输出电路的内阻为零,变压器绕组之间的分布电容

为C ,输入电路的输入电阻为RL。在分析隔离变压器阻隔地环路的干扰时,根据电路分析的叠

加原理,可以不考虑信号电压的传输,即将信号电压短路,只考虑地环路电压UG。由地环路电压

U G 产生的地环路电流为:式中,ω为地回路电压UG的角频率,I、UG分别为地回路电流、电压。地

回路电流I 在RL上的产生的压降为:

(x-2)将上式整理,得: (x-3)因此有: (x-4)当没有采用隔离变压器,直接采用信号线传输时,干扰电压UG 全部加到Rl上,而采用隔离变压器后加到RL上的电压为UN。所以,(x -4 )式表示隔离变压器抑制地回路干扰的能力,|UN/UG| 越小,变压器抑制干扰的能力就越大。由(x-4)式可知,当ωCRl≤1 时,|UN/UG| ≤ 1。所以,要提高隔离变压器的抗干扰能力,有效地办法是减小变压器绕组间的分布电容C (因为ω是无法改变的,而减小负载电阻Rl会影响信号的传输)。如在变压器绕组之间加一电屏蔽,就可以有效的减小变压器绕组间的分布电容C ,从而有效地阻隔了地回路的干扰。为了防止地回路电压UG通过电屏蔽层与绕组间的分布电容耦合加至负载Rl造成干扰,电屏蔽层应接至负载Rl的接地端。必须指出,采用隔离变压器不能传输直流信号,也不适于传输频率很低的信号。但是,隔离变压器对地线中较低频率的干扰具有很好的抑制能力。同时,电路中的信号电流只在变压器绕组连线中流过,因此可避免对其他电路的干扰。

2. 应用光耦合隔离在两电路间采用光耦合器是切断两电路单元间地环路的有效方法之一。电路1 的信号电流通过发光二极管后,发光二极管的发光强弱随通过它的电流变化,这样就把电路1 的信号电流变成强弱不同的光信号。再由光电三极管把强弱不同的光转化成相应的电流,从而实现了电路间的信号传输。通常发光二极管和光电三极管封装在一起,构成一个光耦合器。这种光耦合器可把两电路间的地环路完全隔断,有效地抑制地线干扰。由于光耦合器电流与发光强度的线性关系较差,传输模拟信号时会产生较大的失真,所以应用受到限制。但它对数字信号传输非常适用,如在固态继电器中隔离控制信号的干扰。

1.4常见的问题 Q1:为什么要接地? 接地技术的引入最初是为了防止电力或电子等设备遭雷击而采取的保护性措施,目的是把雷电产生的雷击电流通过避雷针引入到大地,从而起到保护建筑物的作用。同时,接地也是保护人身安全的一种有效手段,当某种原因引起的相线(如电线绝缘不良,线路老化等)和设备外壳碰触时,设备的外壳就会有危险电压产生,由此生成的故障电流就会流经PE线到大地,从而起到保护作用。随着电子通信和其它数字领域的发展,在接地系统中只考虑防雷和安全已远远不能满足要求了。比如在通信系统中,大量设备之间信号的互连要求各设备都要有一个基准…地'作为信号的参考地。而且随着电子设备的复杂化,信号频率越来越高,因此,在接地设计中,信号之间的互扰等电磁兼容问题必须给予特别关注,否则,接地不当就会严重影响系统运行的可靠性和稳定性。最近,高速信号的信号回流技术中也引入了"地"的概念。

Q2:接地的定义在现代接地概念中、对于线路工程师来说,该术语的含义通常是…线路电压的参考点';对于系统设计师来说,它常常是机柜或机架;对电气工程师来说,它是绿色安全地线或接到大地的意思。一个比较通用的定义是"接地是电流返回其源的低阻抗通道"。注意要求是"低阻抗"和"通路"。

Q3:常见的接地符号 PE,PGND,FG-保护地或机壳; BGND或DC-RETURN-直流-48V(+24V)电源(电池)回流; GND-工作地;DGND-数字地;AGND-模拟地;LGND-防雷保护地

Q4:合适的接地方式 Answer: 接地有多种方式,有单点接地,多点接地以及混合类型的接地。而单点接地又分为串联单点接地和并联单点接地。一般来说,单点接地用于简单电路,不同功能模块之间接地区分,以及低频(f<1MHz)电子线路。当设计高频(f>10MHz)电路时就要采用多点接地了或者多层板(完整的地平面层)。

Q5:信号回流和跨分割的介绍对于一个电子信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。第一,根据公式可以知道,辐射强

度是和回路面积成正比的,就是说回流需要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。第二,对于一个高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB上传输线的特性阻抗一般是以地层(或电源层)为参考来计算的,如果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整性。所以,布线的时候要把高速线分配到靠近地平面的层,或者高速线旁边并行走一两条地线,起到屏蔽和就近提供回流的功能。第三,为什么说布线的时候尽量不要跨电源分割,这也是因为信号跨越了不同电源层后,它的回流途径就会很长了,容易受到干扰。当然,不是严格要求不能跨越电源分割,对于低速的信号是可以的,因为产生的干扰相比信号可以不予关心。对于高速信号就要认真检查,尽量不要跨越,可以通过调整电源部分的走线。(这是针对多层板多个电源供应情况说的)

