bmp图像结构详解

bmp图像结构详解
bmp图像结构详解

1.位图和调色板的概念

如今Windows(3.x以及95,NT)系列已经成为决大多数用户使用的操作系统。它比DOS成功的一个重要因素是它可视化的漂亮界面,例如你可以在桌面上铺上你喜欢的墙纸。那么Windows 是如何显示图象的呢?这就要谈到位图(Bitmap)。

我们知道,普通的显示器屏幕是由许许多多的点构成的,我们称之为象素。显示时采用扫描的方法:电子枪每次从左到右扫描一行,为每个象素着色,然后从上到下这样扫描若干行,就扫过了一屏。为了防止闪烁,每秒要重复上述过程几十次。例如我们常说的屏幕分辨率为640*480,刷新频率为70Hz,意思是说每行要扫描640个象素,一共有480行,每秒重复扫描屏幕70次。我们称这种显示器为位映象设备。所谓位映象,就是指一个二维的象素矩阵,而位图就是采用位映象方法显示和存储的图象。举个例子,下图1是一幅普通的黑白位图,图2是被放大后的图,图中每个方格代表了一个象素,我们可以看到:整个骷髅就是由这样一些黑点和白点组成的。

图1.骷髅(左) 图2.放大后的骷髅位图(右)

那么,彩色图是怎么回事呢?

我们先来说说三元色RGB概念。我们知道,自然界中的所有颜色都可以由红,绿,蓝(R,G,B)组合而成。有的颜色含有红色成分多一些,如深红;有的含有红色成分少一些,如淡红。针对含有红色成分的多少,可以分成0到255共256个等级,0级表示不含红色成分,255级表示含有100%的红色成分。同样,绿色和蓝色也被分成256级。这种分级的概念被称作量化。这样,根据红,绿,蓝各种不同的组合我们就能表示出256*256*256,约1千6百万种颜色。这么多颜色对于我们人眼来已经足够了。

下表是常见的一些颜色的RGB组合值。

颜色R G B

红25500

蓝00255

绿02550

黄2552550

紫2550255

青0255255

白255255255

黑000

灰128128128

你大概已经明白了,当一幅图中每个象素赋予不同的RGB值时,就能呈现出五彩缤纷的颜色了,这样就形成了彩色图。对,是这样的,但实际上的做法还有些差别。

让我们来看看下面的例子。

有一个长宽各为200个象素,颜色数为16色的彩色图,每一个象素都用R,G,B三个分量表示,因为每个分量有256个级别,要用8位(bit),即一个字节(byte)来表示,所以每个象素需要用3个字节。整个图象要用200*200*3,约120k字节,可不是一个小数目呀!如果我们用下面的方法,就能省的多。因为是一个16色图,也就是说这幅图中最多只有16种颜色,我们可以用一个表:表中的每一行记录一种颜色的R,G,B值。这样当我们表示一个象素的颜色时,只需要指出该颜色是在第几行,即该颜色在表中的索引值。举个例子,如果表的第0行为255,0,0(红色),那么当某个象素为红色时,只需要标明0即可。让我们再来计算一下:16种状态可以用4位(bit)表示,所以一个象素要用半个字节。整个图象要用200*200*0.5,约20k字节,再加上表占用的字节为3*16=48字节.整个占用的字节数约为前面的1/6,省很多吧。

这张RGB的表,即是我们常说的调色板(Palette),另一种叫法是颜色查找表LUT(LookUpTable),似乎更确切一些。Windows位图中便用到了调色板技术.其实是不光是Windows位图,许多图象文件格式如pcx,tif,gif等都用到了。所以很好地掌握调色板的概念是十分重要的.

有一种图,它的颜色数高达256*256*256种,也就是说包含我们上述提到的R,G,B颜色表示方法中所有的颜色,这种图叫做真彩色图(TrueColor)。真彩色图并不是说一幅图包含了所有的颜色,而是说它具有显示所有颜色的能力,即最多可以包含所有的颜色。表示真彩色图时,每个象素直接用R,G,B三个分量字节表示,而不采用调色板技术,原因很明显:如果用调色板,表示一个象素也要用24位,这是因为每种颜色的索引要用24位(因为总共有2的24次方种颜色,即调色板有2的24次方行),和直接用R,G,B三个分量表示用的字节数一样,不但没有任何便宜,还要加上一个256*256*256*3个字节的大调色板。所以真彩色图直接用R,G,B三个分量表示,它又叫做24位色图。

2.Bmp文件格式

介绍完位图和调色板的概念,下面就让我们来看一看Windows的位图文件(.bmp文件)的格式是什么样子的。 bmp文件大体上分成四个部分,如图3所示。

图3.Windows位图文件结构示意图(右)

第一部分为位图文件头BITMAPFILEHEADER,是一个结构,其定义如下:typedefstructtagBITMAPFILEHEADER{

WORD bfType;

DWORD bfSize;

WORD bfReserved1;

WORD bfReserved2;

DWORD bfOffBits;

} BITMAPFILEHEADER;

这个结构的长度是固定的,为14个字节(WORD为无符号16位整数,DWORD为无符号32位整数),各个域的说明如下:

bfType

指定文件类型,必须是0x424D,即字符串"BM",也就是说所有.bmp文件的头两个字节都是"BM" bfSize

指定文件大小,包括这14个字节

bfReserved1,bfReserved2

为保留字,不用考虑

bfOffBits

为从文件头到实际的位图数据的偏移字节数,即图3中前三个部分的长度之和。

第二部分为位图信息头BITMAPINFOHEADER,也是一个结构,其定义如下:

typedef struct tagBITMAPINFOHEADER{

DWORD biSize;

LONG biWidth;

LONG biHeight;

WORD biPlanes;

WORD biBitCount;

DWORD biCompression;

DWORD biSizeImage;

LONG biXPelsPerMeter;

LONG biYPelsPerMeter;

DWORD biClrUsed;

DWORD biClrImportant;

} BITMAPINFOHEADER; 这个结构的长度是固定的,为40个字节(WORD为无符号16位整数,DWORD无符号32位整数,LONG为32位整数),各个域的说明如下:

biSize

指定这个结构的长度,为40

biWidth

指定图象的宽度,单位是象素

biHeight

指定图象的高度,单位是象素

biPlanes

必须是1,不用考虑

biBitCount

指定表示颜色时要用到的位数,常用的值为1(黑白二色图),4(16色图),8(256色),24(真彩色图)(新的.bmp格式支持32位色,这里就不做讨论了)。

biCompression

指定位图是否压缩,有效的值为BI_RGB,BI_RLE8,BI_RLE4,BI_BITFIELDS(都是一些Windows 定义好的常量)。要说明的是,Windows位图可以采用RLE4,和RLE8的压缩格式,但用的不多。我们今后所讨论的只有第一种不压缩的情况,即biCompression为BI_RGB的情况。

biSizeImage

指定实际的位图数据占用的字节数,其实也可以从以下的公式中计算出来:

biSizeImage=biWidth'*biHeight

要注意的是:上述公式中的biWidth'必须是4的整倍数(所以不是biWidth,而是biWidth',表示大于或等于biWidth的,离4最近的整倍数。举个例子,如果biWidth=240,则biWidth'=240;如果biWidth=241,biWidth'=244)如果biCompression为BI_RGB,则该项可能为零biXPelsPerMeter

指定目标设备的水平分辨率,单位是每米的象素个数,关于分辨率的概念,我们将在打印部分详细介绍。

biYPelsPerMeter

指定目标设备的垂直分辨率,单位同上。

biClrUsed

指定本图象实际用到的颜色数,如果该值为零,则用到的颜色数为2的biBitCount次方。biClrImportant

指定本图象中重要的颜色数,如果该值为零,则认为所有的颜色都是重要的。

第三部分为调色板(Palette),当然,这里是对那些需要调色板的位图文件而言的。有些位图,如真彩色图,前面已经讲过,是不需要调色板的,BITMAPINFOHEADER后直接是位图数据。

