§2.4.3推挽式变换器

§2.4.3推挽式变换器
§2.4.3推挽式变换器

推挽式变换器

推挽式变换器 单端直流变换器都有共同的缺点,就是高频变压器只工作在磁滞回线的一侧,磁芯的的利用率较低,易于饱和。双端型直流变换器可以工作在一三象限,利用率较高。双端式直流变换器有推挽式、全桥式、和半桥式三种。 1.电路拓扑图 其中NP1=NP2=NP,NS1=NS2=NS。N为变比。 2.电路原理及波形图 假设储能电感的电感量远大于临界电感, 电路工作在电流连续模式。 (1)VT1开通,VT2关断。 NP1下正上负,根据NP2与其同名端位置判定, 也为下正上负。每段电压为Ui,VT2承受两倍 Ui.二次侧VD1正向偏执,VD2截止。由变压 器关系的us=Ui/n,VD2承受2倍反向电压 2Ui/n。电感L储能。

(2)VT1,VT2截止。 截止后变压器两端磁通均保持不变,电压均为零。储能电感L放电,VD1,VD2均正向偏执导通,也起到续流二极管的作用。电感两端电压=-Uo。 (3)VT1关断,VT2关断。 NP2上正下负,根据NP1与其同名端位置判定其也为上正下负。每段电压为Ui,VT1承受两倍Ui.二次侧VD2正向偏执,VD1截止,承受2倍反向电压2Ui/n。电感L 再次储能。 (4)VT1,VT2都截止。 截止后变压器两端磁通均保持不变,电压均为零。储能电感L放电,VD1,VD2均正向偏执导通,也起到续流二极管的作用。电感两端电压=-Uo。 3输出电压Uo 虽然一个周期为T但是由于(2)(4)过程的存在,两个开关的导通时间都小于0.5T。 每个功率开关管的占空比为D,D=ton/T,总占空比Do=2D。 输出电压Uo=2DUi/n。 4 优点:变压器磁芯利用率高,输出功率大,纹波电压小。驱动电路简单 缺点:变压器绕组利用率低,功率开关管都要承受2倍电源电压或者更高,对器件的耐压要求更高。

甲类乙类甲乙类推挽式放大器

经常会看到XX功放是采用推挽式结构,或者说XX采用甲类放大器,效果出色什么的描述,但各位可否知道这些类型功放工作代表的意义呢?下面就简单介绍一下: 1.甲类放大: 晶体管静态工作点设置在截止区与饱和区的中分点的放大电路,叫做甲类放大电路,适合于小功率高保真放大。 甲类放大又称为A类放大,在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)。正弦信号的正负两个半周由单一功率输出原件连续放大输出的一类放大器。当输入信号较小时,在整个信号周期中,晶体管都工作于它的放大区,电流的导通角为180度,且静态工作点在负载线的中点。甲类放大器工作时会产生高热,效率很低,适用于小信号低频功率放大,但固有的优点是不存在交越失真。单端放大器都是甲类工作方式。 2.乙类放大: 晶体管静态工作点设置在截止点的放大电路,叫做乙类放大电路,适合于大功率放大。 乙类放大又称为B类放大,在信号的整个周期内(正弦波的正负两个半周),放大器的输出元件分成两组,轮流交替的出现电流截止(即停止输出)。正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。乙类功率放大其集电极电流只能在半个周期内导通,导通角为90度。乙类放大器的优点是效率高,缺点是会产生交越失真。 3.甲乙类放大:管静态工作点设置在截止区与饱和区之间,靠近截止点的放大电路,叫做甲乙类放大电路,适合于大功率高保真音频放大,推挽电路通常就是甲乙类放大电路。 甲乙类放大又称AB类放大,它界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。 4.丙类放大: 晶体管静态工作点设置在截止区内的放大电路,叫做丙类放大电路,适合于大功率射频放大。 丙类放大又称为C类放大,丙类放大器工作在开关状态,它只处理正半周信号,也就是脉动直流信号。而音频信号是正负都有的交流信号,使用丙类放大器会产生严重的失真。 5.推挽式: 由两个晶体管,共同完成的,在正半周一个推,另一个挽,在负半周,则两个晶体管互换,原来推的变成挽,原来挽的变成推。这就是推挽电路的简单表述,推挽电路多用于功率放大。 按功放输出级放大元件的数量,可以分为单端放大器和推挽放大器。 单端放大器的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。单端放大机器只能采取甲类工作状态。 推挽放大器的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好像是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。尽管甲类放大器可以采用推挽式放大,但更常见的是用推挽放大构成乙类或甲乙类放大器。

