理想车载开关电源推挽式设计方案

理想车载开关电源推挽式设计方案
理想车载开关电源推挽式设计方案

理想车载开关电源推挽式设计方案

摘要:为了适应车载用电设备的需求,采用推挽逆变-高频变压-全桥整流方案设计了24VDC 输入-220VDC输出、额定输出功率600W的DC-DC变换器,并采用AP法给出了高频推挽变压器的设计过程。在详细分析推挽逆变工作原理的基础上,给出了实际设计中的注意事项。实验结果表明该方案是一种理想的车载DC-DC变换器设计方案。

随着现代汽车用电设备种类的增多,功率等级的增加,所需要电源的型式越来越多,包括交流电源和直流电源。这些电源均需要采用开关变换器将蓄电池提供的+12VDC或+24VDC的直流电压经过DC-DC变换器提升为+220VDC或+240VDC,后级再经过DC-AC变换器转换为工

频交流电源或变频调压电源。对于前级DC-DC变换器,又包括高频DC-AC逆变部分、高频变压器和AC-DC整流部分,不同的组合适应不同的输出功率等级,变换性能也有所不同。推挽逆变电路以其结构简单、变压器磁芯利用率高等优点得到了广泛应用,尤其是在低压大电流输入的中小功率场合;同时全桥整流电路也具有电压利用率高、支持输出功率较高等特点,因此本文采用推挽逆变-高频变压器-全桥整流方案,设计了24VDC输入-220VDC 输出、额定输出功率600W的DC-DC变换器,并采用AP法设计相应的推挽变压器。

1、推挽逆变的工作原理

图1给出了推挽逆变-高频变压-全桥整流DC-DC变换器的基本电路拓扑。通过控制两个开关管S1和S2以相同的开关频率交替导通,且每个开关管的占空比d均小于50%,留出一定死区时间以避免S1和S2同时导通。由前级推挽逆变将输入直流低电压逆变为交流高频低电压,送至高频变压器原边,并通过变压器耦合,在副边得到交流高频高电压,再经过由反向快速恢复二极管FRD构成的全桥整流、滤波后得到所期望的直流高电压。由于开关管可承受的反压最小为两倍的输入电压,即2UI,而电流则是额定电流,所以,推挽电路一般用在

输入电压较低的中小功率场合。

当S1开通时,其漏源电压 uDS1只是一个开关管的导通压降,在理想情况下可假定 uDS1=0,而此时由于在绕组中会产生一个感应电压,并且根据变压器初级绕组的同名端关系,该感应电压也会叠加到关断的S2上,从而使S2在关断时承受的电压是输入电压与感应电压之和约为2UI.在实际中,变压器的漏感会产生很大的尖峰电压加在S2 两端,从而引起大的关断损耗,变换器的效率因受变压器漏感的限制,不是很高。在S1和S2 的漏极之间接上RC缓冲

电路,也称为吸收电路,用来抑制尖峰电压的产生。并且为了给能量回馈提供反馈回路,在S1和S2 两端都反并联上续流二极管FWD。

2、开关变压器的设计

采用面积乘积(AP)法进行设计。对于推挽逆变工作开关电源,原边供电电压UI=24V,副边为全桥整流电路,期望输出电压UO=220V,输出电流IO=3A,开关频率fs=25kHz,初定变压器效率η=0.9,工作磁通密度Bw=0.3T.

(1)计算总视在功率PT.设反向快速恢复二极管FRD的压降:VDF=0.6*2=1.2V

3、推挽逆变的问题分析 3.1能量回馈

主电路导通期间,原边电流随时间而增加,导通时间由驱动电路决定。

图2(a)为S1导通、S2关断时的等效电路,图中箭头为电流流向,从电源UI正极流出,经过S1流入电源UI负极,即地,此时FWD1不导通;当S1关断时,S2未导通之前,由于原边能量的储存和漏电感的原因,S1的端电压将升高,并通过变压器耦合使得S2的端电压下降,此时与S2并联的能量恢复二极管FWD2还未导通,电路中并没有电流流过,直到在变压器原边绕组上产生上正下负的感生电压。如图2(b);FWD2导通,把反激能量反馈到电源中去,如图2(c),箭头指向为能量回馈的方向。

3.2各点波形分析

当某一PWN信号的下降沿来临时,其控制的开关元件关断,由于原边能量的储存和漏电感的原因,漏极产生冲击电压,大于2UI,因为加入了RC缓冲电路,使其最终稳定在2UI附近。

