辅助角公式教学及自学

辅助角公式教学及自学
辅助角公式教学及自学

辅助角公式

sin cos )

a b θθθ?+=

+教学应注意的的几个问题

在三角函数中,有一种常见而重要的题型,即化sin cos a b θθ+为一个角的一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学生记忆和掌握这种题型的解答方法,教师们总结出公式

sin cos a b θθ

+=)

θ?+或

sin cos a b θθ

+

cos()

θ?-,让学生在大量的训练和考试

中加以记忆和活用.但事与愿违,半个学期不到,大部分学生都忘了,教师不得不重推一遍.到了高三一轮复

习,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式.

一.教学中常见的的推导方法

教学中常见的推导过程与方法如下

1.引例

例1

求证:sin α+cos α=2sin (α+6π)=2cos (α-3π).

其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出结论:

可见

α+cos α可以化为一个角的三角函数形式.

一般地,asin θ+bcos θ 是否可以化为一个角的三角函数形式呢? 2.辅助角公式的推导

例2 化sin cos a b θθ+为一个角的一个三角函数的形式. 解: asin θ+bcos θ

a sin θ

b cos θ),

=cos?

=sin?,

asinθ+bcosθ

θcos?+cosθsin?)

θ+?),(其中tan?=b a)

=sin?

=cos?,则

asinθ+bcosθ

θsin?+co sθcos?

θ-?),(其中tan?=a

b

)

其中?的大小可以由sin?、cos?的符号确定?的象限,再由tan?的值求出.或由tan?=b

a

和(a,b)所在的象限来确定.

推导之后,是配套的例题和大量的练习.

但是这种推导方法有两个问题:一

是为什么要令

a =cos ?

,

b =sin ??让学生费解.

二是这种 “规定”式的推导,学生难记易忘、易错! 二.让辅助角公式

sin cos a b θθ

+

)

θ?+来得更自然

能否让让辅助角公式来得更自然些?这是我多少年来一直思考的问题.2009年春.我又一次代2008级学生时,终于想出一种与三角函数的定义衔接又通俗易懂的教学推导方法. 首先要说明,若a=0或b=0时,

sin cos a b θθ

+已经是一个角的一个三角函

数的形式,无需化简.故有ab ≠0. 1.在平面直角坐标系中,以a 为横坐标,b 为纵坐标描一点P(a,b)如图1所示,则总有一个角?,它的终边经过点P.设

由三角函数的

定义知 sin ?=b

r

=

b , cos ?

=a

a r =

.

所以asin θ+bcos θ

?

sin θ

?cos θ

)

θ?+.(其中

tan ?=b a

) 2.若在平面

直角坐标系中,以b 为横坐标,以a 为纵坐标可以描点P(b,a),如图2所示,则总有一个角?的终边经过点P(b,a),设OP=r,则

由三角函数的定义知 sin ?=a r

,

cos ?=b

r

=

b .

asin θ+bcos θ

=sin cos cos ?θ?θ

+

s()

θ?-. (其中

tan ?=a

b )

例3

cos θθ

+为一个角的一

个三角函数的形式.

解:在坐标系中描点

设角

?

的终边过点

P,则OP

?=1

2,cos ?=

2.

cos θθ

+=2cos ?sin θ+2sin ?cos θ=2si

n(θ?+

).tan ?=3.

26k π

=

+,cos θθ

+=2sin(6πθ+).

经过多次的运用,同学们可以在教师的指导下,总结出辅助角公式 asin θ

+bcos θ=

(

a sin

θ+

b

cos

θ

)=

)

θ?+,(其中tan ?=b

a ).或者 asin θ

+bcos θ=

(

sin θ+

b

cos

θ

)=

cos()

θ?-,(其中

tan ?=a

b )

我想这样的推导,学生理解起来会容易得多,而且也更容易理解

asin

θ

+bcos

θ

a sin θ

+

b

cos θ)的道理,

以及为什么只有两种形式的结果. 例4

化sin αα

-

为一个角的一个三

角函数的形式. 解法一:点

(1,-)在第四象限.OP=2.设角

?

P 点.

sin 2

?=-

,1

cos 2?=.满足条件的最小正角

为53π,5

2,.3

k k Z ?ππ=+∈

1sin cos 2(

sin cos )2(sin cos cos sin )

2

2

552sin()2sin(2)2sin().

3

3

k ααααα?α?α?αππαπ∴-

=-=+=+=++=+解法二:点

在第二象限,OP=2,设角?过P 点.则1sin 2?=

,cos 2

?=-

.满足

条件的最小正角为5

6π,5

2,.6k k Z ?ππ=+∈

1

sin cos2(sin cos)2(sin sin cos cos)

22

55

2cos()2cos(2)2cos().

66

k

ααααα?α?α?αππαπ

∴-=-=+

=-=--=-

三.关于辅助角的范围问题

由sin cos)

a b

θθθ?

+=+中,点P(a,b)的位置可知,终边过点P(a,b)的角可能有四种情况(第一象限、第二象限、第三象限、第四象限).

设满足条件的最小正角为

1

?,则1

2k

??π

=+.由诱导公式(一)知

1 sin cos))

a b

θθθ?θ?

+=+=+.其中

1

(0,2)

∈,1

tan

b

a

?=,1?的具体位置由1

sin?与1

cos?决定,1?的大小由1

tan

b

a

?=决定.

