电大离散数学集合论部分期末复习辅导

电大离散数学集合论部分期末复习辅导
电大离散数学集合论部分期末复习辅导

离散数学集合论部分期末复习辅导

一、单项选择题

1.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).

A.{a,{a}}∈A B.{1,2}?A C.{a}?A D.?∈A

解因为a∈A,所以{a}?A

2.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).

A.A?B,且A∈B B.B?A,且A∈B

C.A?B,且A?B D.A?B,且A∈B

解因为1∈B,2∈B,{1,2}∈B,A={1,2}

所以A?B,且A∈B

3.若集合A={2,a,{ a },4},则下列表述正确的是( ).

A.{a,{ a }}∈A B.?∈A

C.{2}∈A D.{ a }?A

解因为a∈A,所以{ a }?A

4.若集合A={ a,{a}},则下列表述正确的是( ).

A.{a}?A B.{{{a}}}?A

C.{a,{a}}∈A D.?∈A

解因为a∈A,所以{a}?A

注:若请你判断是否存在两个集合A,B,使A?B,且A∈B同时成立,怎么做?

答:存在。如2题中的集合A、B。

或,设A={a},B={a,{a}}。

注意:以上题型是重点,大家一定要掌握,还要灵活运用,譬如,将集合中的元素作一些调整,大家也应该会做.

例如,下题是2011年1月份考试试卷的第1题:

若集合A={ a,{1}},则下列表述正确的是( ).

A.{1}∈A B.{1}?A

C.{a}∈A D.?∈A

解因为{1}是集合A的一个元素,所以{1}∈A

5.设集合A={a},则A的幂集为( ).

A.{{a}} B.{a,{a}}

C.{?,{a}}D.{?,a}

解 A = {a }的所有子集为

0元子集,即空集:?;

1元子集,即单元集:{a }.

所以P (A ) = {?,{a }}

6.设集合A = {1, a },则P (A ) = ( ).

A .{{1}, {a }}

B .{?,{1}, {a }}

C .{?,{1}, {a}, {1, a }}

D .{{1}, {a }, {1, a }}

解 A = {1, a }的所有子集为

0元子集,即空集:?;

1元子集,即单元集:{1},{a };

2元子集:{1, a }.

所以P (A ) ={?,{1}, {a }, {1, a }}.

注意:?若集合A 有一个或有三个元素,那么P (A )怎么写呢?

例如,2012年1月份考试题的第6题:

设集合A ={a },那么集合A 的幂集是{?,{a}}.

?若A 是n 元集,则幂集P (A )有2 n 个元素.当n =8或10时,A 的幂集的元素有多少个?(应该是256或1024个)

7.若集合A 的元素个数为10,则其幂集的元素个数为( ).

A .1024

B .10

C .100

D .1

解 |A | = 10,所以|P (A )| = 210 = 1024

以下为2012年1月份考试题的第1题:

若集合A 的元素个数为10,则其幂集的元素个数为().

A .10

B .100

C .1024

D .1

8.设A 、B 是两个任意集合,侧A -B =?? ( ).

A .A =

B B .A ?B

C .A ?B

D .B =?

解 设x ∈A ,则因为A -B =?,所以x ?A -B ,从而x ∈B ,故A ?B .

9.设集合A ={1,2,3,4},R 是A 上的二元关系,其关系矩阵为

M R =???

?

?

?

??????0001100000011001

则R的关系表达式是( ).

A.{<1, 1>,<1, 4>,<2, 1>,<3, 4>,<4,1>}

B.{<1, 1>,<1, 2>,<1, 4>,<4, 1>,<4, 3>}

C.{<1, 1>,<2, 1>,<4, 1>,<4, 3>,<1, 4>}

D.{<1, 1>,<1, 2>,<2, 4>,<4, 1>,<4, 3>}

10.集合A={1, 2,3,4,5,6,7,8}上的关系R={|x+y=10且x,y∈A},则R的性质为().A.自反的B.对称的

C.传递且对称的D.反自反且传递的

解R = {<2,8>,<3,7>,<4,6>,<5,5>,<6,4>,<7,3>,<8,2>}

易见,若∈R,则∈R,所以R是对称的.

答 B

另,因为1∈A,但<1,1>?R,所以R不是自反的。

因为5∈A,但<5,5>∈R,所以R不是反自反的。

因为<2,8>∈R且<8,2>∈R,但<2,2>?R,所以R不是传递的。

要求大家能熟练地写出二元关系R的集合表达式,并能判别R具有的性质.

11.集合A={1, 2,3,4}上的关系R={|x=y且x,y∈A},则R的性质为().

A.不是自反的B.不是对称的

C.传递的D.反自反

解R= {<1,1>,<2,2>,<3,3>,<4,4>} =I A是A上的恒等关系,是自反的、对称的、传递的。

答 C

12.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A.0 B.2 C.1 D.3

解对于任意a∈A,由于R1和R2是A上的自反关系,所以

∈R1,∈R2,从而∈R1∪R2,∈R1∩R2,?(R1-R2)

故R1∪R2,R1∩R2是A上的自反关系,R1-R2是A上的反自反关系.

答 B

13.设集合A={1 , 2 , 3 , 4}上的二元关系

R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},

S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},

则S是R的()闭包.

A.自反B.传递

C.对称D.自反和传递

解R?S,S是对称关系,且S去掉任意一个元素就不包含R或没有对称性,即S是包含R的具有对称性的最小的关系,从而S是R的对称闭包.

答 C

14.设A={1, 2,3,4,5,6,7,8},R是A上的整除关系,B={2,4, 6},则集合B的最大元、最小元、上界、下界依次为( ).

A.8、2、8、2B.8、1、6、1

C.6、2、6、2D.无、2、无、2

解{1,1,1,2,1,3,1,4,1,5,1,6,

R=<><><><><><>

<><><><><><>

1,7,1,8,2,2,2,4,2,6,2,8,

<><><><><>

3,3,3,6,4,4,4,8,5,5,

<><><>

6,6,7,7,8,8}

关系R的哈斯图如下:

由图可见,集合B={2,4, 6}无最大元,其最小元是2.无上界,下界是2和1.