推挽式功率放大电路的设计

第一部分课程设计

桥式推挽功率放大器是一种在较低的电源电压下能得到较大输出功率的功放,它由前置放大电路、BTL功率放大电路、电源电路三部分所构成。前置放大电路采用了集成运放NE5532将小信号电压放大,使其能够驱动功率放大器;功率放大电路由倒相电路和BTL 电路两部分组成,前者负责为后者转换两个大小相等、方向相反的激励信号,后者则是在信号不失真的前提下,尽可能地放大电流,从而提高输出功率;电源电路通过降压、整流、滤波、稳压产生±12V直流电压。运用Protel软件对所设计的电路图进行建库、绘图、制板;再借助Multisim仿真软件对各个单元电路进行了性能与功能仿真,通过仿真分析验证了设计的正确性,整体电路也基本达到了设计的预期目的。 关键词:推挽功放;集成运放;前置放大;倒相

The push-pull circuit occupies an important position in the amplifier circuit and switching power supply areas. Bridge push-pull amplifier circuit is constituted by three parts of the power supply circuit, the preamplifier circuit, BTL power amplifier circuit. The preamplifier circuit uses the integrated operational amplifier NE5532 small signal voltage amplification, so that the power amplifier input sensitivity to match. The power amplifier circuit consists of two parts of the inverting circuit and BTL circuit. The former is responsible for the conversion for the latter two of equal size, in the opposite direction of the excitation signal. The latter is the signal undistorted under the premise, as far as possible to enlarge the current, increasing the output power. ± 12V DC voltage power circuit through the buck, rectifier, filter and regulator.With of Multisim simulation software on each unit circuit performance and functional simulation. Verify the correctness of the design through simulation analysis, the results are to achieve the intended purpose of the design. Then use Protel software for building a database, drawing and board schematic design. Keywords:Push-pull amplifier, Integrated operational amplifier, Preamplifier , Inverting

推挽放大电路

用两个电气参数相同,但种类(NPN或PNP,对于MOS管来说,就是N沟通,P沟道)不同的两个晶体管搭成一个乙类放大电路,每个管子的导通角度都是90度,在一个周期中,两个管子分别导通半个周期,最后在两个晶体管的连接处(一般是发射极或者源级)合成一个完整的周期信号。 推挽电路可以做到很大的功率,效率高,失真小,整体性能比较均衡,是功率放大电路中经常使用的电路样式 。 甲类功率放大电路 图5-61是常用的单管甲类功率放大电路,与小信号变压器祸合放大器相似。图中,TI 是输人变压器;R1、R2和凡可组成分压式电流负反馈偏置电路,建立和稳定晶体三极管的静态工作点;q是发射极旁路电容;C是交流通路电容;输入变压器T1次级的交流信号,通过电容器C和Q加到晶体三极管的发射结上;VT是做功率放大的晶体三极管;T2是输出变压器。 在功率放大器中,为了使负载获得尽可能大的输出功率,功率放大器与负载之间要求阻抗匹配,通常采用输出变压器作为晶体三极管与负载之间的藕合元件。在如图5-61中所示的功率放大器中,输出变压器还起隔直流的作用,可避免功放管的静态工作电流通过扬声器引起声音失真。 在制作单管功率放大器时,为使放大器能够可靠地工作,并获得尽可能大的输出功率,必须合理地选择静态工作点。此外,正确地设计输出变压器,是设计单管功率放大器的关键环节。 (2)乙类推挽功率放大电路 图5-62是变压器祸合乙类推挽功率放大电路,主要由两个特性相同的三极管VTI和VT2、一个输人变压器T1和一个输出变压器T2构成。输人变压器把前级的输出信号藕合