类似地,sin cos)

a b

θθθ?

+=-,?的终边过点P(b,a),设满足条件

的最小正角为2

?,则2

2.

k ??

π=+由诱导公

式有

2sin cos ))

a b θθθ?θ?+=

-=

-,

其中2

(0,2)

?

π∈,2

tan a

b

?

=

,2

?的位置由2

sin ?和2

cos ?确定,2

?的大小由2

tan a

b

?

=

确定. 注意:①一般地,1

2

?

?≠;②以后没

有特别说明时,角1

?(或2

?)是所求的辅助角.

四.关于辅助角公式的灵活应用 引入辅助角公式的主要目的是化简三角函数式.在实际中结果是化为正弦还是化为余弦要具体问题具体分析,还有一个重要问题是,并不是每次都要化为

1sin cos )

a b θθθ?+=

+的形式或

2sin cos cos()

a b θθθ?+=

-的形式.可以利

用两角和与差的正、余弦公式灵活处理.

例5 化下列三角函数式为一个角的一个三角函数的形式.

cos αα

-;

(2)

sin(

)cos(

)63

63

π

π

αα-+

-.

解:

1cos 2(

sin cos )

2

22(sin cos

cos sin

)2sin()

6

6

6

ααααπ

π

π

ααα-=-

=-=-

(2

sin(

)cos(

)

63631[sin()cos()]32323[sin()cos cos(

)sin

]

333

3

3

2sin(

)

33

π

π

ααππααπ

π

π

π

ααπ

α-+

-=-+-=-+-=

-

在本例第(1)

小题中,a =,1b =-,

,而取

.也就是说,当a 、

b

中至少有一个是负值时.我们可以取

P(a ,b ),或者P(b ,a ).这样确定的角1

?(或2

?)是锐角,就更加方便.

6

已知向

(

c

o s ()

,

1

)

3

a x π

=+ ,

1(cos(),)

32

b x π=+- ,

(sin(),0)

3

c x π

=+ ,求函数()h x =

2

a b b c ?-?+ 的最

大值及相应的x 的值.

解:2

1()cos ()sin()cos()23233h x x x x πππ

=+--+++

=

21cos(2)

123

3

sin(2)2

2

3

2

x x ππ++

-

+

+

=1

2

1

2

cos(2)sin(2)22323x x ππ+-++

=

22[

cos(2)sin(2)]2

2

2

3

2

3

x x ππ+

-

+

+

=11cos(2)2

2

12x π+

+

m ax

()

2.

2

h x ∴=+

这时11

11

22,.1224x k x k k Z ππππ+==-∈.

此处,若转化为两角和与差的正弦公式不仅麻繁,而且易错,请读者一试.

五.与辅助角有关的应用题 与辅助角有关的应用题在实际中也比较常见,而且涉及辅角的范围,在相应范围内求三角函数的最值往往是个难点. 例7 如图3,记扇OAB 的中心角为

45

?

,半径为1,矩形

θ

N

B

M

A

Q P

O

图3

PQMN 内接于这个扇形,求矩形的对角线l 的最小值.

解:连结OM,设∠AOM=θ

.则

MQ=sin θ,OQ=cos θ,OP=PN=sin θ. PQ=OQ-OP=cos sin θθ-. 2

2

2

l M Q PQ =+

=2

2

sin

(cos sin )

θθθ+-

=3

1

(sin 2cos 2)22θθ-+

=

13sin(2)

22

θ?-

+,

其中

11t

a

n 2

?=,1

(0,

)

2

π

?

∈,1

1

arctan

2

?

=. 04π

θ<<

,1

11arctan 2arctan

.

22

2

π

θ?∴<+<

+

2m in

32

2

l

∴=

-

,m in

12

l

-=

.

所以当11

arctan 422

πθ=-时, 矩形的对角线l

的最小值为12

-.

(完整版)必修4之《辅助角公式》

?知识点回顾 对于形如y=asinx+bcosx 的三角式,可变形如下: ----------- sin 来确定。通常称式子(*)为辅助角公式,它可以将多个三角式的函数冋 题,最终化为y=Asin( x )+k 的形式。 二.训练 1.化下列代数式为一个角的三角函数 (4) -sin .3 cos ; (2) ? ,3 sin cos 2 2 高一数学期末复习 必修 4之《辅助角公式》 y=as in x+bcosx 押a 2 b 2 (sin x ? cosx ? a ------------- =cos . a 2 b 2 0, 0,则y ,a 2 b 2(sin xcos cosxs in )Va b 2 sin(x ) 由此我们得到结论: 2 2 asinx+bcosx= . a b sin(x ),(*)其中0由 cos (3) sin cos sin(- ) ^6 cos(- 6 3 6 3 (5) 5sin 12cos (6) asinx bcosx -------------=si n a