答 D

15.设集合A={1,2,3,4,5},偏序关系≤是A上的整除关系,则偏序集上的元素5是集合A的().

A.最大元B.最小元

C.极大元D.极小元

解{1,1,1,2,1,3,1,4,1,5,

R=<><><><><>

<><><><><>

2,2,2,4,3,3,4,4,5,5}

关系R的哈斯图如下:

由图可见,元素5是集合A的极大元.

答 C

16.设集合A = {1, 2, 3, 4, 5}上的偏序关

系的哈斯图如右图所示,若A 的子集B =

{3, 4, 5},则元素3为B 的().

A .下界

B .最小上界

C .最大下界

D .最小元

答 B 17.设A ={a ,b },B ={1,2},R 1,R 2,R 3是A 到B 的二元关系,且R 1={, },R 2={, ,},R 3={, },则( )不是从A 到B 的函数.

A .R 1

B .R2

C . R 3

D .R 1和R 3

∈R 2,∈R 2,即R 2不满足函数定义的单值性,因而不是函数.

答 B

注意:函数R 1,R 3的定义域、值域是什么?两个函数R 1,R 3是否能复合?

解 Dom(R 1)= {a ,b }=A ,Ran(R 1)= {2};

Dom(R 3)= {a ,b }=A ,Ran(R 3)= {1, 2}=B .

因为Ran(R 1)?

/Dom(R 3),所以函数R 1和R 3不能复合。

18.设A ={a ,b ,c },B ={1,2},作f :A →B ,则不同的函数个数为.

A .2

B .3

C .6

D .8

解 A ×B = {

}

A ×

B 的任一子集即为从A 到B 的二元关系,在这些关系中满足函数定义的两个条件(①单值性;②定义域是A )的关系只能是{},其中每个有序对的第二元素可取1或2,于是可知有2×2×2 = 8个不同的函数.

答 D

事实上,8个不同的函数为:

f 1= {},

f 2= {},

f 3={},

f 4= {},

f 5={},

f 6= {},

f 7 ={},

f 8 = {}.

5

19.设集合A ={1 , 2, 3}上的函数分别为:

f = {<1, 2>,<2, 1>,<3, 3>},

g = {<1, 3>,<2, 2>,<3, 2>},

h = {<1, 3>,<2, 1>,<3, 1>},

则h =().

A .f?g

B .g ?f

C .f ?f

D .g ?g

解 f ?g = {<1, 3>,<2, 1>,<3, 1>} = h

g ?f = {<1, 2>,<2, 3>,<3, 2>}

f ?f = {<1, 1>,<2, 2>,<3, 3>}

g ?g = {<1, 2>,<2, 2>,<3, 2>}

答 A

20.设函数f :N →N ,f (n )=n +1,下列表述正确的是().

A .f 存在反函数

B .f 是双射的

C .f 是满射的

D .f 是单射函数

解 因为任意12,n n N ∈,12n n ≠,

则1122()11()f n n n f n =+≠+=,

所以f 是单射.

对于0N ∈,不存在n N ∈,使()10f n n =+=,

所以f 不是满射.

从而f 不是双射,也不存在反函数.

答 D

二、填空题

1.设集合{1,2,3},{1,2}A B ==,则P (A )-P (B )=,A ?B =.

解 (){,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}P A =?

(){,{1},{2},{1,2}}P B =?

答 {{3},{1,3},{2,3},{1,2,3}}

{<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>}

2.设集合A 有10个元素,那么A 的幂集合P (A )的元素个数为.

答 210

3.设集合A ={0, 1, 2, 3},B ={2, 3, 4, 5},R 是A 到B 的二元关系,

},,{B A y x B y A x y x R ?∈∈∈><=且且

则R 的有序对集合为.

答R={<2,2>,<2,3>,<3,2>,<3,3>}

注意:如果将二元关系R改为

R=

<

=且

x

>

x

{2y

,

}

x

B

A

y

y

+

R=

>

=且

<

x

y

{y

,

1

x

B

x

}

A

y

则R的有序对集合是什么呢?

答R={<2, 4>}

或R={<1, 2>,<2, 3>,<3, 4>}

4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系

R=}

x∈

y

y

>

<

x

=

x

,

,

2

,

A

y

{B

<><>

那么1

R-={6,3,8,4}

5.设集合A={a,b,c,d},A上的二元关系R={, , , },则R具有的性质是.因为任意x∈A,?R,所以R是反自反的.

答反自反的

6.设集合A={a,b,c,d},A上的二元关系R={, , , },若在R中再增加两个元素,则新得到的关系就具有对称性.

注意:第5,6题是重点,我们要熟练掌握,尤其是A和R的元素都减少的情况。如果6题新得到的关系具有自反性,那么应该增加哪两个元素呢?

答应增加两个元素

7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有个.

答2(见:一、9题)

8.设A={1,2}上的二元关系为R={|x∈A,y∈A,x+y=10},则R的自反闭包为.

因为R=?,所以R的自反闭包s(R)=I A={<1,1>,<2,2>}

答{<1,1>,<2,2>}

注意:如果二元关系改为R={|x∈A,y∈A,x+y<10},则R的自反闭包是什么呢?

解R={<1,1>,<1,2>,<2,1>,<2,2>}是A上的全关系,它的自反闭包是它自己。

答R或{<1,1>,<1,2>,<2,1>,<2,2>}

9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含等元素.

答<1,1>,<2,2>,<3,3>

因为等价关系一定是自反的、对称的、传递的,由二元关系R 是自反的,所以它至少包含<1, 1>, <2, 2>, <3, 3>等元素.

注:如果给定二元关系R ,你能否判断R 是否是等价关系?

10.设集合A ={1, 2},B ={a , b },那么集合A 到B 的双射函数是{1,,2,}f a b =<><>,{1,,2,}g b a =<><>.

想一想:集合A 到B 的不同函数的个数有几个?

答 有4个,除上述两个双射函数外,还有

{1,,2,}h a a =<><>,{1,,2,}i b b =<><>.

(参考:一、14题)

三、判断说明题(判断下列各题,并说明理由.)

