4.1 典型全控型电力电子器件

4.1 典型全控型电力电子器件
4.1 典型全控型电力电子器件

典型全控型电力电子器件

教学目的和要求:掌握门极可关断晶闸管的工作原理及特性、电力晶体管的工作

原理,了解电力场控晶体管的特性与参数及安全工作区。掌握电力场控晶体管的

工作原理。掌握绝缘栅双极型晶体管的工作原理、参数特点。了解静电感应晶体

管静电感应晶闸管的工作原理。

重点与难点:掌握电力晶体管、电力场控晶体管、绝缘栅双极型晶体管的工作原

理、参数特点。

教学方法:

借助PPT演示、板书等多种形式启发式教学

预复习任务:复习上节课学的半控型器件晶闸管的相关知识,对比理解掌握本节课程。内容导入:

门极可关断晶闸管——在晶闸管问世后不久出现。

全控型电力电子器件的典型代表:门极可关断晶闸管、电力晶体管、

电力场效应晶体管、绝缘栅双极晶体管。

一、门极可关断晶闸管

晶闸管的一种派生器件。可以通过在门极施加负的脉冲电流使其关断。

GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大

功率场合仍有较多的应用。

1. GTO的结构和工作原理

与普通晶闸管的相同点: PNPN四层半导体结构,外部引出阳极、阴极和门

极。和普通晶闸管的不同点:GTO是一种多元的功率集成器件。

工作原理:与普通晶闸管一样,可以用图所示的双晶体管模型来分析。

由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流增益α1 和α2 。α1+α2=1是器件临界导通的条件。

GTO的关断过程与普通晶闸管不同。关断时,给门极加负脉冲,产生门极电流-I G,此电流使得V1管的集电极电流I Cl被分流,V2管的基极电流I B2减小,从而使I C2和I K减小,I C2的减小进一步引起I A和I C1减小,又进一步使V2的基极电流减小,形成内部强烈的正反馈,最终导致GTO阳极电流减小到维持电流以下,GTO由通态转入断态。

结论:

?GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅。

?GTO关断过程中有强烈正反馈使器件退出饱和而关断。

?多元集成结构还使GTO比普通晶闸管开通过程快,承受d i/d t能力强。

2. GTO的动态特性

开通过程:与普通晶闸管相同

关断过程:与普通晶闸管有所不同

3. GTO的主要参数

(a)开通时间t on

(b)关断时间t off

(c)最大可关断阳极电流I ATO

(d)电流关断增益βoff

——最大可关断阳极电流与门极负脉冲电流最大值I GM之比称为电流关断增益。

βoff一般很小,只有5左右,这是GTO的一个主要缺点。1000A的GTO关断

时门极负脉冲电流峰值要200A 。

二、电力晶体管

1. GTR的结构和工作原理

GTR的结构和图形符号GTR的开通和关断过程电流波形

与普通的双极结型晶体管基本原理是一样的。主要特性是耐压高、电流大、

开关特性好。通常采用至少由两个晶体管按达林顿接法组成的单元结构。采用

集成电路工艺将许多这种单元并联而成。

在应用中,GTR一般采用共发射极接法。

集电极电流i c与基极电流i b之比为β——GTR的电流放大系数,反映了基极电流

对集电极电流的控制能力。

当考虑到集电极和发射极间的漏电流I ceo时,i c和i b的关系为i c=β i b +I ceo 单管GTR的β值比小功率的晶体管小得多,通常为10左右,采用达林顿接法可有

效增大电流增益。

2. GTR的基本特性

(1) 静态特性

共发射极接法时的典型输出特性:截止区、放大区和饱和区。

在电力电子电路中GTR工作在开关状态。

在开关过程中,即在截止区和饱和区之间过渡时,要经过放大区。

(2) 动态特性

共发射极接法时GTR的输出特性

3. GTR的主要参数

(a)电流放大倍数β集电极电流与基极电流之比

(b)集电极最大允许电流I CM

通常规定为β下降到规定值的1/2~1/3时所对应的I c 。

(c)集电极最大耗散功率P CM

在最高集电结温度下允许的耗散功率,等于集电极工作电压与集电极工作

电流的乘积。

4. 反向击穿电压

?集电极与基极之间的反向击穿电压

?集电极与发射极之间的反向击穿电压

击穿电压不仅和晶体管本身特性有关,还与外电路接法有关。

5. GTR的二次击穿现象与安全工作区

一次击穿:集电极电压升高至击穿电压时,I c迅速增大。只要I c不超过限度,GTR一般不会损坏,工作特性也不变。

二次击穿:一次击穿发生时,I c突然急剧上升,电压陡然下降。常常立即

导致器件的永久损坏,或者工作特性明显衰变。

安全工作区:最高电压U ceM、集电极最大电流I cM、最大耗散功率P cM、二

次击穿临界线限定。

正向偏置安全工作区反向偏置安全工作区

三、功率场效应晶体管

特点:用栅极电压来控制漏极电流。驱动电路简单,需要的驱动功率小。开

关速度快,工作频率高。热稳定性优于GTR。电流容量小,耐压低,只适用于小

功率的电力电子装置。

1.功率场效应晶体管结构和电气符号

电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果

在栅极和源极之间加一正向电压U GS,并且使U GS大于或等于管子的开启电压

U T,则管子开通,在漏、源极间流过电流I D。U GS超过U T越大,导电能力越强,漏极电流越大。

2. 功率场效应管的转移和输出特性

3. 功率场效应管的驱动

功率MOSFET对栅极驱动电路的要求主要有:

1)触发脉冲要具有足够快的上升和下降速度,即脉冲前后沿要求陡峭。

2)开通时以低电阻对栅极电容充电,关断时为栅极电荷提供低电阻放电回路,

以提高功率MOSFET的开关速度。

3)为了使功率MOSFET可靠触发导通,触发脉冲电压应高于管子的开启电压;

为了防止误导通,在其截止时应提供负的栅源电压。

4)功率MOSFET开关时所需的驱动电流为栅极电容的充放电电流。

功率MOSFET的极间电容越大,在开关驱动中所需的驱动电流也越大。

4. 功率MOSFET在使用中的静电保护措施

防止静电击穿应注意:

1)器件应存放在抗静电包装袋、导电材料袋或金属容器中,不能存放在塑料袋中。2)取用功率MOSFET时,工作人员必须通过腕带良好接地,且应拿在管壳部分

而不是引线部分。

3)接入电路时,工作台应接地,焊接的烙铁也必须良好接地或断电焊接。

4)测试器件时,测量仪器和工作台都要良好接地。器件三个电极没有全部接入测试仪器前,不得施加电压。改换测试范围时,电压和电流要先恢复到零。

四、绝缘栅双极晶体管

GTR和GTO的特点——双极型,电流驱动,有电导调制效应,通流能力很强,开关速度较低,所需驱动功率大,驱动电路复杂。

MOSFET的优点——单极型,电压驱动,开关速度快,输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单。

1. IGBT的结构和工作原理

驱动原理与电力MOSFET基本相同,场控器件,通断由栅射极电压u GE决定。

导通:u GE大于开启电压U GE(th)时,MOSFET内形成沟道,为晶体管提供基

极电流,IGBT导通。通态压降:电导调制效应使电阻RN减小,使通态压降减小。

关断:栅射极间施加反压或不加信号时,MOSFET内的沟道消失,晶体管的基

极电流被切断,IGBT关断。

2. IGBT的基本特性

(1) IGBT的静态特性

(2) IGBT的动态特性

3. IGBT的主要参数

(1) 最大集射极间电压U CES

(2) 最大集电极电流

(3) 最大集电极功耗P CM

IGBT的特性和参数特点可以总结如下:开关速度高,开关损耗小。相同电压

和电流定额时,安全工作区比GTR大,且具有耐脉冲电流冲击能力。通态压降比

DMOSFET低。输入阻抗高,输入特性与MOSFET类似。与MOSFET和GTR相比,耐

压和通流能力还可以进一步提高,同时保持开关频率高的特点。

五、其他新型电力电子器件

1. MOS控制晶闸管MCT

承受极高di/dt和du/dt,快速的开关过程,开关损耗小。

高电压,大电流、高载流密度,低导通压降。

一个MCT器件由数以万计的MCT元组成。每个元的组成为:一个PNPN晶闸管,

一个控制该晶闸管开通的MOSFET,和一个控制该晶闸管关断的MOSFET。

其关键技术问题没有大的突破,电压和电流容量都远未达到预期的数值,未

能投入实际应用。

2. 静电感应晶体管SIT

?多子导电的器件,工作频率与电力MOSFET相当,甚至更高,功率容量更大,因而适用于高频大功率场合。

?在雷达通信设备、超声波功率放大、脉冲功率放大和高频感应加热等领域获得应用。

缺点:栅极不加信号时导通,加负偏压时关断,称为正常导通型器件,使用不太方便。通态电阻较大,通态损耗也大,因而还未在大多数电力电子设备中得到广泛应用。

静电感应晶闸管SITHSITH是两种载流子导电的双极型器件,具有电导调制效应,通态压降低、通流能

力强。其很多特性与GTO类似,但开关速度比GTO高得多,是大容量的快速器件。SITH一般也是正常导通型,但也有正常关断型。此外,电流关断增益较小,因而其应用范围还有待拓展。

3. 集成门极换流晶闸管IGCT

4 功率模块与功率集成电路

20世纪80年代中后期开始,模块化趋势,将多个器件封装在一个模块中,称为功率模块。将器件与逻辑、控制、保护、传感、自诊断等信息电子电路制作在同一芯片上,称为功率集成电路.

发展现状:

功率集成电路的主要技术难点:高低压电路之间的绝缘问题以及温升和散热的处理。

以前功率集成电路的开发和研究主要在中小功率应用场合。

智能功率模块在一定程度上回避了上述两个难点,最近几年获得了迅速发展。

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一)实验目的 (1)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;(2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二)实验原理 图1.MATLAB电力电子器件模型 MATLAB电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构。 模型中的电阻Ron和直流电压源Vf分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB电力电子器件模型中已经并联了简单的RC串联缓冲电路,在参数表中设置,名称分别为Rs和Cs。更复杂的缓冲电路则需要另外建立。对于MOSFET模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf和等效电阻Rd。对于GTO和IGBT需要设置电流下降时间Tf和电流拖尾时间Tt。 MATLAB的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

电力电子器件应用指南

目录 电力电子器件应用指南 (1) 晶闸管、二极管主要参数及其含义 (8) 晶闸管、二极管简易测试方法 (11) 中频感应加热电源常见故障与维修 (13) 水冷散热器的安装与使用 (20) 晶闸管水冷散热器重复使用中应注意的问题 (23) 电焊机用晶闸管模块的选择与应用 (25) 电力半导体器件用散热器选择及使用原则 (32) 风冷散热器的选配 (34) 高频晶闸管新特性 (36) 改进的晶闸管高di/dt性能 (39) 门极触发强度对晶闸管开通特性的影响 (42) 晶闸管串、并联配对选择及使用要求 (47) 晶闸管在低温条件下的使用 (52) 功率器件技术与电源技术的现状和发展 (53) 晶闸管保护电路 (60)

电力电子器件应用指南 一、参数说明 1本手册参数表中所给出的数据,I TSM、I2t、dv/dt、di/dt指的是元件所能满足的最小值,Q r、V TM、V TO、r T指元件可满足(不超过)的最大值。 2通态平均电流额定值I TAV(I FAV) I TAV(I FAV)指在双面冷却条件下,在规定的散热器温度时,允许元件流过的最大正弦半波电流平均值。I TAV(I FAV)对应元件额定有效值I RMS=1.57 I TAV。实际使用中,若不能保证散热器温度低于规定值,或散热器与元件接触热阻远大于规定值,则元件应降额使用。 3晶闸管通态电流上升率di/dt 参数表中所给的为元件通态电流上升率的临界重复值。其对应不重复测试值为重复值的2倍以上,在使用过程中,必须保证元件导通期任何时候的电流上升率都不能超过其重复值。 4晶闸管使用频率 晶闸管可工作的最大频率由其工作时的电流脉冲宽度t p,关断时间t q以及从关断后承受正压开始至其再次开通的时间t V决定。f max=1/(t q+t p+t V)。根据工作频率选取元件时必须保证元件从正向电流过零至开始承受正压的时间间隔t H>t q,并留有一定的裕量。随着工作频率的升高,元件正向损耗E pf和反向恢复损耗E pr随之升高,元件通态电流须降额使用。 二、元件的选择 正确地选择晶闸管、整流管等电力电子器件对保证整机设备的可靠性及降低设备成本具有重要意义。元件的选择要综合考虑其使用环境、冷却方式、线路型式、负载性质等因素,在保证所选元件各参数具有裕量的条件下兼顾经济性。由于电力电子器件的应用领域十分广泛,具体应用形式多种多样,下面仅就晶闸管元件在整流电路和单项中频逆变电路中的选择加以说明。