3 2 2 的两个相邻交点的距离等于 ,则f (x)的单调递增区间是 ( ) A . [k ,k A ,k Z B. [k 11 ],k Z 12 12 12 12 C . [k , k ],k Z D. [k ,k 2 ],k Z 3 6 6 3 5. 如 果函 数 y=s in 2x+acos2x 的 图象关 于直 线x=- —对称,那么 a= () (A ) 2 (B ) ,2 (C ) 1 (D ) -1 n 6.函数 y = cos x + cos x +三 的最大值是 ___________ 3 7.已知向量 a (cos(x ),1), b 3 c (sin(x ),0),求函数 h(x)=a 2的最大值及相应的x 的值. 2 . 函 数 y = n 2s in 3 x — cos ( ) A.— 3 B .—2 C 3.若函数 f(x) (1 、_3ta nx)cosx , 0 x ( ) A. 1 B .2 C 4.( 2009安徽卷理)已知函数f(x) 3sin x cos x( n ~6 + x (x € R)的最小值等于 1 D 5 -,则f(x)的最大值为 2 .,3 1 D . ,3 2 0), y f(x)的图像与直线y 2 (cos(x -),-),

辅助角公式专题练习

辅助角公式专题练习 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

辅助角公式专题训练 一.知识点回顾 对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx+bcosx =++++a b x a a b x b a b 222 2 2 2 (sin cos )· · 。记 a a b 2 2 +=cos θ, b a b 22 +=sin θ,则cos cos sin ))y x x x θθθ+=+ 由此我们得到结论:asinx+bcosx=a b x 22++sin()θ,(* cos ,θ= sin θ=来确定。通常称式子(*)为辅助角公式,它可以将多个三角式的函数 问题,最终化为y=Asin(?+ωx )+k 的形式。 二.训练 1.化下列代数式为一个角的三角函数 (1 )1sin cos 22 αα+ ; (2 cos αα+; (3)sin cos αα- (4 )sin()cos()6363 ππ αα-+-. (5)5sin 12cos αα+ (6)sin cos a x b x + 2.函数y =2sin ? ????π3-x -cos ? ?? ??π6+x (x ∈R)的最小值等于 ( ) A .-3 B .-2 C .-1 D .- 5 3. 若函数()(1)cos f x x x =+,02 x π ≤<,则()f x 的最大值为 ( ) A .1 B .2 C 1 D 2

4.(2009安徽卷理)已知函数 ()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212 k k k Z ππππ-+∈ B.511[,],1212 k k k Z ππππ++∈C.[,],3 6 k k k Z ππππ-+∈ D.2[,],6 3 k k k Z ππππ++∈5. 如果函数y=sin2x+acos2x 的图象关于直线x=-π 8 对称,那么a= ( ) (A )2 (B )-2 (C )1 (D )-1 6.函数y =cos x +cos ? ?? ?? x + π3的最大值是________. 7.2)cos()12 12 3x x π π + ++ = ,且 02 x π -<<,求sin cos x x -的值。 8.求函数f x k x k x x ()cos( )cos()sin()=+++--++61326132233 2πππ (,)x R k Z ∈∈的值域。 6.(2006年天津)已知函数x b x a x f cos sin )(-=( a 、b 为常数,0≠a ,R x ∈)在 4 π = x 处取得最小值,则函数)4 3( x f y -=π 是 ( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,2 3(π 对称 C .奇函数且它的图象关于点)0,2 3(π 对称 D .奇函数且它的图象关于点)0,(π对称 9. 若sin(50)cos(20)3x x +++=,且0360x ≤<,求角x 的值。 11.已知向量(cos(),1)3a x π=+,1 (cos(),)32 b x π=+-, (sin(),0)3 c x π =+,求函数()h x =2a b b c ?-?+的最大值及相应的x 的值. (本题中可以选用的公式有21cos 21 cos ,sin cos sin 222 a αααα+= =)

三角函数辅助角公式化简

精选文库 7.已知函数()4cos sin 16f x x x π?? =+- ?? ? ,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ?? -??? ?上的最大值和最小值. 8.设函数()() sin 3cos ?cos 2tan x x x f x x π?? +- ? ??= . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ?? ? 上的单调性. 9.已知函数()2 23sin cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[] 0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在 上有两个不同的实根,求实数 的取值范围. 11.设()2 sin cos cos 4f x x x x π?? =-+ ?? ? . (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ?? = ??? , 1a =, 3bc =,求b c +的值. 12.已知函数. (1)求函数 的单调增区间;

精选文库 (2)的内角,,所对的边分别是,,,若,,且的面积为,求的值. 13.设函数. (1)求的最大值,并写出使 取最大值时的集合; (2)已知中,角 的边分别为 ,若 ,求的最小值. 14.已知()( ) 1 3sin cos cos 2 f x x x x ωωω= +-,其中0ω>,若()f x 的最小正周期为4π. (1)求函数()f x 的单调递增区间; (2)锐角三角形ABC 中, ()2cos cos a c B b C -=,求()f A 的取值范围. 15.已知a r =(sinx ,cosx ),b r =(cos φ,sin φ)(|φ|<).函数 f (x )=a r ?b r 且f (3 π -x )=f (x ). (Ⅰ)求f (x )的解析式及单调递增区间; (Ⅱ)将f (x )的图象向右平移3π单位得g (x )的图象,若g (x )+1≤ax +cosx 在x ∈[0, 4 π ] 上恒成立,求实数a 的取值范围. 16.已知向量a v =(2cos 2 x ω, 3sin 2x ω),b v =(cos 2x ω,2cos 2 x ω),(ω>0),设函数f (x )=a v ?b v ,且f (x )的最小正周期为π. (1)求函数f (x )的表达式; (2)求f (x )的单调递增区间. 17.已知函数()()sin (0,0,)2 f x A x A π ω?ω?=+>><的部分图象如图所示. (1) 求函数()f x 的解析式; (2) 如何由函数2sin y x =的通过适当图象的变换得到函数()f x 的图象, 写出变换过程; (3) 若142f α??= ???,求sin 6πα?? - ??? 的值. 18.已知函数 (1)求函数在上的单调递增区间; (2)若 且 ,求 的值。