Q6:为什么要将模拟地和数字地分开,如何分开? 模拟信号和数字信号都要回流到地,因为数字信号变化速度快,从而在数字地上引起的噪声就会很大,而模拟信号是需要一个干净的地参考工作的。如果模拟地和数字地混在一起,噪声就会影响到模拟信号。一般来说,模拟地和数字地要分开处理,然后通过细的走线连在一起,或者单点接在一起。总的思想是尽量阻隔数字地上的噪声窜到模拟地上。当然这也不是非常严格的要求模拟地和数字地必须分开,如果模拟部分附近的数字地还是很干净的话可以合在一起。

Q7:单板上的信号如何接地? 对于一般器件来说,就近接地是最好的,采用了拥有完整地平面的多层板设计后,对于一般信号的接地就非常容易了,基本原则是保证走线的连续性,减少过孔数量;靠近地平面或者电源平面,等等。

Q8:单板的接口器件如何接地? 有些单板会有对外的输入输出接口,比如串口连接器,网口RJ45连接器等等,如果对它们的接地设计得不好也会影响到正常工作,例如网口互连有误码,丢包等,并且会成为对外的电磁干扰源,把板内的噪声向外发送。一般来说会单独分割出一块独立的接口地,与信号地的连接采用细的走线连接,可以串上0欧姆或者小阻值的电阻。细的走线可以用来阻隔信号地上噪音过到接口地上来。同样的,对接口地和接口电源的滤波也要认真考虑。

Q9:带屏蔽层的电缆线的屏蔽层如何接地? 屏蔽电缆的屏蔽层都要接到单板的接大地上而不是信号地上,这是因为信号地上有各种的噪声,如果屏蔽层接到了信号地上,噪声电压会驱动共模电流沿屏蔽层向外干扰,所以设计不好的电缆线一般都是电磁干扰的最大噪声输出源。当然前提是接口地也要非常的干净

电气屏蔽线应一端接地还是两端接地

电气屏蔽线应一端接地还是两端接地 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

屏蔽接地通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。 ① 屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。 在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。 这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。 ② 双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。 在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。 动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。 信号线则需要区别情况对待,一般而言模拟信号主张单端接地,以避免双端接地时,地电势不同引发的地电流影响信号;数字信号或差分信号主张双端接地,只是过大的地电流也同样可能影响信号。 所以个人以为,无论是单端还是双端,原则是死的,实效才是目的,需以能解决现场问题和设备的稳定可靠运行为重,因此往往只能灵活处置。

单端接地。 如果是两端接地,由于两个接地端可能存在电位差,反而会产生干扰。 一般要求是2端接地,然而2端接地要看现场条件,如果现场条件恶劣,会在2端形成感应电压,从而有了感应电流,容易干扰,当然,对模拟量干扰严重,故此时即要单端接地。 高频双端接地如编码器,开关量等,低频单端接地如模拟量等。单端接地不存在接地电位差的问题,可减少接地干扰。 屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮。(1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们产生的磁场干扰相互抵消。这是一个很好的抑制磁场干扰的措施。同时它也是一个很好的抵制磁场耦合干扰的措施。(2)两端接地方式:由于屏蔽层上流过的电流是i2与地环电流iG的迭加,所以它不能完全抵消信号电流所产生的磁场干扰。因此,它抑制磁场耦合干扰的能力也比单端接地方式差。单端接地方式与两端接地方式都有屏蔽电场耦合干扰作用。(3)屏蔽层悬浮:只有屏蔽电场耦合干扰能力,而无抑制磁场耦合干扰能力。 对于单端接地,是变送器端接地 1、先说独立地线。所谓的独立地线,顾名思义,就是为本系统单独设置的地线,它必须是通过对地电阻测量合格的地线。那么什么是合格地线呢他的对地电阻的标准是多少这有国标决定,对于计算机系统的接地地线标准,应该是小于4

屏蔽线屏蔽层应一端接地还是两端接地

屏蔽线屏蔽层应一端接地还是两端接地

屏蔽接地通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。 ①屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。 在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。 这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。 ②双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。 在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。 信号线则需要区别情况对待,一般而言模拟信号主张单端接地,以避免双端接地时,地电势不同引发的地电流影响信号; 数字信号或差分信号主张双端接地,只是过大的地电流也同样可能影响信号。

所以个人以为,无论是单端还是双端,原则是死的,实效才是目的,需以能解决现场问题和设备的稳定可靠运行为重,因此往往只能灵活处置。 单端接地。 如果是两端接地,由于两个接地端可能存在电位差,反而会产生干扰。一般要求是2端接地,然而2端接地要看现场条件,如果现场条件恶劣,会在2端形成感应电压,从而有了感应电流,容易干扰,当然,对模拟量干扰严重,故此时即要单端接地。 高频双端接地如编码器,开关量等,低频单端接地如模拟量等。 单端接地不存在接地电位差的问题,可减少接地干扰。 屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮。(1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们产生的磁场干扰相互抵消。这是一个很好的抑制磁场干扰的措施。同时它也是一个很好的抵制磁场耦合干扰的措施。(2)两端接地方式:由于屏蔽层上流过的电流是i2与地环电流iG的迭加,所以它不能完全抵消信号电流所产生的磁场干扰。因此,它抑制磁场耦合干扰的能力也比单端接地方式差。单端接地方式与两端接地方式都有屏蔽电场耦合干扰作用。(3)屏蔽层悬浮:只有屏蔽电场耦合干扰能力,而无抑制磁场耦合干扰能力。 对于单端接地,是变送器端接地