电力电子器件大全及使用方法详解(DOC 42页)

第1章电力电子器件 主要内容:各种二极管、半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件:GTO、电力MOSFET、IGBT,功率集成电路和智能功率模块,电力电子器件的串并联、电力电子器件的保护,电力电子器件的驱动电路。 重点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件。 难点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数。 基本要求:掌握半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,熟练掌握器件的选取原则,掌握典型全控型器件,了解电力电子器件的串并联,了解电力电子器件的保护。 1 电力电子器件概述 (1)电力电子器件的概念和特征 主电路(main power circuit)--电气设备或电力系统中,直接承担电能的变换或控制任务的电路; 电力电子器件(power electronic device)--可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件; 广义上电力电子器件可分为电真空器件和半导体器件两类。 两类中,自20世纪50年代以来,真空管仅在频率很高(如微波)的大功率高频电源中还在使用,而电力半导体器件已取代了汞弧整流器(Mercury Arc Rectifier)、闸流管(Thyratron)等电真空器件,成为绝对主力。因此,电力电子器件目前也往往专指电力半导体器件。 电力半导体器件所采用的主要材料仍然是硅。 同处理信息的电子器件相比,电力电子器件的一般特征: a. 能处理电功率的大小,即承受电压和电流的能力,是最重要的参数;

电力电子器件的发展及应用

电力电子器件的发展及应用 研1506 苏智清 摘要:本文简单介绍了电力技术的分类, 回顾了电力电子技术及其器件的发展过程, 说明了现在主流的电力电子器件的工作原理、应用范围及其优缺点, 探讨了在本世纪中新型电力电子器件的应用。 关键词:复合型电力电子器件;新型材料的电力电子器件;电力电子器件的应用 1引言 电力电子学是电工学的一个分支,是由电力系统、控制理论与电子学等学科共同发展起来的一个新型边缘性学科。电力电子学的主要特点是具有很强的应用性,同时与其他学科有着很好的交叉融合性,这也是电力电子学的基础理论与应用技术能够在短短几十年间飞速发展的一个相当重要的因素。目前,电力电子技术的应用已经从机械、石化、纺织、冶金、电力、铁路、航空、航海等一系列领域,进一步扩展到汽车、现代通信、家用电器、医疗设备、灯光照明等各个领域。进入 21 世纪,伴随着新理论、新器件、新技术的不断涌现,尤其是与微电子技术的日益融合,电力电子技术作为信息产业和传统产业之间的桥梁,在国民经济中必将占有越来越重要的地位,在各领域中的应用也必将不断得到拓展。 2电力电子器件的发展 2.1半控型器件 上世纪50年代,美国通用电气公司发明世界上第个晶闸管,标志电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生大量派生器件,如快速晶闸管逆导晶闸管等等。

但是,晶闸管作为半控型器件,只能通过门极导通,不能控制关断。要关断必须通过强迫换相电路,从而装置体积增大,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子效应,所以工作频率低,由于这些原因,使得晶闸管的应用受到限制。 虽然晶闸管有以上缺点,但由于它的大电压大电流特性,使在高压直流输电静止无功补偿,大功率和高压变频调速等方面仍占有重要位置。2.2全控型器件 2.2.1门极可关断晶闸管(GTO) GTO有对称,非对称和逆导三种类型。对称GTO通态压降小,抗浪涌能力强,易于提高耐压能力。逆导型GTO是在同一芯片上将GTO与整流二极管反并联制成的集成器件,不能承受反向电压,主要用于中等容量的牵引驱动中。 在当前各种自关断器件中,GTO容量做大,工作最低。GTO是电流控制型器件,因而关断需要很大的反向驱动电流。目前,GTO在低于2000V某些领域被GTR和IGBTDE所替代,但在大功率电力牵引有明显优势。 2.2.2大功率晶体管(GTR) GTR是一种电流控制的双极双结电力电子器件,它既具备晶体管的固有特性,又增加功率容量,因此,由它组成的电路灵活,成熟,开关损耗小,开关时间短,在电源电机控制,通用逆变器等中等容量,中等频率的电路中广泛应用。GTR的缺点驱动电流较大,耐浪涌电流能力差,易受二次击穿损坏。在开关电源GTR渐渐被功率MOSFET和IGBT代替。 2.2.3功率MOSFET

