钢筋混凝土结构阻尼比研究

钢筋混凝土结构阻尼比研究
钢筋混凝土结构阻尼比研究

钢筋混凝土结构阻尼比研究

阻尼器在框架结构中的优化布置分析

龙源期刊网 https://www.360docs.net/doc/e111096295.html, 阻尼器在框架结构中的优化布置分析 作者:田子波刘向军 来源:《建筑与装饰》2018年第02期 摘要针对地震作用对高层建筑的影响较大,提出在框架结构中布置阻尼器以减少地震作用对建筑物的损害。以建筑设计的某工程案例为实际应用,对安装在框架结构中不同位置的阻尼器,通过PKPM软件输入不同类型的地震动,对比阻尼器安装在框架结构中的不同布置方 式的数据(周期、位移等)进行计算分析,得出阻尼器优化布置方式。结果表明:在结构中布置阻尼器的楼层,其层间位移和位移角显著减小,而未布置阻尼器的结构楼层,其层间位移角则相对比较大;其中逐层布置阻尼器的结构模型相比于只在底部布置阻尼器的结构,其层间位移角整体相对较小。 关键字阻尼器;层间位移;地震周期;优化布置;时程分析 在地震发生时,地震产生的地震能量会源源不断地向建筑物传输能量,当建筑结构接受了大量的地震能量,必然要通过能量的相互转换才能将能量传输出去结束振动。传统的抗震体系就是增强建筑结构自身的抗震性能来抵抗地震对建筑物产生的影响。即增强结构构件的承载能力,在结构构件破坏过程中消耗地震能量。然而这种方式需要建筑结构产生塑性变形来消耗地震能量,建筑物会产生不同程度的破坏,由于地震的不可预测性和不可控制性,对建筑物的破坏程度也不同,当发生较强的地震时,建筑物产生较大程度的破坏,对人民的生命和财产产生较大的危害。 为了克服传统抗震体系存在的不足,在建筑过程中结构消能体系逐渐发展起来,结构消能减震体系就是通过将结构构件的设计成消能杆件或者在建筑结构中加设消能装置。当发生地震时,消能构件或者消能装置会率先进入非弹性状态,产生较大的阻尼,消耗建筑结构输入的大量地震能量,减少地震能量对建筑物自身的破坏,确保建筑物在地震中的安全。 本文基于减隔震体系理论,对阻尼器布置在不同的位置进行弹塑性动力时程分析,并从结构的层间位移、层间剪力、地震周期等进行分析计算,综合评价了阻尼器对框架结构动力特性的影响[1]。 1 建筑消能减震技术原理 结构中设置阻尼器的振动方程: 等式中的每一项均是影响抗震设计的一个内容,也对应着我们进行抗震设计时的一种手段。其中:M为结构质量;C结构阻尼;K结构刚度;为外部输入的地震振动。以上四个变量是影响结构地震响应的主要参数,从上式可以清晰地看出,常规抗震设计中,一般是从调节结构刚度入手。而使用消能减震技术,可以同时改变结构的刚度和阻尼,而阻尼的增加带来地震

阻尼综述——阻尼模型、阻尼机理、阻尼分类和结构阻尼建模方法

阻尼 1 引言 静止的结构,一旦从外界获得足够的能量(主要是动能),就要产生振动。在振动过程中,若再无外界能量输入,结构的能量将不断消失,形成振动衰减现象。振动时,使结构的能量散失的因素的因素称为结构的阻尼因素。 索罗金在其论著中将结构振动时的阻尼因素概括为几种类型,即界介质的阻尼力;材料介质变形而产生的内摩擦力;各构件连接处的摩擦及通过地基散失的能量。百多年来,不同领域的专家,均根据自身研究的需要,着重研究某种阻尼因素,如外阻尼、摩擦阻尼、材料阻尼及辐射阻尼等。 对于材料阻尼的物理机制,文献[82]、[126]、[127]等分别做了简要描述。 材料阻尼是一个机制比较复杂的物理量,由多种基本的物理机制组合而成。如金属材料中的热弹性、晶体的粘弹性、松弛效应、旋转流效应、电子效应等对阻尼均有贡献。对一般的非金属材料(如玻璃、各种聚合物等),电子效应对能量的损失影响较小。温度、绝热系数等也是影响阻尼的重要因素。一般来说,非金属材料的能量损失比金属大。此外地质岩石由不同种固体微粒组成,且有空隙体积,因此,其阻尼特性与一般材料不同。岩石中能量损失主要由三个物理机制构成:岩石内部微粒间的粘性=岩石的内摩擦及较大的塑性变形,而岩石的内摩擦与岩石内部微粒间接触处的位错及塑性变形有关。 如献[82]所述, 为了计算、分析结构在外界载荷作用下产生的反应,人们建立了描述固体材料应力应变关系的物理模型。最简单的物理模型是单参数模型,即材料只产生弹性应力或只产生粘滞应力,但这两种模型不能代表材料中真实存在的粘弹性。人们又建立了双参数线性模型,即Maxwell及Kelvin模型。其中Maxwell模型由线性粘滞体和线弹性体串联而成,Kelvin模型是此二者并联而成的。若设线粘滞体的应变为