屏蔽接地

屏蔽接地 通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。 ①屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆 的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干 扰的目的。 这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。静电感应 电压的存在将影响电路信号的稳定,有时可能会形成天线效应。 ②双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。 在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产 生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信 号产生抵消衰减效果。 动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇 流排。 信号线则需要区别情况对待,一般而言模拟信号主张单端接地,以避免双端接地时,地电势不 同引发的地电流影响信号; 数字信号或差分信号主张双端接地,只是过大的地电流也同样可能影响信号。 单端接地。 如果是两端接地,由于两个接地端可能存在电位差,反而会产生干扰。 一般要求是2端接地,然而2端接地要看现场条件,如果现场条件恶劣,会在2端形成感应电压,从而有了感应电流,容易干扰,当然,对模拟量干扰严重,故此时即要单端接地。 高频双端接地如编码器,开关量等,低频单端接地如模拟量等。 单端接地不存在接地电位差的问题,可减少接地干扰。 屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮。(1)单端接地 方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们产生的磁场干扰相互抵消。这是一个很好的抑制磁

屏蔽线接地的方法

屏蔽线接地的方法 屏蔽的作用是将电磁场噪声源与敏感设备隔离,切断噪声源的传播路径。屏蔽分为主动屏蔽和被动屏蔽,主动屏蔽目的是为了防止噪声源向外辐射,是对噪声源的屏蔽;被动屏蔽目的是为了防止敏感设备遭到噪声源的干扰,是对敏感设备的屏蔽。屏蔽电缆的屏蔽层主要由铜、铝等非磁性材料制成,并且厚度很薄,远小于使用频率上金属材料的集肤深度,屏蔽层的效果主要不是由于金属体本身对电场、磁场的反射、吸收而产生的,而是由于屏蔽层的接地产生的,接地的形式不同将直接影响屏蔽效果。对于电场、磁场屏蔽层的接地方式不同。可采用不接地、单端接地或双端接地 单端接地: 1) 屏蔽电缆的单端接地对于避免低频电场的干扰是有帮助的。或者说它能够避免 波长λ远远大于电缆长度 L 的频率干扰。L<λ /20 2) 电缆屏蔽层单端接地能够避免屏蔽层上的低频电流噪声。这种电流在内部导 致共模干扰电压并且有可能干扰模拟量设备。 3) 屏蔽层的单端接地对于那些对低频干扰敏感的电路(模拟量电路)来说是可取 的。 4) 连续测量值的上下波动和永久偏差表示有低频干扰。 北京塑力亿航线缆有限公司,主要以仓库批发、厂家直接订货为性质的销售北京塑力亿航线缆、河北亿航电线电缆电力电缆、煤矿用电缆、橡套电缆、控制电缆、通讯电缆、护套电缆屏蔽电线、480/750V无护套聚氯乙烯电缆、以及防水电缆阻燃电缆、耐火电缆等上百种产品,并能为客户提供技术咨询和售后服务。电话:0 0传真:0地址:北京市丰台区五里店北区京辰瑞达大厦406室 双端接地: 1) 确保到电控柜或者插头(圆形接触)的连接经过一个大的导电区域(低感应系 数)。选择金属在金属上比非金属在非金属上要好。 2) 由于有些模拟量模块使用了脉冲技术(例如:处理器和 A/D 转换器集成在同一模 块中),建议将模拟量信号彼此间屏蔽,确保正确的等电位连接,只有在这种情 况下进行双端接地。 3) 通常金属箔屏蔽层的传输阻抗远远大于铜编织线的屏蔽层,其效果相差 5-10 倍, 不能用作数字信号电缆。 4) 偶尔的功能失灵表明有高频干扰。这是导线等电位连接无法消除的。 5) 除去电缆的端点以外,屏蔽层多点接地是有利的。 6) 不要将屏蔽层接在插针上,避免“猪尾巴”现象。 7) 要时刻注意屏蔽层的并联阻抗应该小于自身阻抗的 1/10。电缆桥架、机械框架、 其它屏蔽层或者其它并行电缆都能够使系统作到等电位。 8) 如果当屏蔽层双端接地时电缆屏蔽层发热,或者屏蔽层碰到电控柜外壳或者屏蔽

电缆屏蔽接地规范

屏蔽电缆接地方式 一、名词介绍: 1、屏蔽层:导体外部有导体包裹的导线叫屏蔽线,包裹的导体叫屏蔽层,一般为编织铜网或铜泊(铝),屏蔽层需要接地,外来的干扰信号可被该层导入大地。 作用:保持零电位,使缆芯之间没有电位差;在短路时承载短路电流,以免因短路引起电缆温升过高而损坏绝缘层,同时屏蔽层也可以防止周围外界强电场对电缆内传输电流的干扰;屏蔽层还可以有效地将电缆产生的强电场限制在屏蔽层内,不会对周围的弱电线路及仪表,产生强电干扰或危及人身安全。 2、接地:“地”是电气工程中的电位参考点(经常作为零电位)。“地”可以是大地(Earth),“点”的尺度为三维地,“地”也可以是电路中的某一点(Ground),其尺度是一个有限的导体面、线、点。 电位参考点就是电位的基准点,可以是电力系统中的某一点,如变压器中性点;也可以是直流电源的正、负极或其中间某一点。 作用:接地通常分为系统接地和保护接地。系统接地是为了使系统稳定运行,如变压器中性点接地,信号交流时的公共电位参考点等;保护接地就是将电气设备的金属外壳与接地体连接,以防止因电气设备绝缘损坏而使外壳带电时,操作人员接触设备外壳而触电:如电源接地故障保护、静电接地、屏蔽接地、防雷接地等。也有的接地具有上述两种作用,接地是电气工程中必不可少的措施。 3、屏蔽接地:为避免电磁场对仪表和信号的干扰而采取的接地。 作用:为防止电气设备因受电磁干扰,而影响其工作或对其它设备造成电磁干扰。 二、屏蔽线缆的原理: 屏蔽布线系统源于欧洲,它是在普通非屏蔽布线系统的外面加上金属屏蔽层,利用金属屏蔽层的反射、吸收及趋肤效应实现防止电磁干扰及电磁辐射的功能,屏蔽系统综合利用了双绞线的平衡原理及屏蔽层的屏蔽作用,因而具有非常好的电磁兼容(EMC)特性。 电磁兼容(EMC)是指电子设备或网络系统具有一定的抵抗电磁干扰的能力,同时不能产生过量的电磁辐射。也就是说,要求该设备或网络系统能够在比较恶劣的电磁环境中正常工作,同时又不能辐射过量的电磁波干扰周围其它设备及网络的正常工作。 U/UTP(非屏蔽)电缆的平衡特性并不只取决于部件本身的质量(如绞对),而会受到周围环境的影响。因为U/UTP(非屏蔽)周围的金属、隐蔽的“地”、施工中的牵拉、弯曲等等

