数学建模之包饺子问题分析

数学建模之包饺子问题分析
数学建模之包饺子问题分析

包饺子问题分析

摘要

在日常生活中我们经常会遇到:同样的产品,不同大小的包装的时候,应该选择哪一种较为划算;包饺子,包馄饨的时候,皮多了或者馅多的问题,这个时候应该把饺子或者馄饨包大一些还是包小一些才能把多余的皮或馅用完。这些问题在直观上不容易判断出结果,因此需要建立模型来来观察,以做出最佳选择。

正文

一、问题提出

设在包饺子的时通常1kg面和1kg馅包100个饺子,有一次馅多了0.4kg,问能否将饺子包大一些或小一些将这些馅仍用1kg面用完?

二、问题分析

这是一个日常生活中常见的问题,问题的本质就是里用同样面积的饺子皮包更多的饺子馅。将问题抽象为数学问题时,可以做出两个合理的假设: ①饺子皮的厚度一样,也即是饺子皮的总面积不变;②饺子馅的形状都一样,可以都看成球体,因为同样表面积下球体的体积最大,可以包更多的馅。那么饺子包大一些时,饺子的个数就会减少,饺子包小一些时,饺子的个数就会增多。也就是可以问题转化为:总表面积一定的n(n=1,2,3……)个球体,当n取多少的时候可以使得所有球体的总体积最大。这里忽略了饺子皮的厚度。

在解决这个问题的时候,可以把问题进一步抽象到把得到的总体积与1

n 是情况比较,这样问题就可以的得到很大程度的简化。并且可以先定性的分析问题,判断是将饺子包大还是包小才能达到题目要求,然后可以设计一个函数来模拟这个过程,通过函数来观察这个问题。

三、基本假设

从上面的分析我们可以看到在实建立模型的时候,需要做出一些基本假设:

⒈饺子都是标准的球形的;

⒉ 饺子皮的厚度都一样,也就是饺子皮的总面积是常数; ⒊ 每个饺子都是皮刚好把馅包起来,不多也不少;

四、问题处理

1n =时对应的情况是:表面积为S ,体积为V 的一个球体;在一般情况下对应的情

况则为:表面积为s ,体积为v 的n 个球体。

n =1时的大球体,此时有:

22S R π=, 34

3

V R π=

n 个小球体时,此时有:

22s r π=, 34

3

v r π=

此时则有:

22S R n s r ==, 33V R v r

=

? 32

V n v =)nv =nv ≥

由上式可以得到结论,球体个数少,即n 值越小,所有球体的体积和最大。所以题目中的问题答案是应该包大一点,那样才可以把馅用完。

以上所做工作都是定性分析,得出来应该把饺子包大一些的定性结论,那么到底应该包大多少,具体由应该怎么来描述“变大”的饺子?要想得到问题的答案,接下来就需要对问题进行定量分析。根据前面的想法,可以用饺子的个数也即小球体的个数来定量的表观饺子的大小。那么可以记所有球体的总体积为函数值()f n ,就可以通过以上分析得到()f n 与n 之间的函数关系:

n =1时,大球体,表面积S 体积V

n 个小球体,表面积s 体积v

()f n nv

==

其中可以认为V 为常数,因为V 为所有球体的总体积,对应实际问题中的表面积与所有饺子皮面积相等的球体,是一个固定不变的值。

依题意有:()100

f =

? ()100V = 又可知多出0.4kg 馅后,对应的数学关系为:()()1.4100f n f =

∴ ()()()1.4100100f n f ==

解方程可得:2

100

51.021.4

n =

≈ 则联系实际问题,n 值越小越好,且n 应为正整数,所以取n =51 。所以原问题的解决方案是:把饺子包大,平且包成51个可以刚好用完所有馅。

五、问题拓展

日常生活常识告诉我们,把100个饺子包成51个饺子,那么那51个饺子将几乎跟包子一样了。因此很有必要对模型进行一定量的修改,以使模型更加符合实际情况。

在原来的假设中我们认为每个饺子都是皮刚好把馅包起来,但是在实际问题中这是不可能的。通过分析上面建立模型的过程,可以发现问题的关键在于饺子的体积

()

()1.4100100f =

与表面积s 之间的函数关系,为了解决这个问题,可以在做出一个合理的假设,认为体积v 与表面积s 的商是一个关于半径r 的函数,进一步可以认为是关于饺子个数n 的函数,即

()v

k n s

= 则1n =时有

()1V

k S

= 联立两式可得总体积()f n 与饺子个数n 的函数关系:

()()

()

1k n f n V k =

则当()()1.4100f n f =时

()

()1.4100100f =

? ()()1

k n =

那么只要知道函数k 的表达式就可解出答案。

六、模型评价

通过数学思想的抽象化,得到了一个函数模型。很明显这个模型比较简单,基本不具有实用性,只能对问题进行定性的考察,在对模型简单的修正,添加了函数k 后,是模型更加接近现实,有一定的实用性。但是总的来说在建立模型的时候还是忽略了很多总要因素,需要进一步的改进。