公司生产车间布局优化实施方案

公司生产资源配置调整方案 随着公司两大战略的实施,公司的装备、产品的质量与车间的布局,已远远满足不了公司发展的需要,为改变现状,经公司研究决定:购置生产装备、调整现有的生产布局。 布局调整后,新的人力资源整合如下: 胶业公司更名为胶业营销公司,营销总经理:李永亭 分厂厂长:唐正茂 副厂长兼生产部部长:史胜武 橡胶生产车间主任:王振华 为保证上述任务顺利及时完成,特成立领导小组,具体组成如下: 组长:张总(张云龙) 副组长:韩总(韩卿旺) 组员:唐正茂、刘洪强、张永杰、徐明文、赵雷、张仁君、史胜武 具体方案为: .购置生产装备,具体明细见下表: .生产布局调整, 分厂西侧两跨车间为铆焊装配车间,北侧南跨车间为原材料存放、下料区域,北侧北跨车间为机加工车间。现胶业公司轨道西侧整体搬迁到分厂; 对湿法橡胶车间加东西隔断,电力车间整体搬迁至隔断北侧; 木工房周边的设备搬迁到现胶业车间北侧指定区域; 胶业车间腾出的区域: 南侧自东到西依次为型材及下料区; 中间自东到西依次为板材及下料区;

北侧自东到西依次为机加工半成品库、小件发货区; 老药厂折掉,改造为喷砂、喷漆车间; 装配车间与胶业车间中间的露天场地现有材料及设备分类整理清空转运至分厂后,安装大型起重设备(原起重设备保留); 轨道以东,存放大型管材型材,轨道以西,为成品存放区; 出厂时需要安装的衬板存放在原地,出厂时不需要装的衬板,存放在分厂; 现车间内物流办公室腾出给仓库做办公室,物流办公室搬迁至木工房小房间内; 现有的机加工车间主通道以西为大型铸件毛坯、半成品及成品存放区; 六米五立车对面(通道以东)安装大型卷板机; 筒体机床东面,安装自动焊机,原有的自动焊机调整至分厂; .负责人、具体负责内容及时限要求见下表:

几种阻尼比识别的方法1

几种参数识别的方法 A 基于时域的参数识别方法推导 A1 Ibrahim 时域方法 Irrahim 时域识别方法是需要测量自由响应信号或者脉冲信号。系统为二阶线性系统,被测自由响应信号为x(t),二阶线性系统为复指数之和。 )()(~)(t n t p t x +?ψ= (A-1) []***ψψψψψψ=ψN N ,,,,,,,2121 (A-2) {} t t t t t t N N e e e e e e t p ***=λλλλλλ,,,,,,,)(~2121 (A-3) 其中n(t)为输出噪音信号,N 是振动模态数,它由被测的二阶系统和通过模拟低通滤波截断频率所共同决定,Ψi 和λi 为二阶系统的本征矢量和特征值,m 为测量点数,其中m=1。 通常认为m 等于N ,N 为振动模态数量,为求出)(~ t p ,它为2N*1矩阵,必须在时域上扩展响应信号矢量,例如,在t+T3时刻,响应信号可表示为: )()(~),()(333131t n t p e e diag T t x T T +??ψ=+??*λλ (A-4) 其中n3(t )为在t+T3时刻的噪音矢量,联合公式1和4可得出: )()(~~)(t N t p t u +?ψ= (A-5) 其中: ???? ??+=)()()(3T t x t x t u (A-6) ?? ?????ψψ=ψ??*),(~3131T T e e diag λλ (A-7) 或者, [] ***ψψψψψψ=ψN N ~,,~,~,~,,~,~~2121 ? ?????=)()()(3t n t n t N (A-8) 同样的,可以很容易地得出以下公式: )()(~),(~)(113131t N t p e e diag T t u T T +??ψ=+λλ (A-9) 看公式5,假设复指数是线性独立的,我们可以得到: )(~)(~)(~11t N t u t p ?ψ-?ψ=-- (A-10) 将公式10代到9中,我么和可以得到: )()(~),(~)(~),(~)(111131313131t N t N e e diag t u e e diag T t u T T T T +?ψ??ψ-?ψ??ψ=+-??-??**λλλλ

弹簧-质量-阻尼模型

弹簧-质量-阻尼模型

弹簧-质量-阻尼系统 1 研究背景及意义 弹簧-质量-阻尼系统是一种比较普遍的机械振动系统,研究这种系统对于我们的生活与科技也是具有意义的,生活中也随处可见这种系统,例如汽车缓冲器就是一种可以耗减运动能量的装置,是保证驾驶员行车安全的必备装置,再者在建筑抗震加固措施中引入阻尼器,改变结构的自振特性,增加结构阻尼,吸收地震能量,降低地震作用对建筑物的影响。因此研究弹簧-质量-阻尼结构是很具有现实意义。 2 弹簧-质量-阻尼模型的建立 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型, 不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图2.1所示,