各种电力电子器件技术特点的比较及应用

《电力牵引交流传动及其控制系统》报告——各种电力电子器件技术特点的比较及其应用

电力电子器件及其应用装置已日益广泛,这与近30 多年来电力电子器件与电力电子技术的飞速发展和电力电子的重要作用密切相关。20 世纪80 年代以后,电力电子技术等)的飞速发展,给世界科学技术、经济、文化、军事等各方面带来了革命性的影响。电子技术包含两大部分:信息电子技术(包括:微电子、计算机、通信等)是实施信息传输、处理、存储和产生控制指令;电力电子技术是实施电能的传输、处理、存储和控制,保障电能安全、可靠、高效和经济地运行,将能源与信息高度地集成在一起。 事实表明,无论是电力、机械、矿冶、交通、石油、能源、化工、轻纺等传统产业,还是通信、激光、机器人、环保、原子能、航天等高技术产业,都迫切需要高质量、高效率的电能。而电力电子正是将各种一次能源高效率地变为人们所需的电能,实现节能环保和提高人民生活质量的重要手段,它已经成为弱电控制与强电运行之间、信息技术与先进制造技术之间、传统产业实现自动化、智能化改造和兴建高科技产业之间不可缺少的重要桥梁。而新型电力电子器件的出现,总是带来一场电力电子技术的革命。电力电子器件就好像现代电力电子装置的心脏,它对装置的总价值,尺寸、重量、动态性能,过载能力,耐用性及可靠性等,起着十分重要的作用。因此,新型电力电子器件及其相关新型半导体材料的研究,一直是电力电子领域极为活跃的主要课题之一。 一个理想的功率半导体器件,应当具有下列理想的静态和动态特性:在阻断状态,能承受高电压;在导通状态,能导通高的电流密度并具有低的导通压降;在开关状态和转换时,具有短的开、关时间,能承受高的d i/d t 和d u/d t,具有低的开关损耗;运行时具有全控功能和良好的温度特性。自20 世纪50 年代硅晶闸管问世以后,功率半导体器件的研究工作者为达到上述理想目标做出了不懈努力,并已取得了世人瞩目的成就。早期的大功率变流器,如牵引变流器,几乎都是基于晶闸管的。到了20 世纪80 年代中期,4.5kV 的可关断晶闸管得到广泛应用,并成为在接下来的10 年内大功率变流器的首选器件,一直到绝缘栅双极型晶体管的阻断电压达到 3.3kV 之后,这个局面才得到改变。与此同时,对GTO 技术的进一步改进导致了集成门极换流晶闸管的问世,它显示出比传统GTO 更加显著的优点。目前的GTO 开关频率大概为500Hz,由于开关性能的提高,IGCT 和功率IGBT 的开通和关断损耗都相对较低,因此可以工作在1~3kHz 的开关频率下。至2005 年,以晶闸管为代表的半控型器件已达到70MW/9000V 的水平,全控器件也发展到了非常高的水平。当前,硅基电力电子器件的水平基本上稳定在109~1010WHz 左右,已逼近了由于寄生二极管制约而能达到的硅材料极限,不难理解,更高电压、更好开关性能的电力电子器件的出现,使在大功率应用场合不必要采用很复杂的电路拓扑,这样就有效地降低了装置的故障率和成本。 1电力电子器件 电力电子器件又称为功率半导体器件,主要用于电力设备的电能变换和控制电路方面大功率的电子器件(通常指电流为数十至数千安,电压为数百伏以上)。 电力电子器件目前的制约因素有耐压,电流容量,开关的速度。电力电子器件的分类多种多样。按照电力电子器件的开关控制能力,电力电子器件可分为三类:不可控器件、半控型器件、全控型器件。按照驱动电路加在电力电子器件控

论电力电子器件及其应用的现状和发展

论电力电子器件及其应用的现状和发展 发表时间:2019-03-12T16:14:19.577Z 来源:《电力设备》2018年第27期作者:宗思邈 [导读] 摘要:电力电子器件我们也称之为功率半导体器件,以下简称为电子器件,主要作为电力设备中的大功率电子器件的功率转换和控制。 (东文高压电源(天津)股份有限公司 300220) 摘要:电力电子器件我们也称之为功率半导体器件,以下简称为电子器件,主要作为电力设备中的大功率电子器件的功率转换和控制。目前,电力电子器件已广泛应用于机械行业、冶金业、电力系统等一系列领域中去。并扩展到汽车、家用电器、医疗设备和照明等各个生活领域中。二十一世纪,随着技术的不断更新,它作为信息产业与传统产业之间的桥梁,一定会迎来一个新的发展趋势。并且在国民经济中占有非常重要的地位。 关键词:电力;电子器件;应用 1电力电子技术的产生和发展 1.1电力电子技术的产生 电力电子技术产生于二十世纪,美国通用电气公司研制出第一个晶闸管为电力电子技术的诞生标志,电子电力技术设备在不同领域中的广泛应用,为社会发展带来了传动技术,其中晶闸管是电力电子技术的主要运用表现,开启了电力电子技术的新纪元。因为晶闸管的出现,可控型的整流装置被研制出来,从此电力系统逐渐进入了变流器时代,加速了电力电子技术的发展。 1.2电力电子技术的发展 电力电子技术的产生促进了电力系统的发展,产生多代电力电子器件,其中第一代电力电子器件主要以晶体管和晶闸管为典型代表。晶闸管出现后,因为它比较良好的电气性能和控制性能,使之很快取代了对人体有害的且电压落差极大的水银整流器,并且其使用范围迅速扩大。二十世纪七十年代,以门极可关断晶闸管、电力双极型晶体管为主导地位的全控型器件高速发展,这些全控型器件具有既可让门极开通也可让门极关断的功能,且它的开关速度比晶闸管快很多,所以全控型器件通常用于开关频率较高的场所。它又将电力电子技术推向了一个新的发展阶段。在二十世纪八十年代,以绝缘栅极双极型晶体管为代表的复合型器件的出现,因为具有驱动功率小、开关速度快、通态压降小、载流能力大、可承受电压高等优点,使其迅速成为现代电力电子技术的主导器件,这些复合型器件常常综合了多个器件的优点,在大量电力系统场合中得到了大量运用。 2电力电子器件的应用发展 自上世纪50年代以来,世界上诞生了第一台晶闸管,它标志着电力电子器件在现代电气传动的历史舞台上的到来。基于可控硅的可控硅整流器成为电力传动行业的一个变革。 到了上世纪70年代,晶闸管已经发展成能够承受高电压和高电流的产品。这一代的半控装置被称为第一代电子电气设备。然而,晶闸管的缺点是不能关闭。随着电力电子器件的不断进步,研制了一种全控型的GTR、GTO和MOSFET。这种类型的产品被称为第二代电力电子设备。 之后便出现了第三代电子器件,主要为绝缘栅双极晶体管。第三代电子器件具有频率快、反射速度快、能耗低等特点。近年来,微电子技术与电力电子器件开始相结合,创造出一种多功能、更智能、更高效的全控性能集成器件。电流整流器可以改善电性能、降低电路能量损耗和提高电流效率方面起着重要作用。 上世纪70年代,GTR产品推出时便大获成功。它的额定值达到当时非常高的标准,同时拥有非常强大的灵活性,而且还具备开关能耗低、时间短等多个优点。它在中等容量和频率电路中起着很重要的作用。第三代绝缘栅双极晶体管可以控制电压,具有输入电阻大、驱动功率小的优点,有非常大的发展潜力。 3电力电子器件的具体应用 首先太阳能光伏发电对于电力电子器件的发展来说是比较重要的,光伏建筑一体化应用对于电力电子器件的完善也发挥了独特的作用。光伏电池发电和建筑物外电池存在很多问题,虽然这类电池原件的成本比较低,但是总的来说这类电池和电子元件适合低日照水平,电池转换效率高,原材料比较易得。但是某些电力电子器件的转换效率一般,淘汰的产品还会污染环境。电力电子器件的开发和利用促进了光伏建筑一体化的进程,土地成本过高和二氧化碳的排放量过高等问题都可以得到有效解决,而且我国最新研发出的电力电子器件可以节省光伏电池支撑结构,节省光伏电池的具体安装成本,帮助相关建筑工作人员实现土地资源的合理利用。与此同时,电力电子器件可以将太阳能和建筑物进行有效结合,帮助相关工作人员解决电能供给的难题,而且也丰富了电力电子器件的原材料。首先我们可以发现,在进行电力电子器件的研究与开发时候,运用碳化硅制造的电子器件已经成为主要的研究方向。这主要是因为碳化硅电力电子器件的高压和高温的特性与我国传统的电力电子器件相比,具有很大优越性,完全可以保障新型电力电子器件的成本和质量。尤其是碳化硅的耐高压和高温,足以帮助相关工作人员展开对于新型电力电子器件的研究。 4浅析电力电子器件发展趋势 4.1对破化硅的应用 碳化硅作为一种创新性较高的宽带半导体材料,得到人们的广泛关注。它本身带有一定的电性能,并且物理材质稳定,属于上等的电力电子器件原材料。与原始型的制作材料相比,具有耐高压和耐高温的优势。将碳化硅合理应用于电力电子器件的原材料中.能够推动电力电子器件的整体发展。但是现阶段,由于生产成本相对较高、产难以保证等原因,导致碳化硅难以被广泛生产使用。因此,应加强对电力电子器件材料的深人探究,及时改进、解决存在的问题,使碳化硅的良好性能得到充分开发与利用。 4.2对氮化稼的应用 氮化稼是电力电子器件生产过程中较为常见的原材料,它与碳化硅存在很多不同点。虽然氮化稼是一种较为优良的电力 电子器件原材料,但是在实际制作过程中,应以碳化硅的晶片或者蓝宝石作为生产底料,因此这一因素限制了氮化稼的发展速度。近几年,这一问题得到了有效缓解,随着氮化稼在LED照明装置中的广泛运用,也促使氮化稼的异质结外延技术得到了进一步的强化。除此之外,因为氮化稼的实用性较强,其应用范围不断拓展,基于氮化稼的半导体材料具备优异的物理性能和化学性能,所以其不仅在LED市场中被广泛应用,更是逐步拓展到了更多的应用领域。但是由于氮化稼电子器件的耐高温性能较差,一旦温度超过1000摄氏度,就会产生