屏蔽线接地做法与接地作用

前言 我们使用的线缆很多带屏蔽金属网的,在实际的工程中屏蔽线的屏蔽接地怎么做呢?本文重点介绍屏蔽线怎么接地? 正文: 屏蔽的作用是将电磁场噪声源与敏感设备隔离,切断噪声源的传播路径。屏蔽分为主动屏蔽和被动屏蔽,主动屏蔽目的是为了防止噪声源向外辐射,是对噪声源的屏蔽;被动屏蔽目的是为了防止敏感设备遭到噪声源的干扰,是对敏感设备的屏蔽。 屏蔽电缆的屏蔽层主要由铜、铝等非磁性材料制成,并且厚度很薄,远小于使用频率上金属材料的集肤深度,屏蔽层的效果主要不是由于金属体本身对电场、磁场的反射、吸收而产生的,而是由于屏蔽层的接地产生的,接地的形式不同将直接影响屏蔽效果。对于电场、磁场屏蔽层的接地方式不同。可采用不接地、单端接地或双端接地。 单端接地: 1) 屏蔽电缆的单端接地对于避免低频电场的干扰是有帮助的。或者说它能够避免波长λ远远大于电缆长度L 的频率干扰。L<λ/20 2) 电缆屏蔽层单端接地能够避免屏蔽层上的低频电流噪声。这种电流在内部导致共模干扰电压并且有可能干扰模拟量设备。 3) 屏蔽层的单端接地对于那些对低频干扰敏感的电路(模拟量电路)来说是可取的。 4) 连续测量值的上下波动和永久偏差表示有低频干扰。 双端接地:

1) 确保到电控柜或者插头(圆形接触)的连接经过一个大的导电区域(低感应系数)。选择金属在金属上比非金属在非金属上要好。 2) 由于有些模拟量模块使用了脉冲技术(例如:处理器和A/D 转换器集成在同一模块中),建议将模拟量信号彼此间屏蔽,确保正确的等电位连接,只有在这种情况下进行双端接地。 3) 通常金属箔屏蔽层的传输阻抗远远大于铜编织线的屏蔽层,其效果相差5-10 倍,不能用作数字信号电缆。 4) 偶尔的功能失灵表明有高频干扰。这是导线等电位连接无法消除的。 5) 除去电缆的端点以外,屏蔽层多点接地是有利的。 6) 不要将屏蔽层接在插针上,避免“猪尾巴”现象。 7) 要时刻注意屏蔽层的并联阻抗应该小于自身阻抗的1/10。电缆桥架、机械框架、其它屏蔽层或者其它并行电缆都能够使系统作到等电位。 8) 如果当屏蔽层双端接地时电缆屏蔽层发热,或者屏蔽层碰到电控柜外壳或者屏蔽总线时打火,说明等电位连接不可靠。 屏蔽线接地的方法介绍: 屏蔽接地通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。 ①屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地。 在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。 单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。静电感应