到VTl和VT2的基极,输出变压器将VTI和VT2的集电极输出信号祸合到负载RL上。变压器中间抽头的目的是保证电路对称和起信号倒相作用,T2还兼有负载匹配作用。 当有正弦信号u;输人时,通过输人变压器T1将使VTI和VT2的基极得到一个大小相等而极性相反的信号电压u c1和uc2o若在某一瞬间VTI次级上半绕组感应出来的电压使VTl的基极对公共端为正,则VT2的基极对公共端为负(下半绕组的作用)。于是VT1截止,vu导通。输出变压器'I Z的初级下半边绕组有集电极电流电流过,而上半边没有电流(is,二0)。同理,在u、的另一个半周,情况刚好相反。VT1导通,VT2截止,T2的初级上半边绕组有2 d流过,而下半边绕组2,z二0。这样,VTl和VT2轮流导通,£ci和£c2轮流通过孔的初级绕组,而且大小相等,相位相反。因而在T2次级将叠加出一个完整的正弦电流艺L。 在乙类放大器中,由于晶体三极管特性曲线的非线性,使得两波形连接处会有非线性失真,特别是当晶体三极管为零偏置时会出现如图5-63所示的交越失真。为了消除交越失真,给晶体三极管加上一定的偏置UBB,如图5-64所示,使z ci十iCZ的波形衔接处没有交越失真。

推挽放大器工作原理介绍

一、功率放大电流的特点 对功放电路的了解或评价,主要从输出功率、效率和失真这三方面考虑。 1、为得到需要的输出功率,电路须选集电极功耗足够大的三极管,功放管的工作电流和集电极电压也较高。电路设计使用中首先要考虑怎样充分地发挥三极管功能而又不损坏三极管。由于电路中功放管工作状态常接近极限值,所以功放电流调整和使用时要小心,不宜超限使用。 2、从能耗方面考虑,功放输出的功率最终是由电源提供的,例如收音机中功放耗电要占整机的2/3,因此要十分注意提高电路效率,即输出功率与耗电功率的比值。 3、功放电路的输入信号已经几级放大,有足够强度,这会使功放管工作点大幅度移动,所以要求功放电路有较大的动态范围。功放管的工作点选择不当,输出会有严重失真。 二、常用功率放大电路的原理 单只三极管输出的功放电路输出小、效率低,日用电器中已很少见。目前常采用的是推挽电路形式。 图1是用耦合变压器的推挽电路原理图。它的特点是三极管静态工作电流接近于零,放大器耗电及少。有信输入时,电路工作电流虽大,但大部分功率都输出到负载上,本身损耗却不大,所以电源利用率较高。这个电路中每只三极管只在信号的半个周期内导通工作,为避免失真,所以采用两只三极管协调工作的方式。图中输入变压器B1的次级有一个接地的中心抽头。在音频信号输入时,B1次级两个大小相等、极性相反的信号分别送到BG1和BG2的发射结。在输入信号的正半周时间里,BG1管因加的是反向偏压而截止,只有BG2能将信号放大,从集电极输出;而在信号负半周,BG1得到正高偏压,能将这半个周期的信号放大输出,而BG2却截止。电路中的两只三极管虽然各自放大了信号的半个同期,但它们的输出电流是分先后通过输出变压器B2的,所以在B2的次级得到的感应电流又能全成一个完整的输出信号。 这个功放电路中,为了解决阻抗匝配和信号相位等问题,输入与输出变压器是不可少的。但是,优质变压器的制作在材料和工艺上都比较困难,它本身总还要消耗一部分能量,降低电路的效率,而且变压器的频率特性不好,使电路对不同频率信号输出很不均匀,会造成失真,所以为了提高功放质量,人们更多地使用无变压器(OTL)功率放大电路。

推挽型DC变换器

电力电子技术课程设计 班级:电气 1102 学号: 姓名: 扬州大学水利与能源动力工程学院 电气工程及其自动化 二零一五年一月

目录 第一章:任务书 (3) 一、课程设计的内容 (3) 二、课程设计的目的和要求 (3) 三、仿真软件的使用 (3) 四、时间安排 (4) 五、设计总结报告主要内容 (5) 第二章:课程设计报告 (6) 一设计任务及要求 (6) 二主电路方案确定 (7) 三推挽型DC/DC变换器额定参数 (9) 四建立仿真模型并进行仿真实验 (10) 五心得体会 (13) 六参考文献 (14)