结论

通过上面建立的模型,可以定性的得到结论,把饺子包大一些可以把多出的馅包完。

齐 梦 140206323 徐嘉辉 140206313 马一丹 140206118

建模与仿真

第1章建模与仿真的基本概念 参照P8例子,列举一个你相对熟悉的简单实际系统为例,采用非形式描述出来。 第2章建模方法论 1、什么是数学建模形式化的表示?试列举一例说明形式化表示与非形式化表示的区别。 模型的非形式描述是说明实际系统的本质,但不是详尽描述。是对模型进行深入研究的基础。主要由模型的实体、包括参变量的描述变量、实体间的相互关系及有必要阐述的假设组成。模型的非形式描述主要说明实体、描述变量、实体间的相互关系及假设等。 例子:环形罗宾服务模型的非形式描述: 实体 CPU,USR1,…,USR5 描述变量 CPU:Who,Now(现在是谁)----范围{1,2,…,5}; Who.Now=i表示USRi由CPU服务。 USR:Completion.State(完成情况)----范围[0,1];它表示USR完成整个程序任务的比例。参变量 X-----范围[0,1];它表示USRi每次完成程序的比率。 i 实体相互关系 (1)CPU 以固定速度依次为用户服务,即Who.Now为1,2,3,4,5,1,2…..循环运行。 X工作。假设:CPU对USR的服务时间固定,不(2)当Who.Now=I,CPU完成USRi余下的 i X决定。 依赖于USR的程序;USRi的进程是由各自的参变量 i 2、何谓“黑盒”“白盒”“灰盒”系统? “黑盒”系统是指系统内部结构和特性不清楚的系统。对于“黑盒”系统,如果允许直接进行实验测量并通过实验对假设模型加以验证和修正。对属于黑盒但又不允许直接实验观测的系统,则采用数据收集和统计归纳的方法来假设模型。 对于内部结构和特性清楚的系统,即白盒系统,可以利用已知的一些基本定律,经过分析和演绎导出系统模型。 3、模型有效性和模型可信性相同吗?有何不同? 模型的有效性可用实际系统数据和模型产生的数据之间的符合程度来度量。它分三个不同级别的模型有效:复制有效、预测有效和结构有效。不同级别的模型有效,存在不同的行为水平、状态结构水平和分解结构水平的系统描述。 模型的可信度指模型的真实程度。一个模型的可信度可分为: 在行为水平上的可信性,即模型是否重现真实系统的行为。 在状态结构水平上可信性,即模型能否与真实系统在状态上互相对应,通过这样的模型可以对未来的行为进行唯一的预测。 在分解结构水平上的可信性,即模型能否表示出真实系统内部的工作情况,而且是惟一表示出来。 不论对于哪一个可信性水平,可信性的考虑贯穿在整个建模阶段及以后各阶段,必须考虑以下几个方面: 1在演绎中的可信性。2在归纳中的可信性。3在目的方面的可信性。 4、基于计算机建模方法论与一般建模方法论有何不同?(P32) 经典的建模与仿真的主要研究思路,首先界定研究对象-实际系统的边界和建模目标,利用已有的数学建模工具和成果,建立相应的数学模型,并用计算装置进行仿真。这种经典的建

历年数学建模赛题题目

历年数学建模赛题题目 1992年 (A) 施肥效果分析问题(北京理工大学:叶其孝) (B) 实验数据分解问题(华东理工大学:俞文此; 复旦大学:谭永基)1993年 (A) 非线性交调的频率设计问题(北京大学:谢衷洁) (B) 足球排名次问题(清华大学:蔡大用) 1994年 (A) 逢山开路问题(西安电子科技大学:何大可) (B) 锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)1995年 (A) 飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)1996年 (A) 最优捕鱼策略问题(北京师范大学:刘来福) (B) 节水洗衣机问题(重庆大学:付鹂) 1997年 (A) 零件参数设计问题(清华大学:姜启源) (B) 截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)1998年 (A) 投资的收益和风险问题(浙江大学:陈淑平) (B) 灾情巡视路线问题(上海海运学院:丁颂康) 1999年 (A) 自动化车床管理问题(北京大学:孙山泽) (B) 钻井布局问题(郑州大学:林诒勋) (C) 煤矸石堆积问题(太原理工大学:贾晓峰) (D) 钻井布局问题(郑州大学:林诒勋) 2000年 (A) DNA序列分类问题(北京工业大学:孟大志) (B) 钢管订购和运输问题(武汉大学:费甫生) (C) 飞越北极问题(复旦大学:谭永基) (D) 空洞探测问题(东北电力学院:关信) 2001年 (A) 血管的三维重建问题(浙江大学:汪国昭) (B) 公交车调度问题(清华大学:谭泽光) (C) 基金使用计划问题(东南大学:陈恩水) (D) 公交车调度问题(清华大学:谭泽光) 2002年