调色板实际上是一个数组,共有biClrUsed个元素(如果该值为零,则有2的biBitCount次方个元素)。数组中每个元素的类型是一个RGBQUAD结构,占4个字节,其定义如下:

typedef struct tagRGBQUAD{

BYTE rgbBlue; //该颜色的蓝色分量

BYTE rgbGreen; //该颜色的绿色分量

BYTE rgbRed; //该颜色的红色分量

BYTE rgbReserved; //保留值

} RGBQUAD;

第四部分就是实际的图象数据了。对于用到调色板的位图,图象数据就是该像素颜在调色板中的索引值,对于真彩色图,图象数据就是实际的R,G,B值。下面就2色,16色,256色位图和真彩色位图分别介绍。

对于2色位图,用1位就可以表示该像素的颜色(一般0表示黑,1表示白),所以一个字节可以表示8个像素。

对于16色位图,用4位可以表示一个像素的颜色,所以一个字节可以表示2个像素。

对于256色位图,一个字节刚好可以表示1个像素。

对于真彩色图,三个字节才能表示1个像素。

要注意两点:

1.每一行的字节数必须是4的整倍数,如果不是,则需要补齐。这在前面介绍biSizeImage时已经提到了。

2.一般来说,.BMP文件的数据从下到上,从左到右的。也就是说,从文件中最先读到的是图象最下面一行的左边第一个像素,然后是左边第二个像素…接下来是倒数第二行左边第一个像素,左边第二个像素…依次类推,最后得到的是最上面一行的最右一个像素。

好了,终于介绍完bmp文件结构了,是不是觉得头有些大?别着急,对照着下面的程序,你就会很清楚了.

3.显示一个bmp文件的C程序

下面的函数LoadBmpFile,其功能是从一个.bmp文件中读取数据(包括BITMAPINFOHEADER,

调色板和实际图象数据)将其存储在一个全局内存句柄hImgData中,这个hImgData将在以后的图象处理程序中用到。同时填写一个类型为HBITMAP的全局变量hBitmap和一个类型为HPALETTE的全局变量hPalette。这两个变量将在处理WM_PAINT消息时用到,用来显示出位图。该函数的两个参数分别是用来显示位图的窗口句柄,和.bmp文件名(全路径),当函数成功时,返回TRUE,否则返回FALSE.

BITMAPFILEHEADER bf;

BITMAPINFOHEADER bi;

BOOL LoadBmpFile(HWND hWnd,char* BmpFileName)

{

HFILE hf; //文件句柄

LPBITMAPINFOHEADER lpImgData; //指向BITMAPINFOHEADER结构的指针LOGPALETTE *pPal; //指向逻辑调色板结构的指针

LPRGBQUAD lpRGB; //指向RGBQUAD结构的指针

HPALETTE hPrevPalette;//用来保存设备中原来的调色板

HDC hDc; //设备句柄

HLOCAL hPal; //存储调色板的局部内存句柄

DWORD LineBytes; //每一行的字节数

DWORD ImgSize; //实际的图象数据占用的字节数

DWORD NumColors; //实际用到的颜色数,即调色板数组中的颜色个数

DWORD i;

if((hf=_lopen(BmpFileName,OF_READ))==HFILE_ERROR){

MessageBox (hWnd,"Filec:\\test.bmpnotfound!","ErrorMessage",

MB_OK|MB_ICONEXCLAMA TION);

return FALSE;//打开文件错误,返回

}

//将BITMAPFILEHEADER结构从文件中读出,填写到bf中

_lread(hf,(LPSTR)&bf,sizeof(BITMAPFILEHEADER));

//将BITMAPINFOHEADER结构从文件中读出,填写到bi中

_lread(hf,(LPSTR)&bi,sizeof(BITMAPINFOHEADER));

/*我们定义了一个宏#define WIDTHBYTES(i) ((i+31)/32*4),上面曾经提到过,每一行的字节数必须是4的整倍数,只要调用WIDTHBYTES(bi.biWidth*bi.biBitCount)就能完成这一换算.举一个例子,对于2色图,如果图象宽是31,则每一行需要31位存储,合3个字节加7位,因为字节数必须是4的整倍数,所以应该是4,而此时的biWidth=31,biBitCount=1,WIDTHBYTES(31*1)=4,和我们设想的一样。再举一个256色的例子,如果图象宽是31,则每一行需要31个字节存储,因为字节数必须是4的整倍数,所以应该是32,而此时的biWidth=31,biBitCount=8,WIDTHBYTES(31*8)=32,和我们设想的一样。你可以多举几个例子来验证一下*/

//LineBytes为每一行的字节数

LineBytes=(DWORD)WIDTHBYTES(bi.biWidth*bi.biBitCount);

//ImgSize为实际的图象数据占用的字节数

ImgSize=(DWORD)LineBytes*bi.biHeight;

//NumColors为实际用到的颜色数,即调色板数组中的颜色个数

if(bi.biClrUsed!=0)

NumColors=(DWORD)bi.biClrUsed;//如果bi.biClrUsed不为零,就是本图象实际

//用到的颜色数

else//否则,用到的颜色数为2的biBitCount次方。

switch(bi.biBitCount){

case1:

NumColors=2;

break;

case4:

NumColors=16;

break;

case8:

NumColors=256;

break;

case24:

NumColors=0;//对于真彩色图,没用到调色板

break;

default:

//不处理其它的颜色数,认为出错。

MessageBox(hWnd,"Invalidcolornumbers!","ErrorMessage",

MB_OK|MB_ICONEXCLAMA TION);

_lclose(hf);

return FALSE;//关闭文件,返回FALSE

}

if(bf.bfOffBits!=(DWORD)(NumColors*sizeof(RGBQUAD)+sizeof(BITMAPFILEHEADER) +sizeof(BITMAPINFOHEADER)))

{

//计算出的偏移量与实际偏移量不符,一定是颜色数出错

MessageBox(hWnd,"Invalidcolornumbers!","ErrorMessage",

MB_OK|MB_ICONEXCLAMA TION);

_lclose(hf);

return FALSE;//关闭文件,返回FALSE

}

bf.bfSize=sizeof(BITMAPFILEHEADER)+sizeof(BITMAPINFOHEADER)+NumColors

*sizeof(RGBQUAD)+ImgSize;

//分配内存,大小为BITMAPINFOHEADER结构长度加调色板+实际位图数据

if((hImgData=GlobalAlloc(GHND,(DWORD)(sizeof(BITMAPINFOHEADER)+ NumColors*sizeof(RGBQUAD)+ImgSize)))==NULL)

{

//分配内存错误

MessageBox(hWnd,"Errorallocmemory!","ErrorMessage",

MB_OK|MB_ICONEXCLAMA TION);

_lclose(hf);

return FALSE;//关闭文件,返回FALSE

//指针lpImgData指向该内存区

lpImgData=(LPBITMAPINFOHEADER)GlobalLock(hImgData);

//文件指针重新定位到BITMAPINFOHEADER开始处

_llseek(hf,sizeof(BITMAPFILEHEADER),SEEK_SET);

//将文件内容读入lpImgData

_hread(hf,(char*)lpImgData,(long)sizeof(BITMAPINFOHEADER)

+(long)NumColors*sizeof(RGBQUAD)+ImgSize);