变频器常用电力电子器件

无锡市技工院校 教案首页 课题:变频器常用电力电子器件 教学目的要求:1. 了解变频器中常用电力电子器件的外形和符号2.了解相关电力电子器件的特性 教学重点、难点: 重点:1. 认识变频器中常用电力电子器件 2. 常用电力电气器件的符号及特性 难点:常用电力电气器件的特性 授课方法:讲授、分析、图示 教学参考及教具(含多媒体教学设备): 《变频器原理及应用》机械工业出版社王延才主编 授课执行情况及分析: 在授课中,主要从外形结构、符号、特性等几方面对变频器中常用的电力电子器件进行介绍。通过本次课的学习,大部分学生已对常用电力电子器件有了一定的认识,达到了预定的教学目标。

板书设计或授课提纲

电力二极管的内部也是一个PN 结,其面积较大,电力二极管引出了两个极,分别称为阳和阴极K 。电力二极管的功耗较大,它的外形有螺旋式和平板式两种。2.伏安特性:电力二极管的阳极和阴极间的电压和流过管子的电流之间的关系称为伏安特性。 如果对反向电压不加限制的话,二极管将被击穿而损坏。(1)正向特性:电压时,开始阳极电流很小,这一段特性 曲线很靠近横坐标。当正向电压大于时,正向阳极电流急剧上升,管子正向导 通。如果电路中不接限流元件,二极管将 被烧毁。

晶闸管的种类很多,从外形上看主要由螺栓形和平板形两种,螺栓式晶闸管容量一般为10~200A;平板式晶闸管用于200A3个引出端分别叫做阳极A、阴极 控制极。 结构 晶闸管是四层((P1N1P2N2)三端(A、K、G)器件。 晶闸管的导通和阻断控制 导通控制:在晶闸管的阳极A和阴极K间加正向电压,同时在它的门极 正向触发电压,且有足够的门极电流。 晶闸管一旦导通,门极即失去控制作用,因此门极所加的触发电压一般为脉冲电压。 管从阻断变为导通的过程称为触发导通。门极触发电流一般只有几十毫安到几百毫安, 管导通后,从阳极到阴极可以通过几百、几千安的电流。要使导通的晶闸管阻断,必须将阳极电流降低到一个称为维持电流的临界极限值以下。 三、门极可关断晶闸管(GTO) 门极可关断晶闸管,具有普通晶闸管的全部优点,如耐压高、电流大、控制功率大、使用方便和价格低;但它具有自关断能力,属于全控器件。在质量、效率及可靠性方面有着明显的优势,成为被广泛应用的自关断器件之一。 结构:与普通晶闸管相似,也为PNPN四层半导体结构、三端(阳极 )器件。 门极控制 GTO的触发导通过程与普通晶闸管相似,关断则完全不同,GTO 动电路从门极抽出P2基区的存储电荷,门极负电压越大,关断的越快。 四、电力晶体管(GTR) 电力晶体管通常又称双极型晶体管(BJT),是一种大功率高反压晶体管,具有自关断能力,并有开关时间短、饱和压降低和安全工作区宽等优点。它被广泛用于交直流电机调速、中频电源等电力变流装置中,属于全控型器件。 工作原理与普通中、小功率晶体管相似,但主要工作在开关状态, 承受的电压和电流数值较大。 五、电力MOS场效应晶体管(P-MOSFET) 电力MOS场效应晶体管是对功率小的电力MOSFET的工艺结构进行改进,在功率上有

电力电子器件的发展

电力电子器件的发展浅析 引言 电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。(电力电子的发展动向)电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。 电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 1 电力电子器件 1.1概述 1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向。 1.2发展 1.2.1 整流管 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管