第一章:任务书 一、课程设计的内容 推挽型DC/DC变换器的设计及研究(PSPICE) 二、课程设计的目的和要求 1、进一步熟悉和掌握电力电子原器件的器件; 2、进一步熟悉和掌握电力电子电路的拓扑结构和工作原理; 3、掌握电力电子电路设计的基本方法和技术,掌握有关电路参数设计的方法; 4、培养对电力电子电路的性能分析的能力; 5、培养撰写研究设计报告的能力。 三、仿真软件的使用 在电力电子系统中,需要应用大功率开关器件,因此对工程人员来说对所设计的电路最好能通过计算机分析和仿真,不断修改和完善电路。 PSPICE是当今世界上著名的电路仿真标准工具之一,是较早出现的EDA 软件之一,1985年就由MICROSIM公司推出。现在使用较多的是PSPICE 6.2,工作于Windows环境,整个软件由原理图编辑、电路仿真、激励编辑、元器件库编辑、波形图等几个部分组成,使用时是一个整体,但各个部分各有各的窗口。新推出的版本为PSPICE 9.2,是功能强大的模拟电路和数字电路混合仿真EDA 软件。它可以进行各种各样的电路仿真、激励建立、温度与噪声分析、模拟控制、波形输出、数据输出、并在同一个窗口内同时显示模拟与数字的仿真结果。无论对哪种器件哪些电路进行仿真,包括IGBT、脉宽调制电路、模/数转换、数/模转换等,都可以得到精确的仿真结果。对于库中没有的元器件模块,还可以自已编辑。PSPICE可以对电路进行以下一些工作:

自激推挽式直流变换器的设计

自激推挽式直流变换器的设计 引言 在数模混合电路系统中,需要多个电源供电,为了减小外界供电电源的数量,实现系统供电电路的小型化。本文基于电流反馈型自激推挽电路设计出了+10V,200mA和-10V,100mA输出的电源,+10V除了给电路系统的模拟芯片供电外还要给单片及供电的电压调节芯片供电,-10V给模拟芯片供电,实现了供电系统的小型化和低成本。 1.自激推挽式直流变换器的基本原理: 自激推挽式直流变换器的基本电路如图1所示。参照图1,当接通输入直流电源Ui后,就会在分压电阻R2上产生一个电压,该电压通过功率开关变压器的Nb1和Nb2两个绕组分别加到两个功率开关V1和V1的基极上。由于电路的不完全对称性使其中的一个功率开关首先导通。假设是功率开关Np1首先导通,那么功率开关Nb2集电极的电流流过功率开关变压器初级绕组的二分之一V2,使功率开关变压器的磁芯磁化,同时使其他的绕组产生感应电动势。在基极绕组Nb2上产生的感应电动势使功率开关V2的基极处于负电位的反向偏置而维持截至状态。在另一个基极绕组Nb1上产生的感应电动势则使功率开关V1的集电极电流进一步增加,这是正反馈的过程。其最后的结果使功率开关V1很快就达到饱和导通状态,此时几乎全部的电源电压Ui都加到了功率开关变压器初级绕组的二分之一Np1上。绕组Np1中的电流以及由此引起的磁通也会线性的增加。当功率开关变压器磁芯的磁通量接近或达到磁饱和值+φS时,集电极的电流就会急剧地增加,形成一个尖峰,而磁通量的变化率接近于零,因此功率开关变压器的所有绕组上的感应电动势也接近于零。由于绕组Nb1两端的感应电动势接近于零,于是功率开关V1的基极电流减小,集电极电流开始下降,从而使所有绕组上的感应电动势反向。紧接着磁芯的磁通脱离饱和状态,促使功率开关V1很快进入截至状态,功率开关V2很快进入饱和导通状态。这时几乎全部的输入直流电压Ui又被加到功率开关变压器的另一半绕组Np2上,使功率开关变压器磁芯的磁通直线下降,很快就达到了反向的磁饱和值-φS。上述过程周而复始,就会在两个功率开关V1和V2的集电极形成方波电压。