图2.1 弹簧-质量-阻尼系统简图 其中1 m ,2 m 表示小车的质量,i c 表示缓冲器的粘滞摩擦系数,i k 表示弹簧的弹性系数,i F (t )表示小车所受的外力,是系统的输入即i U (t )=i F (t ),i X (t)表示小车的位移,是系统的输出,即i Y (t )=i X (t),i=1,2。设缓冲器的摩擦力与活塞的速度成正比,其中1m =1kg ,2 m =2kg ,1k =3k =100N/cm ,2k =300N/cm ,1c =3 c =3N ?s/cm ,2 c =6N ?s/cm 。 由图 2.1,根据牛顿第二定律,,建立系统的动力学模型如下: 对1 m 有: (2-1) 对2 m 有: (2-2) 3 建立状态空间表达式 令3 1421122 ,,,x x x x u F u F ====,则原式可化为:

公司生产车间工艺布局优化方案

【最新资料,Word版,可自由编辑!】

目录 摘要............................................................................................................................... Abstract ........................................................................................................................... 第一章绪论................................................................................................................... 1.1 研究的背景及意义.................................................................................................. 1.2国内外研究综述...................................................................................................... 1.2.1 国外研究现状....................................................................................................... 1.2.2 国内研究现状....................................................................................................... 1.3 研究内容及研究思路.............................................................................................. 1.4文章拟创新点.......................................................................................................... 第二章相关理论概述................................................................................................... 2.1 生产物流及优化...................................................................................................... 2.1.1 生产物流的概念................................................................................................... 2.1.2 生产物流的基本特征........................................................................................... 2.1.3 影响生产物流的主要因素................................................................................... 2.2 生产车间工艺布局的内容及要求.......................................................................... 2.2.1 生产车间工艺布局的内容................................................................................... 2.2.2 车间设备配置的要求........................................................................................... 2.2.3 生产现场管理的要求........................................................................................... 2.2.4 生产日常管理的要求........................................................................................... 第三章 XX公司生产车间工艺布局现状分析.............................................................. 3.1 XX公司车间简介 .................................................................................................... 3.2 XX公司车间制造流程 ............................................................................................ 3.3 XX公司车间生产工艺布局存在的问题及原因 .................................................... 第四章 XX公司生产车间工艺布局优化研究.............................................................. 4.1 车间工艺布局总体要求.......................................................................................... 4.2 车间生产流程优化研究.......................................................................................... 4.3 车间上设施布局优化研究...................................................................................... 4.4 车间搬运系统优化研究..........................................................................................