(完整word版)辅助角公式的推导

辅助角公式sin cos )a b θθθ?+=+的推导 在三角函数中,有一种常见而重要的题型,即化sin cos a b θ θ+为一个角 的一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学 生记忆和掌握这种题型的解答方法,教师们总结出公式 sin cos a b θθ+ )θ?+或sin cos a b θθ+ cos()θ?-,让学生在大量的训练和考试中加以记忆和活用.但事与愿违,半个 学期不到,大部分学生都忘了,教师不得不重推一遍.到了高三一轮复习,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式. 一.教学中常见的的推导方法 教学中常见的推导过程与方法如下 1.引例 例1 α+cos α=2sin (α+ 6π)=2cos (α-3 π). 其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出 结论: 可见 α+cos α可以化为一个角的三角函数形式. 一般地,asin θ+bcos θ 是否可以化为一个角的三角函数形式呢? 2.辅助角公式的推导 例2 化sin cos a b θ θ+为一个角的一个三角函数的形式. 解: asin θ+bcos θ sin θ cos θ), ① =cos ? =sin ?, 则asin θ+bcos θ θcos ?+cos θsin ?) θ+?),(其中tan ?= b a )

必修4之《辅助角公式》

高一数学期末复习————必修4之《辅助角公式》 一.知识点回顾 对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx+bcosx = ++++a b x a a b x b a b 222 2 2 2 (sin cos )· · 。记 a a b 2 2 +=cos θ, b a b 22 +=sin θ,则cos cos sin ))y x x x θθθ+=+ 由此我们得到结论:asinx+bcosx=a b x 22++sin()θ,(* cos ,θ= sin θ=来确定。通常称式子(*)为辅助角公式,它可以将多个三角式的函数问 题,最终化为y=Asin(?+ωx )+k 的形式。 二.训练 1.化下列代数式为一个角的三角函数 (1 )1sin 2αα+; (2 cos αα+; (3)sin cos αα- (4 )sin()cos()6363 ππ αα-+-. (5)5sin 12cos αα+ (6)sin cos a x b x +

2.函数 y =2sin ? ???? π 3-x -cos ? ?? ?? π 6+x (x ∈R)的最小值等于 ( ) A .-3 B .-2 C .-1 D .- 5 3.若函数()(1)cos f x x x =,02 x π ≤<,则()f x 的最大值为 ( ) A .1 B .2 C 1 D 2 4.(2009安徽卷理)已知函数()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212k k k Z ππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈ D.2[,],63k k k Z ππππ++∈ 5. 如果函数y=sin2x+acos2x 的图象关于直线x=-π 8 对称,那么a= ( ) (A )2 (B )-2 (C )1 (D )-1 6.函数y =cos x +cos ? ????x +π3的最大值是________. 7.已知向量(cos(),1)3a x π=+r ,1 (cos(),)32 b x π=+-r , (sin(),0)3 c x π =+r ,求函数()h x =2a b b c ?-?+r r r r 的最大值及相应的x 的值. (本题中可以选用的公式有21cos 21 cos ,sin cos sin 222 a αααα+= =)

《辅助角公式》专题(更新版)

《辅助角公式》专题 2017年( )月( )日 班级 姓名 宝剑锋从磨砺出,梅花香自苦寒来。 我们知道sin( )6x π+= 那么sin cos cos sin 66x x ππ+= 1 cos 22 x x - cos x x cos x x + sin π12-3cos π12 cos )x x - x x sin15cos15o o + 【辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ)】

问题 请写出把a sin x +b cos x 化成A sin(ωx +φ)形式的过程. a sin x + b cos x =a 2+b 2x x ? ?+?? =a 2+b 2(sin x +cos x ) (想想正弦、余弦的定义) =a 2+b 2sin(x +φ) (其中sin φ=b a 2+b 2,cos φ=a a 2+b 2 ). 使a sin x +b cos x =a 2+b 2sin(x +φ)成立时,cos φ= a a 2+ b 2,sin φ=b a 2+b 2, 其中φ (a ,b )决定. 辅助角公式在研究三角函数的性质中有着重要的应用. 试一试 将下列各式化成A sin(ωx +φ)的形式,其中A >0,ω>0,|φ|<π2 . (1)sin x +cos x = ;(2)sin x -cos x = ; (3)3sin x +cos x =_____________;(4)3sin x -cos x =_____________; (5)sin x +3cos x =_____________;(6)sin x -3cos x =_____________. 【当堂训练】 【求周期】 1.求函数x x y 4sin 4cos 3+= 的最小正周期。