屏蔽线接地方法及原理

屏蔽线的一端接地,另一端悬空。当信号线传输距离比较远的时候,由于两端的接地电阻不同或PEN线有电流,可能会导致两个接地点电位不同,此时如果两端接地,屏蔽层就有电流行成,反而对信号形成干扰,因此这种情况下一般采取一点接地,另一端悬空的办法,能避免此种干扰形成。两端接地屏蔽效果更好,但信号失真会增大 请注意:两层屏蔽应是相互绝缘隔离型屏蔽!如没有彼此绝缘仍应视为单层屏蔽! 最外层屏蔽两端接地是由于引入的电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压; 而最内层屏蔽一端接地,由于没有电位差,仅用于一般防静电感应。下面的规范是最好的佐证!《GB 50217-1994电力工程电缆设计规范》——3.6.8 控制电缆金属屏蔽的接地方式,应符合下列规定: (1)计算机监控系统的模拟信号回路控制电缆屏蔽层,不得构成两点或多点接地,宜用集中式一点接地。 (2)除(1)项等需要一点接地情况外的控制电缆屏蔽层,当电磁感应的干扰较大,宜采用两点接地;静电感应的干扰较大,可用一点接地。双重屏蔽或复合式总屏蔽,宜对内、外屏蔽分用一点,两点接地。 (3)两点接地的选择,还宜考虑在暂态电流作用下屏蔽层不致被烧熔。 《GB50057-2000建筑物防雷设计规范》——第6.3.1条规定:……当采用屏蔽电缆时其屏蔽层应至少在两端等电位连接,当系统要求只在一端做等电位连接时,应采用两层屏蔽,外层屏蔽按前述要求处理。 其原理是:1.单层屏蔽一端接地,不形成电位差,一般用于防静电感应。2.双层屏蔽,最外层屏蔽两端接地,内层屏蔽一端等电位接地。此时,外层屏蔽由于电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压。 如果是防止静电干扰,必须单点接地,不论是一层还是二层屏蔽。因为单点接地的静电放电速度是最快的。 但是,以下两种情况除外: 1、外部有强电流干扰,单点接地无法满足静电的最快放电。 如果接地线截面积很大,能够保证静电最快放电的话,同样也要单点接地。当然了,真是那样,也没有必要选择两层屏蔽。 否则,必须两层屏蔽,外层屏蔽主要是减少干扰强度,不是消除干扰,这时必须多点接地,虽然放不完,但必须尽快减弱,要减弱,多点接地是最佳选择。比如,企业中的电缆桥架其实就是外屏蔽层,它是必须多点接地的,第一道防线,减小干扰源的强度。内层屏蔽层(其实,大家不会买双层的电缆,一般是外层就是电缆桥架,内层才是屏蔽电缆的屏蔽层)必须单点接地,因为外部强度已经减少,尽快放电,消除干扰才是内层的目的。 2、外部电击和防雷等安全的要求。

屏蔽线单端接地

屏蔽线单端接地 是怎么个接法? 屏蔽线的一端接地,另一端悬空。 当信号线传输距离比较远的时候,由于两端的接地电阻不同或PEN线有电流,可能会导致两个接地点电位不同,此时如果两端接地,屏蔽层就有电流行成,反而对信号形成干扰,因此这种情况下一般采取一点接地,另一端悬空的办法,能避免此种干扰形成。 两端接地屏蔽效果更好,但信号失真会增大 请注意:两层屏蔽应是相互绝缘隔离型屏蔽!如没有彼此绝缘仍应视为单层屏蔽!最外层屏蔽两端接地是由于引入的电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压;而最内层屏蔽一端接地,由于没有电位差,仅用于一般防静电感应。下面的规范是最好的佐证!《GB50217-1994电力工程电缆设计规范》——3.6.8控制电缆金属屏蔽的接地方式,应符合下列规定:(1)计算机监控系统的模拟信号回路控制电缆屏蔽层,不得构成两点或多点接地,宜用集中式一点接地。(2)除(1)项等需要一点接地情况外的控制电缆屏蔽层,当电磁感应的干扰较大,宜采用两点接地;静电感应的干扰较大,可用一点接地。双重屏蔽或复合式总屏蔽,宜对内、外屏蔽分用一点,两点接地。 (3)两点接地的选择,还宜考虑在暂态电流作用下屏蔽层不致被烧熔。 《GB50057-2000建筑物防雷设计规范》——第6.3.1条规定:……当采用屏蔽电缆时其屏蔽层应至少在两端等电位连接,当系统要求只在一端做等电位连接时,应采用两层屏蔽,外层屏蔽按前述要求处理。 其原理是:1.单层屏蔽一端接地,不形成电位差,一般用于防静电感应。2.双层屏蔽,最外层屏蔽两端接地,内层屏蔽一端等电位接地。此时,外层屏蔽由于电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压。

屏蔽层接地的方法

屏蔽层接地的方法 随着现代通信技术的发展,电磁干扰逐渐成为一个不可忽视的问题。为了保证通信系统的稳定性和可靠性,需要采取一系列措施来减少电磁干扰的影响。其中,屏蔽技术是一种常用的方法,通过在电路周围加上一个屏蔽层来阻挡外界的电磁波干扰。 然而,屏蔽层本身也会成为一个潜在的电磁干扰源,因为它会在内部形成一个电场和磁场。为了避免这种情况,需要将屏蔽层接地,以消除其内部的电场和磁场。本文将介绍屏蔽层接地的方法。 1. 单点接地法 单点接地法是最常见的屏蔽层接地方法之一。它的原理是将屏蔽层与地面连接,使电荷能够自由流动到地面上。具体实现时,需要在屏蔽层上选取一个点,然后将该点与地面连接起来,形成一个电路。这样,电荷就能够通过这个点流入地面,从而消除屏蔽层内部的电场和磁场。 单点接地法的优点是实现简单,成本低廉。但是,它也存在一些缺点。首先,如果地面的电阻较大,就会导致接地电阻增大,从而影响接地效果。其次,如果在屏蔽层的不同部位采用不同的接地点,就会形成多个接地回路,导致接地电位不稳定,从而增加电磁干扰的风险。 2. 并联接地法 并联接地法是一种改进的屏蔽层接地方法。它的原理是在屏蔽层上设置多个接地点,然后将这些接地点与地面并联连接。这样,就能