乙类推挽功率放大器

乙类推挽功率放大器 ?选择题 ( )1.决定功率放大器效率的主要因素是___________ 。 A.电路的输入功率 B.电路的工作状态 C.电路的最大输出功率 D.功放管的消耗功率 ( )2 ?乙类推挽功率放大器设置适当的静态工作点,其目的是___________ 。 A.消除饱和失真 B.增大放大倍数 C.消除交越失真 D.改善频率特性 ( )3. 一个理想乙类功放电路的最大输出功率为10W,当输入信号为零时,每个功放管的管耗约为___________ 。 A.10W C.2W D.0W ( )4.乙类功率放大器的失真一般是___________ 。 A.饱和失真 B.截止失真 C.交越失真 D.线性失真 ( )5.甲乙类功放提供一定的偏置电流的目的是为了________________ 。 A.消除饱和失真 B.增大放大倍数 C.消除交越失真 D.改善频率特性 ( )6.变压器耦合推挽功放中的输出变压器,其作用是______________ 。 A,耦合作用 B.合成波形的作用 C.分解波形的作用 D.A和B两者兼有 ( )7.一个乙类功放的理性输出功率为4W,当输入信号为0时,则功放管的管耗为_________ 。 A.4W B.2W C.088W D.0W ( )8.低频功放之所以工作在甲乙类,除了提高效率为,还为了__________ A.克服交越失真 B.克服截止失真 C.克服饱和失真 D.克服频率失真 二.判断题 ( )1.乙类功放的效率比甲类功放的效率高。 ( )2.乙类功放的管耗会随着输出功率的增大而增大。

( )3.在甲乙类推挽功放电路中,当负载由固定负载减小时,输出功率增大。

有源钳位推挽变换器原理

有源钳位推挽变换器原理 导读:本文从原理出发分析了在推挽逆变器中两开关管漏极产生尖峰的原因,提出了改进方法,并在实际应用中得到验证是可行的,相比于传统推挽逆变器,极大地提升了了性能,提高了效率和稳定性。 一推挽逆变器的原理分析 主电路如图1所示: Q1,Q2理想的栅极(UG1,UG2)漏极(UD1,UD2)波形如图2所示: 实际输出的漏极波形:

从实际波形中可以看出,漏极波形和理想波形存在不同:在Q1,Q2两管同时截止的死区处都长了一个长长的尖峰,这个尖峰对逆变器/UPS性能的影响和开关管Q1,Q2的威胁是不言而喻的,这里就不多说了。 二Q1,Q2两管漏极产生尖峰的成因分析 从图1中可以看出,主电路功率元件是开关管Q1,Q2和变压器T1。Q1,Q2的漏极引脚到TI初级两边走线存在分布电感,T1初级存在漏感,当然T1存在漏感是主要的。考虑到漏感这个因素我们画出推挽电路主电路等效的原理图如图4所示:

从图4中可以看出L1,L2就等效于变压器初级两边的漏感,我们来分析一下Q1导通时的情形:当Q1的栅极加上足够的驱动电压后饱和导通,电池电压加到漏感L1和变压器T1初级上半部分,当然绝大部分是加到T1初级上半部分,因为L1比T1初级上半部分电感小得多。此时Q2是截止的,主电路电流方向为从电池正极到T1初级上半部分到L1到Q1的DS再回到电池的负极;L1上电压的极性为左负右正,T1初级上半部分电压的极性为上负下正,如图5所示: 当Q1栅极信号由高电平变为低电平时,此时Q2也还截止,即死区处Q1,Q2都不导通,T1初级上半部分由于和次级耦合的原因,能量仅在Q1导通时向次级传递能量,到Q1截止时T1初级上半部分上端的电位已恢复到电池电压,而L1可以看做是是一个独立的电感,它储存的能量耦合不到变压器T1的次级。但是,随着Q1由导通转向截止,L1上的电流迅速减小,大家知道电感两端的电流是不能突变的,根据自感的原理L1必然要产生很高的反向感生电动势来阻碍它电流的减小,所以此时电感电压的极性和图5相反,T1初级上半部分的电压为0,两端点的电压都等于电池电压,此时Q1漏极的电压就等于L1两端的电压和电池电压之和,这就是Q1,Q2两管漏极产生尖峰的原因,如图6所示。

晶体管放大知识(甲类、乙类、推挽式等)