辅助角公式专题训练

辅助角公式专题训练 Revised by Petrel at 2021

辅 助角公式专题训练 教学目标 1、会将ααcos sin b a +(a 、b 不全为零)化为只含有正弦的一个三角比的形式 2、能够正确选取辅助角和使用辅助角公式 教学重点与难点辅助角公式的推导与辅助角的选取 教学过程 一、复习引入 (1)两角和与差的正弦公式 ()sin αβ+=_______________________;()sin αβ-=________________________. (2)利用公式展开sin 4πα??+ ???=___________________ αα=____________. 尝试:将以下各式化为只含有正弦的形式,即化为)sin(βα+A ()0A >的形式 (1 1cos 2 αα+(2 )sin αα 二、辅助角公式的推导 对于一般形式ααcos sin b a +(a 、b 不全为零),如何将表达式化简为只含有正弦的三角比形式? 其中辅助角β 由cos sin ββ?=????=?? β(通常πβ20<≤)的终边经过点(,)a b ,我们称上述公式为辅助角公式,其中角β为辅助角. 三、例题反馈 例1、试将以下各式化为)sin(βα+A ()0A >的形式. (1 1cos 2 αα-(2)ααcos sin + (3 αα(4)ααcos 4sin 3- 例2、试将以下各式化为)sin(βα+A (),[,0ππβ-∈>A )的形式. (1)sin cos αα-(2)ααsin cos -

(3)cos αα- 例3、若sin(50)cos(20)3x x +++=,且0360x ≤<,求角x 的值. 例42)cos()12123 x x π π +++=,且02x π-<<,求sin cos x x -的值. 四、小结思考(1)公式()sin cos a b αααβ++中角β如何确定 (2)能否会将ααcos sin b a +(a 、b 不全为零)化为只含有余弦的一个三角比的 形式? 五、作业布置 1.3cos 66ππαα????+-+ ? ????? 化为)sin(βα+A ()0A >的形式=________________. 2.关于x 的方程12sin x x k =有解,求实数k 的取值范围. 3.已知46sin 4m x x m -=-,求实数m 的取值范围. 4.利用辅助角公式化简:() sin 801cos50? ?? 5.已知函数1()cos 4f x x x =-.(1)若5cos 13x =-,,2x ππ??∈???? ,求()f x 的值;(2)将函数()f x 的图像向右平移m 个单位,使平移后的图像关于原点对称,若0m π<<,求m 的值. 6.已知函数211()sin 2sin cos cos sin()222 f x x x π???=+-+(0)?π<<,其图像过点1(,)62 π (1)求的?值;(2)将函数()y f x =的图像上各点的横坐标缩短到原来的12 ,纵坐标不变,得到 函数()y g x =的图像,求函数()y g x =在区间0,4π?????? 上的最值. 7.已知函数()2cos sin()3f x x x π=+-.(1)求函数()f x 的最小正周期及取得最大值时x 的取值集合;(2)求函数()f x 图像的对称轴方程.

辅助角公式专题练习

精品文档 辅助角公式专题训练 一.知识点回顾 sin cos ) ) a x b x x x x ?+=+ =+ 其中辅助角?由cos sin ??? =? ? ?? = ?? 确定,即辅助角?的终边经过点(,)a b 二.训练 1.化下列代数式为一个角的三角函数 (1)1sin 2αα+; (2cos αα+; (3)sin cos αα- (4sin()cos()6363 ππ αα-+-. 2、 如果函数y=sin2x+acos2x 的图象关于直线x=-π 8 对称,那么a= ( ) (A )2 (B )-2 (C )1 (D )-1 3、已知函数()2cos .f x x x =-[0,],()x f x π∈求的值域

精品文档 4、函数2cos(2), [,]664y x x πππ =+∈-的值域 5、求5sin 12cos αα+ 的最值 6.求函数y =cos x +cos ? ???? x +π3的最大值 7.已知函数()cos (0)f x x x ωωω= +>,()y f x =的图像与直线2y =的 两个相邻交点的距离等于π,则()f x 的单调递增区间是 (过程 ( ) A.5[,],12 12k k k Z π π ππ-+ ∈ B.511[,],1212k k k Z ππππ++∈ C.[,],3 6 k k k Z ππππ-+∈ D.2[,],6 3 k k k Z ππππ++∈ (果 过程

精品文档

参考答案 1.(6) sin cos ) ) a x b x x x x ?+==+ 其中辅助角?由cos sin ??? =? ? ??= ? ? 确定,即辅助角?的终边经过点(,)a b 2.[答案] C [解析] y =2sin ????π3-x -cos ??? ?π 6+x =2cos ????π6+x -cos ??? ?π 6+x =cos ??? ?x +π 6(x ∈R ). ∵x ∈R ,∴x +π 6∈R ,∴y min =-1. 3.答案:B 解析 因为()(1)cos f x x x ==cos x x +=2cos()3 x π - 当3 x π = 是,函数取得最大值为2. 故选B

辅助角公式的推导讲解学习

辅助角公式的推导

辅助角公式sin cos )a b θθθ?+=+的推导 在三角函数中,有一种常见而重要的题型,即化sin cos a b θ θ+为一个角的 一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学生 记忆和掌握这种题型的解答方法,教师们总结出公式 sin cos a b θθ+ )θ?+或sin cos a b θθ+ cos()θ?-,让学生在大量的训练和考试中加以记忆和活用.但事与愿违,半个 学期不到,大部分学生都忘了,教师不得不重推一遍.到了高三一轮复习,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式. 一.教学中常见的的推导方法 教学中常见的推导过程与方法如下 1.引例 例1 α+cos α=2sin (α+6π)=2cos (α-3 π ). 其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出 结论: 可见 α+cos α可以化为一个角的三角函数形式. 一般地,asin θ+bcos θ是否可以化为一个角的三角函数形式呢 2.辅助角公式的推导 例2化sin cos a b θ θ+为一个角的一个三角函数的形式. 解:asin θ+bcos θ sin θ cos θ), ① =cos ? =sin ?, 则asin θ+bcos θ θcos ?+cos θsin ?) θ+?),(其中tan ?=b a )