够形成多个接地回路,从而提高接地效果。 并联接地法的优点是能够有效地提高接地效果,减少电磁干扰的风险。但是,它也存在一些缺点。首先,需要在屏蔽层上设置多个接地点,增加了设计和制造的难度。其次,如果接地点之间的距离过大,就会导致接地回路的电阻增大,从而影响接地效果。 3. 串联接地法 串联接地法是一种比较特殊的屏蔽层接地方法。它的原理是将屏蔽层与地面串联连接,形成一个电路。具体实现时,需要在屏蔽层上设置两个接地点,然后将它们与地面串联连接。 串联接地法的优点是能够有效地消除屏蔽层内部的电场和磁场。但是,它也存在一些缺点。首先,需要在屏蔽层上设置两个接地点,增加了设计和制造的难度。其次,如果串联电阻较大,就会影响接地效果。 4. 多点接地法 多点接地法是一种较为复杂的屏蔽层接地方法。它的原理是在屏蔽层上设置多个接地点,然后将它们与地面连接起来。具体实现时,需要在屏蔽层上设置多个接地点,并采用多条导线将它们与地面连接起来。 多点接地法的优点是能够有效地提高接地效果,减少电磁干扰的风险。但是,它也存在一些缺点。首先,需要在屏蔽层上设置多个接地点,并采用多条导线将它们与地面连接起来,增加了设计和制造的难度。其次,如果接地点之间的距离过大,就会导致接地回路的电阻

屏蔽线单端接地

屏蔽线单端接地是怎么个接法? 屏蔽线的一端接地,另一端悬空当信号线传输距离比较远的时候,由于两端的接地电阻不同或PEN线有电流,可能会导致两个接地点电位不同,此时如果两端接地,屏蔽层就有电流行成,反而对信号形成干扰,因此这种情况下一般采取一点接地,另一端悬空的办法,能避免此种干扰形成。 两端接地屏蔽效果更好,但信号失真会增大请注意:两层屏蔽应是相互绝缘隔离型屏蔽!如没有彼此绝缘仍应视为单层屏蔽!最外层屏蔽两端接地是由于引入的电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压;而最内层屏蔽一端接地,由于没有电位差,仅用于一般防静电感应。下面的规范是最好的佐证!《GB50217-1994 电力工程电缆设计规范》——3.6.8 控制电缆金属屏蔽的接地方式,应符合下列规定:(1)计算机监控系统的模拟信号回路控制电缆屏蔽层,不得构成两点或多点接地,宜用集中式一点接地。(2)除(1)项等需要一点接地情况外的控制电缆屏蔽层,当电磁感应的干扰较大,宜采用两点接地;静电感应的干扰较大,可用一点接地。双重屏蔽或复合式总屏蔽,宜对内、外屏蔽分用一点,两点接地。 (3)两点接地的选择,还宜考虑在暂态电流作用下屏蔽层不致被烧熔。 《GB50057-2000建筑物防雷设计规范》一一第631条规定:……当采用屏蔽电缆时其屏蔽层应至少在两端等电位连接,当系统要求只在一端做等电位连接时,应采用两层屏蔽,外层屏蔽按前述要求处理。 其原理是:1.单层屏蔽一端接地,不形成电位差,一般用于防静电感应。 2.双层屏蔽,最外层屏蔽两端接地,内层屏蔽一端等电位接地。此时,外层屏蔽由于电位差而感应出电流,因此产生降低源磁场强度的磁通,从而基本上抵消掉没有外屏蔽层时所感应的电压。 如果是防止静电干扰,必须单点接地,不论是一层还是二层屏蔽。因为单点接地的静电放电速度是最快的。 但是,以下两种情况除外:1、外部有强电流干扰,单点接地无法满足静电的最快放电。如果接地线截面积很大,能够保证静电最快放电的话,同样也要单点接地。当然了,真是那样,也没有必要选择两层屏蔽。 否则,必须两层屏蔽,外层屏蔽主要是减少干扰强度,不是消除干扰,这时必须多点接地,虽然放不完,但必须尽快减弱,要减弱,多点接地是最佳选择。比如,企业中的电缆桥架其实就是外屏蔽层,它是必须多点接地的,第一道防线,减小干扰源的强度。 内层屏蔽层(其实,大家不会买双层的电缆,一般是外层就是电缆桥架,内层才是屏蔽电缆的屏蔽层)必须单点接地,因为外部强度已经减少,尽快放电,消除 干扰才是内层的目的2、外部电击和防雷等安全的要求。 这种情况必须要两层防护,外层不是用来消除干扰的,是出于安全的考虑的,保证人身和设备安全的,必须多点接地。内层才是防止干扰的,所以必须单点接地。 综上所述,现总结如下: 大部分烧友一谈到信号线就说屏蔽线要单端接地的说法其实是片面的。对于双层屏蔽线,

