微电阻四线量测法

微电阻四线量测法
微电阻四线量测法

除了在第3.2节介绍的所有低电压测量中要考虑的问题之外,在低电阻的测量中更容易引进附加的误差源,其中包括引线电阻、非欧姆接触以及器件的加热问题。这一节将要介绍这些误差源以及将其消除或者降至最小的各种方法。此外还要介绍其它一些测量中要考虑的因素,包括干电路测试和电感性器件的测试等。

3.3.1Lead Resistance and Four-Wire Method引线电阻和四线方法

Resistance measurements are often made using the two-wire method shown in Figure 3-14. The test current is forced through the test leads and the resistance (R) being measured. The meter then measures the voltage across the resistance through the same set of test leads and computes the resistance value accordingly.

电阻的测量常常使用图3-14所示的两线方法来进行。我们迫使测试电流流过测试引线和被测电阻(R)。然后仪表通过同一套测试引线来测量电阻两端的电压,并计算出相应的电阻数值。

The main problem with the two-wire method as applied to low resis tance measurements is that the total lead resistance (R LEAD) is added to the measurement. Since the test current (I) causes a small but significant volt age drop across the lead resistances, the voltage (V M) measured by the meter won’t be exactly the same as the voltage (VR) directly across the test

resistance (R), and considerable error can result. Typical lead resistances lie in the range of 1m. to 10mΩ, so it’s very difficult to obtain accurate two- wire resistance measurements when the resistance under test is lower than 10. to 100. (depending on lead resistance).

两线测量方法用于低阻测试时的主要问题是测量结果中增加了引线的总电阻(R LEAD)。由于测试电流(I)在引线电阻上产生了一个小的、但是很重要的电压降,所以仪表测量的电压(V M)就不会和被测电阻(R)上的电压完全相同,于是产生了相当的误差。典型的引线电阻在1mΩ 到10mΩ的范围内,所以当被测电阻小于10Ω到100Ω时,就很难用两线测量方法来获得准确的测量结果(取决于引线电阻的数值)。

Due to the limitations of the two-wire method, the four-wire (Kelvin) connection method shown in Figure 3-15 is generally preferred for low resistance measurements. These measurements can be made using a DMM, micro-ohmmeter, or a separate current source and voltmeter. With this

configuration, the test current (I) is forced through the test resistance (R) through one set of test leads, while the voltage (V M) across the DUT is measured through a second set of leads called sense leads. Although some small current may flow through the sense leads, it is usually negligible and can generally be ignored for all practical purposes. The voltage drop across the sense leads is negligible, so the voltage measured by the meter (VM) is essentially the same as the voltage (V R) across the resistance (R). Consequently, the resistance value can be determined much more accurately than with the two-wire method. Note that the voltage-sensing leads should be connected as close to the resistor under test as possible to avoid including the resistance of the test leads in the measurement.

由于两线方法的局限性,所以对低阻测量来说,人们一般都喜欢采用如图3-15所示的四线连接方法(开尔文法)。这种测量工作可以使用数字多用表、微欧姆计或者分离的电流源和电压表来进行。在这种配置下,迫使测试电流(I)经过一套测试引线流过被测电阻(R);而被测电阻上的电压(V M)则是通过称为取样(Sense)引线的第二套引线来测量的。虽然在取样引线中有小的电流流过,但是这些电流在所有实际测量工作中都是可以忽略的。由于取样引线上的电压降是可以忽略的,所以仪表测量出的电压(V M)和电阻(R)上的电压实际上是相同的。这样,就能以比两线方法高得多的准确度来确定电阻的数值。注意,应当把电压取样引线连到尽可能接近被测电阻的地方,以避免在测量中计入测试引线的电阻。

3.3.2 Thermoelectric EMFs and Offset Compensation Methods热电动势和偏置补偿的方法

Thermoelectric voltages, as described in Section 3.2.1, can seriously affect low resistance measurement accuracy. The current-reversal method, the delta method, and the offset-compensated ohms method are three common ways to overcome these unwanted offsets.

如第3.2.1节所述,热电动势电压能够严重地影响低电阻测量的准确度。电流反向法、Delta(德尔塔)法和偏置补偿欧姆法是消除这些不希望的偏置量的三种最常用的方法。

Current-Reversal Method 电流反向法

Thermoelectric EMFs can be canceled by making two measurements with currents of opposite polarity, as shown in Figure 3-16. In this diagram, a voltmeter with a separate bipolar current source is used. With the positive current applied as in Figure 3-16a, the measured voltage is:

使用极性相反的电流进行两次测量能够抵消热电动势,如图3-16 所示。在该图中,使用了一个电压表和一个分离的双极性电流源。如图3-16a 所示加入正极性电流时,测得的电压为:

V M+ = V EMF + I R

Reversing the current polarity as shown in Figure 3-16b yields the following voltage measurement:

如图3-16b所示,将电流的极性反向,则测量出的电压如下:

V M- = V EMF - I R

The two measurements can be combined to cancel thermoelectric EMFs:

将两次测量结合起来就能够抵消热电动势:

The measured resistance is computed in the usual manner: 用通常的方法计算出被测电阻:

Note that the thermoelectric voltage (V EMF) is completely canceled out by this method of resistance calculation.

注意,用这种方法计算电阻时,完全抵消了热电动势电压(V EMF)。

For the current-reversal method to be effective, it’s important to use a low noise voltmeter with a response speed that is fast compared with the thermal time constant of the circuit under test. If the response speed is too slow, any changes in the circuit temperature during the measurement cycle will caus e changes in the thermoelectric EMFs that won’t be completely canceled, and some error will result.

为了使这种电流反向法有效,很重要一点是要使用响应速度比被测电路的热时间常数更快的低噪声电压表。如果电压表的响应速度太慢的话,那么测量期间被测电路温度的变化将会引起热电动势发生变化。这样就不能完全抵消热电动势,从而产生某些误差。

Delta Method Delta法

When the thermoelectric voltages are constant with respect to the measurement cycle, the current-reversal method will successfully compensate for these offsets. However, if changing thermoelectric voltages are causing inaccurate results, then the delta method should be used. The delta method is similar to the current-reversal method in terms

of alternating the current source polarity, but it differs in that it uses three voltage measurements to make each resistance calculation. This method can best be explained through an illustration and mathematical computations.

当热电动势电压在测量期间为常数时,电流反向法能够成功地补偿这种热电动势引起的偏置。然而,当变化的热电动势电压引起不准确的测量结果时,就应当使用Delta法。在变换电流源的极性方面,Delta 法类似于电流反向法;而其区别是这种方法使用三次电压测量来完成每个电阻的计算。用一个图和数学计算可以很好地解释这种方法。

Figure 3-17 shows the voltage drop of a DUT as a function of time with an alternating polarity current applied. A voltage measurement (V M1、V M2、V M3 , etc.) is taken each time the polarity is changed. Each voltage measurement includes a constant thermal voltage offset (V EMF) and a

lin early changing voltage offset (δV). The thermal voltage drift may be approximated as a linear function over short periods, so the rate of change of voltage as a function of time (δV) can also be treated as a constant. The first three voltage measurements include the following voltages: 图3-17 表明在加入极性交替的电流时,被测元件(DUT)上的电压降与时间的函数关系。在每次电流的极性改变时,都进行一次电压测量(V M1、V M2、V M3等)。每次的电压测的结果都包括热电压偏置(V EMF)和线性变化的电压偏置(δV)。在短时间内,可以近似地将热电压漂移看作线性函数,所以,电压对时间的函数的变化率(δV)也可以作为常数来处理。前三次电压测量得到下列的电压:

Delta法

V M1 = V1 + V EMF

V M2 = V2 + V EMF+ δV V M3 = V3 + V EMF+ 2δV

where: V M1、V M2、V M3 are voltage measurements

其中:V M1、V M2、V M3为电压测量结果。

V M1 is presumed to be taken at time = 0

假定V M1为在时间= 0 时测量的电压。

V1、V2、and V3are the voltage drop of the DUT due to the applied current V1、V2、V3为所加电流在被测元件上的电压降。

V EMF is the constant thermoelectric voltage offset at the time the

V M1 measurement is taken

V EMF为在进行V M1 测量时的恒定的热电动势电压偏置量。

V is the thermoelectric voltage change

V为热电动势的变化量。

Cancellation of both the thermoelectric voltage offset (V EMF) term and the ther moelectric voltage change (δV) term is possible through mathematical computation using three voltage measurements. First, take one-half the difference of the first two voltage measurements and call this term V A:

使用三次测量,通过数学计算就可能消去热电动势电压偏置项(V EMF )和热电动势电压变化项(δV)。首先,求出前两次电压测量值之差的一半,并将其称为V A:

Then, take one-half the difference of the second (V M2) and third (V M3) voltage measurements and call this term V B:

然后,求出第二次(V M2)和第三次(V M3)电压测量值之差的一半,并将此项称为V B :

Both V A and V B are affected by the drift in the thermoelectric EMF, but the effect on V A and V B is equal and opposite. The final voltage reading is the average of V A and V B and is calculated as:

V A 和V B都受到热电动势漂移的影响,但是其对于V A和V B的影响是相等、相反的。最后的电压读数是V A和V B的平均值,并计算如下:

Notice that both the VEMF and δV terms are canceled out of the final voltage calculation.