当S1的PWN 信号下降沿来临,S1关断,漏极产生较高的冲击电压,并使得与S2并联的反馈能量二极管FWD2导通,形成能量回馈回路,此时S2漏极产生较高的冲击电流,见图4。

4、实验与分析

4.1 原理设计

图5为简化后的主电路。输入24V 直流电压,经过大电容滤波后,接到推挽变压器原边的中间抽头。变压器原边另外两个抽头分别接两个全控型开关器件IGBT,并在此之间加入RC吸收电路,构成推挽逆变电路。推挽变压器输出端经全桥整流,大电容滤波得到220V直流电压。并通过分压支路得到反馈电压信号UOUT。

以CA3524芯片为核心,构成控制电路。通过调节6、7管脚间的电阻和电容值来调节全控型开关器件的开关频率。12、13 管脚输出PWM脉冲信号,并通过驱动电路,分别交替控制两个全控型开关器件。电压反馈信号输入芯片的1管脚,通过调节电位器P2给2管脚输入电压反馈信号的参考电压,并与9管脚COM端连同CA3524内部运放一起构成PI调节器,调节PWM脉冲占空比,以达到稳定输出电压220V的目的。

4.2结果与分析

实验结果表面,输出电压稳定在220V,纹波电压较小。最大输出功率能达到近600W,系统效率基本稳定在80%,达到预期效果。其中,由于IGBT效率损耗较大导致系统效率偏低,考虑如果采用损耗较小的MOSFET,系统效率会至少上升10%~15%.

注意事项:

(1)变压器初级绕组在正、反两个方向激励时,由于相应的伏秒积不相等,会使磁芯的工作磁化曲线偏离原点,这一偏磁现象与开关管的选择有关,原因是开关管反向恢复时间的不同》可导致伏秒积的不同。

(2)实验中,随着输入电压的微幅增高,系统损耗随之增大,主要原因是变压器磁芯产生较大的涡流损耗,系统效率有所下降。减小涡流损耗的措施主要有:减小感应电势,如采用铁粉芯材料;增加铁心的电阻率,如采用铁氧体材料;加长涡流所经的路径,如采用硅钢片或非晶带。

5、结论

推挽电路特别适用于低压大电流输入的中小功率场合,并利用AP法设计了一种高频推挽变压器。实验结果表明推挽逆变-高频变压-全桥整流的方案达到了预期的效果,使输出电压稳定在220V并具有一定的输出硬度,效率达到80%,为现代汽车电源的发展提供了一定的发展空间。

高效率开关电源设计实例.pdf

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主 要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每 一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压Buck 变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在 系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙 之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使 用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。 更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+5.0V 额定输出电流: 2.0A 过电流限制: 3.0A 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +5.0V*2A=10.0W(最大) 输入功率: Pout/估计效率=10.0W/0.90=11.1W 功率开关损耗 (11.1W-10W) * 0.5=0.5W 续流二极管损耗: (1l.lW-10W)*0.5=0.5W 输入平均电流 低输入电压时 11.1W/10V=1.1lA 高输入电压时: 11.1W/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

推挽式DC-DC开关恒压源的设计)

闽江学院 本科毕业论文(设计) 题目推挽式DC-DC开关恒压源的设计 学生姓名 学号120061007081 系别物理学与电子信息工程系 专业电子信息工程(2)班 指导老师 职称讲师 完成日期2010年4月

闽江学院毕业论文(设计)诚信声明书 本人郑重声明: 兹提交的毕业论文(设计)《推挽式DC-DC开关恒压源的设计》,是本人在指导老师沈耀国的指导下独立研究、撰写的成果;论文(设计)未剽窃、抄袭他人的学术观点、思想和成果,未篡改研究数据,论文(设计)中所引用的文字、研究成果均已在论文(设计)中以明确的方式标明;在毕业论文(设计)工作过程中,本人恪守学术规范,遵守学校有关规定,依法享有和承担由此论文(设计)产生的权利和责任。 声明人(签名): 年月日