屏蔽线屏蔽层应一端接地还是两端接地

屏蔽线屏蔽层应一端接地还是两端接地 屏蔽接地通常采取两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。① 屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过呵护接地。在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不克不及超出平安电压。静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。② 双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。在屏蔽层双端接地情况下,金属屏蔽层不会发生感应电压,但金属屏蔽层受干扰磁通影响将发生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号发生抵消衰减效果。动力电缆线两边接地,电机端的PE必定要接在驱动端的PE上,并最终接入机箱内的大地汇流排。信号线则需要区别情况对待,一般而言模拟信号主张单端接地,以防止双端接地时,地电势分歧引发的地电流影响信号;数字信号或差分信号主张双端接地,只是过大的地电流也同样可能影响信号。所以个人以为,无论是单端还是双端,原则是死的,实效才是目的,需以能解决现场问题和设备的稳定可靠运行为重,因此往往只能灵活处置。单端接地。如果是两端接地,由于两个接地端可能存在电位差,反而会发生干扰。一般要求是2端接地,然而2端接地要看现场条件,如果现场条件恶劣,会在2端形成感应电压,从而有了感应电流,容易干扰,当然,对模拟量干扰严重,故此时即要单端接地。高频双端接地如编码器,开关量等,低频单端接地如模拟量等。单端接地不存在接地电位差的问题,可减少接地干扰。屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮。(1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们发生的磁场干扰相互抵消。这是一个很好的抑制磁场干扰的措施。同时它也是一个很好的抵制磁场耦合干扰的措施。(2)两端接地方式:由于屏蔽层上流过的电流是i2与地环电流iG的迭加,所以它不克不及完全抵消信号电流所发生的磁场干扰。因此,它抑制磁场耦合干扰的能力也比单端接地方式差。单端接地方式与两端接地方式都有屏蔽电场耦合干扰作用。(3)屏蔽层悬浮:只有屏蔽电场耦合干扰能力,而无抑制磁场耦合干扰能力。对于单端接地,是变送器端接地1、先说独立地线。所谓的独立地线,顾名思义,就是为本系统单独设置的地线,它必须是通过对地电阻丈量合格的地线。那么什么是合格地线呢?他的对地电阻的尺度是多少?这有国标决定,对于计算机系统的接地地线尺度,应该是小于4欧姆。这个独立的地,接变频器的PE、现场的电机外壳、所有导电金属相关柜体、机体外壳。2、再说等电位。所谓的等电位,就是装置接线的这个系统所有物体的金属外壳,用导电体大面积连接一片。面积越大,抗干扰的效果越好。从抗干扰的效果看,等电位的处理,优于单独接地的效果。接独立地,是在等电位的基础上实施的,因为,根据一点接地的原则,那个独立地是接在整个系统的什么位置也很关键。要视现场的具体情况而定。原则是,独立地线的“入地点”接在系统所有壳体、物体的金属概况积最大的地方。等电位包含了所有电缆频蔽层的金属导体连接。3、最后一条说的是信号地。信号地为了不混淆

网线屏蔽线接地方法

网线屏蔽线接地方法 网线屏蔽线接地方法是确保网络连接质量稳定和安全性的重要措施,通过将屏蔽线与地线相连,可以有效地降低电磁干扰和电气隔离问题。以下是常见的几种网线屏蔽线接地方法: 第一种方法是使用传统的接地方法,即将屏蔽线的终端与设备的地线直接相连。这种方法的优点是简单易行,成本低廉。但是需要注意的是,地线的电势可能存在差异,容易引起地回路的干扰,导致接地效果下降。 第二种方法是使用独立的接地线。在这种方法中,屏蔽线和地线分别用两根不同的线路分离连接。这样可以避免地势差异引起的地回路干扰,提高接地效果。同时,为了保证连接的稳定性,建议使用良好的接地回路,如金属屏蔽壳或铜箔,以提供更好的接地效果。 第三种方法是使用网络屏蔽箱。网络屏蔽箱是一种专门用于处理网线屏蔽的设备。它通常包括一个金属外壳,用于接地屏蔽线,以减少电磁干扰。同时,网络屏蔽箱还可以提供保护功能,防止外部干扰和电气隔离问题。 第四种方法是使用电磁屏蔽环。电磁屏蔽环是一种安装在网线上的金属环,它可以有效地降低电磁辐射和电磁感应。通过将电磁屏蔽环安装在网线上,并接地,可以有效地减少电气干扰和电磁波的影响。同时,电磁屏蔽环还可以提供额外的保护,防止外部干扰。

第五种方法是使用屏蔽转换器。屏蔽转换器是一种专门用于处理屏蔽线的设备,它可以将屏蔽线的信号转换为良好的地回路。通过使用屏蔽转换器,可以消除地回路差异和电磁干扰,提高网线的屏蔽效果,并增强网络连接质量和安全性。 除了上述方法外,还有一些其他常见的网线屏蔽线接地方法,如使用屏蔽盖板、屏蔽插头等。这些方法的具体实施方式和效果因应用环境和设备而异,可以根据实际情况选择合适的方法。 总结来说,网线屏蔽线的接地方法多种多样,可以根据实际情况选择适合的方法。无论采用何种方法,都需要保证接地系统的可靠性和稳定性,以确保网络连接质量和安全性。同时,需要对各种接地方法进行合理的选择和应用,以提高接地效果和减少电磁干扰。了解和掌握各种接地方法的原理和特点,是确保网络连接质量稳定和安全性的重要先决条件。

屏蔽线屏蔽层应一端接地还是两端接地

屏蔽线屏蔽层应一端接地依然两端接地 屏蔽接地通常采纳两种方式来处理:屏蔽层单端接地和屏蔽层双端接地、ﻫ①屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直截了当接地,另一端不接地或通过保护接地、 在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干扰的目的、 这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压、静电感应电压的存在将影响电路信号的稳定,有时估计会形成天线效应。ﻫ②双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地、 在屏蔽层双端接地情况下,金属屏蔽层可不能产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,假如地点A和地点B的电势不相等,将形成特别大的电势环流,环流会对信号产生抵消衰减效果、 动力电缆线两边接地,电机端的PE必定要接在驱动端的PE上,并最终接入机箱内的大地汇流排、 信号线则需要区别情况对待,一般而言模拟信号主张单端接地,以幸免双端接地时,地电势不同引发的地电流影响信号;ﻫ数字信号或差分信号主张双端接地,只是过大的地电流也同样估计影响信号。ﻫ因此个人以为,不管是单端依然双端,原则是死的,实效才是目的,需以能解