注意,在最后的电压计算结果中,VEMF 和δV这两项都被抵消了。

In the delta method, each data point is the moving average of three voltage readings. This additional averaging of the voltage measurements means that the data resulting from the delta method has lower noise than the data derived when the current-reversal method is used to calculate it, even when both sets of data are taken over the same time period.

在Delta法中,每个数据点都是三个电压读数的移动平均值。这种对电压测量值求平均的算法意味着采用Delta法所得到的测量结果比使用电流反向法测量出的结果具有更低的噪声,即使两种方法的数据是在相同的时间内进行的也是这样。

The success of the delta method depends on the linear approximation of the thermal drift, which must be viewed over a short period. Compensating successfully for changing thermoelectric voltages dictates that the measurement cycle time must be faster than the thermal time constant of the DUT. Therefore, an appropriately fast current source and voltmeter must be used for the delta method to be successful. Refer to Section 4.7.2 for information on specific test equipment.

Delta法的成功与否决定于热漂移的线性近似情况,所以必须在较短的时间期间内进行。要想成功地补偿变化的热电动势电压,测量的周期必须比被测设备的热时间常数要小。所以要使Delta法成功,必须使用比较快的电流源和电压表。有关特定测试设备的信息请参见第4.7.2节。

Offset-Compensated Ohms Method 偏置补偿欧姆法

Another offset-canceling method used by micro-ohmmeters and many DMMs is the offset-compensated ohms method. This method is similar to the current-reversal method except that the measurements are alternated between a fixed source current and zero current.

微欧姆计和很多数字多用表使用的另一种消除偏置的方法是偏置补偿欧姆法。这种方法和电流反向法类似,只是这种方法在固定的源电流和零电流之间交替进行测量。

As shown in Figure 3-18a, the source current is applied to the resistance being measured during only part of the cycle. When the source current is on, the total voltage measured by the instrument (Figure 3-18b) includes the voltage drop across the resistor as well as any thermoelectric EMFs, and it is defined as:

如图3-18a所示,只在测量周期的一部分时间里将源电流加到被测电阻上。当源电流接通时,仪器测量出的总电压包括电阻器上的电压降和热电动势(图3-18b),并可以表示为:

During the second half of the measurement cycle, the source current is turned off and the only voltage measured by the meter (Figure 3-18c) is any thermoelectric EMF present in the circuit:

在测量周期的后一半时间内,将源电流关闭。这时仪表测量出的总电压就只是电路中出现的热电动势(图3-18c):

Given that VEMF is accurately measured during the second half of the cycle, it can be subtracted from the voltage measurement made during the first half of the cycle, so the offset-compensated voltage measurement becomes:

若在测量周期的后一半时间内,我们将V EMF准确地测出。就可以从测量周期前一半所测量出的电压中将其减去。这样偏置补偿电压测量结果就成为:

V M = V M1 - V M2

V M = (V EMF+I R) - V EMF

V M = I R

and,

于是,

Again, note that the measurement process cancels the thermoelectric EMF term (V EMF).

同样,我们注意到,该测量过程消除了热电动势项(V EMF)。

3.3.3 Non-Ohmic Contacts 非欧姆接触

Non-ohmic contacts are evident when the potential difference across the contact isn’t linearly proportional to the current flowing through it. Nonohmic contacts may occur in a low voltage circuit as a result of oxide films or other non-linear connections. A non-ohmic connection is likely to rectify any radio frequency energy (RFI) present, causing an offset voltage to appear in the circuit. (A further discussion on RFI can be found in Section 3.2.1.) There are several ways to check for non-ohmic contacts and methods to reduce them.

非欧姆接触出现在接点两端的电位差与流过接点的电流不是线性的比例关系的情况下。非欧姆接触可能发生在由氧化膜形成的低压电路或其它非线性连接中。非欧姆连接能够对出现的任何射频能量(RFI)进行整流,从而使电路中出现偏置电压。(关于射频干扰的更进一步的讨论请见第3.2.1节。)有若干方法可以检查非欧姆接触的存在,还有一些方法可以将其降低。

If using a micro-ohmmeter or DMM to make low resistance measurements, change the range to check for non-ohmic contacts. Changing the measurement range usually changes the test current as well.

A normal condition would indicate the same reading but with higher or lower resolution, depending on whether the instrument was up or down ranged. If the reading is significantly different, this may indicate a

non-ohmic condition.

如果使用微欧姆计或数字多用表来进行低电阻的测量,可以改变测量量程来检查非欧姆接触。改变测量量程通常也就改变了测试电流。在一般情况下,测量的读数是相同的。只是依据仪器量程的升降,读数的分辨率变低或变高。如果测量的读数有很大的差别,那么就表示可能存在着非欧姆接触。

If using a separate current source and voltmeter to make low resistance measurements, each instrument must be checked for non-ohmic contacts. If the current source contacts are non-ohmic, there may be a significant difference in the compliance voltage when the source polarity is reversed. If the voltmeter contacts are non-ohmic, they may rectify any AC pickup present and cause a DC offset error. If this is the case, the offset compensated ohms method is preferred to the current-reversal method for canceling offsets.

如果使用分离的电流源和电压表来进行低电阻测量,则必须检查每台仪器的非欧姆接触情况。如果电流源接点有非欧姆接触特性,那么当源的极性反向时,其输入端压降就可能会有很大的不同。如果电压表接点有非欧姆接触特性,那么它就可能对出现的任何交流干扰进行整流并引起直流偏置误差。在这种情况下,最好使用偏置补偿欧姆法而不使用电流反向法来消除偏置。

To prevent non-ohmic contacts, choose an appropriate contact material, such as indium or gold. Make sure the compliance voltage is high enough to avoid problems due to source contact non-linearity. To reduce error due to voltmeter non-ohmic contacts, use shielding and appropriate

grounding to reduce AC pickup.

为了避免非欧姆接触现象,应当选用适当的接点材料,例如铟或者金。要确保输入端钳位电压足够的高,以避免由于源接点的非线性而产生的问题。为了降低电压表的非欧姆接触所产生的误差,采用屏蔽和适当的接地措施来降低交流干扰。

3.3.4 Device Heating 器件的加热

Device heating can be a consideration when making resistance measurements on temperature-sensitive devices such as thermistors. The test currents used for low resistance measurements are often much higher than the currents used for high resistance measurements, so power dissipation in the device can be a consideration if it is high enough to cause the device’s resistance value to change.

在对温度敏感的器件,如热敏电阻,进行温度测量时,要考虑器件的加热问题。进行低电阻测量时所使用的电流常常要比进行高电阻测量时所使用的电流大的多。如果测试电流足够高,而使器件的电阻值发生变化时,就要考虑器件的功率耗散问题。

Recall that the power dissipation in a resistor is given by this formula:

我们知道,电阻器的功率耗散由下式决定:

P = I2 R

From this relationship, we see that the power dissipated in the device increases by a factor of four each time the current doubles. Thus, one way to minimize the effects of device heating is to use the lowest current possible while still maintaining the desired voltage across the device being tested. If the current cannot be reduced, use a narrow current pulse and a fast responding voltmeter.

由此关系式可以看出,当电流增加一倍时,器件的功率耗散会增加到4倍。所以将器件的加热效应降到最低的一种方法是使用尽可能低的电流,而在被测器件上仍然保持希望的电压。如果不能降低电流的话,使用窄的电流脉冲和快速响应的电压表。

Most micro-ohmmeters and DMMs don’t have provisions for setting the test current. It is generally determined by the range. In those cases,

alternate means must be found to minimize device heating. One simple but effective way to do so is to use the instrument’s one-shot trigger mode during measurements. While in this mode, the instrument will apply only a single, brief current pulse to the DUT during the measurement cycle, thereby minimizing errors caused by device heating.