摘要 开关电源作为一种新式的电源,具有体积小、质量轻和节约能源等特点,逐渐在计算机,通信等方面得到广泛的应用。本文中介绍了开关电源的组成、分类和控制等方面,随着电力电子技术的发展,特别是大功率器件的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。 在本设计中,开关电源是一种采用推挽式的高频电源变换电路,主要组成有: PWM电路,这部分电路采用KA3525芯片,并通过输出电压的采样电压加在误差放大器的反相输入端桑实现稳压;推挽式变换器,实现DC-DC变换;整流滤波电路,通过整流滤波得到最终的稳定无干扰的电压;反馈补偿电路,通过反馈电压,以改变KA3525的输出,从而使输出电压保持稳定。 关键词:推挽式;PWM;电源

Abstract As a new power source ,the switching power supply ,taking on such features as small volume、light weigh and economical energy, is used gradually and widely in computer and communication ,etc. The paper introduces the consistence, the classification and the control of the switching power supply ,with the development of power electronic technology, especially the rapid development of the high power compoments , the operating frequency of the switching power supply is enhanced to a realitive high level, owning such features as high stability and high performance-to-price. In this design, the switching power supply is one kind of push-pull the high frequency power source transfer network, the main composition includes: The PWM electric circuit, this part of electric circuits use the KA3525 chip, and adds through output voltage's sampling voltage in the erroneous amplifier's opposition input end mulberry realizes the constant voltage; The push-pull converter, realizes the DC-DC transformation; The rectification filter circuit, obtains the final stable non-disturbance voltage through the rectification filter; Feedback compensation circuit. Changing the output KA3525 through to feedback voltage , thus output voltage is stability. Key words:push-pull; pulse width modulation; power supply

开关电源变压器共模电感设计方案注意事项

开关电源变压器共模电感设计注意事项 在电源变压器的设计过程中,工程师们需要严格的计算并完成共模电感设计和数值选取,这直接关系到开关电源变压器的运行精度。在今天的文章中,我们将会就开关电源变压器的共模电感设计展开简要分析,看在电源变压器共模电感设计和计算过程中,都应该注意哪些问题。 在电源变压器的设计和制作过程中,工程师所要进行的共模电感设计,其所需要的基本参数主要有三个,分别是输入电流,阻抗及频率,磁芯选取。先来看输入电流。这一参数值直接决定了绕组所需的线径。在线径的计算和选取时,电流密度通常取值为400A/cm³, 但此取值须随电感温升的变化。通常情况下,绕组使用单根导线作业,这样可削减高频噪声及趋肤效应损失。 在计算过程中,开关电源变压器共模电感的阻抗在所给的频率条件下,一般规定为最小值。串联的线性阻抗可提供一般要求的噪声衰减。但实际上,线性阻抗问题往往是最容易被人忽视的,因此设计人员经常以50W线性阻抗稳定网络仪来测试共模电感,并渐渐成为一种标准测试共模电感性能的方法。但所得的结果与实际通常有相当大的差别。实际上,共模电感在正常时角频首先会产生每八音度增加-6dB 衰减(角频是共模电感产生-3dB)的频率此角频通常很低,以便感抗能 够提供阻抗。因此,电感可以用这一公式来表达,即:Ls=Xx/2 n f

这里还有一个问题需要工程师需要注意,那就是在进行共模电感设计时须注意磁芯材料和所需的圈数问题。首先来看磁芯型号的选取问题,此时如果有规定电感空间,我们就按此空间来选取合适的磁芯型号,如没有规定,通常磁芯型号的随意选取。 在确定了电源变压器的磁芯型号之后,接下来的工作就是计算磁芯所能绕最大圈数。通常来说,共模电感有两绕组,一般为单层,且每绕组分布在磁芯的每一边,两绕组中间须隔开一定的距离。双层及堆积绕组亦有偶尔使用,但此种作法会提高绕组的分布电容及降低电感的高频性能。由于铜线的线径已由线性电流的大小所决定,内圆周长可以由磁芯的内圆半径减去铜线半径计算得来。故最大圈数的就可以铜线加绝缘的线径及每个绕组所占据的圆周来计算。

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电又如何使直流电压(电流)稳定这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A;

③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=±; 发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算 1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算 图1-33中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。 根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。 图1-35-a)是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。 图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。

1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算 在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL 为: 式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。 在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。 对(1-136)式进行积分得:

汽车车载系统的电源设计浅析

2014年第03 期 随着我国经济建设的逐渐深入,我国汽车行业的发展速度越来越快,人们生活水平的大幅提高也使得人们对汽车内部车载设备的要求越来越高。由于汽车上面所涉及到的电子设备种类繁多,开关复杂,例如汽车上面装备有具有自动功能的感性负载,如雨刮器、电动车窗、电喇叭、感性线圈等等,这些电子设备在断电的瞬间都会产生很高的感应电动势,这种瞬间作用的感应电动势会直接作用到一些与蓄电池并联的器件上,从而造成电源串扰、瞬变过压等问题,以至于导致电子元件的故障破坏。因而,根据上述这些汽车电系的特点,普通的过压、过载保护已经难以适应要求,并且随着集成电路制造技术的逐渐成熟,车载电子设备正逐步朝着体积缩小化,重量减轻化,功率减小化的趋势发展,传统的电源也渐渐不能满足要求。同时,开关电源的出现以其独有的优势逐渐被广泛采用,尤其是在一些耗电量比较敏感的便携式电子设备中,基本都能见到开关电源的身影。而本文分别从12V 汽油车车载系统和24V 柴油车车载系统两种类型对电源设计进行简要阐述。1.汽车车载系统电源概况 1.1蓄电池主要作用1.1.1在发电机电压低或不发电(发动机处于怠速、停转状态)时,向车载用电设备供电。1.1.2当汽车上同时启用的用电设备功率超过了发电机的额定功率时,协助发电机供电。1.1.3在其存电不足及发电机负载不多时,将发电机的电能转换为化学能储存起来。1.1.4蓄电池相当于一个大电容,可以吸收电路中的瞬变电压脉冲,对汽车上的电气设备及电子元件起到了保护作用。1.1.5对汽车电子控制系统来说,蓄电池也是电子控制装置内存的不间断电源。1.2汽车车载系统对电源的要求1. 2.1要求蓄电池的内阻要小,大电流输出时的电压稳定,以保证有良好的起动性能。1.2.2要求蓄电池的充电性能良好、使用寿命长、维护方便或少维护,以满足汽车使用性能要求。1.2.3要求发电机在发动机转速变化范围内都能正常发电且电压稳定,以满足用电设备的用电需求1.2.4要求发电机的体积小、重量轻、故障率低、发电效率高、使用寿命长等,以确保汽车使用性能要求。2.汽车车载系统电源设计 2.112V 汽油车车载系统电源设计2.1.1分布式系统结构车载电源管理系统中,12v 稳压控制模块可用作12V 可控稳定电压和12V 常通电源。在这电源系统中,常通稳定电源主要功能是给一些车载电器进行供电,譬如仪表盘的时钟,某些需要供电的内存等等,汽车处于行驶状态下时,ECU 数字电路的电力主要来源于12v 可控稳定电压。另外,霍尔电流传感器的使用能够有效实现对蓄电池充电、放电过程的监视,并能大概估计出蓄电池的SOC 值。总体而言,汽车的电源管理系统中供应电能的形式主要是以电源通道的形式进行,其中,在每一个通道之内,都应该设计一个配套的智能继电器实现对其的有效控制。2.1.2基于智能继电器的电源通道设计所谓的“电源通道”,就是一种具有控制电流以及能够保护过电流的电能传输通道。而随着智能继电器在车载电源系统中的应用,电源通道的电流保护和电流控制等功能在某种程度上得到了有效的强化。目前,随着科技的发展,汽车电源系统中,传统的继电器已经渐渐难以满足对电流的有效控制,因而我们引入了模拟半导体功率器件(如IGBT 、MOS 场效应晶体管等等)。实际上,有些半导体功率器件甚至还能实现过热、过压和过电流等方面的保护功能,但由于其内部导通电阻相对较大,所产生的焦耳效应会伴随着大量的热量散失,所以,模拟半导体功率器件在车载大直流电源开关控制方面的应用目前还难以真正实现。因而,本设计所选用的是一种普通车载继电器,设计过程中,为辅助其运行,还特别设计了一个单片机控制系统,这一系统中主要包括电流检测电路、电压检测电路以及初级线圈驱动电路,当然,还有连接车载总线通信的总线接口。该设计结构中,为了保证智能继电器能够实现对检测电路上电流的实时保护,以及对总线电流大小形成过载保护,我们通常会在检测电路中设置低通运算和霍尔传感器两大部分来对电路进行放大。智能继电器主要是通过LIN 总线的设计保证与车载网络之间实现信息交换,而普通继电器的主要功能就是要一定限度内的过载电流确保分断,而如果是短路状况下形成的大电流,该继电器则难以发挥作用。正是因此,在短路保护结构设计中,往往还需要设置相关的短路保护器件,例如自恢复熔丝等等。2.224V 柴油车车载电源设计2.2.1正电源设计通过采用开关电源稳压转换器,在输入端接入24V 直流,使得输出端输出5V 直流。作为所输入直流电源的载体,供电线路设计上还需要设置滤波电路。为了保护电源芯片,防止电源接反和电源过压等情况的发生,往往要通过加二极管进行控制,输入端和输出端的电容是滤波电容,则在输出端要加上发光二极管DS1进行+5V 电源指示。2.2.2负电源设计一般情况下,通过采用开关电源转换器ICL7660AM JA ,能够容易实现-5V 电源。ICL7660的工作温度范围在-55℃至+125℃之间,输入电压范围在1.5V 至10V 之间,设计过程中,通过使用CMOS 工艺所制成的小功率、高效率的低压直流转换器,一方面可以保证由单电源到对称输出双电源转换的顺利进行,另一方面还能保证倍压和多倍压的输出。结语:未来,随着汽车逐渐成为大众商品,人们对汽车的设计要求不仅仅在于行驶功能,更多的在于内部舒适度、便捷度等各方面的功能指数,因而对于车载系统的研究迫在眉睫。汽车企业只有不断深入研究汽车车载系统的电源设计理论,并不断优化 种电子设备的使用,才能在激烈的竞争中取得领先优势参考文献:[1]陈广洋,陆奎.基于STC 单片机的智能车载电源管理器设计[J].微型电脑应用.2009(01)[2]张新丰,杨殿阁,薛雯,陆良,连小珉.车载电源管理系统设计[J].电工技术学报.2009(05)[3]肖宁,吕盼稂,王余涛,竺长安.基于TEF6606车载收音机模块设计[J].微型机与应用.2010(08)作者简介:刘娟,女,汉,1979年10月出生,籍贯:湖南长沙,助教,湖南大学电气工程专业毕业,专业方向:汽车机电。汽车车载系统的电源设计浅析 刘娟(长沙职业技术学院南院汽车工程系410111) 【摘要】随着我国汽车行业的高速发展,车载系统在汽车上的应用越来越频繁,许多车载产品,例如车载电视、车载点烟器在方便人们的生活之余,也逐渐成为人们汽车旅途上不可缺乏必需品之一。而车载系统中通常包括单片机和其他芯片,往往系统性能的好坏很大程度上都是由供电品质的好坏决定,因此,本文根据笔者的个人经验,主要就汽车车载系统的电源设计方面进行了简要介绍。 【关键词】汽车;车载系统;电源设计 ● ◇电源与电流◇5