1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则

(1) R 是自反的关系; (2) R 是对称的关系.

解 (1)错误.因为3∈A ,但<3,3>?R .

(2)错误.因为<1,2>∈R ,但<2,1>?R .

2.如果R 1和R 2是A 上的自反关系,判断结论:“11R -、R 1∪R 2、R 1∩R 2是自反的”是否成立?并说明理由.

解成立.

因为R1和R2是A 上的自反关系,所以

任意a A ∈,有

12,, ,a a R a a R <>∈<>∈, 从而有11,a a R -<>∈(逆关系定义),

12,a a R R <>∈,12,a a R R <>∈.

故11R -、R1∪R2、R1∩R2是自反的.

3.若偏序集的哈斯图如图一所示,

则集合A 的最大元为a ,最小元不存在.

解 不正确。

可见a 大于等于A 中的元素b 、c 、d 、e 、f ,

但与元素g 、h 没有关系,所以a 不是A 的

最大元。没有一个元素小于等于A 中的所有元素,所以A 没有最小元。

注:本题中,极大元为a 、g ,极小元为e 、f 、h .

注意:题目修改为:若偏序集的哈斯图如

右图所示,则集合A 的最大元为a ,极小元不存在.

解 结论不成立。

A 的最大元为a ,极小元为b 、c .

问:是否存在一个元素a ,它既是偏序集的最大元,也是的最小元?

4.设集合A ={1,2,3,4},B ={2, 4, 6, 8},判断下列关系f 是否构成函数f :B A →,并说明理由.

(1) f ={<1, 4>,<2, 2,>,<4, 6>,<1, 8>};

(2)f ={<1, 6>,<3, 4>,<2, 2>};

(3) f ={<1, 8>,<2, 6>,<3, 4>,<4, 2,>}.

解 (1)关系f 不构成函数.

因为Dom(f)={1, 2, 4}≠A ,不满足函数定义的条件.

(2)关系f 不构成函数.

因为Dom(f)={1, 2, 3}≠A ,不满足函数定义的条件.

(3)关系f 构成函数.

因为

① 任意a ∈Dom(f),都存在唯一的b ∈Ran(f),使∈f ;

② Dom(f)=A .

即关系f 满足函数定义的两个条件,所以关系f 构成函数.

四、计算题

1.设}4,2{},5,2,1{},4,1{},5,4,3,2,1{====C B A E ,求:

(1) (A ?B )?~C ; (2) (A ?B )-(B ?A );

(3) P (A )-P (C ); (4) A ⊕B .

解 (1)()

{1}{1,3,5}{1,3,5}A B C ==; (2)()(){1,2,4,5}{1}{2,4,5}A B B A -=-=;

(3)()(){,{1},{4},{1,4}}{,{2},{4},{2,4}}P A P C -=?-?

{{1},{1,4}}=;

(4)()()()(){2,4,5}A B A B A B A B B A ⊕=-=-=.

2.设A ={{1},{2},1,2},B ={1,2,{1,2}},试计算

(1)(A -B ); (2)(A ∩B ); (3)A ×B .

解 (1){{1},{2}}A B -=;

(2){1,2}A B =;

(3){{1},1,{1},2,{1},{1,2},A B ?=<><><>

{2},1,{2},2,{2},{1,2},<><><>

1,1,1,2,1,{1,2},<><><>

2,1,2,2,2,{1,2}}<><><>.

3.设A ={1,2,3,4,5},R ={|x ∈A ,y ∈A 且x +y ≤4},S ={|x ∈A ,y ∈A 且x +y <0},试求R ,S ,R ?S ,S ?R ,R -1,S -1,r (S ),s (R ).

解 {1,1,1,2,1,3,2,1,2,2,3,1}R =<><><><><><>,S =?.

R S ?=?,S R ?=?,

1{1,1,1,2,1,3,2,1,2,2,3,1}R R -=<><><><><><>=,

1S -=?,

(){1,1,2,2,3,3,4,4,5,5}A A r S S

I I ===<><><><><>,

1()s R R R R -== {1,1,1,2,1,3,2,1,2,2,3,1}=<><><><><><>.

4.设A ={1,2,3,4,5,6,7,8},R 是A 上的整除关系,B ={2,4, 6}.

(1) 写出关系R 的表示式; (2 )画出关系R 的哈斯图;

(3) 求出集合B 的最大元、最小元.

解 (1){1,1,1,2,1,3,1,4,1,5,1,6,R =<><><><><><>

1,7,1,8,2,2,2,4,2,6,2,8,<><><><><><>

3,3,3,6,4,4,4,8,5,5,<><><><><>

6,6,7,7,8,8}<><><>

(2)关系R 的哈斯图如下:

(3)集合B={2,4, 6}无最大元,其最小元是2.

五、证明题

1.试证明集合等式:A ? (B ?C )=(A ?B ) ? (A ?C ).

证明 任意()x A B C ∈,则x A ∈,或x B C ∈.

若x A ∈,则, x A B x A C ∈∈,从而()()x A B A C ∈;

若x B C ∈,则, x B x C ∈∈,, x A

B x A

C ∈∈,

从而()()x A B A C ∈.

电大 离散数学作业7答案

离散数学作业7 离散数学数理逻辑部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第17周末前完成并上交任课教师(不收电子稿)。并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.命题公式()P Q P →∨的真值是 1或T . 2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如 果他生病或出差了,我就同意他不参加学习”符号化的结果为 (P ∨Q )→R . 3.含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 (P ∧Q ∧R)∨(P ∧Q ∧?R) . 4.设P (x ):x 是人,Q (x ):x 去上课,则命题“有人去上课.” 可符号化为 ?x(P(x) ∧Q(x)) . 5.设个体域D ={a , b },那么谓词公式)()(y yB x xA ?∨?消去量词后的等值式为 (A(a) ∨A(b)) ∨((B(a) ∧B(b)) . 6.设个体域D ={1, 2, 3},A (x )为“x 大于3”,则谓词公式(?x )A (x ) 的真值为 0(F) . 7.谓词命题公式(?x )((A (x )∧B (x )) ∨C (y ))中的自由变元为 y . 8.谓词命题公式(?x )(P (x ) →Q (x ) ∨R (x ,y ))中的约束变元为 x . 三、公式翻译题 1.请将语句“今天是天晴”翻译成命题公式. 设P :今天是晴天。 姓 名: 学 号: 得 分: 教师签名:

离散数学(集合论)课后总结

第三章集合论基础 1、设A={a,{a},{a,b},{{a,b},c}}判断下面命题的真值。 ⑴{a}∈A T ⑵?({a}? A) F ⑶c∈A F ⑷{a}?{{a,b},c} F ⑸{{a}}?A T ⑹{a,b}∈{{a,b},c} T ⑺{{a,b}}?A T ⑻{a,b}?{{a,b},c} F ⑼{c}?{{a,b},c} T ⑽({c}?A)→(a∈Φ) T 2、证明空集是唯一的。(性质1:对于任何集合A,都有Φ?A。) 证明:假设有两个空集Φ1 、Φ2 ,则 因为Φ1是空集,则由性质1得Φ1 ?Φ2 。 因为Φ2是空集,则由性质1得Φ2 ?Φ1 。 所以Φ1=Φ2 。 3、设A={Φ},B=P(P(A)).问:(这道题要求知道幂集合的概念) a)是否Φ∈B?是否Φ?B? b)是否{Φ}∈B? 是否{Φ}?B? c)是否{{Φ}}∈B? 是否{{Φ}}?B? 解:设A={Φ},B=P(P(A)) P(A)= {Φ,{Φ}} 在求P(P(A))时,一些同学对集合{Φ,{Φ}}难理解,实际上你就将{Φ,{Φ}}中的元素分别看成Φ=a ,{Φ}=b, 于是{Φ,{Φ}}={a,b} B=P(P(A))=P({a,b}) ={B0, B1 , B2 , B3 }={B00, B01,B10 ,B11}={Φ, {b}, {a}, {a,b}} 然后再将a,b代回即可B=P(P(A))=P({Φ,{Φ}})={Φ,{Φ} ,{{Φ}}, {Φ,{Φ}}} 以后熟悉后就可以直接写出。 a) Φ∈B Φ?B b) {Φ}∈B {Φ} ? B c) {{Φ}}∈B {{Φ}}?B a)、b)、c)中命题均为真。 4、证明A?B ? A∩B=A成立。 证明:A∩B=A ??x(x∈A∩B ?x∈A) ??x((x∈A∩B → x∈A)∧(x∈A→ x∈A∩B)) ??x((x?A∩B∨x∈A)∧(x?A∨x∈A∩B)) ??x((?(x∈A∧x∈B)∨x∈A)∧(x?A∨(x∈A∧x∈B)) ??x(((x?A∨x?B)∨x∈A)∧(x?A∨(x∈A∧x∈B))) ??x(T∧(T∧( x?A∨x∈B))) ??x( x?A∨x∈B)??x(x∈A→x∈B)? A?B 5、(A-B)-C=(A-C)-(B-C) 证明:任取x∈(A-C)-(B-C) ?x∈(A-C)∧x?(B-C) ?(x∈A∧x?C)∧?(x∈B∧x?C) ?(x∈A∧x?C)∧(x?B∨x∈C) ?(x∈A∧x?C∧x?B)∨(x∈A∧x?C∧x∈C) ?x∈A∧x?C∧x?B?x∈A∧x?B∧x?C ?(x∈A∧x?B)∧x?C ?x∈A-B∧x?C?x∈(A-B)-C 所以(A-B)-C=(A-C)-(B-C)

电大离散数学形成性考核作业集合

离散数学形成性考核作业( 一) 集合论部分 分校_________ 学号____________________ 姓名__________________ 分数 本课程形成性考核作业共 4 次, 内容由中央电大确定、统一布置。本次形考作业是第一次作业, 大家要认真及时地完成集合论部分的形考作业, 字迹工整, 抄写题目, 解答题有解答过程。 第 1 章集合及其运算 1.用列举法表示”大于2而小于等于9 的整数” 集合. 2.用描述法表示”小于5 的非负整数集合” 集合. 3 .写出集合B={1, {2, 3 }} 的全部子集. 4 .求集合A={ ,{ } } 的幂集. 5 .设集合A={{ a }, a }, 命题: { a } P(A) 是否正确, 说明理由. 6 .设 A {1,2,3}, B { 1,3,5}, C { 2,4,6}, 求 (1) A B (2) A B C (3) C - A (4) A B 7 .化简集合表示式: (( A B ) B) - A B.

试证:A - ( B C ) = ( A - B ) - C. 9 .填写集合{4, 9 } {9, 10, 4} 之间的关系. 10 .设集合A = {2, a , {3}, 4}, 那么下列命题中错误的是() A .{a } A B . { a , 4, {3}} A C . {a } A D . A 11 .设B = { {a }, 3, 4, 2}, 那么下列命题中错误的是() 第2章关系与函数 并验证 A (B C ) = ( A B ) (A C ). 4 .写出从集合A = { a , b , c }到集合B = {1}的所有二元关系. 8 .设A B C 是三个任意集合 A . {a } B B .{2, { a }, 3, 4} B C . {a } B D .设集合A = {a , b }, B = {1, 2, 3}, C = {3, 4}, 求 A (B C ), (A B) (A C ) .对任意三个集合 B 和 C 若ABA C 是否一定有B C ?为什么? .对任意三个集合 B 和 C 试证若A B = AC 」A