钢筋混凝土结构期末复习重点

徐变:在长期荷载作用下,混凝土的变形随时间而增加,亦即在应力不变的情况下,混凝土的应变随时间继续增长,这种现象称为混凝土的徐变。 收缩:在混凝土凝结和硬化的物理化学过程中体积随时间的推移而减小的现象称为收缩。 松弛:钢筋受力后长度保持不变,钢材的应力随时间增长而降低的现象称为松弛。 立方体抗压强度标准值(f cu,k);柱体混凝土抗压强度标准值(f ck);混凝土抗拉强度标准值(f tk)。规定以每边边长为150mm的立方体为标准试件,在20℃±2℃的温度和相对湿度为95%以上的潮湿空气中养护28d,依照标准制作方法和试验方法测得的抗压强度值(以MPa为单位)作为混凝土的立方体抗压强度。 结构的可靠性:结构的安全性、适用性和耐久性这三者总称为结构的可靠性。 结构的可靠度的是指结构在规定时间内,在规定的条件下,完成预定功能的概率。 极限状态:当整体结构或结构的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态为该功能的极限状态。 混凝土结构的耐久性:是指结构对气候作用、化学侵蚀、物理作用或任何其他破坏过程的抵抗能力。 最小配筋率是少筋梁与适筋梁的界限。最大配筋率是适筋梁与超筋梁的界限配筋率。 界限破坏:当钢筋混凝土梁的受拉区钢筋达到屈服应变εy而开始屈服时,受压区混凝土边缘也同时达到其极限压应变εcu而破坏,此时被称为界限破坏。 张拉控制应力是指预应力钢筋锚固前张拉钢筋的千斤顶所显示的总拉力除以预应力钢筋截面积所求得的钢筋应力值。 预应力度:为由预加应力大小确定的消压弯矩Mo与外荷载产生的弯矩Ms的比值。 预应力混凝土:就是事先人为地在混凝土或钢筋混凝土中引入内部应力,且其数值和分布恰好能将使用荷载产生的应力抵消到一个合适程度的配筋混凝土。作用:使构件不致开裂或推迟开裂或减小裂缝开展的宽度。 换算截面:将整个截面换算为单一材料组成的混凝土截面(或钢截面),通常将这种换算后的截面称为换算截面。 纵向弯曲系数:把长柱失稳破坏时的临界压力与短柱压坏时的轴心压力的比值,叫纵向弯曲系数。 疲劳强度:对于桥梁结构,通常要求能承受200万次以上的反复荷载并不得产生破坏,以此作为混凝土疲劳强度的f f c标准,一般取f f c≈0.5f c。 作用的代表值是指结构或结构构件设计时,针对不同设计目的所采用的各种作用规定值,包括标准值、准永久值、频遇值。 作用是指使结构产生内力、变形、应力和应变的所用原因,它分为直接作用和间接作用。 公路桥涵结构上的作用分类:永久作用、可变作用、偶然作用。永久作用:在设计使用期内,其量值不随时间变化,或其变化与平均值相比可忽略不计的作用。 全梁承载力校核根据:弯矩包络图、承载能力图。 裂缝的种类分为:正常裂缝或荷载裂缝、非正常裂缝或非荷载裂缝。 锚具的分类:依靠摩阻力锚固的锚具、依靠承压锚固的锚具、依靠黏结力锚固的锚具。 混凝土的变形分为两类:一类是在荷载作用下的受力变形(单调短期荷载作用、重复荷载作用变形、长期荷载作用变形);另一类是不受力变形。 结构的功能:安全性、适用性、耐久性.。 极限状态分为:承载能力极限状态、正常使用极限状态。 加筋混凝土结构的分类按照预应力度分为:全预应力混凝土结构、部分预应力混凝土结构和钢筋混凝土结构等三种结构。 超筋截面应采取的措施:提高混凝土级别;修改截面尺寸;改用双筋截面等措施重新设计。 钢筋混凝土受弯构件正截面的工作分为:整体工作阶段、带裂缝工作阶段和破坏阶段三个阶段。 钢筋按加工方法分为:热轧钢筋、精轧螺纹钢筋、碳素钢丝。 钢筋的强度与变形:钢筋的拉伸应力应变曲线分为有明显流幅的和没有明显流幅的。 钢筋混凝土轴心受压构件按照箍筋的功能和配置方式的不同可分为两种:1)配有纵向钢筋和普通箍筋的轴心受压构件(普通箍筋柱)。2)配有纵向钢筋和螺旋箍筋的轴心受压构件(螺旋箍筋柱)。 普通箍筋柱设置纵向钢筋的目的:(1) 协助混凝土承受压力,可减少构件截面尺寸;(2) 承受可能存在的不大的弯矩;(3) 防止构件的突然脆性破坏. 钢筋混凝土受弯构件正截面破坏形态有哪些?有何特征?(1)适筋梁破坏——塑性破坏。特点是当荷载增加到一定程度后,受拉钢筋首先屈服,然后受压混凝土被压碎,属塑性破坏。(2)超筋梁破坏——脆性破坏。特点是裂缝一旦出现,即很快形成临界斜裂缝,并迅速延伸至梁顶,使混凝土裂通,梁被拉断而破坏,属脆性破坏。(3)少筋梁破坏——脆性破坏。特点是随着荷载的增加,受压混凝土首先被压碎,受拉钢筋未屈服,属脆性破坏。 钢筋和混凝土能够有效的结合在一起共同工作的主要是由于:(1)混凝土和钢筋之间有着良好的黏结力,使钢筋和混凝土能可靠的结合成一个整体,在荷载作用下能够很好的共同变形,完成其结构功能。(2)钢筋和混凝土的温度线膨胀系数也较为接近,因此当温度变化时不致产生较大的温度应力而破坏两者之间的黏结。(3)混凝土包围在钢筋的外围,起着保护钢筋免遭锈蚀的作用,保证了钢筋与混凝土的共同作用。 钢筋混凝土受弯构件斜截面的破坏形态有哪些?有何特征?(1)剪压破坏;特点是:当荷载增加到一定程度后,构件上先出现的垂直裂缝和细微的倾斜裂缝,发展形成一根主要的斜裂缝,称为“临界斜裂缝”,属塑性破坏。条件:多见于剪跨比为1≤m≤3的情况下。措施:按计算配腹筋。(2)斜拉破坏:特点是:斜裂缝一出现,即很快形成临界斜裂缝,并迅速延伸到集中荷载作用点处,使混凝土裂开,梁斜向倍拉断而破坏,属脆性破坏。条件:这种破坏发生在剪跨比较大(m>3)时。措施:控制腹筋最少用量。(3)斜压破坏;特点是:随着荷载的增加,梁腹被一系列平行的斜裂缝分割成许多倾斜的受压柱体,这些柱体最后在弯矩和剪力的复合作用下被压碎,属脆性破坏。条件:剪跨比较小(m<1)时。措施:控制最小截面。钢筋混凝土适筋梁正截面受力全过程可划分为几个阶 段?每个阶段受力主要特点是什么?答:钢筋混凝土 适筋梁正截面受力全过程可划分为三个阶段:(1.)第Ⅰ 阶段:整体工作阶段:梁混凝土全截面工作,混凝土 的压应力和拉应力都基本呈三角形分布。纵向钢筋承 受拉应力。混凝土处于弹性工作阶段,即应力与应变 成正比。第Ⅰ阶段末:混凝土的压应力基本上仍是三 角形分布。受拉边缘混凝土的拉应变临近抗拉极限应 变,拉应力达到混凝土抗拉强度,表示裂缝即将出现。 (2)第Ⅱ阶段:荷载作用弯矩达到开裂弯矩后,在梁 混凝土抗拉强度最弱截面上出现了第一条裂缝。