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

高效率开关电源设计实例

高效率开关电源设计实 例 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器()。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+ 额定输出电流: 过电流限制: 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +*2A=(最大) 输入功率: Pout/估计效率=/= 功率开关损耗* 0.5= 续流二极管损耗:*= 输入平均电流 低输入电压时/10V= 高输入电压时:/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

推挽式开关电源优缺点

推挽式开关电源优缺点 1、推挽式开关电源变压器的漏感以及铜阻损耗都比单极性磁化极变压器小很多,开关电源的工作效率跟高。 推挽式开关电源的变压器属于双极性磁化极,磁感应变压范围是单极性磁化极的两倍多,并且变压器铁芯不需要气隙,因此,推挽式开关电源变压器铁芯的磁导率比单极性磁化极的正激或反激开关电源的变压器铁芯的磁导率高很多倍,这样推挽式开关电源变压器的初级、次级的线圈的匝数可比单极性磁化极变压器初级、次级的线圈的匝数少一倍以上。所以,推挽式开关电源变压器的漏感以及铜阻损耗都比单极性磁化极变压器小很多,所以开关电源的工作效率跟高。 2、推挽式、半桥式、全桥式转换器属于直流-交流-直流转换器。由于直流-交流转换器提高了工作频率,所以,变压器和输出滤波器的体积和重量都可以减小。 3、推挽式开关电源的变压器有两组初级线圈,对于小功率输出的推挽式开关电源是个缺点,对于大功率输出的推挽式开关电源是个优点。因为大功率变压器的线圈一般都是多股线来绕制的,因此,推挽式开关电源的变压器的两组初级线圈与用多股线绕制根本没有区别,并且两个线圈与单个线圈相比可以减低一半电流密度。 4、推挽式开关电源输出电流瞬态响应速度很高,电压输出特性很好。推挽式开关电源是所有开关电源中电压利用率最高的开关电源。 由于推挽式开关电源中的两个控制开关轮流交替工作,其输出电压波形非常对称,并且开关电源在整个周期之内都向负载提供功率的输出,因此,其输出电流瞬态响应速度很高,电压输出特性很好。推挽式开关电源是所有开关电源中电压利用率最高的开关电源。它在输入电压很低的情况下,仍然能维持很大的输出功率,所以推挽式开关电源被广泛的应用于低输入电压的DC/AC逆变器,活DC/DC转换器电路中。 5、推挽式开关电源的驱动电路简单。 推挽式开关电源的两个开关器件有一个公共接地端,相对于半桥式或全桥式开关电源来说,驱动电路简单的多。