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

数学建模及全国历年竞赛题目

数学建模及全国历年竞赛题目 (2010-09-28 21:58:01) 标签: 分类:专业教学 数学建模 应用数学模型 教育 一、数学建模的涵 (一)数学建模的概念 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。使用数学语言描述的事物就称为数学模型,这个建立数学模型的全过程就称为数学建模。(二)应用数学模型 应用数学去解决各类实际问题,把错综复杂的实际问题简化、抽象为合理的数学结构。通过调查、收集数据资料,观察和研究实际对象的固有特征和在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。需要诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包如 Mathematica,Matlab,Lingo,Spss,Mapple的使用,甚至排版软件等知识的基础。

(三)数学建模的特点 数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点;数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。(四)数学建模的指导思想 数学建模的指导思想就是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。 (五)数学建模的意义 数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。 1.培养创新意识和创造能力; 2.训练快速获取信息和资料的能力; 3.锻炼快速了解和掌握新知识的技能; 4.培养团队合作意识和团队合作精神; 5.增强写作技能和排版技术;

数学建模钢管下料问题

重庆交通大学 学生实验报告 实验课程名称数学建模 ^ 开课实验室数学实验室 学院信息院11 级软件专业班 1 班 学生姓名 学号 ¥ 开课时间2013 至2014 学年第 1 学期

! 】 )

/ 实验一 钢管下料问题 摘要 ( 生产中常会遇到通过切割、剪裁、冲压等手段,将原材料加工成规定大小的某种,称为原料下料问题.按照进一步的工艺要求,确定下料方案,使用料最省,或利润最大是典型的优化问题.下面我们采用数学规划模型建立线性规划模型并借助LINGO 来解决这类问题. 关键词线性规划最优解钢管下料 一,问题重述 1、问题的提出 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割出售.从钢管厂进货得到的原材料的钢管的长度都是1850mm ,现在一顾客需要15根290 mm,28根315 mm,21根350 mm和30根455 mm的钢管.为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,以此类推,且每种切割模式下的切割次数不能太多(一根原钢管最多生产5根产品),此外为了减少余料浪费,每种切割模式下的余料浪费不能超过100 mm,为了使总费用最小,应该如何下料 ` 2、问题的分析 首先确定合理的切割模式,其次对于不同的分别进行计算得到加工费用,通

过不同的切割模式进行比较,按照一定的排列组合,得最优的切割模式组,进而使工加工的总费用最少. 二,基本假设与符号说明 1、基本假设 假设每根钢管的长度相等且切割模式理想化.不考虑偶然因素导致的整个切割过程无法进行. 2、定义符号说明 (1)设每根钢管的价格为a ,为简化问题先不进行对a 的计算. (2)四种不同的切割模式:1x 、2x 、3x 、4x . 》 (3)其对应的钢管数量分别为:i r 1、i r 2、i r 3、i r 4(非负整数). 三、模型的建立 由于不同的模式不能超过四种,可以用i x 表示i 按照第种模式(i =1,2,3,4)切割的原料钢管的根数,显然它们应当是非负整数.设所使用的第i 种切割模式下 每根原料钢管生产290mm ,315mm,,350mm 和455mm 的钢管数量分别为i r 1,i r 2,i r 3,i r 4(非负整数). 决策目标 切割钢管总费用最小,目标为: Min=(1x ?+2x ?+3x ?+4x ?)?a (1) 为简化问题先不带入a 约束条件 为满足客户需求应有 11r ?1x +12r ?2x +13r ?3x +14r ?4x ≧15 (2) ( 21r ?1x +22r ?2x +23r ?3x +24r ?4x ≧28 (3) 31r ?1x +32r ?2x +33r ?3x +34r ?4x ≧21 (4) 41r ?1x +42r ?2x +43r ?3x +44r ?4x ≧15 (5) 每一种切割模式必须可行、合理,所以每根钢管的成品量不能大于1850mm 也不能小于1750mm.于是: 1750≦290?11r +315?21r +350?31r +455?41r ≦1850 (6) 1750≦290?12r +315?22r +350?32r +455?42r ≦1850 (7) 1750≦290?13r +315?23r +350?33r +455?43r ≦1850

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

数学建模之钢管下料问题案例分析

钢管下料问题 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的原料钢管都是19m 。 (1)现在一客户需要50根4m 、20根6m 和15根8m 的钢管。应如何下料最节省? (2) 零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。此外,该客户除需要(1)中的三种钢管外,还需要10根5m 的钢管。应如何下料最节省。 问题(1)分析与模型建立 首先分析1根19m 的钢管切割为4m 、6m 、8m 的钢管的模式,所有模式相当于求解不等式方程: 12346819 k k k ++≤ 的整数解。但要求剩余材料12319(468)4r k k k =-++<。 容易得到所有模式见表1。 决策变量 用i x 表示按照第i 种模式(i=1,2,…,7)切割的原料钢管的根数。 以切割原料钢管的总根数最少为目标,则有 1234567min z x x x x x x x =++++++ 约束条件 为满足客户的需求,4米长的钢管至少50根,有