离散数学作业答案

离散数学作业7 离散数学数理逻辑部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月19日前完成并上交任课教师(不收电子稿)。并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.命题公式()P Q P →∨的真值是 1 . 2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为 (PQ)R . 3.含有三个命题变项P ,Q ,R 的命题公式PQ 的主析取范式是 (PQR) (PQR) . 4.设P(x):x 是人,Q(x):x 去上课,则命题“有人去上课.” 可符号化为 (x)(P(x) →Q(x)) . 5.设个体域D ={a, b},那么谓词公式)()(y yB x xA ?∨?消去量词后的等值式为 (A(a) A(b)) (B(a) B(b)) . 6.设个体域D ={1, 2, 3},A(x)为“x 大于3”,则谓词公式(x)A(x) 的真值为 . 7.谓词命题公式(x)((A(x)B(x)) C(y))中的自由变元为 . 8.谓词命题公式(x)(P(x) Q(x) R(x ,y))中的约束变元为 X . 三、公式翻译题 1.请将语句“今天是天晴”翻译成命题公式. 1.解:设P :今天是天晴; 则 P . 2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式. 解:设P :小王去旅游,Q :小李去旅游, 则 PQ . 3.请将语句“如果明天天下雪,那么我就去滑雪”翻译成命题公式. 解:设P:明天天下雪 。 Q:我去滑雪 则 P Q . 4.请将语句“他去旅游,仅当他有时间.”翻译成命题公式. 7.解:设 P :他去旅游,Q :他有时间, 则 P Q . 5.请将语句 “有人不去工作”翻译成谓词公式. 11.解:设P(x):x 是人,Q(x):x 去工作,

电大离散数学作业3答案(集合论部分)

离散数学集合论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年11月7日前完成并上交任课教师(不收电子稿)。并在03任务界面下方点击“保存”和“交卷”按钮,完成并上交任课教师。 一、填空题 1.设集合{1,2,3},{1,2} ==,则P(A)-P(B )= A B {{3},{2,3},{1,3},{1,2,3}},A?B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>}.2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系, ∈ R? x ∈ > y 且 =且 ∈ < {B , , x A y A y B x } 则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>}. 4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系 R=} y y x∈ = < > ∈ x , , x , 2 {B y A 那么R-1={<6,3>,<8,4>} 5.设集合A={a, b, c, d},A上的二元关系R={, , , },则R具有的性质是反自反性. 6.设集合A={a, b, c, d},A上的二元关系R={, , , },若在R中再增加两个元素, ,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个. 8.设A={1, 2}上的二元关系为R={|x∈A,y∈A, x+y =10},则R的自反闭包为{<1,1>,<2,2>}. 9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3>等元素. 10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是 {<1,a>,<2,b>}或{<1,b>,<2,a>}.

(完整版)离散数学作业答案一

离散数学作业7 离散数学数理逻辑部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、 数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外) 安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第17周末前完成并上交任课教师(不收电子稿)。并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1 .命题公式P (Q P)的真值是T或1 ______ . 2?设P:他生病了,Q:他出差了. R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P V Q)-R 3. ____________________________________________________________ 含有三个命题变项P,Q,R的命题公式P Q的主析取范式是__________________ _(P Q R) (P Q R)_ 4. 设P(x): x是人,Q(x): x去上课,则命题“有人去上课.” 可符号化为— x(P(x) Q(x))_ 5. 设个体域D = {a, b},那么谓词公式xA(x) yB(y)消去量词后的等值式为 (A(a) A(b)) (B(a) B(b))_ 6 .设个体域D = {1,2, 3},A(x)为“x大于3”,则谓词公式(x)A(x)的真值为F 或0 ________________ . 7.谓词命题公式(x)((A(x) B(x)) C(y))中的自由变元为 ________ . 8 .谓词命题公式(x)(P(x) Q(x) R(x,y))中的约束变元为x _______ . 三、公式翻译题 1 .请将语句“今天是天晴”翻译成命题公式

电大离散数学作业答案05作业答案

离散数学作业5 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月5日前完成并上交任课教师(不收电子稿)。并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 2.设给定图G (如右由图所示),则图G 的点割集是 {}f {}c e ,. 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且 不含奇数度结点 . 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于︱V ︱ ,则在G 中存在一条汉密尔顿回路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 S W ≤ . 7.设完全图K n 有n 个结点(n ≥2),m 条边,当n 为奇数时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足 e= v -1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 4 . 二、判断说明题(判断下列各题,并说明理由.)

离散数学之集合论

第二篇集合与关系 集合论是现代各科数学的基础,它是德国数学家康托(Geog Cantor, 1845~1918)于1874年创立的,1876~1883年康托一系列有关集合论的文章,对任意元的集合进行了深入的探讨,提出了关于基数、序数和良序集等理论,奠定了集合论深厚的基础,19世纪90年代后逐渐为数学家们采用,成为分析数学、代数和几何的有力工具。 随着集合论的发展,以及它与数学哲学密切联系所作的讨论,在1900年前后出现了各种悖论,使集合的发展一度陷入僵滞的局面。1904~1908年,策墨罗(Zermelo)列出了第一个集合论的公理系统,它的公理,使数学哲学中产生的一些矛盾基本上得到了统一,在此基础上以后就逐渐形成了公理化集合论和抽象集合论,使该学科成为在数学中发展最为迅速的一个分支。 现在,集合论已经成为内容充实、实用广泛的一门学科,在近代数学中占据重要地位,它的观点已渗透到古典分析、泛函、概率、函数论、信息论、排队论等现代数学各个分支,正在影响着整个数学科学。集合论在计算机科学中也具有十分广泛的应用,计算机科学领域中的大多数基本概念和理论几乎均采用集合论的有关术语来描述和论证,成为计算机科学工作者必不可少的基础知识。集合论可作为数学学科的通用语言,一切必要的数据结构都可以利用集合这个原始数据结构而构造出来,计算机科学家或许也可以利用这种方法。 本篇介绍集合论的基础知识,主要内容包括集合及其运算、性质、序偶、关系、映射、函数、基数等。 第2-1章集合及其运算 §2-1-1 集合的概念及其表示 一、集合的概念 “集合”是集合论中的一个原始的概念,因此它不能被精确地定义出来。一般地说,把具有某种共同性质的许多事物,汇集成一个整体,就形成一个集合。构成这个集合的每一个事物称为这个集合的一个成员(或一个元素),构成集合的这些成员可以是具体东西,也可以是抽象东西。例如:教室内的桌椅;图书馆的藏书;全国的高等学校;自然数的全体;程序设计语言C的基本字符的全体等均分别构成一个集合。通常用大写的英文字母表示集合的名称;用小写的英文字母表示元素。若元素a属于集合A记作