_lclose(hf);//关闭文件

if(NumColors!=0) //NumColors不为零,说明用到了调色板

{

//为逻辑调色板分配局部内存,大小为逻辑调色板结构长度加NumColors个

//PALETTENTRY大小

hPal=LocalAlloc(LHND,sizeof(LOGPALETTE)+NumColors*sizeof(PALETTEENTRY));

//指针pPal指向该内存区

pPal=(LOGPALETTE*)LocalLock(hPal);

//填写逻辑调色板结构的头

pPal->palNumEntries=NumColors;

pPal->palVersion=0x300;

//lpRGB指向的是调色板开始的位置

lpRGB=(LPRGBQUAD)((LPSTR)lpImgData+(DWORD)sizeof(BITMAPINFOHEADER));

//填写每一项

for(i=0;i

{

pPal->palPalEntry[i].peRed=lpRGB->rgbRed;

pPal->palPalEntry[i].peGreen=lpRGB->rgbGreen;

pPal->palPalEntry[i].peBlue=lpRGB->rgbBlue;

pPal->palPalEntry[i].peFlags=(BYTE)0;

lpRGB++;//指针移到下一项

}

//产生逻辑调色板,hPalette是一个全局变量

hPalette=CreatePalette(pPal);

//释放局部内存

LocalUnlock(hPal);

LocalFree(hPal);

}

//获得设备上下文句柄

hDc=GetDC(hWnd);

if(hPalette)//如果刚才产生了逻辑调色板

{

//将新的逻辑调色板选入DC,将旧的逻辑调色板句柄保存在hPrevPalette

hPrevPalette=SelectPalette(hDc,hPalette,FALSE);

RealizePalette(hDc);

}

//产生位图句柄

hBitmap=CreateDIBitmap(hDc, (LPBITMAPINFOHEADER)lpImgData,(LONG)CBM_INIT, (LPSTR)lpImgData+sizeof(BITMAPINFOHEADER)+NumColors*sizeof(RGBQUAD), (LPBITMAPINFO)lpImgData,DIB_RGB_COLORS);

//将原来的调色板(如果有的话)选入设备上下文句柄

if(hPalette&&hPrevPalette)

{

SelectPalette(hDc,hPrevPalette,FALSE);

RealizePalette(hDc);

}

ReleaseDC(hWnd,hDc); //释放设备上下文

GlobalUnlock(hImgData); //解锁内存区

Return TRUE; //成功返回

}

上面的程序中,要说明的有两点:

第一,对于需要调色板的图,要想正确的显示,必须根据.bmp文件,产生逻辑调色板。产生的方法是:1.为逻辑调色板指针分配内存,大小为逻辑调色板结构(LOGPALETTE)长度加NumColors个PALETTENTRY大小。(调色板的每一项都是一个PALETTEENTRY结构),2.填写逻辑调色板结构的头pPal->palNumEntries=NumColors;pPal->palVersion=0x300;3.从文件中读取调色板的RGB值,填写到每一项中。4,产生逻辑调色板:hPalette=CreatePalette(pPal)

第二,产生位图(BITMAP)句柄,该项工作由函数CreateDIBitmap来完成。hBitmap=CreateDIBitmap(hDc,LPBITMAPINFOHEADER)lpImgData,(LONG)CBM_INIT, (LPSTR)lpImgData+sizeof(BITMAPINFOHEADER)+NumColors*sizeof(RGBQUAD), (LPBITMAPINFO)lpImgData,DIB_RGB_COLORS); CreateDIBitmap的作用是产生一个和Windows设备无关的位图。该函数的第一项参数为设备上下文句柄,如果位图用到了调色板,要在调用CreateDIBitmap之前将逻辑调色板选入该设备上下文中,产生hBitmap后,再把原调色板选入该设备上下文中,并释放该上下文;第二项为指向BITMAPINFOHEADER的指针;第三项就用常量CBM_INI,不用考虑;第四项为指向调色板的指针;第五项为指向BITMAPINFO (包括BITMAPINFOHEADER,调色板,及实际的图象数据)的指针;第六项就用常量DIB_RGB_COLORS,不用考虑。

上面提到了设备上下文,相信编过Windows程序的读者对它并不陌生,这里再简单的介绍一下。Windows操作系统统一管理着诸如显示,打印等操作,将它们看作是一个个的设备,每一个设备都有一个复杂的数据结构来维护。所谓设备上下文就是指这个数据结构。然而,我们不能直接和这些设备上下文打交道,只能通过引用标识它的句柄(实际上是一个整数),让Windows去做相应的处理。产生的逻辑调色板句柄hPalette和位图句柄hBitmap要在处理WM_PAINT消息时使用,这样才能在屏幕上显示出来,处理过程如下面的程序。

StaticHDC hDC,hMemDC;

PAINTSTRUCT ps;

case WM_PAINT:

{

hDC=BeginPaint(hwnd,&ps);//获得屏幕设备上下文

if(hBitmap)//hBitmap一开始是NULL,当不为NULL时表示有图

{

hMemDC=CreateCompatibleDC(hDC);//建立一个内存设备上下文

if(hPalette)//有调色板

{

//将调色板选入屏幕设备上下文

SelectPalette(hDC,hPalette,FALSE);

//将调色板选入内存设备上下文

SelectPalette(hMemDC,hpalette,FALSE);

RealizePalette(hDC);

}

//将位图选入内存设备上下文

SelectObject(hMemDC,hBitmap);

//显示位图

BitBlt(hDC,0,0,bi.biWidth,bi.biHeight,hMemDC,0,0,SRCCOPY);

//释放内存设备上下文

DeleteDC(hMemDC);

}

//释放屏幕设备上下文

EndPaint(hwnd,&ps);

break;

}

在上面的程序中,我们调用CreateCompatibleDC创建一个内存设备上下文。SelectObject函数将于设备无关的位图选入内存设备上下文中。然后我们调用BitBlt函数在内存设备上下文和屏幕设备上下文中进行位拷贝。由于所有操作都是在内存中进行,所以是最快的。

BitBlt函数的参数分别为:1.目标设备上下文,在上面的程序里,为屏幕设备上下文,如果改成打印设备上下文,就不是显示位图,而是打印;2.目标矩形左上角点x坐标;3.目标矩形左上角点y坐标,在上面的程序中,2和3为(0,0),表示显示在窗口的左上角;4.目标矩形的宽度;

5.目标矩形的高度;

6.源设备上下文,在上面的程序里,为内存设备上下文;

7.源矩形左上角点x 坐标;

8.源矩形左上角点y坐标;

9.操作方式,在这里为SRCCOPY,表示直接将源矩形拷贝到

目标矩形。还可以是反色,擦除,做"与"运算等操作,具体细节见VC++帮助。你可以试着改改第2,3,4,5,7,8,9项参数,就能体会到它们的含义了。

终于讲完了。是不是觉得有点枯燥?这一讲是有点儿枯燥,特别是当你对Windows的编程并不很清楚时,就更觉得如此。不过,当一幅漂亮的bmp图显示在屏幕上时,你还是会兴奋的大叫"Yeah",至少当年我是这样。

最后,再介绍一个命令行编译的窍门。为什么要用命令行编译呢?主要有两个好处:

第一,不用进入IDE(集成开发环境),节省了时间,而且编译速度也比较快。

第二,对于简单的程序,不用生成项目文件.mdp或.mak,直接就能生成.exe文件,这一点,在下面的例子中可以看到。

在安装VisualC++完毕时,在bin目录下会产生一个VCVARS32.BAT文件,它的作用是在命令行编译时设置正确的环境变量,如存放头文件的INCLUDE目录,存放库文件的LIB目录等,如果你没找到这个批处理文件,可以参考下面的例子,自己做一个批处理。