大多数的微欧姆计和数字多用表都不能设置测试电流。测试电流通常由量程决定。在这种情况下,必须找到另一种替代的方法将器件加热效应降到最低。一个简单但是有效的方法是在测量时使用仪器的单脉冲触发功能。在这种模式下,在测量周期中,仪器只向被测器件施加单个的、简短的电流脉冲,这样就将器件加热引起的误差降低到最小。

3.3.5 Dry Circuit Testing 干电路测试

Many low resistance measurements are made on devices such as switches, connectors, and relay contacts. If these devices are to be used under “drycircuit” conditions, that is, with an open-circuit voltage less than 20mV and a short-circuit current less than 100mA, the devices should be tested in a manner that won’t puncture any oxi de film that may have built up on the contacts. If the film is punctured, the measured contact resistance will be lower than if the film remains intact, compromising the validity of the test results.

很多低电阻测量是在诸如开关、连接器和继电器接点等器件上进行的。如果这些器件在“干电路”的条件下使用,也就是说其开路电压小于20mV、短路电流小于100mA时,则应当采用一种不会击穿触点上可能形成的氧化膜的方法来测试这种器件。如果该氧化膜被击穿,则测量出的触点电阻就会比氧化膜保持原状时的电阻要低,从而破坏了测试结果的有效性。

To avoid oxidation puncture, such measurements are usually made using dry circuit testing, which typically limits the voltage across the DUT to 20mV or less. Some micro-ohmmeters and DMMs have this capability built in, as shown in Figure 3-19. In this micro-ohmmeter, a precision shunt resistor (R SH) is connected across the source terminals to clamp or limit the voltage across the DUT to <20mV. The remaining aspects of the circuit are very similar to the conventional four-wire measurement method: V and RREF make up the current source, which forces current through the unknown resistance (R). This current should be no more than 100mA. The value of the unknown resistance is computed from the sense voltage (V M), the voltage across clamping resistor (V SH), the known value of R SH, and the

source current. Refer to Section 1.4.4 for more detailed circuit information.

为了避免击穿氧化层,这种测量通常使用干电路测试法,一般要把被测器件上的电压限制在20mV或者更低。某些微欧姆计和数字多用表具备这种能力,如图3-19所示。在这种微欧姆计中,把一个精密的分流器电阻(R SH)跨接到源的两端,以便将被测器件上的电压钳位或者限制到小于20mV。电路的其它方面和普通的四线测量方法非常类似:V和R REF构成电流源,并强制电流流过未知电阻(R)。该电流应当不大于100mA。未知电阻的数值可以由取样电压(V M)、钳位电阻器上的电压(R SH)、已知电阻值(R SH)和源电流计算出来。有关电路的更详细的信息请参见1.5.4节。

If dry circuit testing is to be done with a separate current source and voltmeter, the compliance voltage on the current source must be limited to 20mV or less. If it isn’t possible to limit the compliance voltage to this level, a compliance limiting resistor must be used, as shown in Figure 3-20. In this circuit, R C is the resistor used to limit the voltage to 20mV and R is the unknown resistance.

如果使用分离的电流源和电压表来进行干电路测试,则必须将电流源上的输入端压降限制在20mV或者更小。如果不能将输入端压降限制到这个电平,则必须使用一个限制负荷电阻器,如图3-20 所示。在这个电路中,R C是用来把电压限制到20mV的电阻器,R是未知电阻。

The value of R C must be chosen to limit the voltage at a given test current. For example, if the voltage limit is 20mV and the test current is 200μA, R C can be calculated as:

必须选择R C的数值,以便在给定的测试电流之下来限制电压。例如,如果电压限制值为20mV,测试电流为200μA ,则可以计算出R C为:

R C= 20mV /200μA = 100Ω

If the unknown resistance (R) is 250mΩ, then RC will cause a 0.25% error in the measured resistance.

如果未知电阻(R)为250mΩ,那么R C将会引起0.25%的被测电阻误差。

The exact value of the unknown resistance (R) can then be calculated by the following equation:

被测电阻的准确值可以由下列公式来计算:

where RMEASURED is the calculated resistance measurement from the measured voltage (V M) and the source current (I).

其中,R MEASURED是从测量的电压(V M)和源电流(I)计算出的电阻测量值。

3.3.6 Testing Inductive Devices 电感性器件的测试

Inductive devices usually have a small resistance in addition to the

inductance. This small resistance is normally measured with a DMM or a micro- ohmmeter. However, the measurements are often difficult because of the interaction between the inductance and the measuring instrument. This is particularly true with high L/R ratios.

电感性器件通常除了其电感之外还有一个很小的电阻。这个小的电阻值通常用数字多用表或者微欧姆计来测量。然而,由于电感和测量仪器的相互作用,这种测量通常比较困难。在L/R的比值比较高的时候,这种情况尤为明显。

Some of the problems that may result include oscillations, negative readings and generally unstable readings. An oscilloscope picture of an unstable measurement of a 200H inductor is shown in Figure 3-21.

这时可能产生的问题包括:振荡、负读数以及通常不稳定读数。测量200H的电感器时不稳定情况的示波器图形如图3-21所示。

When problems occur, try to take measurements on more than one range and check if the values correspond.

当发生上述问题时,尝试在多个量程上进行测量,并检查其读数是否互相对应。

If possible, do not use offset compensation (pulsed current) because inductive reaction to the current pulse may cause unstable measurements or make autoranging difficult. Try using a higher resistance range when possible.

如果可能的话,不要使用偏置补偿(脉冲电流)。因为对脉冲电流的感抗可能会使测量不稳定,或者使自动量程功能难于工作。在可能的时候,尝试使用较高的电阻量程。

Check for oscillations by connecting an oscilloscope in parallel with the device and the meter. Sometimes, a diode across the inductor may settle down the oscillations by reducing the inductive kick.

将示波器并联到器件和电压表上,检查振荡情况。有的时候,在电感器上跨接一个二极管,能够降低感性冲击,从而消除可能的振荡。

缺表法测电阻

缺表法测电阻----只用电压表 1、给你两块电压表、一个开关、电源(电压未知)、已知电阻R0、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达式 2、给你一块电压表、一个开关、电源(电压未知)、已知电阻R0、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达式 3、给你一块电压表、一个开关、电源(电压未知)、已知电阻R0、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达式 4、给你一块电压表、三个开关、电源(电压未知)、已知电阻R0、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达式5、给你一块电压表、三个开关、电源(电压未知)、已知电阻R0、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达式 6、给你一块电压表、两个开关、 电源(电压未知)、已知电阻R0、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达式 7、给你一块电压表、一个开关、电源(电压未知)、电阻箱R'、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达式 8、给你一块电压表、一个开关、电源(电压未知)、滑动变阻器R'、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达式

缺表法测电阻----只用电流表 1、给你两块电流表、一个开关、电源(电压未知)、已知电阻R0、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达式 2、给你一块电流表、两个开关、电源(电压未知)、已知电阻R0、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达式 3、给你一块电流表、两个开关、电源(电压未知)、已知电阻R0、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达式 4、给你一块电流表、两个开关、电源(电压未知)、已知电阻R0、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达式5、给你一块电流表、两个开关、电源(电压未知)、已知电阻R0、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达式 6、给你一块电流表、两个开关、电源(电压未知)、电阻箱R'、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达式 7、给你一块电流表、一个开关、 电源(电压未知)、滑动变阻器R'、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达式 8、给你一块电流表、一个开关、电源(电压未知)、电阻箱R'、导线若干,测未知电阻R x的阻值 (1)写出主要的实验步骤: (2)写出R x的表达

伏安法测电阻的几种方法归纳总结

伏安法测电阻的几种方法归纳总结 一、伏安法 1.电路图:(如下图所示) 2.步骤:移动变阻器滑片位置,记录电压表、电流表的示数。 3.R X 的表达式:R X = I U 。 二、伏伏法(利用串联分压成正比) ㈠基本方法 1.器材:已知阻值的电阻R 0、电压表、电源、开关、导线、待测电阻R X 。 2.电路图:(如图甲、也可改成图乙) 3.步骤:分别用电压表测出R 0和R X 两端的电压值U X 和U 0。 4.R X 的表达式:R X =_____________。 ㈡伏阻法:(几种变式 R 0均为已知) 1.如图⑴,分别用电压表测出R 0两端电压U 0和电源电压U ,则R X =________。 2.如图⑵,分别用电压表测出R 0两端电压U X 和电源电压U ,则R X =________。 3.如图⑶, 断开开关,读出电压表示数为U 1;闭合开关,读出电压表示数为 U 2 ,则R X =_______。 4.如图⑷, 断开开关,读出电压表示数为U 1;闭合开关,读出电压表示数为U 2 ,则R X =___ ____。 三、安安法(利用并联分流成反比) ㈠基本方法 1.器材:已知阻值的电阻R 0、电流表、电源、开关、导线、待测电阻R X 。 2.电路图:(如下图所示) 3.步骤:分别用电流表测出R X 和R 0的电流值I X 和I 0。 4.R X 的表达式:R X =__________。 ㈡安阻法:(几种变式 R 0均为已知) 1.如图⑴,分别用电流表测出R 0通过电流I 0和干路电流I ,则R X =________。 2.如图⑵,分别用电流表测出R 0通过电流I X 和干路电流I ,则R X =___ _____。 3.如图⑶,断开开关,读出电流表示数为I 1;闭合开关,读出电流表示数为I 2 ,则R X =_ __。 4.如图⑷,断开开关,读出电流表示数为I 1;闭合开关,读出电流表示数为