解析电力电子器件及其应用的现状和发展

龙源期刊网 https://www.360docs.net/doc/e112785744.html, 解析电力电子器件及其应用的现状和发展 作者:陶悦玥陈聪谭丹 来源:《名城绘》2019年第08期 摘要:近年来,随着经济与科技的不断进步,电力电子技术的发展也在不断深入,电力 电子器件被广泛运用于社会各个领域,特别是在一些高精尖领域,如航空航天、国防武器制造等领域。电力电子器件技术含量较高,能够有效保证生产制造产品的质量,为各个领域的生产制造提供技术支持,已经成为现代工业、国防和科技的重要支撑。 关键词:电力电子器件;应用;现状;发展 一、电力电子器件的应用现状 1.1电力系统 电力系统是电力电子器件应用中最重要和最有潜力的领域。在电能的产生和传输以及分 配使用的整个过程中,电力电子设备得到了广泛的应用。从用电的角度看,要利用电力电子技术改造节能技术,提高能效;从发电、输电、配电的角度看,利用电子器件来提高发电效率,提高电力传输和配电质量是十分必要的。 1.2轨道交通 地轨交通的牵引系统中,电力电子器件的应用按市场管理可以分为以下三个方面:主传动、辅助传动和控制辅助电源这三个系统。电力电子设备的容量和性能的提高,包装形式的改进,减少了传动系统,促进了牵引电力传动系统的发展。其实在交流马达中的驱动应用,可以用于运输、牵引等设备中,与直流马达相比,交流马达有价格便宜、噪音小、效率高等优势,目前越来越多的领域中,都采用交流马达作为驱动来应用。 1.3电动车节能 电动汽车作为最大的电能消耗载体,在节能方面的要求非常高。在我国的重要规划中, 电机系统节能问题被列为重点工程。随着电力电子器件与计算机技术和自动控制技术等新兴技术的不断发展,电力的传输方面的技术也面临着重大改革,直流调速很快就会被交流调速所取代。众所都知,电动汽车主要用电池供电,依靠电动电子装置进行电力交换和行驶。因此,电池的充电与这项技术是密不可分的。 1.4航空与国防工业

现代电力电子器件的发展与现状

现代电力电子器件的发展与现状 解放军信息工程大学李现兵师宇杰王广州黄娟 电力电子器件的回顾 电力电子器件又称作开关器件,相当于信号电路中的A/D采样,称之为功率采样,器件的工作过程就是能量过渡过程,其可靠性决定了系统的可靠性。根据可控程度可以把电力电子器件分成两类: 半控型器件——第一代电力电子器件 上个世纪50年代,美国通用电气公司发明的硅晶闸管的问世,标志着电力电子技术的开端。此后,晶闸管(SCR)的派生器件越来越多,到了70年代,已经派生了快速晶闸管、逆导晶闸管、双向晶闸管、不对称晶闸管等半控型器件,功率越来越大,性能日益完善。但是由于晶闸管本身工作频率较低(一般低于400Hz),大大限制了它的应用。此外,关断这些器件,需要强迫换相电路,使得整体重量和体积增大、效率和可靠性降低。目前,国内生产的电力电子器件仍以晶闸管为主。 全控型器件——第二代电力电子器件 随着关键技术的突破以及需求的发展,早期的小功率、低频、半控型器件发展到了现在的超大功率、高频、全控型器件。由于全控型器件可以控制开通和关断,大大提高了开关控制的灵活性。自70年代后期以来,可关断晶闸管(GTO)、电力晶体管(GTR或BJT)及其模块相继实用化。此后各种高频全控型器件不断问世,并得到迅速发展。这些器件主要有电力场控晶体管(即功率MOSFET)、绝缘栅极双极晶体管(IGT或IGBT)、静电感应晶体管(SIT)和静电感应晶闸管(SITH)等。 电力电子器件的最新发展 现代电力电子器件仍然在向大功率、易驱动和高频化方向发展。电力电子模块化是其向高功率密度发展的重要一步。当前电力电子器件的主要发展成果如下: IGBT:绝缘栅双极晶体管 IGBT(Insulated Gate Bipolar Transistor)是一种N沟道增强型场控(电压)复合器件,如图1所示。它属于少子器件类,兼有功率MOSFET和双极性器件的优点:输入阻抗高、开关速度快、安全工作区宽、饱和压降低(甚至接近GTR的饱和压降)、耐压高、电流大。IGBT有望用于直流电压为1500V的高压变流系统中。

常用电力电子器件

第5章 常用电力电子器件 在开关电源中,电力电子器件是完成电能转换以及主电路拓扑中最为关键的元件。为降低器件的功率损耗,提高效率,电力电子器件通常工作于开关状态,因此又常称为开关器件。电力电子器件种类很多,按照器件能够被控制电路信号所控制的程度,可以将电力电子器件分为①不可控器件,即二极管;②半控型器件,主要包括晶闸管(SCR)及其派生器件;③全控型器件,主要包括绝缘栅双极型晶体管(IGBT)、电力晶体管(GTR)、电力场效应晶体管(电力MOSFET)等。半控型及全控型器件按照驱动方式又可以分为电压驱动型、电流驱动型两类,上述分类见图5-1。 电力电子器件 不可控器件 二极管半控型器件 SCR 全控型器件 IGBT 电力MOSFET GTR GTO 晶闸管 电力电子器件 电压驱动型 电流驱动型 电力MOSFET IGBT SCR GTO 晶闸管GTR 图5-1电力电子器件的分类 随着半导体材料及技术的发展,新型电力电子器件不断推出,传统电力电子器件的性能也不断提高,这成为包括开关电源在内的各种电力电子装置的体积、效率等性能指标不断提高的重要因素。了解和掌握各种电力电子器件的特性和使用方法是正确设计开关电源的基础。 在开关电源中应用的电力电子器件主要为二极管、IGBT 和MOSFET 。SCR 在开关电源的输入整流电路及其软起动中有少量应用,GTR 由于驱动较为困难、开关频率较低,也逐渐被IGBT 和MOSFET 所取代。因此这里将主要介绍二极管、IGBT 和MOSFET 的工作原理,主要参数及驱动方法。 5. 1二极管 二极管是最为简单但又是十分重要的一种电力电子器件,在开关电源的输入整流电路、逆变电路、输出高频整流电路以及缓冲电路中均有使用。 1、二极管的基本结构及工作原理 开关电源中应用的二极管除电压、电流等参数与电子电路中的二极管有较大差别外,其基本结构和工作原理是相同的,都是由半导体PN 结构成,即P 型半导体与N 型半导体结合构成,其结构见图5-2。 P 型半导体是在半导体中添加三价元素,因此硅原子外层缺少一个电子形成稳定结构,即形成空穴。N 型半导体是在半导体中添加五价元素,因此它在形成稳定结构后,半导体晶体中能给出一个多余的电子。在纯净的半导体中,空穴和电子成对出现,数量极少,所以导电能力很差。而P 型或N 型半导体中的空穴或自由电子数量大大增加,导电能力大大增强。在P 型半导体中空穴数远远大于自由电子数,因此空穴称为多子,自由电子称为少子。在N 型半导体中则相反,空穴为少子,自由电子为多子。