1236743250x x x x x ++++≥ 6米长的钢管至少20根,有 25673220x x x x +++≥ 8米长的钢管至少15根,有 346215x x x ++≥ 因此模型为: 1234567min z x x x x x x x =++++++ 123672567346432503220..215,1,2,,7 i x x x x x x x x x s t x x x x i ++++≥??+++≥??++≥??=? 取整 解得: 12345670,12,0,0,0,15,0x x x x x x x ======= 目标值z=27。 即12根钢管采用切割模式2:3根4m ,1根6m ,余料1m 。 15根钢管采用切割模式6:1根4m ,1根6m ,1根8m ,余料1m 。 切割模式只采用了2种,余料为27m ,使用钢管27根。 LINGO 程序: model: sets: model/1..7/:x; endsets min=x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7); 4*x(1)+3*x(2)+2*x(3)+x(6)+x(7)>=50; x(2)+3*x(5)+x(6)+2*x(7)>=20; x(3)+2*x(4)+x(6)>=15; @for(model(i):@gin(x(i))); end 问题(2)模型建立 首先分析1根19m 的钢管切割为4m 、6m 、8m 、5m 的钢管的模式,所有模式相当

数学建模包饺子问题

题目:数学建模包饺子问题 所属班级:高2020届新创新2班 参赛队员:1.队长 2.组员1号 3.组员2号 4.组员3号 日期2016年9月6日

摘要 在日常生活中我们经常会遇到:同样的产品,不同大小的包装的时候,应该选择哪一种较为划算;包饺子,包馄饨的时候,皮多了或者馅多的问题,这个时候应该把饺子或者馄饨包大一些还是包小一些才能把多余的皮或馅用完。这些问题在直观上不容易判断出结果,因此需要建立模型来来观察,以做出最佳选择。 关键词 包饺子数学模型实际问题的抽象化 正文 问题提出 有一天,你和家人一起包饺子,家里有一斤面和一斤馅。可是由于饺子大小不均匀,包了一些以后发现剩的馅比面多,好像馅包不完了。为了避免浪费,你们要把面和馅都用完,那么剩下的馅应该包成大饺子,少包几个,还是包成小饺子,多包几个呢 问题分析 这是一个日常生活中常见的问题,问题的本质就是里用同样面积的饺子皮包更多的饺子馅。将问题抽象为数学问题时,可以做出两个合理的假设:①饺子皮的厚度一样,也即是饺子皮的总面积不变;②饺子馅的形状都一样,可以都看成球体,因为同样表面积下球体的体积最大,可以包更多的馅。那么饺子包大一些时,饺子的个数就会减少,饺子包小一些时,饺子的个数就会增多。也就是可以问题转化为:总表面积一定的n(n=1,2,3……)

个球体,当n取多少的时候可以使得所有球体的总体积最大。这里忽略了饺子皮的厚度。 在解决这个问题的时候,可以把问题进一步抽象到把得到的总体积与n1是情况比较,这样问题就可以的得到很大程度的简化。并且可以先定性的分析问题,判断是将饺子包大还是包小才能达到题目要求,然后可以设计一个函数来模拟这个过程,通过函数来观察这个问题。 基本假设 从上面的分析我们可以看到在实建立模型的时候,需要做出一些基本假设: ⒈饺子都是标准的球形的; ⒉饺子皮的厚度都一样,也就是饺子皮的总面积是常数; ⒊每个饺子都是皮刚好把馅包起来,不多也不少; 问题处理 n1时对应的情况是:表面积为S,体积为V的一个球体;在一般情况下对应的情况则为:表面积为s,体积为v的n个球体。大球体,表面积S体积V,n个小球体,表面积s体积v n=1时的大球体,此时有: S2R2,V4/3R3 n个小球体时,此时有: s2r2,v4/3r3 S/s=n=2R2/2r2=R2/r2, V/v=(4/3R3)/(4/3r3)=R3

数学建模之下料问题

数学建模第三次作业 下料问题 摘要 本文是针对如何对钢管进行下料问题,根据题目要求以及下料时有关问题进行建立切割费用最少以及切割总根数最少两个目标函数通过结果分析需要使用何种切割模式。 生产方式所花费的成本价格或多或少有所不同,如何选取合理的生产方式以节约成本成为了很多厂家的急需解决的问题。这不仅仅关系到厂家的利益,也影响到一个国家甚至整个人类星球的可利用资源,人们的生活水平不断提高对物资的需求量也不断上升,制定有效合理的生产方式不仅可以为生产者节约成本也可以为社会节约资源,以达到资源利用最大化。本文以用于切割钢管花费最省及切割总根数最少为优化目标,通过构建多元函数和建立线性整数规划模型,利用数学及相关方面的知识对钢管的切割方式进行优化求解最佳方案。 本文最大的特色在于通过求解出切割钢管花费最省及切割总根数最少时分别得出两种目标函数取最小值时的切割模式。通过结果发现两种目标函数取最小值时所需切割根数都一样。于是选择切割钢管花费最省为目标函数,此时的切割模式达到最少,这样既满足了总根数最小有满足了切割费用最小。 关键词:切割模式LINGO软件线性整数