接地电阻测量原理与方法

接地电阻测量原理与方 法 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

接地电阻测量原理 梁子斌 对从事地电学工作,对接地电阻的概念并不陌生,然并非能完全理解。这里想跟大家聊聊其概念和测量原理。 1.接地电阻概念,接地装置在输变电工程中是个特殊的项目,属隐蔽工程。对新安装的接地装置,它包括埋入地中直接与大地接触的金属导体,或称接地体,以及连接接地体与电气设备接地部分的接地线。为了确保其是否符合设计或规程要求必须经过检验才能正式投入运行。接地电阻就是当有电流由接地体流入土壤中将呈现有电阻,这就是接地电阻。 接地电阻本质是由土壤产生的电阻,是接地装置泄放电流时表现出来的电阻。由 高斯定理知道,在全空间中,一半径为R的导体球其接地电阻为ρ地= ρ 4πR ,如在地 表无限半空间中其接地电阻大一倍ρ地= ρ 2πR ,埋在地下某深度中,则在两者之间, 对均匀介质,也可以解析得到。还有不同形状的接地体,圆盘形、棍形,环形等都有公式可以计算。 其等效电路如下图:其中U为接地体对大地零电位参考点的电位差,I为流过接地体的电流U/I即为接地电阻。 接地电阻测量原理 看视很简单,通过电压的电流的测量就可以得到电阻值,可实际上并不容易。试想想,在工作现场去哪能找到大地零电位的参考点那?哎呀,有思路了,我们可以临时做一个啊,再做一个接地,可这临时的接地电阻值也不知道,我们可以知道这两个电阻之和,一个方程,两个位知数!好办,再加一个辅助接地电极,这样我们两两进

行测量,三个方程,三个未知接地电阻,简单解方程就可以啦!呵呵,还不明白呀,看下面示意图。 我们分别将RR1,RR2,R1R2做环路供电,电压和电流我们都会测的,测得后容易得到R+R1,R+R2,R1+R2,更不用说现在都有万用表了,真接可以测出的,多大的阻值,万用表都能测得,别担心。接地电阻也和收音机里的电阻一样,道理没什么不同。好了,写方程吧。 { R+R1=r1R+R1=r2R1+R2=r12 这里r们就是我们万用表的读数R是我们要测的接地电阻,R1,R2是两个辅助电极的接地电阻,这方程找个中学生解一下,是R=(r1+r2-r12)/2吧?他一定是中学生了。 你也看一下R1和R2吧,看看吧,我保证比一定R大的多,小了?工程一定不合格! 你还没问我:两个辅助电极就可以吗那为什么多数接地电阻测量仪要三个辅助电极那其实呀,四个的也有那。从前面说明你应知道了,两两电极组合就多一个方程,三个辅助电极加上被测电极共四个,便有C42个组合,6个方程,未知数是4个,用最小二乘法,那结果不是好得多了?布辅助电极不怕烦,你用十个,结果会更好,一定不会错。 多说一句,如果没有布设辅助电极的场地,你只好使用电磁感应方式的接地电阻测量仪了,而且还不用断开系统接地,直接测量。

测量电阻的四种巧法

测量电阻的四种巧法文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

测量电阻的四种巧法 一.等效替代法测电阻 【方法解读】等效替代法测电阻:测量某电阻(或电流表、电压表的内阻)时,用电阻箱替换待测电阻,若二者对电路所起的作用相同(如电流或电压相等),则待测电阻与电阻箱是等效的。 1.电流等效替代 该方法的实验步骤如下: (1)按如图电路图连接好电路,并将电阻箱R0的阻值调至最大,滑动变阻器的滑片P置于a端。 (2)闭合开关S 1、S 2 ,调节滑片P,使电流表指针指在适当的位置,记下此时 电流表的示数为I。 (3)断开开关S 2,再闭合开关S 3 ,保持滑动变阻器滑片P位置不变,调节电 阻箱,使电流表的示数仍为I。 (4)此时电阻箱连入电路的阻值R0与未知电阻R x的阻值等效,即R x=R0。 2.电压等效替代 该方法的实验步骤如下: (1)按如图电路图连好电路,并将电阻箱R0的阻值调至最大,滑动变阻器的滑片P置于a端。 (2)闭合开关S 1、S 2 ,调节滑片P,使电压表指针指在适当的位置,记下此时 电压表的示数为U。 (3)断开S 2,再闭合S 3 ,保持滑动变阻器滑片P位置不变,调节电阻箱使电 压表的示数仍为U。

(4)此时电阻箱连入电路的阻值R0与未知电阻R x的阻值等效,即R x=R0。 【针对练习】1.某同学准备把量程为0~500 μA的电流表改装成一块量程为0~ V的电压表。他为了能够更精确地测量电流表的内阻,设计了如图甲所示的实验电路,图中各元件及仪表的参数如下: A.电流表G 1 (量程0~ mA,内电阻约100 Ω) B.电流表G 2 (量程0~500 μA,内电阻约200 Ω) C.电池组E(电动势 V,内电阻未知) D.滑动变阻器R(0~25 Ω) E.电阻箱R1(总阻值9 999 Ω) F.保护电阻R2(阻值约100 Ω) G.单刀单掷开关S 1,单刀双掷开关S 2 (1)实验中该同学先合上开关S 1,再将开关S 2 与a相连,调节滑动变阻器 R,当电流表G2有某一合理的示数时,记下电流表G1的示数I;然后将开关S2与b相连,保持________不变,调节________,使电流表G1的示数仍为I时,读取 电阻箱的读数r。 (2)由上述测量过程可知,电流表G 2 内阻的测量值r g=________。 (3)若该同学通过测量得到电流表G 2 的内阻为190 Ω,他必须将一个 ________kΩ的电阻与电流表G 2 串联,才能改装为一块量程为 V的电压表。 (4)该同学把改装的电压表与标准电压表V 进行了核对,发现当改装的电压 表的指针刚好指向满刻度时,标准电压表V 的指针恰好如图乙所示。由此可知,该改装电压表的误差为________%。 解析:(1)当电流表G 2有某一合理的示数时,记下电流表G 1 的示数I;然后 将开关S 2 与b相连,保持滑动变阻器R阻值不变,调节R1,使电流表G1的示数仍

二线制三线制四线制比较

1.仪表的二线制与四线制 二线制仪表即电源与信号共用两根线一般 四线制仪表电源与信号线分开信号为4~20mA或0~10mA,电源220AC(为多).2.在热电阻中有两线制、三线制、四线制 两线制没有线路电阻补偿,配线简单,但要带进引线电阻的附加误差。因此不适用制造A 级精度的热电阻,且在使用时引线及导线都不宜过长。 三线制有线路电阻补偿,可以消除引线电阻的影响,测量精度高于2线制。作为过程检测元件,其应用最广。 四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至PLC。这种引线方式可完全消除引线的电阻影响,但成本较高,主要用于高精度的温度检测。 3.西门子的二线制和四线制 二线制是PLC模块提供电源和采集电流信号 四线制仅仅采集电流信号