这时 在有裂缝的截面上,拉区混凝土退出工作,把它原承 担的拉力转给了钢筋,发生了明显的应力重分布。钢 筋的拉应力随荷载的增加而增加;混凝土的压应力不 再是三角形分布,而形成微曲的曲线形,中性轴位置 向上升高。第Ⅱ阶段末:钢筋拉应变达到屈服时的应 变值,钢筋屈服。(3)第Ⅲ阶段:钢筋的拉应变增加 很快,但钢筋的拉应力一般仍维持在屈服强度不变。 这时,裂缝急剧开展,中性轴继续上升,混凝土受压 区不断缩小,压应力也不断增大,压应力图成为明显 的丰满曲线形。第Ⅲ阶段末:压区混凝土的抗压强度 耗尽,在临近裂缝两侧的一定区域内,压区混凝土出 现纵向水平裂缝,随即混凝土被压碎,梁截面破坏。 短柱的破坏是一种材料破坏,即混凝土压碎破坏。长 柱的破坏来得比较突然,导致失稳破坏。 影响受弯构件斜截面抗剪能力的主要因素:剪跨比、 混凝土抗压强度、纵向钢筋配筋率、配筋率和箍筋强 度。 钢筋混凝土受弯构件正截面承载力计算的基本假定有 哪些?答:受弯构件正截面承载力计算的基本假定有: (1)构件变形符合平截面假定(2)不考虑混凝土的 抗拉强度(3)材料应力-应变物理关系①混凝土的应 力-应变曲线,采用的是由一条二次抛物线及水平线组 成的曲线②钢筋的应力-应变曲线采用简化的理想弹 塑性应力-应变关系;(4)混凝土压应力的分布图形取 等效矩形应力图。 矩形截面偏心受压构件正截面强度计算的基本假定是 什么?(1)截面应变分布符合平截面假定(2)不考 虑混凝土抗拉强度(3)受压区混凝土的极限压应变, 强度等级C50及以下时取εcu=0.0033,C80时取0.003, 中间按内插法确定(4)混凝土压应力图形为矩形,应 力集度为f cd,矩形应力图高度x=βx0,受压较大的钢 筋应力取f’sd.(5)受拉边的钢筋应力。 正截面强度计算的基本假定?(1)截面应变分布符合 平截面假定(2)不考虑混凝土的抗拉强度(3)受压 区混凝土的极限压应变,强度等级C50及以下时取ε cu =0.0033,C80时取0.003,中间按内插法确定(4) 混凝土压应力图形为矩形,应力集度为fcd,矩形应力 图高度X=βX0(5)钢筋的应力视为理想的弹塑性体, 各根钢筋的应力根据应变确定。 斜截面抗剪承载力验算的截面位置的确定:(1)距支座 中心h/2处的截面(2)受拉区弯起钢筋起点处的截面, 以及锚于受拉区的纵向主筋开始不受力处的截面(3) 箍筋数量或间距改变处的截面(4)受弯构件腹板宽度 改变处的截面。 影响裂缝宽度的因素有哪些?(1)受拉钢筋应力:在 使用荷载作用下的受拉钢筋应力与最大裂缝宽度为线 性关系。(2)受拉钢筋直径:裂缝宽度随直径而变化, 最大裂缝宽度与直径近似于线性关系。(3)受拉钢筋 配筋率:裂缝宽度随受拉钢筋配筋率增加而减小,当 配筋率接近某一数值时,裂缝宽度接近不变。(4)混 凝土保护层厚度:保护层越厚,裂缝间距越大也越宽, 有害物质也越难入侵,钢筋越不容易被锈蚀。(5)受 拉钢筋粘结特征:钢筋与混凝土间的粘结力对裂缝开 展存在一定的影响。(6)长期或重复荷载的影响:构 件的平均及最大裂缝宽度随荷载作用时间的延续,以 逐渐减低的比率增加。(7)构件形状的影响:具有腹 板的受弯构件抗裂性能比板式受弯构件稍好。 试述钢筋混凝土梁内钢筋的种类、作用。答:(1) 纵向受力钢筋:承受拉力或压力;(2)箍筋:箍筋除 了帮助混凝土抗剪外,在构造上起着固定纵向钢筋位 置的作用,并与纵向钢筋、架立钢筋等组成钢筋骨架。 (3)弯起钢筋:抗剪;(4)架立钢筋:架立箍筋、固 定箍筋的位置,形成钢筋骨架。(5)水平纵向钢筋: 水平纵向钢筋的作用主要是在梁侧面发生裂缝后,减 小混凝土裂缝宽度。 简述钢筋预应力损失的估算?答:1)预应力筋与管道 壁间摩擦引起的应力损失(σl1)2)锚具变形、钢筋 回缩和接缝压缩引起的应力损失(σl2)3)钢筋与台 座间的温差引起的应力损失(σl3)4)混凝土弹性压 缩引起的应力损失(σl4)5)钢筋松弛引起的应力损 失(σl5)6)混凝土收缩和徐变引起的应力损失(σ l6)。先张法:23456 后张法:12456. 什么是先张法、后张法?简述其施工方法及主要设 备?(1)先张法,即先张拉钢筋,后浇筑构件混凝土 的方法。先在张拉台座上,按设计规定的拉力张拉预 应力钢筋,并进行临时锚固,再浇筑构建混凝土,待 混凝土达到要求强度后,放张,让预应力钢筋的回缩, 通过预应力钢筋与混凝土间的粘结作用,传递给混凝 土,使混凝土获得预应压力。(主要设备:张拉台座、 张拉千斤顶、临时锚具)。(2)后张法是先浇筑构件 混凝土,待混凝土结硬后,再张拉预应力钢筋并锚固 的方法。先浇筑构件混凝土,并在其中预留孔道,待 混凝土达到要求强度后,将预应力钢筋穿入预留的孔 道内,将千斤顶支承于混凝土构件端部,张拉预应力 钢筋,使构件也同时受到反力压缩。待张拉到控制拉 力后,即用特制的锚具将预应力钢筋锚固于混凝土构 件上,使混凝土获得并保持其预压应力。最后,在预 留孔道内压注水泥浆,以保护预应力钢筋不致锈蚀, 并使预应力钢筋与混凝土粘结成为整体。(主要设备: 制孔器、穿束机、千斤顶、锚具、压浆机)。后张法是 靠工作锚具来传递和保持预加应力的;先张法是靠粘 结力来传递并保持预加应力的。 结构的功能:所有工程结构在设计时,必须符合安全可 靠、适用耐久、经济合理的要求。 (1)安全性。在规定期限和正常状况下,结构能承受 可能出现的各种作用,在偶然事件发生时,结构发生 局部损坏但不至于整体破坏和连续倒塌,仍能整体稳 定。(2)适用性。在正常使用下,结构具有良好的工 作性能,结构不发生过大的变形或震动。(3)耐久性。 在正常维护状况下,材料性能随时间变化,但结构仍 能满足预订的功能要求。构件不出现过大的裂缝,在 生物和化学作用下,不导致失效。 混凝土加钢筋后结构性能变化:1.大大提高机构的承 载力2.结构的受力性显著改善 钢筋混凝土结合工作原因:1.钢筋和混凝土存在良好 的粘结力,荷载作用下,可以保证两种材料协调变形, 共同受力2.具有相同温度线膨胀系数,不会发生过大 的变形而导致两者间的粘黏性破坏 钢筋混凝土优点: 1承耐能力能力相对较高。省钢材 2.耐久性好,耐火 3.可模型好,便与结构形式的实现 4.整体性好,刚度大 5.就地性好经济性好 缺点:自重大,抗裂性差,施工工期长,工艺复杂, 受环境限制