电力电子元件简介

電力電子元件簡介
Introduction to Power Electronic Devices
C. M. Liaw Department of Electrical Engineering National Tsing Hua University Hsinchu, Taiwan, ROC.
兩段式電熱控制
(應用 Power diode)
AC source Power diode AC source
Load
無段式電熱控制 (應用 SCR)
SCR
P
Load
Firing circuit
Diode: Uncontrolled turn-on and turn-off
SCR: Controlled turn-on and uncontrolled turn-off
不可控制交流輸出電壓 故控制性能較差
可控制交流輸出電壓 故控制性能較佳
Page 1

常用功率半導體元件之額定(表二) Voltage/current ratings Switching frequency (speed) Switching time On-state resistance (or on-state voltage/current)
功率半導體元件 功率半導體元件
(A) 閘流體 (Thyristor) 或矽控整流器 (Silicon Controlled Rectifier, SCR) : Controlled turn-on, uncontrolled turn-off (B) 雙向閘流體 (Bidirectional Thyristor 或 TRIAC) (C) GTO (Gate Turn-off Thysistor) (D) 基體閘換向閘流體 (Integrated Gate-Commutated Thyristor, IGCT): It is introduced by ABB in 1997. It is a high-voltage, hard-driven, asymmetrical-blocking GTO with unity gain. The gate drive circuit is built-in on the device module. (E) 功率電晶體 (Power BJT) : Current control device (F) IGBT (Insulated Gate Bipolar Transistor): - Combines the conduction characteristic of BJT and the control characteristic of the MOSFET (G) MOS控制閘流體 (MOS -controlled Thyristor, MCT): - Combines the load characteristic of the thyristor and the control characteristic of the MOSFET - Low on-state voltage (H) 功率金氧半電晶體 (Power MOSFET) : Voltage control device (I) 其它
耐壓 耐流
操作 速度
Page 2

电力电子基础知识大作业要点

《电力电子技术》课程大作业电力电子技术器件、电路和技术综述 院(系)名称信息工程学院 专业名称电子信息工程技术 学生姓名XXX 学号xxx 指导教师王照平 2015年6月12日

基于电力电子技术器件、电路和技术综述的 1、概述 从广义来讲,电子技术应包含信息电子技术和电力电子技术两大分支,而通常所说的电子技术一般指信息电子技术。 电力电子技术也称为电力电子学,它真正成为一门独立的学科始于1957年第一只晶闸管的问世。在1970年国际电气和电子工程协会(IEEE)电力电子学会上对电力电子技术作了以下定义:“电力电子技术就是有效地使用电力电子器件,应用电路和设计理论及分析开发工具,实现对电能的高效能变换和控制的一门技术。它包括对电压、电流频率和波形的变换。”简言之,电力电子技术就是利用电力电子器件对电能形态进行变换和控制的一门技术。 电力电子技术是电力、电子控制三大电气工程技术领域之间的交叉学科,它们之间的关系可用倒三角图形描述,如图1-1所示。 图1-1 描述电力电子学的倒三角形 第一,电力电子技术是在电子技术的基础上发展起来的,它们都可可分为器件、电路和应用三个部分,且器件的材料和制造工艺基本相同,只有两者的应用目的有所不同,电

子技术应用于信息的处理(如放大等),电力电子技术应用于电力变换和控制,它所变换的功率可大到数百甚至数千兆瓦,也可以小到几瓦或毫瓦数量级。第二,电力电子技术广泛应用于电器工程,如高压直流输电、静止无功补偿、电力机车牵引、交直流电力传动、电解、励磁、电加热、高性能交直流电源等电力系统和电器工程中,它对电器工程的现代化起着重要推动作用。第三,电力电子技术可以看成是弱电控制强电的技术,是弱点和强电之间的接口。而控制理论是实现这种接口的一种强有力的纽带,是电力电子技术重要理论依据。所以,也可以认为:电力电子技术是运用控制理论将电子技术应用到电力领域的综合性技术。 2、电力电子常用器件 2.1、电力电子器件概念 可以直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。 2.2、电力电子器件分类 按照电力电子器件能够被控制所实现控制的程度分为下列三类: 不可控器件(Power Diode):不能用控制信号来控制其通断, 因此也就不需要驱动电路。 半控型器件(Thyristor):通过控制信号可以控制其导通而不能控制其关断 全控型器件(IGBT,MOSFET):通过控制信号既可控制其导通又可控制其关断,又称自关断器件。 按照驱动电路加在电力电子器件控制端和公共端之间的信号的性质,我们又可以将电力电子器件分为电流驱动型和电压驱动型两类: 电流驱动型:通过从控制端注入或者抽出电流来实现导通或者关断的控制。 电压驱动型:仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。 2.3、不可控器件—电力二极管 2.3.1 电力二极管的工作原理 基本结构和工作原理与信息电子电路中的二极管是一样的。由一个面积较大的PN

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一) 实验目的 (1)掌握几种常用电力电子器件(SCR 、GTO 、MOSFET 、IGBT )的工作特性; (2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二) 实验原理 A + K ak V _ f _ 图1.MATLAB 电力电子器件模型 MATLAB 电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB 电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构 。 模型中的电阻Ron 和直流电压源Vf 分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB 电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB 电力电子器件模型中已经并联了简单的RC 串联缓冲电路,在参数表中设置,名称分别为Rs 和Cs 。更复杂的缓冲电路则需要另外建立。对于MOSFET 模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf 和等效电阻Rd 。对于GTO 和IGBT 需要设置电流下降时间Tf 和电流拖尾时间Tt 。 MATLAB 的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB 的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