推挽式开关电源设计

洛阳理工学院毕业设计(论文) 题目_推挽式开关电源的设计 2013年5月30 日

推挽式直流电源开关的设计 摘要 电源是实现电能变换和功率传递的主要设备。在信息时代,农业、能源、交通运输、信息、国防、教育等领域的迅猛发展,对电源产业提出了更多、更高的要求、如节能、节电、节材、缩体、减重、环保、可靠、安全等。这就迫使电源工作者在电源研发过程中不断探索,寻求各种相关技术,做出最好的电源产品,以满足各行各业的要求。开关电源是一种新型电源设备,较之于传统的线性电源,其技术含量高,耗能低,使用方便,并取得了较好的经济效益。开关电源具有功耗小、效率高、稳压范围宽、体积小、等突出优点,在通信设备、数控装置、仪器仪表、影音设备、家用电器等电子电路中得到了广泛应用。本文首先介绍开关电源的基本原理,而后介绍广泛应用于开关电源的双端输出驱动器UC3524,并以驱动器UC3524为基础,通过打印机电源电路,讲述推挽式开关电源工作原理。 关键词:电能变换,开关电源,UC3524,推挽式开关电源

Design of a push-pull DC switching power supply ABSTRACT Power is to achieve power conversion and power transmission major equipment. In the information age, the rapid development of agriculture, energy, transportation, information, national defense, education and other fields, for the power industry made more, higher requirements, such as energy saving, energy saving, material saving, reduced body weight loss, environmental protection, reliable, safety etc.. This has forced the power workers continue to explore in the power development process, to seek a variety of related technology, the power to make the best products, to meet the requirements of all walks of life. Switching power supply is a new type of power supply equipment, compared to traditional linear power supply, high technological content, low energy consumption, easy to use, and has achieved good economic benefit. Switching power supply with low power consumption, high efficiency, wide voltage range, small size, and other advantages, is widely used in communication equipment, numerical control equipment, instrumentation, audio and video equipment, household appliances and other electronic circuits. This paper first introduces the basic principle of switching power supply, then introduce dual output driver UC3524 is widely used in switching power supply, and to drive UC3524 as the foundation, through the printer power supply circuit, on the working principle of push-pull switching power supply. KEY WORDS: transformation of electrical energy,transformation of electrical energy,UC3524, transformation of electrical energy

简单的推挽式开关电源

[南京理工大学 现代开关器件 结课论文 [推挽式开关电源分析] 姓名: [王佳琪] 学号: [0810190140] 指导教师: [吕广强] 2011.11

目录 作业要求 (2) 电路原理图 (2) 电路原理分析 (3) 控制方法分析 (4) 基本电路的仿真 (4) 多路直流输出电路仿真 (7) 工频输入直流输出实现 (11) 总结与体会 (14) 参考文献 (15)

作业要求: 1)画出电路图,分析原理和控制方法 2)工频220V电源输入,能够输出3路直流电源(24V30W,12V20W,5V5W),考虑交流侧谐波和直流侧文波 电路基本原理图: 推挽电路的理想化波形