放大器基础知识(甲类、乙类、甲乙类、推挽式放大器) 经常会看到XX功放是采用推挽式结构,或者说XX采用甲类放大器,效果出色什么的描述,但各位可否知道这些类型功放工作代表的意义呢?下面就简单介绍一下: 1.甲类放大: 晶体管静态工作点设置在截止区与饱和区的中分点的放大电路,叫做甲类放大电路,适合于小功率高保真放大。 甲类放大又称为A类放大,在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)。正弦信号的正负两个半周由单一功率输出原件连续放大输出的一类放大器。当输入信号较小时,在整个信号周期中,晶体管都工作于它的放大区,电流的导通角为180度,且静态工作点在负载线的中点。甲类放大器工作时会产生高热,效率很低,适用于小信号低频功率放大,但固有的优点是不存在交越失真。单端放大器都是甲类工作方式。 2.乙类放大: 晶体管静态工作点设置在截止点的放大电路,叫做乙类放大电路,适合于大功率放大。 乙类放大又称为B类放大,在信号的整个周期内(正弦波的正负两个半周),放大器的输出元件分成两组,轮流交替的出现电流截止(即停止输出)。正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。乙类功率放大其集电极电流只能在半个周期内导通,导通角为90度。乙类放大器的优点是效率高,缺点是会产生交越失真。 3.甲乙类放大:管静态工作点设置在截止区与饱和区之间,靠近截止点的放大电路,叫做甲乙类放大电路,适合于大功率高保真音频放大,推挽电路通常就是甲乙类放大电路。 甲乙类放大又称AB类放大,它界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。 4.丙类放大: 晶体管静态工作点设置在截止区内的放大电路,叫做丙类放大电路,适合于大功率射频放大。丙类放大又称为C类放大,丙类放大器工作在开关状态,它只处理正半周信号,也就是脉动直流信号。而音频信号是正负都有的交流信号,使用丙类放大器会产生严重的失真。 5.推挽式: 由两个晶体管,共同完成的,在正半周一个推,另一个挽,在负半周,则两个晶体管互换,原来推的变成挽,原来挽的变成推。这就是推挽电路的简单表述,推挽电路多用于功率放大。按功放输出级放大元件的数量,可以分为单端放大器和推挽放大器。 单端放大器的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。单端放大机器只能采取甲类工作状态。 推挽放大器的输出级有两个“臂”(两组放大元件),一个“臂”的电流增加时,另一个“臂”的电流则减小,二者的状态轮流转换。对负载而言,好像是一个“臂”在推,一个“臂”在拉,共同完成电流输出任务。尽管甲类放大器可以采用推挽式放大,但更常见的是用推挽放大构成乙类或甲乙类放大器。

推挽式变压器

推挽全桥双向直流变换器的研究 1 引言 随着环境污染的日益严重和新能源的开发,双向直流变换器得到了越来越广泛的应用,像直流不停电电源系统,航天电源系统、电动汽车等场合都应用到了双向直流变换器。越来越多的双向直流变换器拓扑也被提出,不隔离的双向直流变换器有Bi Buck/Boost、Bi Buck-Boost、Bi Cuk、 Bi Sepic-Zeta;隔离式的双向直流变换器有正激、反激、推挽和桥式等拓扑结构。不同的拓扑对应于不同的应用场合,各有其优缺点。推挽全桥双向直流变换器是由全桥拓扑加全波整流演变而来。推挽侧为电流型,输入由蓄电池供给,全桥侧为电压型,输入接在直流高压母线上。此双向直流变换器拓扑适用在电压传输比较大、传输功率较高的场合。 本文分析了推挽全桥双向直流变换器的工作原理,通过两种工作模式的分析,理论上证明了此拓扑实现能量双向流动的可行性,并对推挽侧开关管上电压尖峰形成原因进行了分析,提出了解决方法,在文章的最后给出了仿真波形和实验波形。 2工作原理 图1为推挽全桥双向DC/DC变换器原理图。图2给出了该变换器的主要波形。变换器原副边的电气隔离是通过变压器来实现的,原边为电流型推挽电路,副边为全桥电路,该变换器有两种工作模式:(1)升压模式:在这种工作模式下S1 、S2 作为开关管工作; S3,S4 ,S5 ,S6 作为同步整流管工作,整流方式为全桥整流,这种整流方式适用于输出电压比较高,输出电流比较小的场合。由于电感L 的存在 S1、S2 的占空比必须大于0.5。(2)降压模式:在这种工作模式下 S3, S4, S5,S6 作为开关管工作,S1 、S2 作为同步整流管工作,整流方式为全波整流。分析前,作出如下假设: 所有开关管、二极管均为理想器件; 所有电感、电容、变压器均为理想元件; ,; 2.1升压工作模式 在升压工作模式下,原边输入为电流型推挽电路,副边输出为全桥整流电路。S1 ,S2 作为开关管工作,S3 , S4, S5,S6 作为同步整流管工作。电感电流工作于连续模式。