国家开放大学2020年春季学期电大《离散数学》形成性考核三

一、单项选择题(每小题2分,共38分) 题目1 正确 获得2.00分中的2.00分 未标记标记题目 题干 假定一棵二叉树中,双分支结点数为15,单分支结点数为30,则叶子结点数为()。 选择一项: A. 16 B. 47 C. 15 D. 17 题目2 正确 获得2.00分中的2.00分 未标记标记题目 题干 二叉树第k层上最多有()个结点。 选择一项: A. 2k-1 B. 2k-1 C. 21 k D. 2k 题目3 正确 获得2.00分中的2.00分 未标记标记题目 题干 将含有150个结点的完全二叉树从根这一层开始,每一层从左到右依次对结点进行编号,根结点的编号为1,则编号为69的结点的双亲结点的编号为()。 选择一项: A. 34 B. 35 C. 33 D. 36 题目4 正确 获得2.00分中的2.00分 未标记标记题目

如果将给定的一组数据作为叶子数值,所构造出的二叉树的带权路径长度最小,则该树称为()。 选择一项: A. 二叉树 B. 哈夫曼树 C. 完全二叉树 D. 平衡二叉树 题目5 正确 获得2.00分中的2.00分 未标记标记题目 题干 在一棵度具有5层的满二叉树中结点总数为()。 选择一项: A. 33 B. 32 C. 31 D. 16 题目6 正确 获得2.00分中的2.00分 未标记标记题目 题干 一棵完全二叉树共有6层,且第6层上有6个结点,该树共有()个结点。 选择一项: A. 37 B. 72 C. 38 D. 31 题目7 正确 获得2.00分中的2.00分 未标记标记题目 题干 利用3、6、8、12这四个值作为叶子结点的权,生成一棵哈夫曼树,该树中所有叶子结点中的最长带权路径长度为()。 选择一项: A. 18 B. 30

吉林大学离散数学课后习题答案

第二章命题逻辑 §2.2 主要解题方法 2.2.1 证明命题公式恒真或恒假 主要有如下方法: 方法一.真值表方法。即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每

一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。 真值表法比较烦琐,但只要认真仔细,不会出错。 例2.2.1 说明G= (P∧Q→R)∧(P→Q)→(P→R)是恒真、恒假还是可满足。 解:该公式的真值表如下: 表2.2.1 由于表2.2.1中对应公式G所在列的每一取值全为1,故

G恒真。 方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。 例2.2.2 说明G= ((P→R) ∨? R)→ (? (Q→P) ∧ P)是恒真、恒假还是可满足。 解:由(P→R) ∨? R=?P∨ R∨? R=1,以及 ? (Q→P) ∧ P= ?(?Q∨ P)∧ P = Q∧? P∧ P=0 知,((P→R) ∨? R)→ (? (Q→P) ∧ P)=0,故G恒假。 方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n个极大项,则G是恒假的。 方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G

电大离散数学作业答案作业答案

离散数学作业5 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月5日前完成并上交任课教师(不收电子稿)。并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 2.设给定图G (如右由图所示),则图G 的点割集是 {}f {}c e ,. 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且 不含奇数度结点 . 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数 之和大于等于︱V ︱ ,则在G 中存在一条汉密尔顿回路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 S W ≤ . 7.设完全图K n 有n 个结点(n ?2),m 条边,当n 为奇数时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足 e= v -1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 4 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路.. 答:错误。应叙述为:“如果图G 是无向连通图,且其结点度数均为偶数,则图G 存在一条欧拉回路。” 2.如下图所示的图G 存在一条欧拉回路. 答:错误。因为图中存在奇数度结点,所以不存在欧拉回路。 3.如下图所示的图G 不是欧拉图而是汉密尔顿图. 答:正确。因为有4个结点的度数为奇数,所以不是欧拉图;而对于图中任意点集V 中的非空子集1V ,都有)(1V G P -??V 1?。其中)(1V G P -是从图中删除1V 结点及其关联的边。 4.设G 是一个有7个结点16条边的连通图,则G 为平面图. 答:错误。若G 是连通平面图,那么若63,3-≤≥v e v 就有, 而16>3×7-6,所以不满足定理条件,叙述错误。 5.设G 是一个连通平面图,且有6个结点11条边,则G 有7个面. 姓 名: 学 号: 得 分: 教师签名: G

电大历年离散数学试题汇总

计算机科学与技术专业级第二学期离散数学试题 2012年1月 一、单项选择题(每小题3分,本题共15分)1. C 2. C 3. B 4. A 5. D 1-若集合4的元素个数为10,则其幕集的元素个数为()? A. 10 B. 100 C. 1024 D. 1 2. 设A={a, d},伊{1,2}, R、,电、足是刀到8的二元关系,旦用二{<Q, 2>,<。】>},他二{<。 1>,<。2>,<》,】>},足={<。,】>,</?, 2>),则()是从/到8的函数. A. R[和R? B . R仁 C. R3 D. R\和足 3. 设木{1,2,3,45,6,7,8}, /?是/上的整除关系,位{2, 4, 6},则集合8的最大元、最小元、上界、下界依次为()? A. 8、2、8、2 B.无、2、无、2 C. 6、2、6、2 D. 8、1、6、1 4.若完全图G中有77个结点777条边,则当()时,图G中存在欧拉回路. A.。为奇数 B. ”为偶数 C. "7为奇数 D. s为偶数 5.已知图G的邻接矩阵为 % o o 1 T 0 0 0 0 1 0 0 0 1 1 10 10 1 11110 则。有(). A. 6 点,8 边 B.6点,6边 C. 5 点,8 边 D.5点,6边 二、埴空题(每小题3分,本题共15分) 6. 设集合乂 = {况,那么集合/的富集是{。腥}}. 7. 若吊和%是/上的对称关系,则R\U电,R、nw R'-电,传用中对称关系有个. 8. 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去1 条边后使之变成树. 9. 设连通平面图G的结点数为5,边数为6,贝1|面数为 3 . 10. 设个体域D = G d},则谓词公式(VA)MW A B(X))消去重词后的等值式为(乂(Q) A8(Z?))A(4 (。)AB(/?)) . 三、逻辑公式翻译(每小题6分,本题共12分) 11. 将语句“今天有联欢活动,明天有文艺晚会翻译成命题公式. 设户:今天有联欢活动,Q:明天有文艺晚会,(2分) PN Q.(6 分)