(完整版)辅助角公式专题训练

辅 助 角 公 式 专 项 训 练(主观题安徽2012高考数学) 1.已知函数1()sin cos 44f x x x = -。 (1)若5cos 13x =-,,2x ππ??∈???? ,求()f x 的值; (2)将函数()f x 的图像向右平移m 个单位,使平移后的图像关于原点对称,若0m π<<,求m 的值。 2.已知函数211()sin 2sin cos cos sin()222 f x x x π???=+-+(0)?π<<,其图像过点1(,)62π。 (1)求的?值; (2)将()y f x =的图像上各点的横坐标缩短到原来的12 ,纵坐标不变,得到函数()y g x =的图像,求函数()y g x =在区间0, 4π??????上的最值。 3.已知函数()2cos sin()32 f x x x π =+-。 (1)求函数()f x 的最小正周期及取得最大值时x 的取值集合; (2)求函数()f x 图像的对称轴方程。 4.已知函数2()2cos sin cos f x a x b x x =+,且(0)f =,1()42 f π=。 (1)求()f x 的单调递减区间; (2)函数()f x 的图像经过怎样的平移才能使所得图像对应的函数成为奇函数?

5.设22()cos()2cos ,32 x f x x x R π=++∈。 (1)求()f x 的值域;(2)求()f x 的对称中心。 6.已知()cos(2)2sin()sin()344f x x x x πππ =-+-+。 (1)求函数()f x 的最小正周期和图像的对称轴方程; (2)求函数()f x 在区间,122ππ??- ????上的值域。 7.已知函数11()cos()cos(),()sin 23324 f x x x g x x ππ=+-=-。 (1)求()f x 的最小正周期; (2)求函数()()()h x f x g x =-的最大值,并求使()h x 取得最大值的x 的集合。 8.设2()sin()cos 1468f x x x πππ =--+,若函数()y g x =与()y f x =的图像关于直线x=1对称,求当40,3 x ??∈????时,()y g x =的最大值。 9.已知函数2()2cos 2sin 4cos f x x x x =+-。 (1)求()3 f π 的值;(2)求()f x 的最值。 10.已知向量(sin ,cos )m A A =r ,1)n =-r ,1m n =r r g ,且A 为锐角。 (1)求角A 的大小;(2)求函数()cos 24cos sin ()f x x x A x R =+∈的值域。

三角函数辅助角公式化简

三角函数辅助角公式化简 一、解答题 1.已知函数()22sin cos 3f x x x π?? =-+ ?? ? , x R ∈ (1)求()f x 的对称中心; (2)讨论()f x 在区间,34ππ?? -??? ?上的单调性. 2.已知函数( )4sin cos 3f x x x π?? =+ ?? ? (1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期; (2)求()f x 在区间,46ππ?? -????上的最大值和最小值及取得最值时x 的值. 3.已知函数( )4tan sin cos 23f x x x x ππ??? ?=-- ? ???? ? (1)求()f x 的最小正周期; (2)求()f x 在区间,44ππ?? -???? 上的单调递增区间及最大值与最小值. 4.设函数( )2 sin cos 2 f x x x x =+- . (1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间. 5.已知函数()πππcos 22sin sin 344f x x x x ??????=- +-+ ? ? ?? ?? ??? (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ,122?? -??? ?上的值域. 6.已知函数( )21 cos cos 2 f x x x x =--. (Ⅰ)求函数()f x 的对称中心; (Ⅱ)求()f x 在[] 0,π上的单调区间.

7.已知函数()4cos sin 16f x x x π? ?=+- ?? ?,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ?? -???? 上的最大值和最小值. 8.设函数()() sin 3cos ?cos 2tan x x x f x x π?? +- ? ??= . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ?? ? 上的单调性. 9.已知函数()2 23sin cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[] 0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在 上有两个不同的实根,求实数 的取值范围. 11.设()2 sin cos cos 4f x x x x π?? =-+ ?? ? . (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ?? = ??? , 1a =, 3bc =,求b c +的值. 12.已知函数 .

辅助角公式 教案

辅助角公式2010-4-7 一、教学目标 1、会将ααcos sin b a +(a 、b 不全为零)化为只含有正弦的一个三角比的形式 2、能够正确选取辅助角和使用辅助角公式 二、教学重点与难点 辅助角公式的推导与辅助角的选取 三、教学过程 1、复习?引入 两角和与差的正弦公式 ()sin αβ+=_________________________________ ()sin αβ-=_________________________________ 口答:利用公式展开sin 4πα??+ ??? =_____________________ 反之, αα 化简为只含正弦的三角比的形式,则可以是αα=_____________________________ 尝试:将以下各式化为只含有正弦的形式,即化为)sin(βα+A ()0A >的形式 (1 1cos 2 αα+ (2 )sin αα 2、辅助角公式?推导 对于一般形式ααcos sin b a +(a 、b 不全为零),如何将表达式化简为只含有正弦的三角比形式? sin cos )) a b αααααβ+==+ 其中辅助角β 由cos sin ββ?=????=?? β(通常πβ20<≤)的终边经过点(,)a b ------------------我们称上述公式为辅助角公式,其中角β为辅助角。