B类和AB类推挽式放大器

B类和AB类推挽式放大器 发布时间:2011-12-17 9:22:41 访问次数:456 如果放大器偏压在截止区,使得在输入信号周期的前180。工作于线性区,后180。工作于截止区,则这种放大器属于B类放大器。AB类放大器的偏压则让导通角稍大于180。。B类或AB类放大器都比A类放大器更有效率,这是他们的优点;也就是说,如果输入相同的功率,可以由B类或AB类放大器取得较大的输出功率。但足B类或AB类放大器的电路,若要将输入信号线性放大,会比较困难。我们也将会学习到,为了尽量在输出端取得与输入信号波形相同的信号,推挽( push-pull)式电路是B类或AB类放大器常用的形式。 在学完本节后,我们应该能够:解释与分析B类或AB类放大器的工作原理;解释B类放大器的工作原理;参与讨论B类放大器Q点的位置;描述B类推挽式放大器的工作原理;解释交越失真及其原因;解释AB类放大器的工作原理;分析AB类推挽式放大器;计算最大输出功率;计算直流输入功率;计算B类放大器最大效率;计算输入阻抗;分析达林顿推挽式放大器;参与讨论推挽式放大器的驱动方法。 1.B类放大器工作原理 图9.6显示的是在时间轴上,B类( class B)放大器输出与输入波形的比较。 B类放大器偏压在截止点,所以ICQ=0且VcsQ=VCE(cutoff)。当输入信号使晶体管进入导通状态时,晶体管将离开截止点而工作在线性区。这种情况可以用图9.7的发射极跟随器线路加以说明,我们可以看到,输出波形与输入波形并不相同。 2.B类推挽式放大工作原理 我们已经看到,图9.7电路只在输入信号正半周导通。若要在整个周期都执行放大功能,必须加上一个在负半周导通的B类放大器。两个一起工作的B类放大器组合,称为推挽式( push-pull)操作。 有两种方式可运用推挽式放大器在输出端产生整个波形。第一种方式使用变压器耦合。第二种方式使用互补对称武晶体管( complementary symmetry transistors);也就是一对互相配对的NPNlPNP BJT,或是一对互相搭配使用的N沟道或P沟道FET。 (1)变压器耦合变压器耦合( transformer coupling)电路显示在图9.8。输入变压器的次级线圈具有中间抽头,此抽头连接到接地端,因而造成次级线圈两端互为反相。因此变压器将输入信号转换成两个相位相反的信号,再分别提供给两个晶体管。请注意,两个晶体管都属于NPN型。因为信号相位相反,Qi将会在正半周导通,Q2将会在负半周导通。虽然两个晶体管总是有一个处于截止状态,再次利用有中间抽头的初级线圈,输出变压器可以将两个晶体管的输出信号组合在一起。正电源电压连接到输出变压器初级线圈的中间抽头位置。

推挽放大电路

1 OCL电路组成 OCL电路称为无输出电容直接耦合的功放电路。如图3-13所示。图中VT1为NPN型晶体管,VT2为PNP型晶体管,当输入正弦信号ui为正半周时,VT1的发射结为正向偏置,VT2的发射结为反向偏置,于是VT1管导通,VT2管截止。此时的ic1≈ie1流过负载RL。当输入信号ui为负半周时,VT1管为反向偏置,VT2为正向偏置,VT1管截止,VT2管导通,此时有电流ic2通过负载RL。 由此可见,VT1、、VT2在输入信号的作用下交替导通,使负载上得到随输入信号变化的电流。此外电路连成射极输出器的形式,因而放大器的输入电阻高,而输出电阻很低,解决了负载电阻和放大电路输出电阻之间的配合问题。 2 OCL电路分析计算