决现场问题和设备的稳定可靠运行为重,因此往往只能灵活处置。 单端接地。 假如是两端接地,由于两个接地端估计存在电位差,反而会产生干扰、一般要求是2端接地,然而2端接地要看现场条件,假如现场条件恶劣,会在2端形成感应电压,从而有了感应电流,容易干扰,当然,对模拟 量干扰严重,故此时即要单端接地。 高频双端接地如编码器,开关量等,低频单端接地如模拟量等、ﻫ单端接地不存在接地电位差的问题,可减少接地干扰、 屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮、(1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,因此它们产生的磁场干扰相互抵消。这是一个特别好的抑制磁场干扰的措施。同时它也是一个特别好的抵制磁场耦合干扰的措施。(2)两端接地方式:由于屏蔽层上流过的电流是i2与地环电流i G的迭加,因此它不能完全抵消信号电流所产生的磁场干扰。因此, 它抑制磁场耦合干扰的能力也比单端接地方式差。单端接地方式与两端接地方式都有屏蔽电场耦合干扰作用。(3)屏蔽层悬浮:只有屏蔽电场耦合干扰能力,而无抑制磁场耦合干扰能力。 关于单端接地,是变送器端接地 1、先说独立地线。所谓的独立地线,顾名思义,就是为本系统单独设置的地线,它必须是通过对地电阻测量合格的地线。那么什么是合格地线呢?他的对地电阻的标准是多少?这有国标决定,关于计算机系

[电气]屏蔽线应一端接地还是两端接地

[电气]屏蔽线应一端接地还是两端接地

屏蔽接地通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。 ① 屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。 在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。 这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。 ② 双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。 在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。 动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。 信号线则需要区别情况对待,一般而言模拟信号主张单端接地,以避免双端接地时,地电势不同引发的地电流影响信号;数字信号或差分信号主张双端接地,只是过大的地电流也同样可能影响信号。 所以个人以为,无论是单端还是双端,原则是死的,实效才是目的,需以能解决现场问题和设备的稳定可靠运行为重,因此往往只能灵活处置。 单端接地。 如果是两端接地,由于两个接地端可能存在电位差,反而会产生干扰。 一般要求是2端接地,然而2端接地要看现场条件,如果现场条件恶劣,会

在2端形成感应电压,从而有了感应电流,容易干扰,当然,对模拟量干扰严重,故此时即要单端接地。 高频双端接地如编码器,开关量等,低频单端接地如模拟量等。单端接地不存在接地电位差的问题,可减少接地干扰。 屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮。(1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们产生的磁场干扰相互抵消。这是一个很好的抑制磁场干扰的措施。同时它也是一个很好的抵制磁场耦合干扰的措施。(2)两端接地方式:由于屏蔽层上流过的电流是i2与地环电流iG的迭加,所以它不能完全抵消信号电流所产生的磁场干扰。因此,它抑制磁场耦合干扰的能力也比单端接地方式差。单端接地方式与两端接地方式都有屏蔽电场耦合干扰作用。(3)屏蔽层悬浮:只有屏蔽电场耦合干扰能力,而无抑制磁场耦合干扰能力。 对于单端接地,是变送器端接地 1、先说独立地线。所谓的独立地线,顾名思义,就是为本系统单独设置的地线,它必须是通过对地电阻测量合格的地线。那么什么是合格地线呢?他的对地电阻的标准是多少?这有国标决定,对于计算机系统的接地地线标准,应该是小于4欧姆。这个独立的地,接变频器的PE、现场的电机外壳、所有导电金属相关柜体、机体外壳。 2、再说等电位。所谓的等电位,就是安装接线的这个系统所有物体的金属外壳,用导电体大面积连接一片。面积越大,抗干扰的效果越好。从抗干扰的效果看,等电位的处理,优于单独接地的效果。接独立地,是在等电位的基础上实施的,因为,根据一点接地的原则,那个独立地是接在整个系统的什么位置也很关键。要视现场的具体情况而定。原则是,独立地线的“入地点”接在系统所有壳体、物体的金属表面积最大的地方。等电位包括了所有电缆频蔽层的金属导体连接。 3、最后一条说的是信号地。信号地为了不混淆大地的概念,所以称“参考电位”。它是信号的参考电位,在西门子的装置里称作M。所以它不能与PE、大地连接。信号地----参考电位,必须与“大地”悬浮。 最后需要强调的是,“一点接地”,千万不要狭义的理解为一个螺丝栓点,那样的话就大错特错了。关键是要理解西门子的传动装置手册中EMC有关章节描述的“大面积连接”。什么叫大面积连接,就是接地的导体、导线其表面积越大越好。因为干扰的噪声信号,都具有“肌肤效应”,集中在导体的表面,所以,等电位的导体,表面积越大,越利于干扰噪声的吸收。一点接地,要广义的理解。一个大的导体也可以看成一个节点,汇集一点,就是可以在这个导体上的任何部位接地,这样,噪声会有利于在这个导体的表面被吸收。如果汇集一个螺栓点,这种效果就没有了。 双端接地,可能导致屏蔽线上走电流,甚至大电流的可能,只要有电流就产生磁场了,不利于屏所以基本上都是单端接地。但是如果两个系统全部是浮地系统,则无所谓了,可以双端接地的。比如,编码器的屏蔽线怎么接?这个在西门子的手册里已经明确的讲了呀。对于数字信号线的屏蔽就是双端接地。如果说按照此规范接地了,

相关主题
相关文档
最新文档