4.1 典型全控型电力电子器件

典型全控型电力电子器件 教学目的和要求:掌握门极可关断晶闸管的工作原理及特性、电力晶体管的工作 原理,了解电力场控晶体管的特性与参数及安全工作区。掌握电力场控晶体管的 工作原理。掌握绝缘栅双极型晶体管的工作原理、参数特点。了解静电感应晶体 管静电感应晶闸管的工作原理。 重点与难点:掌握电力晶体管、电力场控晶体管、绝缘栅双极型晶体管的工作原 理、参数特点。 教学方法: 借助PPT演示、板书等多种形式启发式教学 预复习任务:复习上节课学的半控型器件晶闸管的相关知识,对比理解掌握本节课程。内容导入: 门极可关断晶闸管——在晶闸管问世后不久出现。 全控型电力电子器件的典型代表:门极可关断晶闸管、电力晶体管、 电力场效应晶体管、绝缘栅双极晶体管。 一、门极可关断晶闸管 晶闸管的一种派生器件。可以通过在门极施加负的脉冲电流使其关断。 GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大 功率场合仍有较多的应用。 1. GTO的结构和工作原理 与普通晶闸管的相同点: PNPN四层半导体结构,外部引出阳极、阴极和门 极。和普通晶闸管的不同点:GTO是一种多元的功率集成器件。 工作原理:与普通晶闸管一样,可以用图所示的双晶体管模型来分析。

由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流增益α1 和α2 。α1+α2=1是器件临界导通的条件。 GTO的关断过程与普通晶闸管不同。关断时,给门极加负脉冲,产生门极电流-I G,此电流使得V1管的集电极电流I Cl被分流,V2管的基极电流I B2减小,从而使I C2和I K减小,I C2的减小进一步引起I A和I C1减小,又进一步使V2的基极电流减小,形成内部强烈的正反馈,最终导致GTO阳极电流减小到维持电流以下,GTO由通态转入断态。 结论: ?GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅。 ?GTO关断过程中有强烈正反馈使器件退出饱和而关断。 ?多元集成结构还使GTO比普通晶闸管开通过程快,承受d i/d t能力强。 2. GTO的动态特性 开通过程:与普通晶闸管相同 关断过程:与普通晶闸管有所不同 3. GTO的主要参数 (a)开通时间t on (b)关断时间t off (c)最大可关断阳极电流I ATO (d)电流关断增益βoff ——最大可关断阳极电流与门极负脉冲电流最大值I GM之比称为电流关断增益。 βoff一般很小,只有5左右,这是GTO的一个主要缺点。1000A的GTO关断

电力电子课后习题答案-部分

2-11试列举你所知道的电力电子器件,并从不同的角度对这些电力电子器件进行分类。目前常用的控型电力电子器件有哪些? 答:1. 按照器件能够被控制的程度,分为以下三类: (1)半控型器件:晶闸管及其派生器件 (2)全控型器件:IGBT,MOSFET,GTO,GTR (3)不可控器件:电力二极管 2. 按照驱动信号的波形(电力二极管除外) (1)脉冲触发型:晶闸管及其派生器件 (2)电平控制型:(全控型器件)IGBT,MOSFET,GTO,GTR 3. 按照器件内部电子和空穴两种载流子参与导电的情况分为三类: (1)单极型器件:电力 MOSFET,功率 SIT,肖特基二极管 (2)双极型器件:GTR,GTO,晶闸管,电力二极管等 (3)复合型器件:IGBT,MCT,IGCT 等 4.按照驱动电路信号的性质,分为两类: (1)电流驱动型:晶闸管,GTO,GTR 等 (2)电压驱动型:电力 MOSFET,IGBT 等 常用的控型电力电子器件:门极可关断晶闸管, 电力晶闸管,电力场效应晶体管,绝缘栅双极晶体管。 2-15 对晶闸管触发电路有哪些基本要求?晶闸管触发电路应满足下列要求: 1)触发脉冲的宽度应保证晶闸管的可靠导通; 2)触发脉冲应有足够的幅度,对户外寒冷场合,脉冲电流的幅度应增大为器件最大触发电流的3-5倍,脉冲前沿的陡度也需增加,一般需达到1-2A/US。 3)所提供的触发脉冲应不超过晶闸管门极的电压、电流和功率定额,且在门极伏安特性的可靠出发区域之内。 4)应有良好的抗干扰性能、温度稳定性及与主电路的电气隔离。 2-18 IGBT、GTR、GTO和电力MOSFET的驱动电路各有什么特点? IGBT驱动电路的特点是:驱动电路具有较小的输出电阻,IGBT是电压驱动型器件,IGBT 的驱动多采用专用的混合集成驱动器。 GTR驱动电路的特点是:驱动电路提供的驱动电流有足够陡的前沿,并有一定的过冲,这样可加速开通过程,减小开通损耗;关断时,驱动电路能提供幅值足够大的反向基极驱动电流,并加反偏截止电压,以加速关断速度。 GTO驱动电路的特点是:GTO要求其驱动电路提供的驱动电流的前沿应有足够的幅值和陡度,且一般需要在整个导通期间施加正门极电流,关断需施加负门极电流,幅值和陡度要求更高,其驱动电路通常包括开通驱动电路,关断驱动电路和门极反偏电路三部分。 电力MOSFET驱动电路的特点:要求驱动电路具有较小的输入电阻,驱动功率小且电路简单。 2、晶闸管对触发脉冲的要求是要有足够的驱动功率、触发脉冲前沿要陡幅值要高和触发脉冲要与晶闸管阳极电压同步。 1.晶闸管两端并联R、C吸收回路的主要作用有哪些?其中电阻R的作用是什么? 答:R、C回路的作用是:吸收晶闸管瞬间过电压,限制电流上升率,动态均压作用。R的作用为:使L、C形成阻尼振荡,不会产生振荡过电压,减小晶闸管的开通电流上升率,降低开通损耗。、

相关文档
最新文档