图3-14表示OCL电路的工作情况。ui正半周时,VT1导通,则在一周期内VT1导通时间约为半周期,VT2的工作情况和VT1相似,只是ui的负半周导通。为了便于分析,将VT2的输出特性曲线倒置在VT1的输出特性曲线下方,并令二者在Q点,即uCE=UCC 处重合,形成VT1和VT2的所谓合成曲线。这时负载线通过UCC点形成一条斜线,其斜率为-1/RL。显然,允许的ic的最大变化范围为2Icm,uce的变化范围为2(UCC-UCES)=2Ucem=2IcmRL。如果忽略管子的饱和压降UCES,则Ucem=IcmRL≈UCC。根据以上分析,不难求出OCL电路的输出功率、管耗、直流电源供给的功率和效率。 3 OTL电路 OTL电路是输出通过电容C与负载RL相耦合的单电源功放电路。图3-17为OTL电路原理图,其中C为容量较大的输出耦合电容。在无输入信号时,VT1、VT2中只有很小的穿透电流通过,若两管的特性对称,则C上将被充电至电压为UCC/2。 当输入信号ui(设为正弦电压)在正半周时,VT1的发射结为正向偏置,VT2的发射结为反向偏置。VT1导通,VT2截止,UCC通过VT1对电容器C充电,负载电阻RL中的电流方向如图中实线箭头所示。当输入信号ui在负半周时,VT1的发射结为反向偏置,VT2的发射结为正向偏置。VT1截止,VT2导通。这时的电容器C起负电源的作用,通过VT2对负载电阻RL放电,负载中的电流方向如图中虚线箭头所示。这样就在负载中获得了一个随输入信号而变化的电流波形。 图3-18是一例常见的OTL电路。图中R3是晶体管VT1的集电极负载电阻。R4、VD1、VD2用来使三极管VT2、VT3建立一个偏置电压,以减小交越失真。

一种推挽式Boost DCDC变换器的研究

一种推挽式Boost DCDC变换器的研究 摘要:随着电力电子技术的迅速发展,双向DC/DC变换器的应用日益广泛。文章提出在双向DC/DC变换器中用到的一种推挽式Boost DC/DC变换器,全面分析这种变换器的工作原理并阐述其缺点,利用PSPICE仿真软件对其进行建模仿真。 0 引言电力电子技术是研究电能变换原理与变换装置的综合性学科,是电力行业中广泛运用的电子技术。电力电子技术研究的内容非常广泛,包括电力半导体器件、磁性元件、电力电子电路、集成控制电路以及由上述元件、电路组成的电力变换装置,其中电力变换技术是开关电源的基础和核心。由于生产技术的不断发展,双向DC/DC变换器的应用也越来越广泛,主要有直流不停电电源系统(DC-UPS)、航空电源系统、电动汽车等车载电源系统、直流功率放大器以及蓄电池储能等应用场合。而双向DC/DC变换器中,升压变换和降压变换是双向DC/DC变换器中两个组成部分,在DC/DC升压式电路中,通常采用的拓扑结构有Boost、Buck、Boost和推挽三种。而当输入电压比较低,功率不太大的情况下,一般优先采用推挽结构。本文着重介绍一种推挽式Boost DC/DC变换器,对其工作原理进行分析并对这种变换器进行建模及仿真。 1 推挽式Boost DC/DC变换电路工作原理推挽式Boost DC/DC变换器的拓扑结构,如图1所示,前面一级升压电路可以看作是一个Boost升压电路,通过调整开关管S1的占空比来调节变压器原边输入电压;后面一级升压电路是一个推挽式变换电路,也可以看作是由两个正激式变换器组合来实现的,该变换器是由一个具有中心抽头的变压器和两只开关管S2、S3构成的。这两个正激式变换器在工作过程中相位相反,在一个完整的周期中交替把能量传递给负载,所以称为推挽式变换。图1 推挽式Boost DC/DC变换器功率开关管S1、S2、S3的发射极直接连接在电源负极,因此该变换器的驱动电路继承了一般推挽式变换电路的优点:基极驱动十分方便、简单,不需要进行电气隔离就可以直接驱动。该拓扑结构具有结构紧凑、驱动电路简单以及升压效果明显等优点。升压变换时其具体的工作过程如图2所示,高压侧开关管的驱动信号被封锁。功率开关管S1和升压电感L1构成的Boost电路将电源电压初次升高到一定的电压值;S2和S3驱动信号的占空比均为50%,构成的推挽变换电路将升高后的直流电压变换成交流电压,通过高频变压器传送到副边,并将电压进一步升高,利用反向电路中的开关管的反并二极管进行整流。在任一时刻,电流仅仅流过一个开关器件,这大大降低了变换器的通态损耗,同时提高了变换器的效率、缩小了变换器的体积。开关管S1、S2、S3的驱动信号,以及开关管所承受的电压波形、电感L1中的电流波形,如图2所示。图2 升压变换时开关管上的电压、电感中的电流和变压器副边电压波形在分析之前,假设所有的开关器件和整流二极管器件均为理想器件,变压器为理想变压器,电感L1足够大,能够保证流过它的电流的连续性。其中电容C2是为了防止电流偏磁的。各开关状态如下:(1)t0~t1阶段 t0时

相关文档
最新文档