一、问题的提出 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后出售。从钢管厂进货时得到的原料钢管的长度都是1850mm。现有一客户需要15根290mm、28根315mm、21根350mm和30根455mm的钢管。为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,依次类推,且每种切割模式下的切割次数不能太多(一根钢管最多生产5根产品)。此外,为了减少余料浪费,每种切割模式下的余料不能超过100mm。为了使总费用最小,应如何下料? 二、基本假设 1、假设所研究的每根钢管的长度均为1850mm的钢管。 2、假设每次切割都准确无误。 3、假设切割费用短时间内不会波动为固定值。 5、假设钢管余料价值为0. 6、假设一切运作基本正常不会产生意外事件。 7、每一根钢管的费用都一样,为一常值。 三、符号说明

数学建模运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线: 1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的(,) i j(,1,,10) i j=位置上的数表示(其中∞表示两个客户之间无直接的路线到达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让他先给客户10送 货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车一次能装满10个 客户所需要的全部货物,请问货车从提货点出发给10个客户配送完货物后再回到提货点所行使的尽可能短的行使路线?对所设计的算法进行分析。 3、现因资源紧张,运输公司没有大货车可以使用,改用两辆小的货车配送货物。每辆小

中国研究生数学建模竞赛历届竞赛题目截止

中国研究生数学建模竞赛历届竞赛题目 第一届2004年题目 A题发现黄球并定位 B题实用下料问题 C题售后服务数据的运用 D题研究生录取问题 第二届2005年题目 A题HighwayTravelingtimeEstimateandOptimalRouting B题空中加油 C题城市交通管理中的出租车规划 D题仓库容量有限条件下的随机存贮管理 第三届2006年题目 A题AdHoc网络中的区域划分和资源分配问题 B题确定高精度参数问题 C题维修线性流量阀时的内筒设计问题 D题学生面试问题 第四届2007年题目 A题建立食品卫生安全保障体系数学模型及改进模型的若干理论问题 B题械臂运动路径设计问题 C题探讨提高高速公路路面质量的改进方案 D题邮政运输网络中的邮路规划和邮车调运 第五届2008年题目 A题汶川地震中唐家山堪塞湖泄洪问题 B题城市道路交通信号实时控制问题 C题货运列车的编组调度问题 D题中央空调系统节能设计问题 第六届2009年题目 A题我国就业人数或城镇登记失业率的数学建模 B题枪弹头痕迹自动比对方法的研究 C题多传感器数据融合与航迹预测 D题110警车配置及巡逻方案 第七届2010年题目 A题确定肿瘤的重要基因信息 B题与封堵渍口有关的重物落水后运动过程的数学建模 C题神经元的形态分类和识别 D题特殊工件磨削加工的数学建模 第八届2011年题目 A题基于光的波粒二象性一种猜想的数学仿真 B题吸波材料与微波暗室问题的数学建模 C题小麦发育后期茎轩抗倒性的数学模型 D题房地产行业的数学建模

第九届2012年题目 A题基因识别问题及其算法实现 B题基于卫星无源探测的空间飞行器主动段轨道估计与误差分析C题有杆抽油系统的数学建模及诊断 D题基于卫星云图的风矢场(云导风)度量模型与算法探讨 第十届2013年题目 A题变循环发动机部件法建模及优化 B题功率放大器非线性特性及预失真建模 C题微蜂窝环境中无线接收信号的特性分析 D题空气中PM2.5问题的研究attachment E题中等收入定位与人口度量模型研究 F题可持续的中国城乡居民养老保险体系的数学模型研究 第十一届2014年题目 A题小鼠视觉感受区电位信号(LFP)与视觉刺激之间的关系研究B题机动目标的跟踪与反跟踪 C题无线通信中的快时变信道建模 D题人体营养健康角度的中国果蔬发展战略研究 E题乘用车物流运输计划问题 第十二届2015年题目 A题水面舰艇编队防空和信息化战争评估模型 B题数据的多流形结构分析 C题移动通信中的无线信道“指纹”特征建模 D题面向节能的单/多列车优化决策问题 E题数控加工刀具运动的优化控制 F题旅游路线规划问题 第十三届2016年题目 A题多无人机协同任务规划 B题具有遗传性疾病和性状的遗传位点分析 C题基于无线通信基站的室内三维定位问题 D题军事行动避空侦察的时机和路线选择 E题粮食最低收购价政策问题研究 数据来源:

包饺子问题分析

包饺子问题分析 摘要 包饺子,混沌,汤圆等含馅类糕点时,我们常常会犹豫是应该把皮做大,使单个糕点的馅多还是把皮做小,使糕点总数多这两种方法哪一种能使我们吃到更多的馅,更少的皮。在超市选购食品时,是大包装还是小包装更划算。这样的问题直观上不易判断出结果,因此我们需要建立模型来观察,以便做出最佳选择。 关键词:包饺子 一、问题重述 通常1kg面,1kg馅,包100个饺子。今天1kg面不变,馅比1kg多了,问应多包几个(每个小一点),还是少包几个(每个大一点)。 根据基本要求,我们建立数学模型解决下面问题 ⑴用相关数学概念描述问题的实质。 ⑵通过数学运算得出的计算结果确定答案。 二、模型假设 (1)饺子皮的厚度一致 (2)饺子的形状大小一致 (3)每个饺子都是皮刚好把馅包起来,不多也不少。 三、符号说明 S——饺子皮面的总面积,单位为㎡ s ——包饺子时每个饺子所用皮的面积,单位为㎡ V——馅的总体积,单位为m3 v ——包饺子时每个饺子所用馅的体积,单位为m3 R——大皮半径,单位为m r ——小皮半径,单位为m k1——半径的平方与表面积成正比的系数 k2——半径的立方与体积成正比的系数 k——运算过程中由k1,k2得到的系数 n ——饺子数目,单位为个 四、模型的建立与求解 由于现实中包饺子存在许多很难量化统一的量,例如饺子的形状,大小,饺子皮的厚薄等等,我们对包饺子的过程进行了抽象简化,将饺子抽象为立体图形,假设饺子皮和饺子馅完美贴合,此时可用S,这个立体图形的表面积代替饺子皮的面积,V,这个立体图形的体积代替饺子馅的体积。题目中给出的问题:多包几个(每个小一点),还是少包几个(每个大一点)。可分两种情况然后比较的方法解答。 由于皮的厚度是一样的,所以有S=n×s……⑴ 由表面积和半径的平方成正比关系,以及体积和半径的立方成正比得

数学建模论文——下料问题

3.下料问题 班级:计科0901班姓名:徐松林学号:2009115010130 摘要: 本文建立模型,以最少数量的原材料以及最少的余料浪费来满足客户的需求。主要考虑到两方面的问题。钢管零售商是短时间内出售钢管,则应该以最少原材料根数为目标函数来建模模型;钢管零售商是长时间内出售钢管,则应该以最少余料浪费为目标函数。有效地使用背包问题及线性规划、非线性规划等算法,算出最优解。特别是钢管零售商是短时间内出售钢管,需要分析切割模式的种类1到4种的各个情况的整数最优解,再依次比较每个情况的最优解得出总的最优解。 关键词:余料、原材料、加工费、总费用。 一、问题背景 工厂在实际生产中需要对标准尺寸的原材料进行切割,以满足进一步加工的需要,成为下料问题。 相关数据表明,原材料成本占总生产成本的百分比可以高达45%~60%,而下料方案的优劣直接影响原材料的利用率,进而影响原材料成本。因此需要建立优化的下料方案,以最少数量的原材料以及最少的余料浪费,尽可能按时完成需求任务。 二.问题描述及提出 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出.从钢管厂进货时得到的原料钢管长度都是1850mm.现有一客户需要15根290mm、28根315mm、21根350mm 和30根455mm的钢管.为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,依此类推,且每种切割模式下的切割次数不能太多(一根原料钢管最多生产5根产品)。此外,为了减少余料浪费,每种切割模式下的余料浪费不能超过100mm.为了使总费用最小,应如何下料? 在该目标下要求考虑下面两个问题: 1.若钢管零售商是短时间内出售钢管(即每次将钢管按照顾客的要求切割后售 出,多余的零件不准备下次售出),则每次应该以最少原材料根数为目标函数。

数学建模模最短路

基于最短路问题的研究及应用令狐采学 姓名:Fanmeng 学号: 指导老师:

摘要 最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。 关键字数学建模最短路问题Dijkstra算法水渠修建。

目录 第一章.研究背景1 第二章.理论基础2 2.1 定义2 2.2 单源最短路问题Dijkstra求解:2 2.2.1 局限性2 2.2.2 Dijkstra算法求解步骤2 2.2.3 时间复杂度2 2.3 简单样例3 第三章.应用实例4 3.1 题目描述4 3.2 问题分析4 3.3符号说明4 3.4 模型假设5 3.5模型建立与求解5 3.5.1模型选用5 3.5.2模型应用及求解5 3.6模型评价5 第四章. 参考文献5 第五章.附录6

第一章.研究背景 在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。因此掌握最短路问题具有很重要的意义。