3、例题?反馈 例1、试将以下各式化为)sin(βα+A ()0A >的形式. (11cos 2αα- (2)ααcos sin + (3αα (4)ααcos 4sin 3- 例2、试将以下各式化为)sin(βα+A (),[,0ππβ-∈>A )的形式. (1)sin cos αα- (2)ααsin cos - (3)cos αα- 例3、若sin(50)cos(20)x x +++ 0360x ≤< ,求角x 的值。 例42)cos()12123x x ππ+ ++=,且 02 x π-<<,求sin cos x x -的值。 4、小结?思考 (1)公式()sin cos a b αααβ++中角β如何确定? (2)能否会将ααcos sin b a +(a 、b 不全为零)化为只含有余弦的 一个三角比的形式? 5、作业布置 (1)3cos 66ππαα????+-+ ? ????? =________________(化为)sin(βα+A ()0A >的形式) (2) 、关于x 的方程12sin x x k =有解,求实数k 的取值范围。 (3)、已知46sin 4m x x m -=-,求实数m 的取值范围。 (4)、利用辅助角公式化简: ()sin801cos50??? 四、教学反思

(完整版)辅助角公式专题训练

辅助角公式专项训练(主观题安徽2012高考数学) 1.已知函数3 1 ()sin cos 44f x x x 。 (1)若5 cos 13x ,,2x ,求()f x 的值; (2)将函数 ()f x 的图像向右平移m 个单位,使平移后的图像关于原点对称,若0m , 求m 的值。2.已知函数211()sin 2sin cos cos sin()222f x x x (0),其图像过点1(,)62 。(1)求的 值;(2)将()y f x 的图像上各点的横坐标缩短到原来的1 2,纵坐标不变,得到函数()y g x 的 图像,求函数()y g x 在区间0,4上的最值。 3.已知函数3 ()2cos sin()32f x x x 。 (1)求函数 ()f x 的最小正周期及取得最大值时x 的取值集合; (2)求函数()f x 图像的对称轴方程。4.已知函数23 ()2cos sin cos 2f x a x b x x ,且3 (0)2f ,1 ()42f 。 (1)求()f x 的单调递减区间; (2)函数()f x 的图像经过怎样的平移才能使所得图像对应的函数成为奇函数?

5.设22 ()cos()2cos ,32x f x x x R 。 (1)求()f x 的值域;(2)求()f x 的对称中心。 6.已知()cos(2)2sin()sin()344f x x x x 。 (1)求函数()f x 的最小正周期和图像的对称轴方程; (2)求函数()f x 在区间,122上的值域。 7.已知函数1 1 ()cos()cos(),()sin 23324f x x x g x x 。 (1)求()f x 的最小正周期; (2)求函数()()()h x f x g x 的最大值,并求使()h x 取得最大值的x 的集合。 8.设2 ()sin()cos 1468f x x x ,若函数()y g x 与()y f x 的图像关于直线 x=1对称,求当4 0,3x 时,()y g x 的最大值。 9.已知函数2()2cos 2sin 4cos f x x x x 。 (1)求()3f 的值;(2)求()f x 的最值。 10.已知向量(sin ,cos )m A A r ,(3,1)n r ,1m n r r g ,且A 为锐角。 (1)求角A 的大小;(2)求函数()cos24cos sin ()f x x x A x R 的值域。

辅助角公式专题练习

辅助角公式专题训练2013.3 一.知识点回顾 对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx+bcosx = ++++a b x a a b x b a b 222 2 2 2 (sin cos )· · 。记 a a b 2 2 +=cos θ, b a b 22 +=sin θ,则cos cos sin ))y x x x θθθ=+=+ 由此我们得到结论:asinx+bcosx=a b x 22++sin()θ,(* cos ,θ= sin θ=来确定。通常称式子(*)为辅助角公式,它可以将多个三角式的函数问题,最终 化为y=Asin(?+ωx )+k 的形式。 二.训练 1.化下列代数式为一个角的三角函数 (1 )1sin 22 αα+; (2 cos αα+; (3)sin cos αα- (4 ) sin()cos()6363 ππ αα-+-. (5)5sin 12cos αα+ (6)sin cos a x b x +

2.函数y =2sin ? ????π3-x -cos ? ?? ??π6+x (x ∈R)的最小值等于 ( ) A .-3 B .-2 C .-1 D .- 5 3.若函数()(1)cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 ( ) A .1 B .2 C 1 D 2 4.(2009安徽卷理)已知函数()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212k k k Z ππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈ D.2[,],63k k k Z ππππ++∈ 5. 如果函数y=sin2x+acos2x 的图象关于直线x=- π 8 对称,那么a= ( ) (A )2 (B )-2 (C )1 (D )-1 6.函数y =cos x +cos ? ? ? ?? x + π3的最大值是________. 7.2)cos()12 12 3x x π π + ++ = ,且 02 x π -<<,求sin cos x x -的值。 8.求函数f x k x k x x ()cos( )cos()sin()=+++--++61326132233 2πππ (,)x R k Z ∈∈的值域。

辅助角公式专题训练 (2)