慕课 离散数学 电子科技大学 课后习题十 答案

作业参考答案——10-特殊图 1.(a)(c)(d)是欧拉图,(a)(b)(c)(d)(e)可以一笔画,(a)(b)(c)(d)(e)(f)(g)是 哈密顿图。 2.根据给定条件建立一个无向图G=,其中: V={a,b,c,d,e,f,g} E={(u,v)|u,v∈V,且u和v有共同语言} 从而图G如下图所示。 a b c d e f g 将这7个人围圆桌排位,使得每个人都能与他两边的人交谈,就是在图G 中找哈密顿回路,经观察上图可得到两条可能的哈密顿回路,即两种方案:abdfgeca和acbdfgea。 3.证明(法一):根据已知条件,每个结点的度数均为n,则任何两个不相邻 的结点v i,v j的度数之和为2n,而图中总共有2n个结点,即deg(v i)+ deg(v j)?2n,满足哈密顿图的充分条件,从而图中存在一条哈密顿回路,当然,这就说明图G是连通图。 证明(法二):用反证法,假设G不是连通图,设H是G的一个连通分支,由于图G是简单图且每个结点的度数为n,则子图H与G-H中均至少有n+1个结点。所以G的结点数大于等于2n+2,这与G中结点数为2n矛盾。所以假设不成立,从而G是连通图。 4.将n位男士和n位女士分别用结点表示,若某位男士认识某位女士,则在 代表他们的结点之间连一条线,得到一个偶图G,假设它的互补结点子集V1、V2分别表示n位男士和n位女士,由题意可知V1中的每个结点度 1

数至少为2,而V2中的每个结点度数至多为2,从而它满足t条件t=1,因此存在从V1到V2的匹配,故可分配。 5.此平面图具有五个面,如下图所示。 a b c d e f g r1r2 r3 r4 r5 ?r1,边界为abca,D(r1)=3; ?r2,边界为acga,D(r2)=3; ?r3,边界为cegc,D(r3)=3; ?r4,边界为cdec,D(r4)=3; ?r5,边界为abcdefega,D(r5)=8;无限面 6.设该连通简单平面图的面数为r,由欧拉公式可得,6?12+r=2,所以 r=8,其8个面分别设为r1,r2,r3,r4,r5,r6,r7,r8。因是简单图,故每个面至少由3条边围成。只要有一个面是由多于3条边所围成的,那就有所有面的次数之和 8∑ i=1 D(r i)>3×8=24。但是,已知所有面的次数之和等于边数的两倍,即2×12=24。因此每个面只能由3条边围成。 2

电大离散数学形考作业答案

离散数学作业4 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业. 要求:学生提交作业有以下三种方式可供选择: 1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word 文档 3. 自备答题纸张,将答题过程手工书写,并拍照上传. 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 2.设给定图G (如右由图所示),则图G 的点割集是 {f,c} . 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且所有结点的度数全为偶 数 . 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 n-1 ,则在G 中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W ≤∣S ∣ . 7.设完全图K n 有n 个结点(n ?2),m 条边,当n 为奇数 时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足 e=?v -1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 4 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路. 答:不正确,图G 是无向图,当且仅当G 是连通,且所有结点度数均为偶数,这里不能确定图G 是 否是连通的。 2.如下图所示的图G 存在一条欧拉回路. 答:错误。? 因为图G 为中包含度数为奇数的结点 3.如下图所示的图G 不是欧拉图而是汉密尔顿图. 姓 名: 学 号: 得 分: 教师签名: G

2020年电大离散数学(本)期末考试题库及答案

2020年电大离散数学(本)期末考试题库及答案 一、单项选择题 1.设P:a是偶数,Q:b是偶数。R:a + b是偶数,则命题“若a是偶数,b是偶数,则a + b 也是偶数”符号化为(D.P Q→R)。2.表达式?x(P(x,y)∨Q(z))∧?y(Q(x,y)→?zQ(z))中?x的辖域是(P(x,y)Q(z))。 3.设) ( }), ({ }, { , 4 3 2 1 ? = ? = ? = ? =P S P S S S则命题为假的是( 4 2 S S∈)。 4.设G是有n个结点的无向完全图,则G的边数(1/2 n(n-1))。 5.设G是连通平面图,有v个结点,e条边,r个面,则r=(e-v+2)。 6.若集合A={1,{2},{1,2}},则下列表述正确的是( {1}?A ). 7.已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( 5 ). 8.设无向图G的邻接矩阵为 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 则G的边数为( 7 ). 9.设集合A={a},则A的幂集为({?,{a}} ). 10.下列公式中(?A∧?B ??(A∨B) )为永真式. 11.若G是一个汉密尔顿图,则G一定是( 连通图). 12.集合A={1, 2, 3, 4}上的关系R={|x=y且x, y∈A},则R的性质为(传递的). 13.设集合A={1,2,3,4,5},偏序关系≤是A上的整除关系,则偏序集上的元素5是集合A的(极大元). 14.图G如图一所示,以下说法正确的是( {(a, d) ,(b, d)}是边割集) .图一 15.设A(x):x是人,B(x):x是工人,则命题“有人是工人”可符号化为((?x)(A(x)∧B(x)) ). 16.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是(A?B,且A∈B ). 17.设有向图(a)、(b)、(c)与(d)如图一所示,则下列结论成立的是( (d)是强连通的). 18.设图G的邻接矩阵为 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 1 1 1 1 则G的边数为( 5 ). 19.无向简单图G是棵树,当且仅当(G连通且边数比结点数少1 ). 20.下列公式((P→(?Q→P))?(?P→(P→Q)) )为重言式. 21.若集合A={ a,{a},{1,2}},则下列表述正确的是({a}?A). 22.设图G=,v∈V,则下列结论成立的是(E v V v 2 ) deg(= ∑ ∈ ) . 23.命题公式(P∨Q)→R的析取范式是((?P∧?Q)∨R ) 24.下列等价公式成立的为(P→(?Q→P) ??P→(P→Q) ). 25.设A={a, b},B={1, 2},R1,R2,R3是A到B的二元关系,且R1={, },R2={, , },R3={, },则(R2)不是从A到B的函数. 26.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为(无、2、无、2).