第二章.理论基础 2.1 定义 最短路问题(short-path problem ):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点,(通常是源节点和目标节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,可用来解决管道铺设,线路安装,厂区布局和设备更新等实际问题[2]。 2.2 单源最短路问题Dijkstra 求解: 2.2.1局限性 Dijkstra 算法不能够处理带有负边的图,即图中任意两点之间的权值必须非负。 2.2.2Dijkstra 算法求解步骤 (1).先给图中的点进行编号,确定起点的编号。 (2).得到图的构成,写出写出图的矩阵 0000(,)(,) (,) (,) n n n n u u u u G u u u u = (3).根据要求求出发点S 到终点E 的最短距离,那么需要从当前没被访问过的结点集合 unvist={u | u {1,2,3...}}n ∈中找到一个距离已经标记的点的集合中vist={u | u {1,2,3...}}n ∈的最短距离,得到这个顶点; (4).利用这个顶点来松弛其它和它相连的顶点距离S 的值 (5).重复步骤(2)和(3),直到再也没有点可以用来松弛其它点,这样我们就得到了由起点S 到其它任意点的最短距离。 2.2.3时间复杂度 时间复杂度达到 2 ()O N

历年全国数学建模试题及其解法归纳

历年全国数学建模试题及解法归纳 赛题解法 93A非线性交调的频率设计拟合、规划 93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划 94B锁具装箱问题图论、组合数学 95A飞行管理问题非线性规划、线性规划 95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化 96B节水洗衣机非线性规划 97A零件的参数设计非线性规划 97B截断切割的最优排列随机模拟、图论 98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化 99A自动化车床管理随机优化、计算机模拟 99B钻井布局0-1规划、图论 00A DNA序列分类模式识别、Fisher判别、人工 神经网络 00B钢管订购和运输组合优化、运输问题 01A血管三维重建曲线拟合、曲面重建

赛题解法 01B 公交车调度问题多目标规划 02A车灯线光源的优化非线性规划 02B彩票问题单目标决策 03A SARS的传播微分方程、差分方程 03B 露天矿生产的车辆安排整数规划、运输问题 04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化 05A长江水质的评价和预测预测评价、数据处理 05B DVD在线租赁随机规划、整数规划 06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析 07A 人口问题微分方程、数据处理、优化07B 公交车问题多目标规划、动态规划、图 论、0-1规划 08A 照相机问题非线性方程组、优化 08B 大学学费问题数据收集和处理、统计分 析、回归分析 2009年A题制动器试验台的控制方法分析工程控制 2009年B题眼科病床的合理安排排队论,优化,仿真,综 合评价 2009年C题卫星监控几何问题,搜集数据

数学建模作业(三)

数学建模作业(三)第三章习题 2013/04/09

速度为v 的风吹在迎风面积为s 的风车上,空气的密度是ρ,用量纲分析法确定风车获得的功率p 与v ,s ,ρ的关系。 ● 对于风车获得的功率p 与v ,s ,ρ的关系我们假设: 1.忽略其它因素对功率的影响 2.将其视为理想化模型 ● 在这些假设下,风车获得的功率与以下物理量有关: 风车获得的功率p ,风速v ,迎风面积s ,空气密度ρ。 ● 它们的量纲分别是 23[]p ML T -=,1[]v LT -=,23[],].[L L s M ρ-== ● 设1234=p v s ααααπρ,有 1234 1412341223123+2++2-3-3-[]()()()()MLT LT L ML M L T ααααααααααααπ---== 由[]1π=得到以下线性方程组 141234********* αααααααα?+=?++-=??--=? 不难验证,这个方程组的秩为3. 因此方程组的解空间是4维。 由 ()()1 =1α 可得方程组的基本解: 1(1,3,1,1),=---e 于是,与这四个参数有关的量纲乘积为 3111=,pv s πρ--- ● 四个物理量之间的关系为()10.f π=即 () 3110.f pv s ρ---= ● 根据隐函数运算法则,得

● 3p s v λρ=, 其中λ为无单位的常比例系数。 俗话说“大饺子能装馅”,试自建一个“包饺子”的数学模型并进行分析,判断这一说法是否正确。 ● “大饺子能装馅”考虑到实际是相同面积的饺子皮可以用掉更多体积的饺子馅。 ● 为了简化模型,我们做出以下假设 1. 饺子都是标准球形 2. 3. 饺子大小全部一致 4. 5. 饺子皮的厚度相同 6. 饺子皮的厚度忽略不计 ● 涉及到的物理量: 饺子皮总面积S ,一个饺子皮的面积s ,饺子数n ,饺子半径r ,所包馅的总体积V ,一个饺子包含馅的体积v ● ● 这些物理量有以下关系: 2 3 s=443 /r v r n S s V nv ππ=== 可得S V =● 因此,大饺子能装馅,这一说法正确。