最新弹簧阻尼系统动力学模型adams仿真资料

震源车系统动力学模型分析报告 一、项目要求 1)独立完成1个应用Adams软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。 2)上交分析报告和Adams的命令文件,命令文件要求清楚、简洁。 二、建立模型 1)启动admas,新建模型,设置工作环境。 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View 菜单栏中, 选择设置(Setting)下拉菜单中的工作网格(Working Grid)命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X和Y分别设置成750mm和500mm,间距(Spacing)中的X和Y都设置成50mm。然后点击“OK”确定。如图2-1所表示。 图2-1 设置工作网格对话框

2)在ADAMS/View零件库中选择矩形图标,参数选择为“on Ground”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。以同样的方法,选择参数“New Part”建立part-2、part-3、part-4,得到图形如2-3所示, 图2-2 图2-3创建模型平台 3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4 图2-4 创建弹簧阻尼器 4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。

图2-5 添加约束 至此模型创建完成 三、模型仿真 1)、在无阻尼状态下,系统仅受重力作用自由振动,将最下层弹簧的刚度系数K设置为10,上层两个弹簧刚度系数均设置为3,小物块的支撑弹簧的刚度 系数为4,阻尼均为0,进行仿真,点击图标,设置End Time为5.0,Step Size为0.01,Steps为50,点击图标,开始仿真对所得数据进行分析。 选择物块的位移、速度、加速度与时间的图像如图3-1、3-2、3-3所示,经过傅里叶变换之后我们可以清楚地看到系统的各阶固有频率。

公司生产车间布局优化实施方案

公司生产车间布局优化实施方案 优化区域平面示意图(现在实际布局) 运 输 轨 道

优化区域平面示意图(计划布局) 运 输 轨 道

公司装配车间剪板、下料区域小、存放的原材料多且下好的料无固定的存放区域,严重制约了车间的正常生产进度。另外公司为提高产品外观质量,计划新增起重设备、喷砂、喷漆设备。因此公司计划对剪板、下料区域进行整改、优化,并对新增的超重设备、喷砂、喷漆设备选择新的安装区域,特实施本方案。方案实施范围: 1.公司分厂西面南北向车间整理,设备搬出本车间,以备胶业公司搬迁到此车间; 2.胶业公司机加工车间、装配铆焊车间及与两个车间相关的仓库物资搬迁到公司分厂; 3.电力车间搬迁到运输轨道以东的区域并用隔断加以与橡胶车间区分。公司原材料、下好的材料及装配车间剪板、下料两道工序(含现有的设备及即将增加的设备)迁到胶业公司腾出的区域; 4.电力车间内部木工房及部分仓储物资搬迁清理; 5.装配车间与胶业车间之间的区域,对现存放大量原材料进行分类整理,存放到胶业公司腾出的区域(与剪板、下料工序分区域放置); 6.仓库办公区域及以西的房屋折掉; 7.装配车间与胶业车间之间的区域,起重设备/喷砂、喷漆设备安装在此区域。