@echo off

set MSDevDir=d:\MSDEV

set VcOsDir=WIN95

set PATH="%MSDevDir%\BIN";"%MSDevDir%\BIN\%VcOsDir%";"%PATH%"

set INCLUDE=%MSDevDir%\INCLUDE;%MSDevDir%\MFC\INCLUDE;%INCLUDE%

set LIB=%MSDevDir%\LIB;%MSDevDir%\MFC\LIB;%LIB%

set VcOsDir=

只要把上面的"d:\MSDEV"改成你自己的VC目录就可以了。在DOSPROMPT下执行该批处理文件,执行set命令,你就能看到新设置的环境变量了。如下所示:

PATH=D:\MSDEV\BIN;D:\MSDEV\BIN\WIN95;C:\WIN95;C:\WIN95\COMMAND;C:\WIN95\SYS TEM;

INCLUDE=d:\msdev\INCLUDE;d:\msdev\MFC\INCLUDE;

LIB=d:\msdev\LIB;d:\msdev\MFC\LIB;

现在我们就可以进行命令行编译了。(当然,你也可以使用IDE,先new一个project,然后把.c 和.rc文件插入到project中,编译运行。)

首先编译资源文件,输入rc bmp.rc,将生成bmp.res文件,接着输入cl bmp.c bmp.res user32.lib gdi32.lib,就生成bmp.exe了。可以看到,我们并没有用到项目文件,所以,对于这种简单的程序来说,使用命令行编译还是非常方便的。好了,运行bmp.exe,欣赏一下你今天的劳动成果。

注意事项:

命令行编译过程如下:

vcvars32

rc bmp.rc

cl bmp.c bmp.res user32.lib gdi32.lib

bmp文件格式详解

b m p文件格式详解 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

BMP文件格式,又称为Bitmap(位图)或是DIB(Device-IndependentDevice,设备无关位图),是Windows系统中广泛使用的图像文件格式。由于它可以不作任何变换地保存图像像素域的数据,因此成为我们取得RAW数据的重要来源。Windows的图形用户界面(graphicaluserinterfaces)也在它的内建图像子系统GDI中对BMP格式提供了支持。 下面以Notepad++为分析工具,结合Windows的位图数据结构对BMP文件格式进行一个深度的剖析。 BMP文件的数据按照从文件头开始的先后顺序分为四个部分: bmp文件头(bmpfileheader):提供文件的格式、大小等信息 位图信息头(bitmapinformation):提供图像数据的尺寸、位平面数、压缩方式、颜色索引等信息 调色板(colorpalette):可选,如使用索引来表示图像,调色板就是索引与其对应的颜色的映射表 位图数据(bitmapdata):就是图像数据啦^_^ 下面结合Windows结构体的定义,通过一个表来分析这四个部分。 我们一般见到的图像以24位图像为主,即R、G、B三种颜色各用8 个bit来表示,这样的图像我们称为真彩色,这种情况下是不需要调色 板的,也就是所位图信息头后面紧跟的就是位图数据了。因此,我们 常常见到有这样一种说法:位图文件从文件头开始偏移54个字节就是

位图数据了,这其实说的是24或32位图的情况。这也就解释了我们 按照这种程序写出来的程序为什么对某些位图文件没用了。 下面针对一幅特定的图像进行分析,来看看在位图文件中这四个数据 段的排布以及组成。 我们使用的图像显示如下: 这是一幅16位的位图文件,因此它是含有调色板的。 在拉出图像数据进行分析之前,我们首先进行几个约定: 1.在BMP文件中,如果一个数据需要用几个字节来表示的话,那么该数据的存放字节顺序为“低地址村存放低位数据,高地址存放高位数据”。如数据 0x1756在内存中的存储顺序为: 这种存储方式称为小端方式(littleendian),与之相反的是大端方式(bigendian)。对两者的使用情况有兴趣的可以深究一下,其中还是有学问的。 2.以下所有分析均以字节为序号单位进行。 下面我们对从文件中拉出来的数据进行剖析: 一、bmp文件头 Windows为bmp文件头定义了如下结构体: typedef struct tagBITMAPFILEHEADER {?

BMP格式结构详解

位图文件(B it m a p-File,BMP)格式是Windows采用的图像文件存储格式,在Windows环境下运行的所有图像处理软件都支持这种格式。Windows 3.0以前的BMP位图文件格式与显示设备有关,因此把它称为设备相关位图(d evice-d ependent b itmap,DDB)文件格式。Windows 3.0以后的BMP位图文件格式与显示设备无关,因此把这种BMP位图文件格式称为设备无关位图(d evice-i ndependent b itmap,DIB)格式,目的是为了让Windows能够在任何类型的显示设备上显示BMP位图文件。BMP位图文件默认的文件扩展名是BMP或者bmp。 6.1.2 文件结构 位图文件可看成由4个部分组成:位图文件头(bitmap-file header)、位图信息头(bitmap-information header)、彩色表(color table)和定义位图的字节阵列,它们的名称和符号如表6-01所示。 表6-01 BMP图像文件组成部分的名称和符号 位图文件的组成结构名称符号 位图文件头(bitmap-file header)BITMAPFILEHEADE R bmfh 位图信息头(bitmap-information header)BITMAPINFOHEADE R bmih 彩色表(color table)RGBQUAD aColors[] 图像数据阵列字节BYTE aBitmapBits[ ] 位图文件结构可综合在表6-02中。 表6-02 位图文件结构内容摘要 偏移量域的名称大小内容 图像文件头0000h标识符 (Identifie r) 2 bytes两字节的内容用来识别位图的类型: ‘BM’ : Windows 3.1x, 95, NT, linux ‘BA’ :OS/2 Bitmap Array ‘CI’ :OS/2 Color Icon ‘CP’ :OS/2 Color Pointer ‘IC’ : OS/2 Icon ‘PT’ :OS/2 Pointer 0002h File Size 1 dword用字节表示的整个文件的大小 0006h Reserved 1 dword保留,设置为0 000Ah Bitmap Data Offset 1 dword从文件开始到位图数据开始之间的数据(bitmap data)之间的偏移量 000Eh Bitmap Header Size 1 dword位图信息头(Bitmap Info Header)的长度,用来 描述位图的颜色、压缩方法等。下面的长度表示: 28h - Windows 3.1x, 95, NT, … 0Ch - OS/2 1.x F0h - OS/2 2.x 0012h Width 1 dword位图的宽度,以像素为单位 0016h Height 1 dword位图的高度,以像素为单位 001Ah Planes 1 word位图的位面数 图像001Ch Bits Per Pixel 1 word每个像素的位数 1 - Monochrome bitmap

24位BMP图像

#include #include void main() { FILE *fpIn,*fpOut; /////////////////////////// struct RGBQUAD { unsigned char rgbBlue; unsigned char rgbGreen; unsigned char rgbRed; unsigned char rgbReserved; } bicolor; char bfty[2]; short bfreserved1,biplanes,bibitcount; long bfsize,bfoffbit,bisize,biwidth,biheight; long bicompression,bisizeimage,bix,biy,biclrused,biclrimportant; char *cR; int iCol,iRow; int i,j; int iWidth; char *lpsData; int iL; short sTemp; //////////////////////////////////// fpIn=fopen("F:/课堂学习/遥感数字图像处理/data/AA","rb"); fpOut=fopen("F:/课堂学习/遥感数字图像处理/data/Tm23.bmp","wb"); //D:\??\??????????\Data\data iCol=600; iRow=600; bfty[0]='B'; bfty[1]='M'; bfsize=54+iCol*iRow*3; bfreserved1=0; bfoffbit=54; ///////////////// bisize=40; biwidth=iCol; biheight=iRow; biplanes=1; bibitcount=24; bicompression=0;