历年全国数学建模试题解法归纳

历年全国数学建模试题解法归纳 赛题解法 93A非线性交调的频率设计拟合、规划 93B足球队排名图论、层次分析、整数规划 94A逢山开路图论、插值、动态规划 94B锁具装箱问题图论、组合数学 95A飞行管理问题非线性规划、线性规划 95B天车与冶炼炉的作业调度动态规划、排队论、图论 96A最优捕鱼策略微分方程、优化 96B节水洗衣机非线性规划 97A零件的参数设计非线性规划 97B截断切割的最优排列随机模拟、图论 98A一类投资组合问题多目标优化、非线性规划 98B灾情巡视的最佳路线图论、组合优化 99A自动化车床管理随机优化、计算机模拟 99B钻井布局 0-1规划、图论 00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题 01A血管三维重建曲线拟合、曲面重建 01B公交车调度问题多目标规划 02A车灯线光源的优化非线性规划 02B彩票问题单目标决策 03A SARS的传播微分方程、差分方程 03B 露天矿生产的车辆安排整数规划、运输问题 04A奥运会临时超市网点设计统计分析、数据处理、优化 04B电力市场的输电阻塞管理数据拟合、优化 05A长江水质的评价和预测预测评价、数据处理 05B DVD在线租赁随机规划、整数规划 06A出版社书号问题整数规划、数据处理、优化 06B Hiv病毒问题线性规划、回归分析 07A 人口问题微分方程、数据处理、优化 07B 公交车问题多目标规划、动态规划、图论、0-1规划08A 照相机问题非线性方程组、优化 08B 大学学费问题数据收集和处理、统计分析、回归分析 09A 机械制动问题物理模拟、综合评价 09B 病床分配问题排队论、拟合、预测、综合评价 10A 储油罐问题数值方法、工程方法或几何方法等近似方法10B 世博会影响力问题 GM(1,1)、层次分析法、模糊综合评判 11A 城市表层土壤重金属污染分析插值拟合方法、聚类分析、特征线法 11B 交巡警服务平台的设置与调度 0-1规划、计算机模拟、图论 12A葡萄酒的评价数据收集和处理、相关系数法、聚类分析12B 太阳能小屋的设计多目标优化模型、数据处理 13A 车道被占用对城市道路通行能力的影响数据收集和处理、优化、统计分析

数学建模之包饺子

数学建模之包饺子问题分析 包饺子问题分析 摘要 在日常生活中我们经常会遇到:同样的产品,不同大小的包装的时候,应该选择哪一种较为划算;包饺子,包馄饨的时候,皮多了或者馅多的问题,这个时候应该把饺子或者馄饨包大一些还是包小一些才能把多余的皮或馅用完。这些问题在直观上不容易判断出结果,因此需要建立模型来来观察,以做出最佳选择。 关键词 包饺子数学模型实际问题的抽象化 正文 一、问题提出 设在包饺子的时通常1kg面和1kg馅包100个饺子,有一次馅多了0.4kg ,问能否将饺子包大一些或小一些将这些馅仍用1kg 面用完? 二、问题分析 这是一个日常生活中常见的问题,问题的本质就是里用同样面积的饺子皮包更多的饺子馅。将问题抽象为数学问题时,可以做出两个合理的假设: ①饺子皮的厚度一样,也即是饺子皮的总面积不变;②饺子馅的形状都一样,可以都看成球体,因为同样表面积下球体的体积最大,

可以包更多的馅。那么饺子包大一些时,饺子的个数就会减少,饺子包小一些时,饺子的个数就会增多。也就是可以问题转化为:总表面积一定的n (n=1,2,3??)个球体,当n 取多少的时候可以使得所有球体的总体积最大。这里忽略了饺子皮的厚度。 在解决这个问题的时候,可以把问题进一步抽象到把得到的总体积与n 1 是情况比较,这样问题就可以的得到很大程度的简化。并且可以先定性的分析问题,判断是将饺子包大还是包小才能达到题目要求,然后可以设计一个函数来模拟这个过程,通过函数来观察这个问题。 三、基本假设

从上面的分析我们可以看到在实建立模型的时候,需要做出一些基本假设: ⒈ 饺子都是标准的球形的; ⒉ 饺子皮的厚度都一样,也就是饺子皮的总面积是常数; ⒊ 每个饺子都是皮刚好把馅包起来,不多也不少; 四、问题处理 n 1时对应的情况是 :表面积为 S ,体积为V 的一个球体;在一般情况下对应的 情况则 为:表面积为 s ,体积为 v 的 n 个球体。 n 个小球体时,此时有: 2 r 2 , 此时则有: R 2 由上式可以得到结论,球体个数少,即 n 值越小,所有球体的体积和最大。所以题 目中的问题答案是应该包大一点,那样才可以把馅用完。 以上所做工作都是定性分析, 得出来应该把饺子包大一些的定性结论, 那么到底应 该包大多少,具体由应该怎么来描述“变大”的饺子?要想得到问题的答案,接下来就 需要对问题进行定量分析。 根据前面的想法, 可以用饺子的个数也即小球体的个数来定 n =1 时,大球体,表 面积 S 体 n =积1时V 的大球体,此时有: n 个小球体, 表面积 s R 2, V 43 R 3 r 3 R 3 3 n 2v nv nv

相关文档
最新文档