生产车间平面示意图第一页(现在实际)、第二页(计划优化)。 为了使本方案顺利时行,及时优质高效的完成,公司特成立方案实施小组。具体人员组成如下: 方案实施组长:张总(张云龙) 方案实施副组长:韩总(韩卿旺) 方案实施组成员:唐正茂、刘洪强、王海、张永杰、宋书明、徐明文、 姜明喜、张仁君、史胜武、闫晓东、董文江、宫旭 具体实施内容、负责人、日程安排如下:

几种阻尼比识别的方法

几种参数识别的方法 B .基于多输出时域识别方法 B1 随机衰减 随机衰减方法是一种非常典型的当输入未知识别模态参数方法。由于识别结果,这种方法实际上是一种无参数识别方法,即随机衰减符号差,是对特定的初始条件的自由衰减响应。得到的随机衰减图形可以用来识别系统模态参数。去相关是这一方法的基本理论,一个简单的导数如下: 对于一个单输入单输出的线性系统,任何力输入的系统响应可以这么解释 ??-+?+?=t d f t h t V x t D x t x 0 )()()()0()()0()(τττ (B-1) 其中D(t)是对单位初始位移的响应,V (t )是对单位初始电压的响应,h (t )是脉冲响 应,f (t )是外部输入的力,假设外部输入力f (t )是一个定常的零均值的随机过程,可以证实x (t )也是一个定常的零均值过程,也证明了x (t )的初始条件为0,考虑到系统响应x(t-t i )中的x(t i )要满足以下条件: +-≤≤A t x A i )( (B-2) 由于系统假设是线性的,整个系统的响应包含了3部分: 1. x(t i )的系统响应 2. )(i t x 的系统响应 3.f (t )的系统响应,其中f (t )假设是随机的并且是定常的,即: ??-+-?+-?=-t t i i i i i i d f t h t t V t x t t D t x t t x τττ)()()()()()()( (B-3) 假设X 是x(t-t i )的随机过程,F 是f(t-t i )的随机过程, x (t )的平均值为: [][] τ ττd F E t h A x A x E A x A x E t X E t ??-+≤≤+≤≤=?+-+-0)]([)()0(|)0()0(|)0()]([ (B-4) 由于x (t )是一个平均值为0的定常随机过程,)(i t x 也是一个平均值为0的定常随机系统并且与x (t )是独立的,因此: 0]|)0([)]0([=≤≤=+-A x A x E x E (B-5) 假设 -+-≥≤≤=A A t x A x E A ])(|)0([ (B-6) 且 τττd F E t h t b t ??-=?0 )]([)()( (B-7) X (t )的期望值为: )()()]([t b t D A t x E +?= (B-8) 如果f (t )是零均值、定常、白噪声随机过程,它与x (t )是相互独立的,因此输入的

弹簧质量阻尼系统模型

自动控制原理综合训练项目题目:关于MSD系统控制的设计

目录 1设计任务及要求分析 (4) 初始条件 (4) 要求完成的任务 (5) 任务分析 (5) 2系统分析及传递函数求解 (6) 系统受力分析 (6) 传递函数求解 (11) 系统开环传递函数的求解 (12) 3.用MATLAB对系统作开环频域分析 (13) 开环系统波特图 (13) 开环系统奈奎斯特图及稳定性判断 (14) 4.系统开环频率特性各项指标的计算 (17) 总结 (19)

参考文献 (20)

弹簧-质量-阻尼器系统建模与频率特 性分析 1设计任务及要求分析 初始条件 已知机械系统如图。 2 b 1 k y p 2 k

x 图 机械系统图 要求完成的任务 (1) 推导传递函数)(/)(s X s Y ,)(/)(s P s X , (2) 给定m N k m N k m s N b g m /5,/8,/6.0,2.0212==?==,以p 为输入 )(t u (3) 用Matlab 画出开环系统的波特图和奈奎斯特图,并用奈奎斯特判据 分析系统的稳定性。 (4) 求出开环系统的截止频率、相角裕度和幅值裕度。 (5) 对上述任务写出完整的课程设计说明书,说明书中必须进行原理分 析,写清楚分析计算的过程及其比较分析的结果,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。 任务分析 由初始条件和要求完成的主要任务,首先对给出的机械系统进行受力分析,列出相关的微分方程,对微分方程做拉普拉斯变换,将初始条件中给定的数据代入,即可得出)(/)(s X s Y ,)(/)(s P s X 两个传递函数。由于本系统是一个单位负反馈系统,故求出的传递函数即为开环传函。后在MATLAB 中画出开环波特图和奈奎斯特图,由波特图分析系统的频率特性,并根据奈奎斯特判据判断闭环系统位于右半平面的极点数,由此可以分析出系统的稳定性。最后再计算出系统的截止频率、相角裕度和幅值裕度,并进一步分析其稳定性能。