BMP图像格式详解

BMP格式图像文件详析 首先请注意所有的数值在存储上都是按“高位放高位、低位放低位的原则”,如12345678h放在存储器中就是7856 3412)。下图是导出来的开机动画的第一张图加上文件头后的16进制数据,以此为例进行分析。T408中的图像有点怪,图像是在电脑上看是垂直翻转的。在分析中为了简化叙述,以一个字(两个字节为单位,如424D就是一个字)为序号单位进行,“h”表示是16进制数。 424D 4690 0000 0000 0000 4600 0000 2800 0000 8000 0000 9000 0000 0100*1000 0300 0000 0090 0000 A00F 0000 A00F 0000 0000 0000 0000 0000*00F8 0000 E007 0000 1F00 0000 0000 0000*02F1 84F1 04F1 84F1 84F1 06F2 84F1 06F2 04F2 86F2 06F2 86F2 86F2 ...... BMP文件可分为四个部分:位图文件头、位图信息头、彩色板、图像数据阵列,在上图中已用*分隔。 一、图像文件头 1)1:图像文件头。424Dh=’BM’,表示是Windows支持的BMP 格式。

2)2-3:整个文件大小。4690 0000,为00009046h=36934。 3)4-5:保留,必须设置为0。 4)6-7:从文件开始到位图数据之间的偏移量。4600 0000,为00000046h=70,上面的文件头就是35字=70字节。 5)8-9:位图图信息头长度。 6)10-11:位图宽度,以像素为单位。8000 0000,为00000080h=128。 7)12-13:位图高度,以像素为单位。9000 0000,为00000090h=144。 8)14:位图的位面数,该值总是1。0100,为0001h=1。 二、位图信息头 9)15:每个像素的位数。有1(单色),4(16色),8(256色),16(64K色,高彩色),24(16M色,真彩色),32(4096M色,增强

位图结构详细资料

GDI基本概念及思想 编写代码的一般步骤:先用CreateDC创建(或GetDC获取)device content(DC),然后用GetObject获取(或使用创建object的函数创建)需要的object,并用SelectObject将获取的object选入device content(DC),再使用object进行相应的画图操作,最后用SelectObject将原来的object重新选入DC,并delete 或release删除或释放前面创建或获取的DC。 1.关于device context (DC)设备内容:用来显示位图的地方. 四种设备内容:显示器设备内容、打印机设备内容、内存设备内容、Information 设备内容,常用的有显示器DC和内存DC. Device Context Types: There are four types of DCs: display, printer, memory (or compatible), and information. Device context Description Display Supports drawing operations on a video display. Printer Supports drawing operations on a printer or plotter. Memory Supports drawing operations on a bitmap. Information Supports the retrieval of device data. 其中需要注意的一种类型是:Memory Device Contexts,将在bitmap处理中详细介绍。 创建和获取DC的相关函数: CreateDC,CreateCompatibleDC,GetDC,GetCurrentDC. 其中CreateCompatibleDC用于创建内存设备内容. 刷新、释放和删除DC的相关函数: ResetDC,ReleaseDC,DeleteDC.前者当DC有变动时用来重置DC,后者用来释放使用万完的DC. DeleteDC与CreateDC对应使用 ReleaseDC与GetDC对应使用 2.关于graphical object(GDI objects): 包括:pen,brush,bitmap,palette,region,path. 获取、选择和删除object的相关函数:

BMP头文件格式

bmp头文件格式 1:BMP文件组成 BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成。2:BMP文件头(14字节) BMP文件头数据结构含有BMP文件的类型、文件大小和位图起始位置等信息。 其结构定义如下: typedef struct tagBITMAPFILEHEADER { WORDbf Type; // 位图文件的类型,必须为BMP(0-1字节) DWORD bfSize; // 位图文件的大小,以字节为单位(2-5字节) WORD bfReserved1; // 位图文件保留字,必须为0(6-7字节) WORD bfReserved2; // 位图文件保留字,必须为0(8-9字节) DWORD bfOffBits; // 位图数据的起始位置,以相对于位图(10-13字节) // 文件头的偏移量表示,以字节为单位 } BITMAPFILEHEADER; 3:位图信息头(40字节) BMP位图信息头数据用于说明位图的尺寸等信息。 typedef struct tagBITMAPINFOHEADER{ DWORD biSize; // 本结构所占用字节数(14-17字节) LONG biWidth; // 位图的宽度,以像素为单位(18-21字节)

LONG biHeight; // 位图的高度,以像素为单位(22-25字节) WORD biPlanes; // 目标设备的级别,必须为1(26-27字节) WORD biBitCount;// 每个像素所需的位数,必须是1(双色),(28-29字节) // 4(16色),8(256色)或24(真彩色)之一 DWORD biCompression; // 位图压缩类型,必须是0(不压缩),(30-33字节) // 1(BI_RLE8压缩类型)或2(BI_RLE4压缩类型)之一 DWORD biSizeImage; // 位图的大小,以字节为单位(34-37字节) LONG biXPelsPerMeter; // 位图水平分辨率,每米像素数(38-41字节) LONG biYPelsPerMeter; // 位图垂直分辨率,每米像素数(42-45字节) DWORD biClrUsed;// 位图实际使用的颜色表中的颜色数(46-49字节) DWORD biClrImportant;// 位图显示过程中重要的颜色数(50-53字节) } BITMAPINFOHEADER; 4:颜色表 颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色。RGBQUAD结构的定义如下: typedef struct tagRGBQUAD {

C语言 BMP图片处理

C语言BMP图片处理 BMP是bitmap的缩写形式,bitmap顾名思义,就是位图也即Windows位图。它一般由4部分组成:文件头信息块、图像描述信息块、颜色表(在真彩色模式无颜色表)和图像数据区组成。在系统中以BMP为扩展名保存。 打开Windows的画图程序,在保存图像时,可以看到三个选项:2色位图(黑白)、16色位图、256色位图和24位位图。这是最普通的生成位图的工具,在这里讲解的BMP位图形式,主要就是指用画图生成的位图(当然,也可以用其它工具软件生成)。 现在讲解BMP的4个组成部分: 1.文件头信息块 0000-0001:文件标识,为字母ASCII码“BM”。 0002-0005:文件大小。 0006-0009:保留,每字节以“00”填写。 000A-000D:记录图像数据区的起始位置。各字节的信息依次含义为:文件头信息块大小,图像描述信息块的大小,图像颜色表的大小,保留(为01)。 2.图像描述信息块 000E-0011:图像描述信息块的大小,常为28H。 0012-0015:图像宽度。 0016-0019:图像高度。 001A-001B:图像的plane(平面?)总数(恒为1)。 001C-001D:记录像素的位数,很重要的数值,图像的颜色数由该值决定。001E-0021:数据压缩方式(数值位0:不压缩;1:8位压缩;2:4位压缩)。0022-0025:图像区数据的大小。 0026-0029:水平每米有多少像素,在设备无关位图(.DIB)中,每字节以00H 填写。 002A-002D:垂直每米有多少像素,在设备无关位图(.DIB)中,每字节以00H 填写。 002E-0031:此图像所用的颜色数,如值为0,表示所有颜色一样重要。 3.颜色表 颜色表的大小根据所使用的颜色模式而定:2色图像为8字节;16色图像位64字节;256色图像为1024字节。其中,每4字节表示一种颜色,并以B(蓝色)、G(绿色)、R(红色)、alpha(像素的透明度值,一般不需要)。即首先4字节表示颜色号0的颜色,接下来表示颜色号1的颜色,依此类推。 4.图像数据区

bmp图像的读取

BMP图像文件由三部分组成:位图文件头数据结构,它包含BMP图像文件的类型、显示内容等信息;位图信息数据结构,它包含有BMP图像的宽、高、压缩方法,以及定义颜色等信息。 位图文件主要分为如下3个部分: 1、文件信息头BITMAPFILEHEADER 结构体定义如下: typedef struct tagBITMAPFILEHEADER { WORD bfType; DWORD bfSize; WORD bfReserved1; WORD bfReserved2; DWORD bfOffBits; } BITMAPFILEHEADER; 其中: 2、位图信息头BITMAPINFOHEADER