传感器的结构: 两线制: 传感器电阻变化值与连接导线电阻值共同构成传感器的输出值,由于导线电阻带来的附加误差使实际测量值偏高,用于测量精度要求不高的场合,并且导线的长度不宜过长。 三线制: 要求引出的三根导线截面积和长度均相同,测量铂电阻的电路一般是不平衡电桥,铂电阻作为电桥的一个桥臂电阻,将导线一根接到电桥的电源端,其余两根分别接到铂电阻所在的桥臂及与其相邻的桥臂上,当桥路平衡时,导线电阻的变化对测量结果没有任何影响,这样就消除了导线线路电阻带来的测量误差,但是必须为全等臂电桥,否则不可能完全消除导线电阻的影响。采用三线制会大大减小导线电阻带来的附加误差,工业上一般都采用三线制接法。 四线制: 当测量电阻数值很小时,测试线的电阻可能引入明显误差,四线测量用两条附加测试线提供恒定电流,另两条测试线测量未知电阻的电压降,在电压表输入阻抗足够高的条件下,电流几乎不流过电压表,这样就可以精确测量未知电阻上的压降,计算得出电阻值 在桥式电路中,为了减小热电阻阻值随温度变化对支路电流的影响并限制流过热电阻的电流,组成电桥的两个支路的上电阻通常取热电阻阻值的几十倍,其值达到10-50K(和桥路供电电压有关),下电阻一般和热电阻某温度下阻值相同。测量时取两者的电位差。虽然如此,热电阻阻值随温度变化对支路电流的影响还是会造成输出的非线性,通常需要做一定补偿。 如果直接测量阻值,应该采用恒流源给热电阻供电,热电阻阻值变化时支路电流保持恒定,热电阻压降为线性较好的温度函数。 放大前应该做滤波处理或者在放大电路中加积分元件。 ?怎样判断pt100的好坏,用万用表能测量么? 根据分度表参照当时温度看阻值是否相符 ?通常情况下是这样的,将一个基准电压加在pt100回路上,测量pt100上的电压信号(mv),阻值变化是电压信号自然也变化,再经过运放放大后进入A/D芯片进行A/D转换,经过程序再 将电压信号换算成电阻值,采用查表方式(将电阻值和相对应的温度值做成表格放到芯片rom 中)的到温度值。 ?一般短距离选用二线制接法,中距离选用三线制接法,要求精度高、近距离选用四线制接法。

电阻测量的六种方法

电阻测量的六种方法 电阻的测量是恒定电路问题中的重点,也是学生学习中的难点。这就要求学生能够熟练掌握恒定电路的基本知识,并能够灵活运用电阻测量的六种方法,从而提高学生的综合分析问题、解决问题的能力。 一.欧姆表测电阻 1、欧姆表的结构、原理 它的结构如图1,由三个部件组成:G是内阻为Rg、 满偏电流为Ig的电流计。R是可变电阻,也称调零电阻, 电池的电动势为E,内阻为r。 图1 欧姆档测电阻的原理是根据闭合电路欧姆定律制成的。 当红、黑表笔接上待测电阻Rx时,由闭合电路欧姆定律可知: I = E/(R+Rg+Rx+r)= E/(R内+R X) 由电流的表达式可知:通过电流计的电流虽然不与待测电阻成正比,但存在一一对应的关系,即测出相应的电流,就可算出相应的电阻,这就是欧姆表测电阻的基本原理。 2.使用注意事项: (1)欧姆表的指针偏转角度越大,待测电阻阻值越小,所以它的刻度与电流表、电压表刻度正好相反,即左大右小;电流表、电压表刻度是均匀的,而欧姆表的刻度是不均匀的,左密右稀,这是因为电流和电阻之间并不是正比也不是反比的关系。 (2)多用表上的红黑接线柱,表示+、-两极。黑表笔接电池的正极,红表笔接电池的负极,电流总是从红笔流入,黑笔流出。 (3)测量电阻时,每一次换档都应该进行调零 (4)测量时,应使指针尽可能在满刻度的中央附近。(一般在中值刻度的1/3区域)

(5)测量时,被测电阻应和电源、其它的元件断开。 (6)测量时,不能用双手同时接触表笔,因为人体是一个电阻,使用完毕,将选择开关拨离欧姆档,一般旋至交流电压的最高档或OFF 档。 二.伏安法测电阻 1.原理:根据部分电路欧姆定律。 2.控制电路的选择 控制电路有两种:一种是限流电路(如图2); 另一种是分压电路。(如图3) (1)限流电路是将电源和可变电阻串联,通过改变电阻的阻值,以达到改变电路的电流,但电流的改变是有一定范围的。其优点是节省能量;一般在两种控制电路都可以选择的时候,优先考虑限流电路。 (2)分压电路是将电源和可变电阻的总值串联起来,再从可变电阻的两个接线柱引出导线。如图3,其输出电压由ap 之间的电阻决定,这样其输出电压的范围可以从零开始变化到接近于电源的电动势。在下列三种情况下,一定要使用分压电路: ① 要求测量数值从零开始变化或在坐标图中画出图线。 ② 滑动变阻器的总值比待测电阻的阻值小得多。 ③ 电流表和电压表的量程比电路中的电压和电流小。 3.测量电路 由于伏特表、安培表存在电阻,所以测量电路有两种:即电流表内接和电流表外接。 (1)电流表内接和电流表外接的电路图分别见图4、图5 图 2 图3

热电阻接入电路两线制和三线制接线法的分析

1.10 热电阻接入电路两线制和三线制接线法的分析 热电阻接入电路两线制三线制接线法 1.分析两线制由于引线电阻的误差 图1-12中,r为引线的电阻,R t为Pt电阻,其中由欧姆定律可得: 当R r=R t时(电桥平衡),V0=-I22r 。 从V0的表达式可以看出,引线电阻的影响十分明显,两线制接线法的误差很大。 2.分析三线制如何消除引线电阻的误差 三线制接线法由图1-13所示,由欧姆定律可得: 当R r=R t时,电桥平衡,I1=I2,V0=0。 可见三线制接线法可很好的消除引线电阻,提高热电阻的精度。 工业用热电阻温度计的使用注意事项

热电阻温度计是利用导体或半导体的电阻值随温度变化的性质来测量温度的,在工业生产中广泛用来测量(-100~500)℃范围的温度,其主要特点是测温准确度高,便于自动测量。由于热电偶在低温范围中产生的热电势小,因而对测量仪表要求严格,而采用热电阻温度计测量低温是很适宜的。 热电阻温度计按结构形式可分为普通工业型、铠装型及特殊型等。 常用的普通工业型热电阻主要有: 1.铂热电阻:广泛用来测量(-200~850)℃范围内的温度。在少数情况下,低温可测至1K,高温可测至1000℃。其物理、化学性能稳定,复现性好,但价格昂贵。铂热电阻与温度是近似线性关系。其分度号主要有Pt10和Pt100。 2.铜热电阻:广泛用来测量(-50~150)℃范围内的温度。其优点是高纯铜丝容易获得,价格便宜,互换性好,但易于氧化。铜热电阻与温度呈线性关系。其分度号主要有Cu50和Cu100。 铠装热电阻是在铠装热电偶的基础上发展来的,由热电阻、绝缘材料和金属套管三者组合加工而成,其特点是外形尺寸可以做得很小(最小直径可达20毫米),因而反应速度快,有良好的机械性能,耐振耐冲击,具有良好的挠性,且不易受有害介质的侵蚀。 使用热电阻前必须检查它的好环,简易的检查方法是将热电阻从保护管中抽出,用万用表测量其电阻。若万用表读数为“0"或者万用表读数小于R0值,则该热电阻已短路,必须找出短路处进行修复;若万用表读数为“∞",则该热电阻已断路,不能使用;若万用表读数比R0的阻值偏高一些,说明该热电阻是正常的。 热电阻的阻值不正确时,应从下部端点交叉处增减电阻丝,而不应从其它处调整。完全调好后应将电阻丝排列整齐,不能碰接,仍按原样包扎好。 经修复的热电阻,必须经过检定合格后方可使用。 热电阻安装时,其插入深度不小于热电阻保护管外径的8倍~10倍,尽可能使热电阻受热部分增长。热电阻尽可能垂直安装,以防在高温下弯曲变形。热电阻在使用中为了减小辐射热和热传导所产生的误差,应尽量使保护套管表面和被测介质温度接近,减小热电阻保护套管的黑色系数。 当用与热电阻相配的二次仪表测量温度时,热电阻安置在被测温度的现场,而二次仪表则放置在操作室内。如果用不平衡电桥来测量,那么连接热电阻的导线都分布在桥路的一个臂上。由于热电阻与仪表之间一般都有一段较长的距离,因此两根连接导线的电阻随温度的变化,将同热电阻阻值的变化一起加在不平衡电桥的一个臂上,使测量产生较大的误差。为减小这一误差,一般在测温热电阻与仪表连接时,采用三线制接法(图1),即从热电阻引出三根导线,将连接热电阻的两根导线正好分别处于相邻的两个桥臂内(图2)。当环境温度变化而使导线电阻值改变时,其产生的作用正好互相抵消,使桥路输出的不平衡电压不会因之而改变。另一导线电阻R1的变动,仅对供桥电压有极微小的影响,但在准确度范围内。其示意图如下所示:

电阻的测量方法及原理

一、电阻的测量方法及原理 一、伏安法测电阻 1、电路原理 “伏安法”就是用电压表测出电阻两端的电压U,用电流表测出通过电阻的电流I,再根据欧姆定律求出电阻 R= U/I 的测量电阻的一种方法。 电路图如图一所示。 如果电表为理想电表,即 R V =∞,R A =0用图一(甲)和图一(乙) 两种接法测出的电阻相等。但实际测量中所用电表并非理想电表,电压表的阻并非趋近于无穷大、电流表也有阻,因此实验测量出的电阻值与真实值不同,存在误差。如何分析其误差并选用合适的电路进行测量呢? 若将图一(甲)所示电路称电流表外接法,(乙)所示电路为电流表接法,则“伏安法”测电阻的误差分析和电路选择方法可总结为四个字:“大小外”。 2、误差分析 (1)、电流表外接法 由于电表为非理想电表,考虑电表的阻,等效电路如图二所示,电压表的测量值 U 为ab间电压,电流表的测量值为干路电流,是流过待测电阻的电流与流过电压表的电流之和,故:R测= U/I = Rab = (Rv∥R)= (Rv×R)/(Rv+R) < R(电阻的真实值) 可以看出,此时 R测的系统误差主要来源于 Rv 的分流作用,其相对误差为δ外= ΔR/R = (R-R测)/R = R/(Rv+R) ( 2)、电流表接法 其等效电路如图三所示,电流表的测量值为流过待测电阻和电流表的电流,电压表的测量值为待测电阻两端的电压与电流表两端的电压之和,故:R测 = U/I = RA+R > R 此时R测的系统误差主要来源于RA的分压作用,其相对误差为: δ = ΔR/R = (R测-R)/R = RA/R 综上所述,当采用电流表接法时,测量值大于真实值,即"大";当采用电流表外接法时,测量值小于真实值,即“小外”。 3、电路的选择 (一)比值比较法 1、“大”:当 R >> RA 时,,选择电流表接法测量,误差更小。 “小外”:当 R << Rv 时,,选择电流表外接法测量,误差更小。

替代法测电阻

伏安法测电阻拓展—替代法测电阻 替代法的测量思路是等效的思想,可以是利用电流等效、也可以是利用电压等效。 【例1】右图是测量电阻R X 阻值的电路 ⑴按右图连接电路。 ⑵将S 2与Rx 相接,记下电流表指针所指位置 ⑶将S 2与R 1相接,保持R 2不变,调节R 1的阻值,使电流表的指针在原位置上,记下R 1的值,则Rx =R 1。 替代法测量电阻精度高,不需要计算,方法简单,但必须有可调的标准电阻(一般给定的仪器中要有电阻箱)。 ㈡、电表内阻的测量方法 1.替换法 ⑴用替代法测电流表的内阻(电路如甲图) 原理:分别闭合S 1 、S 2时电流表A 有相同的读数,则电阻箱的阻 值即为A 1的内阻 ⑵用替代法测电压表的内阻:(电路如乙图) 原理:分别闭合S 1 、S 2时电压表V B 有相同的读数,则电阻箱的阻 值即为V A 的内阻 2.半偏法 ⑴半偏法测量电流表的内阻 半偏法测量原理是利用电表的满偏电流与半偏电流之间的关系,求出电阻值。 第一种形式:如图所示,这是标准的恒流半偏法,即整个测量过程保持回路电流I 不变,以消除R 1并联后对回路电流的影响。 ①按图接线,S 1断开,S 合上,调节R 2,使A 1指示满刻度,记录此时A 2读数I 1。 ②合上S 1,合理调节R 1、R 2,使A 1指针在满刻度一半的位置,A 2的读数为I 1。 ③由于回路电流I 1恒定,而A1支路电流半偏转为121I ,则R 1支路电流也为12 1 I , 故Rg =R 1。 第二种形式: 仪器:电源、滑动变阻器、电阻箱,待测电流表 ①先将R 调到最左端,闭合S 1,断开S 2,调节R 使电流表满偏 ②然后使R 不变,闭合S 2调节R′使电流表指到满刻度的一半, ③若R 》R′,有R g ≈R′。即此时电阻箱R′的读数即为电流表的内阻r g 。 原理:电流表满偏即读数为I 0后使P 位置不动,即认为在电阻箱调节过程中并联 支路的电压不变,电流表半偏,认为均分电流,即R 和相同R′ 误差分析:在半偏法测内阻电路中,当闭合S 2时,引起总电阻减小, 大于原电流表的满偏电流,而此时电流表半偏,所以流经R′的电阻比电流表的电阻小,但我们就把R′的读数当成电流表的内阻,故测得的电流表的内阻偏小。但如果是R 》R′的话,总电流的变化可以忽略。 注意:此处R′只能用电阻箱,而不能用滑动变阻器,其阻值只需比灵敏电流表的电阻大一点就可以了,R 一般使用滑动变阻器,其阻值要求较大,以减小因闭合S 2而引起总电流的变化,从而减小误差。 ㈡用半偏法测电压表的内阻 先将R 调到最左端,闭合S 1和 S 2,调节R 使电压表满偏,然后使 R 不变,断开S 2调节R′使电压表指到满刻度的一半,此时电阻箱R′的读数即为电流表的内阻r g 。 注意:此处R′只能用电阻箱,而不能用滑动变阻器,其阻值只需比电压表的电阻大一点就可以了,R 一般使用滑动变阻器,其阻值要求较小,以减小因闭合S 2而引起总电压 的变化,从而减小误差。 R X

电阻应变测量原理及方法

目录 电阻应变测量原理及方法 (2) 1. 概述 (2) 2. 电阻应变片的工作原理、构造和分类 (2) 2.1电阻应变片的工作原理 (2) 2.2电阻应变片的构造 (4) 2.3电阻应变片的分类 (4) 3. 电阻应变片的工作特性及标定 (6) 3.1电阻应变片的工作特性 (6) 3.2电阻应变片工作特性的标定 (10) 4. 电阻应变片的选择、安装和防护 (12) 4.1电阻应变片的选择 (12) 4.2电阻应变片的安装 (13) 4.3电阻应变片的防护 (14) 5. 电阻应变片的测量电路 (14) 5.1直流电桥 (15) 5.2电桥的平衡 (17) 5.3测量电桥的基本特性 (18) 5.4测量电桥的连接与测量灵敏度 (19) 6. 电阻应变仪 (24) 6.1静态电阻应变仪 (24) 6.2测量通道的切换 (26) 6.3公共补偿接线方法 (27) 7. 应变-应力换算关系 (28) 7.1单向应力状态 (28) 7.2已知主应力方向的二向应力状态 (29) 7.3未知主应力方向的二向应力状态 (29) 8. 测量电桥的应用 (31) 8.1拉压应变的测定 (31) 8.2弯曲应变的测定 (34) 8.3弯曲切应力的测定 (35) 8.4扭转切应力的测定 (36) 8.5内力分量的测定 (36)

电阻应变测量原理及方法 1. 概述 电阻应变测量方法是实验应力分析方法中应用最为广泛的一种方法。该方法是用应变敏感元件——电阻应变片测量构件的表面应变,再根据应变—应力关系得到构件表面的应力状态,从而对构件进行应力分析。 电阻应变片(简称应变片)测量应变的大致过程如下:将应变片粘贴或安装在被测构件表面,然后接入测量电路(电桥或电位计式线路),随着构件受力变形,应变片的敏感栅也随之变形,致使其电阻值发生变化,此电阻值的变化与构件表面应变成比例,测量电路输出应变片电阻变化产生的信号,经放大电路放大后,由指示仪表或记录仪器指示或记录。这是一种将机械应变量转换成电量的方法,其转换过程如图1所示。测量电路的输出信号经放大、模数转换后可直接传输给计算机进行数据处理。 电阻应变测量方法又称应变电测法,之所以得到广泛应用,是因为它具有下列优点 1.测量灵敏度和精度高。其分辨率达1微应变(με),1微应变=10-6应变(ε)。 2.测量范围广。可从1微应变测量到2万微应变。 3.电阻应变片尺寸小,最小的应变片栅长为0.2毫米;重量轻、安装方便,对构件无 附加力,不会影响构件的应力状态,并可用于应力梯度变化较大的应变的测量。 4.频率响应好。可从静态应变测量到数十万赫的动态应变。 5.由于在测量过程中输出的是电信号,易于实现数字化、自动化及无线电遥测。 6.可在高温、低温、高速旋转及强磁场等环境下进行测量。 7.可制成各种高精度传感器,测量力、位移、加速度等物理量。 该方法的缺点是: 1.只能测量构件表面的应变,而不能测构件内部的应变。 2.一个应变片只能测定构件表面一个点沿某一个方向的应变,不能进行全域性的测量。 3.只能测得电阻应变片栅长范围内的平均应变值,因此对应变梯度大的应力场无法进 行测量。 2. 电阻应变片的工作原理、构造和分类 2.1 电阻应变片的工作原理 由物理学可知,金属导线的电阻值R 与其长度L 成正比,与其截面积A 成反比,若 图1 用电阻应变片测量应变的过程