钢筋混凝土的特点及应用

钢筋混凝土的特点及应用 一、钢筋混凝土的基本原理 钢筋混凝土之所以可以共同工作是由它自身的材料性质决定的。首先钢筋与混凝土有着近似相同的线膨胀系数,不会由环境不同产生过大的应力。其次钢筋与混凝土之间有良好的粘结力,有时钢筋的表面也被加工成有间隔的肋条(称为变形钢筋)来提高混凝土与钢筋之间的机械咬合,当此仍不足以传递钢筋与混凝土之间的拉力时,通常将钢筋的端部弯起180 度弯钩。此外混凝土中的氢氧化钙提供的碱性环境,在钢筋表面形成了一层钝化保护膜,使钢筋相对于中性与酸性环境下更不易腐蚀。为保证钢筋与混凝土之间的可靠粘结和防止钢筋被锈蚀,钢筋周围须具有15~30毫米厚的混凝土保护层。若结构处于有侵蚀性介质的环境,保护层厚度还要加大。 由于混凝土的抗拉强度远低于抗压强度,因而素混凝土结构不能用于受有拉应力的梁和板。如果在混凝土梁、板的受拉区内配置钢筋,则混凝土开裂后的拉力即可由钢筋承担,这样就可充分发挥混凝土抗压强度较高和钢筋抗拉强度较高的优势,共同抵抗外力的作用,提高混凝土梁、板的承载能力。 二、钢筋混凝土的特性 混凝土的收缩和徐变(蠕变)对钢筋混凝土结构具有重要意义。由于钢筋会阻碍混凝土硬化时的自由收缩,在混凝土中会引起拉应力,在钢筋中会产生压应力。混凝土的徐变会在受压构件中引起钢筋与混凝土之间的应力重分配,在受弯构件中引起挠度增大,在超静定

结构中引起内力重分布等。混凝土的这些特性在设计钢筋混凝土结构时须加以考虑。 由于混凝土的极限拉应变值较低(约为0.15毫米/米)和混凝土的收缩,导致在使用荷载条件下构件的受拉区容易出现裂缝。为避免混凝土开裂和减小裂缝宽度,可采用预加应力的方法;对混凝土预先施加压力。实践证明,在正常条件下,宽度在0.3毫米以内的裂缝不会降低钢筋混凝土的承载能力和耐久性。 在从-40~60°C的温度范围内,混凝土和钢筋的物理力学性能都不会有明显的改变。因此,钢筋混凝土结构可以在各种气候条件下应用。当温度高于60°C时,混凝土材料的内部结构会遭到损坏,其强度会有明显降低。当温度达到200°C时,混凝土强度降低30~40%。因此,钢筋混凝土结构不宜在温度高于200°C的条件下应用:当温度超过200°C时,必须采用耐热混凝土。 三、钢筋混凝土的分类及强度划分 1、按密度分类:混凝土按密度大小不同可分为三类: 重混凝土:它是指干密度大于2600kg/m的混凝土,通常是采用高密度集料(如重晶石、铁矿石、钢屑等)或同时采用重水泥(如钡水泥、锶水泥等)制成的混凝土。因为它主要用作核能工程的辐射屏蔽结构材料,又称为防辐射混凝土。 普通混凝土:它是指干密度为2000~2600kg/㎡的混凝土,通常是以常用水泥为胶凝材料,且以天然砂、石为集料配制而成的混凝土。它是目前土木工程中最常用的水泥混凝土。

时程分析阻尼模型及数值计算方法

时程分析阻尼模型及数值计算方法 1、阻尼模型 阻尼是用以描述结构在振动过程中能量的耗散方式,是结构的动力特性,是影响结构动力反应的重要因素之一。结构振动时,由于结构材料的内摩擦、材料的滞回效应等机制导致能量消耗,使结构振动幅值逐渐减少,最后直至完全静止。结构的耗能机制非常复杂,它与介质的特征、结构粘性等诸多因素有关。常用的是粘滞阻尼理论,它认为,阻尼力与速度成正比。试验也证明,对于许多材料,这种阻尼理论是可行的,并且物理关系简单,便于应用和计算。 根据实测去确定阻尼大小是相当困难的,但由于阻尼的影响通常比惯性力和刚度的影响小,所以一般都采用简化的方法考虑阻尼。本文采用最为广泛应用的瑞雷阻尼。 瑞雷阻尼假设阻尼矩阵是质量矩阵和刚度矩阵的线性组合,即 [][][]C M K αβ=+ (4.15) 式中,α、β为常数,可以直接给定,或由给定的任意二阶振型的阻尼比i ξ、j ξ反算求得。 根据振型正交条件,待定常数α和β与振型阻尼比之间的关系应满足: 22 k k k βωα ξω= + (k =1,2,3,…,n ) (4.16a) 任意给定两个振型阻尼比i ξ和j ξ后,可按下式确定比例常数 22 2j i i j i j i j ξωξωαωωωω-=- 222j i i j i j ξωξωβωω-=- (4.16b) i ω、j ω分别为第i 、j 振型的原频率。本文取前两阶振型频率求得α、β值。 2、数值积分方法 多自由度结构体系动力微分方程为: []{}[]{}[]{}[]{}()g M x C x K x M x t I ++=- (4.17) 其中,[]M -质量矩阵;[]C -阻尼矩阵;[]K -刚度矩阵;{}I -单位对角阵;() g x t -地面运动加速度;{}x 、{}x 、{}x -结构楼层相对于地面的位移、速度和加速度反应。

相关文档
最新文档