结构体定义如下: typedef struct tagBITMAPINFOHEADER { DWORD biSize; LONG biWidth; LONG biHeight; WORD biPlanes; WORD biBitCount; DWORD biCompression; DWORD biSizeImage; LONG biXPelsPerMeter; LONG biYPelsPerMeter; DWORD biClrUsed; DWORD biClrImportant; } BITMAPINFOHEADER; 其中:

BMP头文件格式以及C语言读取头文件(二) 具体数据举例: 如某BMP文件开头: 424D 4690 0000 0000 0000 4600 0000 2800 0000 8000 0000 9000 0000 0100*1000 0300 0000 0090 0000 A00F 0000 A00F 0000 0000 0000 0000 0000*00F8 0000 E007 0000 1F00 0000 0000 0000*02F1 84F1 04F1 84F1 84F1 06F2 84F1 06F2 04F2 86F2 06F2 86F2 86F2 .... .... BMP文件可分为四个部分:位图文件头、位图信息头、彩色板、图像数据阵列,在上图中已用*分隔。 一、图像文件头 1)1:(这里的数字代表的是"字",即两个字节,下同)图像文件头。424Dh=’BM’,表示是Windows支持的BMP格式。 2)2-3:整个文件大小。4690 0000,为00009046h=36934。 3)4-5:保留,必须设置为0。 4)6-7:从文件开始到位图数据之间的偏移量。4600 0000,为00000046h=70,上面的文件头就是35字=70字节。 5)8-9:位图图信息头长度。 6)10-11:位图宽度,以像素为单位。8000 0000,为00000080h=128。 7)12-13:位图高度,以像素为单位。9000 0000,为00000090h=144。 8)14:位图的位面数,该值总是1。0100,为0001h=1。 二、位图信息头 9)15:每个像素的位数。有1(单色),4(16色),8(256色),16(64K 色,高彩色),24(16M色,真彩色),32(4096M色,增强型真彩色)。1000为0010h=16。 10)16-17:压缩说明:有0(不压缩),1(RLE 8,8位RLE压缩),2(RLE 4,4位RLE压缩,3(Bitfields,位域存放)。RLE简单地说是采用像素数+像素值的方式进行压缩。T408采用的是位域存放方式,用两个字节表示一个像素,位域分配为r5b6g5。图中0300 0000为00000003h=3。 11)18-19:用字节数表示的位图数据的大小,该数必须是4的倍数,数值上等于位图宽度×位图高度×每个像素位数。0090 0000为 00009000h=80×90×2h=36864。

位图文件结构

位图文件结构 1.位图文件头(BITMAPFILEHEADER):14字节 typedef struct tagBITMAPGILEHEADER{ WORD bfType; //值为0x4d42 DWORD bfSize; //位图文件的大小 WORD bfReserved1; WORD bfReserved2; DWORD bfOffBits; } BITMATPFILEHEADER; 2.位图信息: typedef struct tagBITMAPINFO{ BITMAPINFOHEADER bmiHeader; //位图信息头 RGBQUAD bmiColors; //颜色表 } BITMAPINFO; 1)位图信息头: typedef struct tagBITMAPINFOHEADER{ DWORD biSize; //位图信息头的字节数sizeof(BITMAPINFOHEADER) LONG biWidth; //以像素为单位的图像宽度 LONG biHeight; //以像素为单位的图像长度 WORD biPlanes; //目标设备的位平面数 WORD biBitCount; //每个像素的位数【1】 DWORD biCompression; //图像的压缩格式(这个值几乎总是为0) DWORD biSizeImage; //以字节为单位的图像数据的大小 LONG biXpelsPerMeter; //水平方向上的每米的像素个数 LONG biYpelsPerMeter; //垂直方向上的每米的像素个数 DWORD biClrUsed; //调色板中实际使用的颜色数,通常为0 DWORD biClrImportant; //实现位图时必须的颜色数,通常为0 } BITMAPINFOHEADER; 【1】每个像素的位数 0,用在JPEG格式中 1,单色图,调色板中含有两种颜色,也就是我们通常说的黑白图片 4,16色图 8,256色图,通常说的灰度图 16,64K图,一般没有调色板,图像数据中每两个字节表示一个图像,5个或6个位表示一个RGB分量 24,16M真彩色图,一般没有调色板,图像数据中每3个字节表示一个像素,每个字节表示一个RGB分量 32,4G真彩色,一般没有调色板,每4个字节表示一个像素,相对24位真彩图而言,加入了一个透明度,即RGBA模式 2)颜色表: 针对16位以下的图像而设置的。对于16位以下的图像,由于其位图像素数据中记 录的只是调色板索引值,因而需要根据这个索引到调色板去取得相应的RGB颜色。 typedef struct tagRGBQUAD{ BYTE rgbBlue;

BMP图像格式分析

BMP图像格式分析 BMP图像文件格式是微软公司为其Windows环境设置的标准图像格式,而且 Windows系统软件中还同时内含了一系列支持BMP图像处理的API函数,随着Windows 在世界范围内的不断普及,BMP文件格式无疑也已经成为PC机上的流行图像文件格式。它的主要特点可以概括为:文件结构与PCX文件格式类似,每个文件只能存放一幅图像;图像数据是否采用压缩方式存放,取决于文件的大小与格式,即压缩处理成为图像文件的一个选项,用户可以根据需要进行选择。其中,非压缩格式是BMP图像文件所采用的一种通用格式。但是,如果用户确定将BMP文件格式压缩处理,则Windows设计了两种压缩方式:如果图像为16色模式,则采用RLE4压缩方式,若图像为256色模式,则采用RLE8压缩方式。同时,BMP 图像文件格式可以存储单色、16色、256色以及真彩色四种图像数据,,其数据的排列顺序与一般文件不同,它以图像的左下角为起点存储图像,而不是以图像的左上角为起点;而且BMP图像文件格式中还存在另外一个与众不同的特点,即其调色板数据所采用的数据结构中,红、绿、蓝三种基色数据的排列顺序也恰好与其它图像文件格式相反。总之,BMP图像文件格式拥有许多适合于Windows环境的新特色,而且随着Windows版本的不断更新,微软公司也在不断改进其BMP 图像文件格式,例如:当前BMP图像文件版本中允许采用32位颜色表,而且针对32位Windows 的产生,相应的API 函数也在不断地报陈出新,这些无疑都同时促成了BMP文件格式的不断风靡。但由于BMP文件格式只适合于Windows上的应用软件,而对于DOS环境中的各种应用软件则无法提供相应的支持手段,因此这无疑是阻碍BMP文件格式的流通程度超过PCX文件格式的一个重要因素。 Windows中定义了两种位图文件类型,即一般位图文件格式与设备无关位图文件格式。其中,由于设备无关位图(DIB)文件格式具有更强的灵活性与完整的图像数据、压缩方式等定义。BMP图像文件的结构可以分为如下三个部分:文件头、调色板数据以及图像数据。其中文件头的长度为固定值54个字节;调色板数据对所有不超过256色的图像模式都需要进行设置,即使是单色图像模式也不例外,但是对于真彩色图像模式,其对应的BMP文件结构中却不存在相应调色板数据的设置信息;图像数据既可以采用一定的压缩算法进行处理,也可以不必对图像数据进行压缩处理,这不仅与图像文件的大小相关,而且也与对应的图像处理软件是否支持经过压缩处理的BMP图像文件相关。以下将分别介绍BMP图像文件结构中的这三个重要组成部分。特别值得注意的是:BMP 图像文件结构设计得相当简单,这无疑有利于图像文件的处理速度,但是同时也使得 BMP图像文件格式具有一定的局限性,即一个BMP图像文件只能存储一幅图像。 BMP图像文件的文件头定义 Windows中将BMP图像文件的文件头分成两个数据结构,其中一个数据结构中包含BMP文件的类型、大小和打印格式等信息,称为BITMAPFILEHEADERl另外一个数据结构中则包含BMP文件的尺寸定义等信息,称为BITMAPINFOHEADERl 如果图像文件还需要调色板数据,则将其存放在文件头信息之后。 BITMAPFIlEHEADER数据结构在Windows.h中的定义为: typedef struCttagBITMAPFIlEHEADER { WORD bftype; DWORD bfsiZe: WORD bfReservedl; WORD bgReserved2: DWORD bfoffBits: }BITMAPFILEHEADER; 其中,bfrype在图像文件存储空间中的数据地址为0,数据类型为unsignedchar,内容为固定值“BM”,用于标志文件格式,表示该图像文件为BMP文件。 bfsize的数据地址为2,类型为unsignedlong,它以字节为单位,定义位图文件的大小。 bfReservedl与bfReserved2的数据地址分别为6和8,数据类型则都为unsignedint,二者都是BMP文件的保留字,没有任何意义,其值必须为0. bfoffBits的数据地址为10,数据类型为unsignedlong,它以字节为单位,指示图像数据在文件内的起始地址,即图像数