推挽电路的工作原理: 整流输出推挽式变压器开关电源,由于两个开关管轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。因此,推挽式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,仅需要很小的滤波电感和电容,其输出电压纹波就可以达到非常小。推挽电路中两个开关S1和S2交替导通,在绕组N1和N’1两端分别形成相位相反的交流电压,改变占空比就可以改变输出电压。S1导通时,二极管VD1处于通态,电感L 的电流逐渐上升。S2导通时,二极管VD2处于通态,电感L 的电流也逐渐上升。当两个开关都关断时,VD1和VD2都处于通态,各分担一半的电流。S1和S2断态时承受的峰值电压均为2倍Ui 。S1和S2同时导通,相当于变压器一次侧绕组短路,因此应避免两个开关同时导通。每个开关的占空比不能超过50%,还要留有死区。 输出电压: 滤波电感L 电流连续时: T t N N U U on i 2120= 输出电感电流不连续时,输出电压Uo 将高于上式的计算值,并随负载减小而升高,在负载为零的极限情况下,i o U N N U 1 2=. 由于推挽式变压器开关电源中的两个控制开关K1和K2轮流交替工作,其输出电压波形非常对称,并且开关电源在整个工作周期之内都向负载提供功率输出,因此,其输出电流瞬间响应速度很高,电压输出特性很好。推挽式变压器开关电源是所有开关电源中电压利用率最高的开关电源,它在输入电压很低的情况下,仍能维持很大的功率输出,所以推挽式变压器开关电源被广泛应用于低输入电压的DC/AC 逆变器,或DC/DC 转换器电路中。 推挽式开关电源经桥式整流或全波整流后,其输出电压的电压脉动系数Sv 和电流脉动系数Si 都很小,因此只需要一个很小值的储能滤波电容或储能滤波电感,就可以得到一个电压纹波和电流纹波都很小的输出电压。因此,推挽式开关电源是一个输出电压特性非常好的开关电源。 另外,推挽式开关电源的变压器属于双极性磁极化,磁感应变化范围是单极性磁极化的两倍多,并且变压器铁心不需要留气隙,因此,推挽式开关电源变压器铁心的导磁率比单极性磁极化的正激或反式开关电源变压器铁心的导磁率高很多倍;这样,推挽式开关电源变压器初、次级的线圈匝数可比单极性磁极化变压器初、次级的线圈匝数少一倍以上。所以,推挽式开关电源变压器的漏感以及铜阻损耗都比单极性磁极化变压器小很多,开关电源的工作效率很高。 推挽式开关电源的两个开关器件有一个公共接地端,相对于半桥式或全桥式开关电源来说,驱动电路要简单很多,这也是推挽式开关电源的一个优点。 半桥式以及全桥式开关电源都有一个共同缺点,就是当两个控制开关K1和K2处于交替转换工作状态的时候,两个开关器件会同时出现一个半导通区,即两个控制开关同时处于接通状态;这是因为开关器件在开始导通的时候,相当于对电容充电,它从截止状态到完全导通状态需要一个过渡过程;而开关器件从导通状态转换到截止状态的时候,相当于对电容放电,它从导通状态到完全截止状态也需要一个过渡过程;当两个开关器件分别处于导通和截止的过渡期间,就会同时出现半导通状态,此时,相当于两个控制开关同时接通,会对电源电压产生短路,在两个控制开关的串联回路中将出现很大的电流,而这个电流并没有通过变压器负载。因此,在两个控制开关K1和K2分别处于导通和截止的过渡期间,两个开关器件

车载电源简要说明

车载电源简要说明 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

连云港易思特电子有限公司 车载交直流一体化电源 使用说明书 公司总部:江苏灌云经济开发区纬三东路15号 生产基地:江苏灌云县杨集镇工业集中区露希欧汽车产业园 销售经理:潘东亚 2014年6月6日编制一、产品概述 车载交直流一体化电源,是一种专门为LED广告车、舞台车、宣传车、演 车等相关特殊车辆设计的特种车载电源。当客户现场可提供市政用电(交流220V)时,市电经设备内部交直流互投装置直接给负载供电,同时设备内充电器组为蓄电池组充电;当客户现场无法提供市政用电时,设备将自动投切至蓄电池供电,此时本设备提供的电源主要用于LED显示屏及电脑、功放音响及电动机、液压系统等交流负载供电。当市电恢复正常后,设备自动投切至市电工作;同时充电器组为蓄电池组充电。 二、应用领域 该产品主要应用于:LED广告车、舞台车、宣传车、演出车、冷藏车、 房 车、大型客车、公交车、旅游车等特种车领域。 三、产品特点 该产品是针对LED广告车而研发的电源产品,相比以往的LED广告车所采用的发电机供电系统,具有以下优点:

☆环保节能,无噪音,无公害; ☆全免维护,智能人性化操作系统,操作简单,维护方便; ☆运行、维护费用低; ☆采用最新DSP数字化控制,逆变器调制技术采用SPWM正弦脉宽调制技术,控制芯片采用美国Atmel微处理器,稳定、高效; ☆采用模块化设计方案,整个系统由若干个功能模块组成,便于调试和维护; ☆用户可选用RS232/485通讯接口,便于与上位机通讯; ☆逆变器采用隔离变压器输出,带载能力强; ☆逆变器模块采用进口IPM智能模块,输出稳定、可靠; ☆管理简单,自动切换可无人值守; ☆充电器采用高频软开关全桥变换技术,自动实现铅酸蓄电池的均/浮充转换; ☆逆变器正弦波输出,稳压、稳频; ☆系统可根据客户实际需要,优化配置,最大限度地为客户节省成本; ☆保护功能齐全,欠压、过压、过载、过流、短路、过温(选配)、电池过充等保护; ☆设备性能可定制; ☆可实现远程控制(选配); ☆设备自带强制启动功能,可强切市电同时可取消电池欠压、过压、过载等保护功能,特殊情况下可使用该功能,正常情况下不建议使用该功能,影响蓄电池寿命。 四、型号命名 车载电源命名方法如下: 五、车载交直流一体化电源外观图及说明 输出功率 A为交流电源,D为直流电源,

开关电源设计教学内容

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电?又如何使直流电压(电流)稳定?这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 1.1基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A; ③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=2.5±0.2A; 1.2发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

基于TL494的推挽式开关电源

基于TL494的推挽式开关电源

基于TL494的推挽式开关电源 摘要:采用双端脉冲调制器件TL494,在输出端设置分压电路,通过反馈回路形成闭环调制,实现了电压的稳定输出。拓补结构采用推挽式,控制俩开关管的轮流交替导通。本电源输出电压为28V,输出功率P0为5.6W 一、系统的结构框图 图一:电源的结构框图 二、各部分的介绍 1.推挽式拓补结构 图二是典型的推挽式电路,基本原理是:输入电压通过开关管K1和K2的轮流交替导通实现斩波,使直流变成交流,通过变压器升压后,经过二极管整流滤波,再经电感输出平均的直流电压。电容C为输出滤波电容。由于推挽式开

关电源中的两个控制开关K1和K2轮流交替工作,其输出电压波形非常对称,并且开关电源在整个工作周期之内都向负载提供功率输出,因此,其输出电流瞬间响应速度很高,电压输出特性很好。推挽式变压器开关电源是所有开关电源中电压利用率最高的开关电源,它在输入电压很低的情况下,仍能维持很大的功率输出,所以推挽式变压器开关电源被广泛应用于低输入电压的DC/AC逆变器,或DC/DC转换器电路中。 图二:推挽式拓补结构原理图 2.TL494脉宽调制器 TL494为专用双端脉宽调制器件,本电源的连接原理图如下图。图中误差放大器EA1的同相端(脚1)接在由两个电阻组成的分压器上,EA1的反相端(脚2)通过4.7K的电阻接到基准电

压端(脚14),若一脚反馈回的电压大于基准电压5V,误差放大器EA1输出电压增加,导致晶体管Q1的导通时间变短,使一脚处电压保持在5V,从而稳定了输出电压。同理当误差放大器EA2的反相端(脚15)连接的回路有扰动时就会通过控制晶体管Q2的导通时间来是输出稳定。15脚和3脚之间的电容是为了加大误差放大器EA1的高频负反馈降低其高频增益及抑制高频寄生振荡用的。死区时间控制端(脚4)不是直接接地的,而是通过10K电阻接地并通过10UF电容和14脚连接电阻和电容器组成一个软启动电路,输入电源刚接通时,由于电容器两端电压不能突变,故14脚输出地基准电压5V全部加到4脚上,使脚4处于高电平,死区时间比较器的输出亦为高电平,故Q1、Q2处于截止状态,开关电源无输出,随着电容器充电的进行,电容器两端电压逐渐升高,10K电阻两端电压逐渐降低,Q1、Q2逐渐导通,正常工作时,10K电阻两端电压近似为零。

相关文档
最新文档