离散数学作业答案

第一章 1.假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合。请用A 和B表示ECNU不必学习离散数学的二年级的学生的集合。 2.试求: (1)P(φ) (2)P(P(φ)) (3)P(P(P(φ))) 3.在1~200的正整数中,能被3或5整除,但不能被15整除的正整数共有多少个? 能被5整除的有40个, 能被15整除的有13个, ∴能被3或5整除,但不能被15整除的正整数共有 66-13+40-13=80个。 第三章 1.下列语句是命题吗? (1)2是正数吗? (2)x2+x+1=0。 (3)我要上学。 (4)明年2月1日下雨。 (5)如果股票涨了,那么我就赚钱。 2.请用自然语言表达命题(p?→r)∨(q?→r),其中p、q、r为如下命题: p:你得流感了 q:你错过了最后的考试

3.通过真值表求p→(p∧(q→p))的主析取范式和主合取范式。 4.给出p→(q→s),q,p∨?r?r→s的形式证明。 第四章 1.将?x(C(x)∨?y(C(y)∧F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y) 表示x和y是同 班同学,个体域是学校全体学生的集合。 解: 学校的全体学生要么自己有电脑,要么其同班同学有电脑。 2.构造?x(P(x)∨Q(x)),?x(Q(x)→?R(x)),?xR(x)??xP(x)的形式证明。 解: ①?xR(x) 前提引入 ②R(e) ①US规则 ③?x(Q(x)→?R(x)) 前提引入 ④Q(e) →?R(e) ③US规则 ⑤?Q (e) ②④析取三段论 ⑥?x(P(x)∨Q(x)) 前提引入 ⑦P(e) ∨Q(e) ⑥US规则 ⑧P(e) ⑤⑦析取三段论 ⑨?x (P(x)) ⑧EG规则 第五章

电大离散数学本形考任务完整版

电大离散数学本形考任 务 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

离散数学集合论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业. 要求:学生提交作业有以下三种方式可供选择: 1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档 3. 自备答题纸张,将答题过程手工书写,并拍照上传. 一、填空题 1.设集合{1,2,3},{1,2} A B ==,P(A)-P(B )={{3},{1,3},{2,3},{1,2,3}},A B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} . 2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 .

3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系, 则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>}. 4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系 R=} x∈ y y > <那么R-1={<6,3>,<8,4>}. x = ∈ 2 , , x , {B A y 5.设集合A={a, b, c, d},A上的二元关系R={, , , },则R具有的性质是没有任何性质. 6.设集合A={a, b, c, d},A上的二元关系R={, , , },若在R中再增加两个元素 ,则新得到的关系就具有对称性. 7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={|xA,yA, x+y =10},则R的自反闭包为 <1,1>,<2,2> . 9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含 <1,1>,<2,2>,<3,3> 等元素. 10.设A={1,2},B={a,b},C={3,4,5},从A到B的函数f ={<1, a>, <2, b>},从B到C的函数g={< a,4>, < b,3>},则Ran(g f)= {<1,b>,<2,a>} . 二、判断说明题(判断下列各题,并说明理由.) 1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则

国开放大学离散数学本离散数学作业答案

国开放大学离散数学本离 散数学作业答案 The pony was revised in January 2021

离散数学集合论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业. 要求:学生提交作业有以下三种方式可供选择: 1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档 3. 自备答题纸张,将答题过程手工书写,并拍照上传. 一、填空题

1.设集合{1,2,3},{1,2} ==,则P(A)-P(B )= {{1,2},{2,3},{1,3}, A B {1,2,3}} ,A B= {< 1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3, 2> } . 2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 . 3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系, 则R的有序对集合为 {< 2,2>,<2,3>,<>,<> } .4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系 R=} y x y x∈ ∈ < > = A , , 2 , y {B x 那么R-1= {< 6,3>,<8,4> } . 5.设集合A={a, b, c, d},A上的二元关系R={, , , },则R具有的性质是反自反性. 6.设集合A={a, b, c, d},A上的二元关系R={, , , },若在R中再增加两个元素 , ,则新得到的关系就具有对称性. 7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有2 个.

离散数学及其应用集合论部分课后习题答案

作业答案:集合论部分 P90:习题六 5、确定下列命题是否为真。 (2)?∈? (4){}?∈? (6){,}{,,,{,}}a b a b c a b ∈ 解答:(2)假(4)真(6)真 8、求下列集合的幂集。 (5){{1,2},{2,1,1},{2,1,1,2}} (6){{,2},{2}}? 解答: (5)集合的元素彼此互不相同,所以{2,1,1,2}{1,2}=,所以该题的结论应该为 {,{{1,2}},{{2,1,1}},{{1,2},{2,1,1}}}? (6){,{{,2}},{{2}},{{,2},{2}}}??? 9、设{1,2,3,4,5,6}E =,{1,4}A =,{1,2,5}B =,{2,4}C =,求下列集合。 (1)A B (2)()A B 解答: (1){1,4}{3,4,6}{4}A B == (2)(){1}{2,3,4,5,6}A B == 31、设A,B,C 为任意集合,证明 () ()()()A B B A A B A B --=- 证明: ()() {|}{|()()}{|()()()()} {|()()}{|()()}{|()()} {|()()}{|()(A B B A x x A B x B A x x A x B x B x A x x A x B x B x B x A x A x B x A x x A x B x B x A x x A B x A x B x x A B x A x B x x A B x B x x A B x A --=∈-∨∈-=∈∧?∨∈∧?=∈∨∈∧?∨∈∧∈∨?∧?∨?=∈∨∈∧?∨?=∈∧?∨?=∈∧∈∨∈=∈∧∈=∈∧∈)} B A B A B =-

相关文档
最新文档