BMP文件格式

BMP文件格式 简介 BMP(Bitmap-File)图形文件是Windows采用的图形文件格式,在Windows环境下运行的所有图象处理软件都支持BMP图象文件格式。Wi ndows系统内部各图像绘制操作都是以BMP为基础的。Windows 3.0以前的BMP图文件格式与显示设备有关,因此把这种BMP图象文件格式称为设备相关位图DDB(device-dependent bitmap)文件格式。Windows 3.0以后的BMP图象文件与显示设备无关,因此把这种BM P图象文件格式称为设备无关位图DIB(device-independent bitmap)格式(注:Windows 3.0以后,在系统中仍然存在DDB位图,象BitBl t()这种函数就是基于DDB位图的,只不过如果你想将图像以BMP格式保存到磁盘文件中时,微软极力推荐你以DIB格式保存),目的是为了让Windows能够在任何类型的显示设备上显示所存储的图象。BMP位图文件默认的文件扩展名是BMP或者bmp(有时它也会以.DIB 或.RLE作扩展名)。 此图用WinHex软件打开后结果如下:(在介绍完bmp文件格式后会具体分析这些数字,最后也有matlab对此图的分析)注:此图是24位真彩色图。 文件结构 位图文件可看成由4个部分组成:位图文件头(bitmap-file header)、位图信息头(bitmap-information header)、彩色表(color table)和定义位图的字节阵列,它具有如下所示的形式。

位图文件结构可综合在表6-01中。表01 位图文件结构内容摘要

构件详解 1. 位图文件头 位图文件头包含有关于文件类型、文件大小、存放位置等信息,在Windows 3.0以上版本的位图文件中用BITMAPFILEHEADER结构来定义: typedef struct tagBITMAPFILEHEADER { /* bmfh */ UINT bfType; DWORD bfSize; UINT bfReserved1; UINT bfReserved2; DWORD bfOffBits; } BITMAPFILEHEADER; 其中: bfType 说明文件的类型.(该值必需是0x4D42,也就是字符'BM'。我们不需要判断OS/2的位图标识,这么做现在来看似乎已经没有什么意义了,而且如果要支持OS/2的位图,程序将变得很繁琐。所以,在此只建议你检察'BM'标识) bfSize 说明文件的大小,用字节为单位bfReserved1 保留,必须设置为0

BMP图片格式详解

BMP图像格式详解 一.简介 BMP(Bitmap-File)图形文件是Windows采用的图形文件格式,在Windows环境下运行的所有图象处理软件都支持BMP图象文件格式。Windows系统内部各图像绘制操作都是以BMP为基础的。Windows 3.0以前的BMP图文件格式与显示设备有关,因此把这种BMP图象文件格式称为设备相关位图DDB(device-dependent bitmap)文件格式。Windows 3.0以后的BMP图象文件与显示设备无关,因此把这种BMP图象文件格式称为设备无关位图DIB(device-independent bitmap)格式(注:Windows 3.0以后,在系统中仍然存在DDB位图,象BitBlt()这种函数就是基于DDB位图的,只不过如果你想将图像以BMP格式保存到磁盘文件中时,微软极力推荐你以DIB格式保存),目的是为了让Windows能够在任何类型的显示设备上显示所存储的图象。BMP位图文件默认的文件扩展名是BMP或者bmp(有时它也会以.DIB或.RLE作扩展名)。 二.BMP格式结构 BMP文件的数据按照从文件头开始的先后顺序分为四个部分: ◆位图文件头(bmp file header):提供文件的格式、大小等信息 ◆位图信息头(bitmap information):提供图像数据的尺寸、位平面数、压缩方式、颜色索 引等信息 ◆调色板(color palette):可选,如使用索引来表示图像,调色板就是索引与其对应的颜色 的映射表 ◆位图数据(bitmap data):图像数据区 BMP图片文件数据表如下:

三.BMP文件头 BMP文件头结构体定义如下: typedef struct tagBITMAPFILEHEADER { UINT16 bfType; //2Bytes,必须为"BM",即0x424D 才是Windows位 图文件 DWORD bfSize; //4Bytes,整个BMP文件的大小 UINT16 bfReserved1; //2Bytes,保留,为0 UINT16 bfReserved2; //2Bytes,保留,为0 DWORD bfOffBits; //4Bytes,文件起始位置到图像像素数据的字节偏移量} BITMAPFILEHEADER; BMP文件头数据表如下:

BMP图像的读写(8位和24位)

南通大学计算机科学与技术学院 《数字图像处理》课程实验 报告书 实验名 BMP文件的读写(8位和24位) 班级计 121 姓名张进 学号 1213022016 2014年6月 16 日

一、实验内容 1、了解BMP文件的结构 2、8位位图和24位位图的读取 二、BMP图形文件简介 BMP(Bitmap-File)图形文件是Windows采用的图形文件格式,在Windows环境下运行的所有图象处理软件都支持BMP图象文件格式。Windows系统内部各图像绘制操作都是以BMP为基础的。Windows 3.0以前的BMP图文件格式与显示设备有关,因此把这种BMP 图象文件格式称为设备相关位图DDB(device-dependent bitmap)文件格式。Windows 3.0以后的BMP图象文件与显示设备无关,因此把这种BMP图象文件格式称为设备无关位图DIB(device-independent bitmap)格式(注:Windows 3.0以后,在系统中仍然存在DDB位图,象BitBlt()这种函数就是基于DDB位图的,只不过如果你想将图像以BMP格式保存到磁盘文件中时,微软极力推荐你以DIB格式保存),目的是为了让Windows能够在任何类型的显示设备上显示所存储的图象。BMP位图文件默认的文件扩展名是BMP或者bmp(有时它也会以.DIB或.RLE作扩展名)。 位图文件可看成由4个部分组成:位图文件头(bitmap-file header)、位图信息头(bitmap-information header)、彩色表(color table)和定义位图的字节阵列,它具有如下所示的形式。 位图文件结构内容摘要