绝缘电阻表的结构和测量原理

第七章 绝缘电阻表与接地电阻测试仪 模块1:绝缘电阻表的结构和测量原理(TYBZ01107001) 【模块描述】本模块包含绝缘电阻表的结构和测量原理。通过结构介绍和原理讲解,掌握绝缘电阻表的分类、模拟和数字绝缘电阻表的结构和测量原理。 【正文】 绝缘电阻表的检定是强制检定项目。绝缘电阻表实际使用相当广泛,并直接关系到电气设备的正常运行和工作人员的人身安全。 一、绝缘电阻表分类: 1.按结构原理分: (1) 手摇式兆欧表:测试电压有100V ~2500V ,量程上限达2500M Ω,应用广泛。但操 作费力,测量准确度低(受手摇速度、刻度非线性、倾斜角度影响),输出电流小,抗反击能力弱,不适合变压器等大型设备的测量。但因其价格低廉,不仅未被取代,仍有一定市场。 (2) 数字式绝缘电阻表:测量电路中有了数字集成电路以后,手摇式兆欧表被数字 式绝缘电阻表取代。单片机的发展使得数字式兆欧表又更加智能化,计时、计算、储存一并完成。测试电压在5000V 以上有了10000V ,甚至15000V ,可直接读取吸收比和极化指数,测量上限达到100T Ω以上,有自放电回路,抗反击能力强,在电力系统得到广泛应用。 二、指针式兆欧表的结构及工作原理 1.指针式兆欧表的结构 指针式兆欧表是由一台手摇直流发电机和电磁式比率表组成。 指针式兆欧表的测量机构是电磁式比率表,由磁路、电路、指针等部分组成。磁路部分由永久磁铁、极掌、圆柱形铁芯等构成。电路部分由两个可动的线圈构成。可动线圈成丁字形交叉放置,且共同固定在转动轴上。当通入电流后,两个动圈内部的电流方向相反。 手摇直流发电机一般由发电机、摇动手柄、传动齿轮等组成。发电机的容量很小,但能产生较高的电压。常见的电压等级有100V 、250V 、500V 、1000V 、2500V 等。发电机发出的电压越高,测量绝缘电阻值的范围越大。 2.指针式兆欧表的工作原理 电路部分有两个可动的线圈。可动线圈2通过限流电阻,与发电机串联;被测绝缘电阻X R 与可动线圈1及发电机相串联。当线圈通电时,可动线圈1的电流1I 和气隙磁场相互作用,产生转动力矩1M ,可动线圈2的电流2I 与气隙磁场相互作用,产生转动力矩2M 。但它们方向相反,其中1M 为转动力矩,2M 则为反作用力矩。指针的偏转角只决定于两只可动线圈电流的比值,和其他因素无关。被测绝缘电阻X R 不同时,1I 则不同,而2I 基本不变,因此指针有不同的偏转角。 由于这种仪表的结构中没有产生反作用力矩的游丝,所以,在使用之前仪表的指针可随意停在标尺的任意位置上。 手摇发电机发出电压的高低,随手摇速度快慢而异。手摇发电机发出的电压不稳定,但是,由于指针偏转角决定于两个可动线圈电流的比值,故指针不会因手摇速度不同而停留在不同的位置,指示不同的X R 值。这是因为手摇速度慢时,1I 减小,2I 也同时按比例减小,始终保持电流的比值不变,这样指针偏转角也就保持一定。 三、数字式绝缘电阻表的工作原理 数字式绝缘电阻表利用电子电路,采用DC/DC 变换技术,产生直流高压电源,施加在被试品上,采用电流电压法测量原理,采集流经试品的电流,进行分析处理,再变换成相应

十种测电阻方法归纳

十种测电阻方法归纳 (一)伏安法测电阻 伏安法测电阻是初中物理中一个重要的实验,本实验可以利用电压表和电流表分别测出未知电阻Rx的电压、电流,再用欧姆定律的变形公式求出Rx的阻值。由于电压表也叫伏特表,电流表也叫安培表,所以这种用电压表、电流表测电阻的方法叫“伏安法”。 1.原理:由欧姆定律推出 2.电路图:(见图1) 3.器材:小灯泡(2.5V)、电流表、电压表、开关、电池阻(3V)、定值电阻(10Ω)、滑动变阻器、导线。 4.注意点: ⅰ连接电路时,开关应断开,滑动变阻器应调到最大阻值处。 ⅱ滑动变阻器的作用: (1)保护电路; (2)改变小灯泡两端的电压和通过的电流。 ⅲ本实验中多次测量的目的是:测出小灯泡在不同情况(亮度)下的电阻。 5.实验步骤: (1)根据电路图把实验器材摆好。 (2)按电路图连接电路。 (在连接电路中应注意的事项:①在连接电路时,开关应断开。②注意电压表和电流表量程的选择,“+”、“-”接线柱。③滑动变阻器采用“一上一下”接法,闭合开关前,滑片应位于阻值最大处。) (3)检查无误后,闭合开关,移动滑动变阻器的滑片(注意事项:移动要慢),分别使灯泡暗红(灯泡两端电压1V)、微弱发光(灯泡两端电压1.5V)、正常发光(灯泡两端电压2.5V),测出对应的电压值和电流值,填入下面的表格中。

同时,在实验过程中,用手感受灯泡在不同亮度下的温度。随着灯泡亮度的增加,灯泡的温度升高。 (4)算出灯丝在不同亮度时的电阻。 6.分析与论证: 展示的几组实验表格,对实验数据进行分析发现:灯泡的电阻不是定值,是变化的。 是什么原因使灯丝的电阻发生变化的呢?是电压与电流吗? 难点突破:(我们对比一个实验如图2:用电压表、电流表测定值电阻的阻值R) 发现:R是定值,不随电压、电流的变化而变化。 通过论证,表明灯丝的电阻发生改变的原因不在于电压与电流,那是什么原因造成的呢?我们在前面学过,影响电阻大小的因素有哪些?(材料、长度、横截面积和温度。)那是什么因素影响了灯丝的电阻呢?(是温度。)温度越高,灯丝电阻越大。这个实验再一次验证了这一点。 (二)测电阻的几种特殊方法 1.只用电压表,不用电流表 方法一:如果只用一只电压表,用图3所示的电路可以测出未知Rx的阻值。 具体的作法是先用电压表测出Rx两端的电压为Ux;再用这只电压表测出定值电阻R0两端的电压为U0。根据测得的电压值Ux、U0和定值电阻的阻值R0,可计算出Rx的值为: 用这种方法测电阻时一只电压表要连接两次。 方法二:如果只用一个电压表,并且要求只能连接一次电路,用图4所示的电路可以测出未知Rx的阻值。 具体的作法是先闭合S1,读出电压表的示数为U1,再同时闭合S1和S2,读出这时电压表的示数为U2。根据测得的电压值U1、U2和定值电阻的阻值R0。

测量电阻四种巧法

测量电阻的四种巧法 一.等效替代法测电阻 【方法解读】等效替代法测电阻:测量某电阻(或电流表、电压表的内阻)时,用电阻箱替换待测电阻,若二者对电路所起的作用相同(如电流或电压相等),则待测电阻与电阻箱是等效的。 1.电流等效替代 该方法的实验步骤如下: (1)按如图电路图连接好电路,并将电阻箱R0的阻值调至最大,滑动变阻器的滑片P 置于a端。 (2)闭合开关S1、S2,调节滑片P,使电流表指针指在适当的位置,记下此时电流表的示数为I。 (3)断开开关S2,再闭合开关S3,保持滑动变阻器滑片P位置不变,调节电阻箱,使电流表的示数仍为I。 (4)此时电阻箱连入电路的阻值R0与未知电阻R x的阻值等效,即R x=R0。 2.电压等效替代 该方法的实验步骤如下: (1)按如图电路图连好电路,并将电阻箱R0的阻值调至最大,滑动变阻器的滑片P置于a端。 (2)闭合开关S1、S2,调节滑片P,使电压表指针指在适当的位置,记下此时电压表的示数为U。 (3)断开S2,再闭合S3,保持滑动变阻器滑片P位置不变,调节电阻箱使电压表的示数仍为U。 (4)此时电阻箱连入电路的阻值R0与未知电阻R x的阻值等效,即R x=R0。 【针对练习】1.某同学准备把量程为0~500 μA的电流表改装成一块量程为0~2.0 V 的电压表。他为了能够更精确地测量电流表的内阻,设计了如图甲所示的实验电路,图中各元件及仪表的参数如下:

A .电流表G 1(量程0~1.0 mA ,内电阻约100 Ω) B .电流表G 2(量程0~500 μA ,内电阻约200 Ω) C .电池组E (电动势3.0 V ,内电阻未知) D .滑动变阻器R (0~25 Ω) E .电阻箱R 1(总阻值9 999 Ω) F .保护电阻R 2(阻值约100 Ω) G .单刀单掷开关S 1,单刀双掷开关S 2 (1)实验中该同学先合上开关S 1,再将开关S 2与a 相连,调节滑动变阻器R ,当电流表G 2有某一合理的示数时,记下电流表G 1的示数I ;然后将开关S 2与b 相连,保持________不变,调节________,使电流表G 1的示数仍为I 时,读取电阻箱的读数r 。 (2)由上述测量过程可知,电流表G 2内阻的测量值r g =________。 (3)若该同学通过测量得到电流表G 2的内阻为190 Ω,他必须将一个________kΩ的电阻与电流表G 2串联,才能改装为一块量程为2.0 V 的电压表。 (4)该同学把改装的电压表与标准电压表V 0进行了核对,发现当改装的电压表的指针刚好指向满刻度时,标准电压表V 0的指针恰好如图乙所示。由此可知,该改装电压表的误差为________%。 解析:(1)当电流表G 2有某一合理的示数时,记下电流表G 1的示数I ;然后将开关S 2与b 相连,保持滑动变阻器R 阻值不变,调节R 1,使电流表G 1的示数仍为I 时,读取电阻箱的读数r 。 (2)电流表G 2的内阻与电阻箱的阻值相同,为r 。 (3)将电流表改装成电压表要串联电阻分压,串联的阻值为R =U Ig -r g =3.81 kΩ。 (4)由题图乙可得,标准电压表V 0的示数为1.90 V ,由此可知,该改装电压表的误差为2.0-1.901.90 ×100%≈5.26%。 答案:(1)滑动变阻器R 阻值 R 1 (2)r (3)3.81 (4)5.26 2.某同学现利用图甲所示的电路来测量一电阻R x 的阻值。 (1)完成下列实验步骤中的填空:

PT 测量原理及电路

PT100测量原理及电路 2007年10月02日星期二上午 09:14 1.非平衡电桥的工作原理 如图1所示,在惠斯顿电桥中:E为稳压电源,R1和R2为固定电阻,R P为可变电阻,R x为电阻型传感器,U out为电桥输出电压.当U out = 0时,电桥处于平衡状态,此时有 (1) 当U out ≠ 0时,电桥处于不平衡状态,则有 在一定条件下,调整电桥达到平衡状态.由(1)式可见,此时电桥的平衡状态与电源无关;当外界条件改变时,传感器的阻值R x会有相应的变化,这时电桥平衡被破坏,桥路两端的电压U out也随之而变,由 于桥路的输出电压 2.测量电路介绍 如采用电阻式传感器作为被测对象,传感元件的引出线有以下几种方式:二线制、三线制和四线制.采用二线制接法(图1),虽然导线电阻会给测量带来影响,但在测量精度要求不高、测量仪器与被测传感元件距离较近时,常采用二线制.但如果金属电阻本身的阻值很小,那末引线的电阻及其变化也就不能忽视,例如对于Pt100铂电阻,若导线电阻为1 Ω,将会产生2.5℃的测量误差.为了消除或减少引线电阻的影响,通常的办法是采用三线联接法加以处理,如图2所示.工业热电阻目前大多采用的都是三线制接法. 在三线制接线电路中,传感元件的一端与一根导线相接,另一端同时接两根导线.传感元件在与电桥配合时,与传感元件相接的三根导线粗细要相同,长度要相等,阻值要一致(图中r1,r2,r3即为引线电阻).其中一根引线与测量仪表连接,由于测量仪表的内阻很大,可认为流过r2的电流接近于零.另两根引线分别与电桥的两个相邻臂相连,这样引

线电阻对测量就不会造成影响. 为了高精度的测量,可将电阻测量仪设计成图3所示的四线制测量电路.图中I为恒流源,r1、r2、r3、r4是引线电阻,R x为电阻型传感器,V为电压表.因为电压表内阻很大,则 且 因为U M= U x+ I V(r2+ r3),所以 由此可见,引线电阻将不引入测量误差. PT100前置放大电路 U out能反映出桥臂电阻的微小变化,因此通过测量输出电压即可以检测外界条件的变化.这种在非平衡条件下工作的电桥称为非平衡电桥,这样的测量方法为非电量电测法.

铂电阻两线制、三线制、四线制接法

铂电阻两线制、三线制、四线制接法作用区别!!2010-12-10 来源:天长市仪器仪表线缆厂>>进入该公司展台通常使用的铂电阻温度传感器有PT100,电阻温度系数为3.9×10-3/℃,0℃时电阻值为100Ω,电阻变化率为0.3851Ω/℃。铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,而且被制成各种标准温度计。 按IEC751国际标准,温度系数TCR=0.003851,Pt100(R0=100Ω)、Pt1000(R0=1000Ω)为统一设计型铂电阻。 传感器的结构: 两线制: 传感器电阻变化值与连接导线电阻值共同构成传感器的输出值,由于导线电阻带来的附加误差使实际测量值偏高,用于测量精度要求不高的场合,并且导线的长度不宜过长。 三线制: 要求引出的三根导线截面积和长度均相同,测量铂电阻的电路一般是不平衡电桥,铂电阻作为电桥的一个桥臂电阻,将导线一根接到电桥的电源端,其余两根分别接到铂电阻所在的桥臂及与其相邻的桥臂上,当桥路平衡时,导线电阻的变化对测量结果没有任何影响,这样就消除了导线线路电阻带来的测量误差,但是必须为全等臂电桥,否则不可能完全消除导线电阻的影响。采用三线制会大大减小导线电阻带来的附加误差,工业上一般都采用三线制接法。四线制: 当测量电阻数值很小时,测试线的电阻可能引入明显误差,四线测量用两条附加测试线提供恒定电流,另两条测试线测量未知电阻的电压降,在电压表输入阻抗足够高的条件下,电流几乎不流过电压表,这样就可以精确测量未知电阻上的压降,计算得出电阻值 文章链接:工控网(百站) https://www.360docs.net/doc/e112209107.html,/Tech_news/Detail/62604.html

伏安法测电阻专题练习(整理过)

伏安法测电阻专题练习 1、小明同学做电学实验,通过改变滑动变阻器R 3电阻的大小,依次记录的电压表和电流表 电压表读数 U /V 0.60 0.70 0.80 0.90 1.00 1.10 电流表读数I /A 0.18 0.21 0.24 0.27 0.30 0.33 分析表格中实验数据,可推断小明实验时所用的电路可能是下列电路图中的哪一个?【 】 2、有一个阻值看不清的电阻器R x ,要测出它的电阻值. (1)小明按左图的电路图连接好电路,检查无误后闭合开关S ,观察到电压表的示数为1.6V ,电流表的示数如右图所示,则通过电阻器R x 的电流为_____A ,R x 的电阻为____Ω. (2)实验中,为了减小误差,小明还需进行的操作是 _______________________________________________________________。 (3)下图是小虎做这个实验连接的实物图,请你指出其中的三个错误或不妥之处。 ①________________________________________________________________________ ②________________________________________________________________________ ③_________________________________________________________________________ 3、做测定电阻阻值的实验. (1)小明根据如图所示的电路图,将图中的实验器材连接成实验电路. 同小组的小亮在检查时认为,从实验目的来看,实验电路上有一根导线连接错了,建议小明改接. ①请你在接错的那根线上打“×”;②另画一根导线,使电路连接正确;③如果不改接这根导线,对实验的影响是:__________________ (具体说明是什么影响). A R 1 A V R 2 R 3S R 1 A V R 2 R 3 S R 1 A V R 2 R 3 S A V R 1 R 2 R 3S B C D

相关文档
最新文档