辅助角公式专题训练 教学目标 1、会将ααcos sin b a +(a 、b 不全为零)化为只含有正弦的一个三角比的形式 2、能够正确选取辅助角与使用辅助角公式 教学重点与难点 辅助角公式的推导与辅助角的选取 教学过程 一、复习引入 (1)两角与与差的正弦公式 ()sin αβ+=_______________________; ()sin αβ-=________________________、 (2)利用公式展开sin 4πα??+ ???=___________________; 反之 αα=____________、 尝试:将以下各式化为只含有正弦的形式,即化为)sin(βα+A ()0A >的形式 1cos 2 αα+ (2)sin αα 二、辅助角公式的推导 对于一般形式ααcos sin b a +(a 、b 不全为零),如何将表达式化简为只含有正弦的三角比形式? )sin()cos sin (cos sin 2 2222222βααααα++=++++=+b a b a b b a a b a b a 其中辅助角β 由cos sin ββ??????? ,即辅助角β(通常πβ20<≤)的终边经过点(,)a b ,我们称上述公式为辅助角公式,其中角β为辅助角、 三、例题反馈 例1、试将以下各式化为)sin(βα+A ()0A >的形式、 1cos 2 αα- (2)ααcos sin + αα (4)ααcos 4sin 3- 例2、试将以下各式化为)sin(βα+A (),[,0ππβ-∈>A )的形式、 (1)sin cos αα- (2)ααsin cos - (3)cos αα- 例3 、若sin(50)cos(20)x x +++o o 且0360x ≤

关于辅助角公式的一个定理及其应用--(2019高考)数学考点分类解析

关于辅助角公式的一个定理及其应用 定理1 设函数)0(cos sin )(2 2 ≠++=b a x b x a x f ,则 (1)当且仅当??? ?? ?? += +=2222cos sin b a b x b a a x 时,2 2max )(b a x f +=; (2)当且仅当??? ? ? ?? +- =+-=2222cos sin b a b x b a a x 时,22min )(b a x f +-=. 证法1 因为12 222 2 2=??? ? ??++???? ??+b a b b a a ,所以可设??sin , cos 2 2 2 2 =+=+b a b b a a ,得 )(sin cos sin cos sin )(22222 222?++=??? ? ??++++=+=x b a x b a b x b a a b a x b x a x f (1) (1)当且仅当∈+=+k k x (22π π?Z )即??? ?? ?? += =+==2222sin cos cos sin b a b x b a a x ??时, 22max )(b a x f +=. (2)当且仅当∈-=+k k x (22π π?Z )即??? ?? ??+- =-=+-=-=2222sin cos cos sin b a b x b a a x ??时, 22min )(b a x f +-=. 证法2 因为函数)0(cos sin )(2 2 ≠++=b a x b x a x f 可化成 )(sin )(22?++=x b a x f 的形式,所以 0x 是)(x f 的最值点0x ?是)(x f 的极值点000cos sin 0)(x a x b x f =?='?

化一公式,辅助角公式学习教案.docx

化一公式(第一课时) 一、教材分析 化一公式在必修 4 的教材中并没有出现专门的一节进行讲解,是因为化一公式的本质其实就是两角和的正弦公式的逆应用。二、教学重点 对特殊角的化一公式的应用,两角和正弦的逆应用。知道要从系数中提出 a 2b2 . 三、教学难点 对a2b2的探究,理解为什么要提这个出来。 四、教学过程 (一)、知识回顾引入 前面我们学习了两角和的正弦公式,大家回顾一下应该等于: sin() sin cos sin cos 那我们看一下 sin=sin cos cos sin 3 cos 1 sin 33322 则那么请同学看下面两个题应该等于多少 例一:化简下面式子 ( 1)2 sin 2 cos 22 ( 2)1 sin 3 cos 22 解释:第一个式子中的2 可以看成 sin, cos, 变式后利用两角和正弦的逆应244 用课进行化简。第二个式子中的 1 和3 可以看成 cos , sin。 2233(二)、新授知识 那么现在我们来看下一个题: 例二:化简下面式子 ( 1) 2 sin 2 cos ( 2)sin 3 cos (提示学生和例一的关系,让学生自己转化到例一去)

解答:(1)22 sin 2 cos2sin 224 (2) 2 1 sin 3 cos2sin 3 22 为什么要提 2 出来呢? 因为提出来后可以在里面创造出特殊角的三角函数,是我们想要的 那么刚才的这些题我们都比较容易看出他们和特殊角之间的关系,那么如果遇到较为复杂的系数我们该提多少出来呢?例三:化简下面式子 a sin x b cosx (让学生思考并讨论) 学生讨论后指出这里应该提出 a 2b2,因为里面剩下的a,b刚好 a 2b2a2b2 可以构一个角的正弦与余弦。 所以 a sin x b cosx a2b2sin(x) ,我们把这种把两三角函数变为一个三角 函数的公式称为化一公式。 由此我们就可以处理任何类似的式子了 例三:化简下面式子 3 15 sin x 3 5 cos x 解答:先观察,把315 与3 5 的公因式 35先提出来,变为 3 sin x cos x ,再利用公式,提出32 2 ,可以变为 653sin x1cos x65 sin x 12 226练习:化简下面式子: ( 1)3 cos x 3 sin x(2) 3 sin x cos x( 3) 2 sin x 6 cos x 2244 (让学生上来做并讲解) (三)总结 同学们你们来说说这节课你收获到了什么? 1,化一公式 2 ,逆向思维3,化归的思想(四)作业 练习册

相关文档
最新文档