图像数据格式基础知识

所谓位映像,即是指一个二维的像素矩阵,而位图就是采用位映像方法显示和存储图像。一幅图像的显示就是将图像的像素映射到屏幕的像素上并显示一定的颜色。当一幅图形的像素由彩色表示时就是我们通常所说的彩色图像了。 由于数字图像可以表示为矩阵的形式,所以在计算机数字图像处理程序中,通常用二维数组来存放图像数据。二维数组的行对应图像的高,二维数组的列对应图像的宽,二维数组的元素对应图像的像素,二维数组元素的值就是像素的灰度值。采用二维数组来存储数字图像,符合二维图像的行列特性,同时也便于程序的寻址操作,使得计算机图像编程十分方便。 图像的问题数据是一个二维数组(矩阵),矩阵的每一个元素对应了图像的一个像素,当保存一幅图像时,不但要保存图像的位图数据矩阵,还要将每个像素的颜色保存下来,颜色的记录是利用颜色表来完成的。 颜色表,也叫颜色查找表,是图像像素数据的颜色索引表。 对于真彩色图像,每个像素占存储空间3个字节(24位),分别对应R, G, B三个分量,每个像素的值已经将该像素的颜色记录下来了,不再需要颜色表,因此24位真彩色位图没有颜色表。 彩色图像可以由RGB彩色空间表示。彩色空间是用来表示彩色的数学模型,又被称为彩色模型。 计算计算上显示的图像经常有二值图像、灰度图像、伪彩色图像及真彩色图像等不同格式类型。而灰度和彩色格式是数字图像处理中最常用到的类型。 灰度图像是数字图像的最基本形式,灰度图像可以由黑白照片数字化得到,或从彩色图像进行去色处理得到。灰度图像只表达图像的亮度信息而没有彩色信息,因此,灰度图像的每个像素点上只包含一个量化的灰度级(即灰度值),用来表示该点的亮度水平,并且通常用1个字节(8个二进制位)来存储灰度值。 彩色图像数据不仅包含亮度信息,还包含颜色信息。 BMP文件结构及其存取: 数字图像在外存储器设备中的存储形式是图像文件,图像必须按照某个已知的、公认的数据存储顺序和结构进行存储,才能使不同的程序对图像文件顺利进行打开或存盘操作,实现数据共享。 图像数据子啊文件中的存储顺序和结构称为图像文件格式。 目前广为流传的图像文件格式有许多种,常见的格式包括BMP, GIF, JPEG, TIFF, PSD, DICOM, MPEG等。在各种图像文件格式中,一部分时由某个软硬件厂商提出并广泛接受和采用的格式,如BMP, GIF和PSD格式。另一部分是由各种国际标准组织提出的形式,例如JPEG/ TIFF和DICOM,其中JEPG是国际静止图像压缩标准组织提出的格式,TIFF是由部分厂商组织提出的格式,DICOM是医学图像国际标准组织提取的医学图像专用格式。 BMP文件是Windows操作系统所推荐和支持的图像文件格式,是一种将内存或显示器的图像数据不经过压缩而直接按位存盘的文件格式,所以称为位图(bitmap)文件,因其文件扩展名为BMP,故称为BMP文件格式,简称BMP文件。 BMP文件结构: BMP文件图像被分成4部分:位图文件头、位图信息头、颜色表和位图数据。

BMP文件的编码方式

BMP文件的编码方式 BMP是一种与硬件设备无关的图像文件格式,也是我们最常在PC机上的Windows系统下见到的标准位图格式,使用范围很广泛。它采用位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,因此,BMP文件所占用的空间很大。它最大的好处就是能被大多数软件“接受”,可称为通用格式。 BMP在过去是比较普及的图像格式,现在BMP(Window位图)图像主要被用在PC机运行Window时的墙纸。BMP可以提供无损压缩,压缩方式叫RLE(游程长度编码的编写),在创建墙纸图像文件时是一个极好的选项。Window有时在查找以RLE压缩文件方式保存的墙纸图像时也会出现识别错误。,因此使用时最好先关闭RLE压缩功能。 BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成。 1、BMP文件头:BMP文件头数据结构含有BMP文件的类型、文件大小和位图起始位置等信息。 typedef struct tagBITMAPFILEHEADER{ WORD bfType; // 位图文件的类型,必须为BM DWORD bfSize; // 位图文件的大小,以为单位 WORD bfReserved1; // 位图文件保留字,必须为0 WORD bfReserved2; // 位图文件保留字,必须为0 DWORD bfOffBits; // 位图数据的起始位置,以相对于位图文件头的偏移量表示,以为单位 } BITMAPFILEHEADER; 2、位图信息头:BMP位图信息头数据用于说明位图的尺寸等信息。 typedef struct tagBITMAPINFOHEADER{ DWORD biSize; // 本结构所占用数 LONGbiWidth; // 位图的宽度,以像素为单位 LONGbiHeight; // 位图的高度,以像素为单位 WORD biPlanes; // 目标设备的级别,必须为1 WORD biBitCount// 每个像素所需的位数,必须是1(双色),4(16色),8(256色)或24(真彩色)之一 DWORD biCompression; // 位图压缩类型,必须是0(不压缩),1(BI_RLE8压缩类型)或2(BI_RLE4压缩类型)之一 DWORD biSizeImage; // 位图的大小,以为单位 LONG biXPelsPerMeter; // 位图水平分辨率,每米像素数 LONG biYPelsPerMeter; // 位图垂直分辨率,每米像素数 DWORD biClrUsed;// 位图实际使用的颜色表中的颜色数 DWORD biClrImportant;// 位图显示过程中重要的颜色数 } BITMAPINFOHEADER; 3、颜色表:颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD 类型的结构,定义一种颜色。 typedef struct tagRGBQUAD { BYTE rgbBlue;// 蓝色的亮度(值范围为0-255) BYTE rgbGreen; // 绿色的亮度(值范围为0-255) BYTE rgbRed; // 红色的亮度(值范围为0-255)

BMP文件格式详解

BMP文件格式详解(BMP file format)(转) 转自:https://www.360docs.net/doc/e06802614.html,/Jason_Yao/archive/2009/12/02/1615295.html BMP(全称Bitmap)是Window操作系统中的标准图像文件格式,可以分成两类:设备相关位图(DDB)和设备无关位图(DIB),使用非常广。它采用位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,因此,BMP文件所占用的空间很大。BMP文件的图像深度可选lbit、4bit、8bit及24bit。BMP文件存储数据时,图像的扫描方式是按从左到右、从下到上的顺序。由于BMP文件格式是Windows环境中交换与图有关的数据的一种标准,因此在Windows环境中运行的图形图像软件都支持BMP图像格式。 BMP文件格式,又称为Bitmap(位图)或是DIB(Device-Independent Device,设备无关位图),是Windows系统中广泛使用的图像文件格式。由于它可以不作任何变换地保存图像像素域的数据,因此成为我们取得RAW数据的重要来源。Windows的图形用户界面(graphical user interfaces)也在它的内建图像子系统GDI中对BMP格式提供了支持。 下面以Notepad++为分析工具,结合Windows的位图数据结构对BMP文件格式进行一个深度的剖析。 BMP文件的数据按照从文件头开始的先后顺序分为四个部分: bmp文件头(bmp file header):提供文件的格式、大小等信息 位图信息头(bitmap information):提供图像数据的尺寸、位平面数、压缩方式、颜色索引等信息 调色板(color palette):可选,如使用索引来表示图像,调色板就是索引与其对应的颜色的映射表 位图数据(bitmap data):就是图像数据啦^_^ 下面结合Windows结构体的定义,通过一个表来分析这四个部分。 我们一般见到的图像以24位图像为主,即R、G、B三种颜色各用8个bit来表示,这样的图像我们称为真彩色,这种情况下是不需要调色板的,也就是所

相关文档
最新文档