红外光谱法测定农量药中吡虫啉含

红外光谱法测定农量药中吡虫啉含
红外光谱法测定农量药中吡虫啉含

红外光谱法测定农药中吡虫啉含量

作者:马国欣, 王成龙, 范多旺, 邢达, 钱隆, 王锦辉, 刘颂豪, MA Guo-xin, WANG Cheng-long, FAN Duo-wang, XING Da, QIAN Long, WANG Jin-hui, LIU Song-hao

作者单位:马国欣,MA Guo-xin(兰州交通大学光电技术与智能控制教育部重点实验室,甘肃,兰州

,730070;华南理工大学电子与信息学院,广东,广州,510640), 王成龙,范多旺,钱隆,王锦辉

,WANG Cheng-long,FAN Duo-wang,QIAN Long,WANG Jin-hui(兰州交通大学光电技术与智能

控制教育部重点实验室,甘肃,兰州,730070), 邢达,XING Da(华南师范大学激光生命科学研

究所,广东,广州,510631), 刘颂豪,LIU Song-hao(华南师范大学信息光电子科技学院,广东

,广州,510631)

刊名:

光谱学与光谱分析

英文刊名:SPECTROSCOPY AND SPECTRAL ANALYSIS

年,卷(期):2006,26(3)

被引用次数:11次

参考文献(7条)

1.汤富彬;刘光明;罗逢健茶叶中吡虫啉残留量的HPLC测定方法[期刊论文]-农药 2004(12)

2.黄海涛;陈章玉;施红林茶叶香味扫描和挥发性化学成分分析[期刊论文]-分析化学 2005(08)

3.杨桂芹;李朝晖;林章祥TiO2对牛血清白蛋白的光催化降解的研究[期刊论文]-光谱学与光谱分析 2005(08)

4.郭忠;张文德;孙仕萍单扫示波极谱法测定氰化物的方法研究[期刊论文]-分析科学 2005(01)

5.闵顺耕;覃方丽;李宁傅里叶变换近红外光谱法测定大麦中蛋白质、淀粉和赖氨酸含量[期刊论文]-分析化学2003(07)

6.凌晓锋;徐智;徐怡庄傅里叶变换红外光谱应用于乳腺癌临床诊断的探索[期刊论文]-光谱学与光谱分析

2005(02)

7.Gniadeckaa M;Nielsenb O F;Wulf H C查看详情 2003

引证文献(11条)

1.徐琳.王乃岩ATR/FTIR技术和红外透射法用于蔬菜中农药含量测定的比较研究[期刊论文]-红外技术 2008(12)

2.黄琴.陈茂彬β-谷甾醇烟酸酯的制备[期刊论文]-化学与生物工程 2007(9)

3.刘聪云.刘丰茂.陈铁春.江树人.李友顺农药原药中杂质的危害及其管理[期刊论文]-农药 2010(5)

4.樊静.邵小静.魏娅方.王键吉吡虫啉和啶虫脒的离子液体双水相萃取顺序注射光度分析研究[期刊论文]-分析化学 2008(10)

5.闫薇薇.袁心强.石斌.徐磊翡翠中川蜡质量分数的定量测试方法[期刊论文]-宝石和宝石学杂志 2008(4)

6.颜志刚.侯迪波.曹丙花.张光新.周泽魁吡虫啉的太赫兹(THz)光谱研究[期刊论文]-光谱学与光谱分析 2008(8)

7.李英华.孙丽娜.胡晓钧.孙铁珩红外光谱技术在环境科学中的应用与展望[期刊论文]-光谱学与光谱分析

2008(10)

8.李容.蒋晓丽.池永明.何晓英吡虫啉在聚L-酪氨酸修饰电极上的电化学行为及其测定[期刊论文]-分析测试学报2010(5)

9.傅和平.王爱芳.张栓记.宁敏东.朱景成调制式红外光汽车速度识别系统的研究[期刊论文]-光谱学与光谱分析2007(8)

10.雷万学.徐霞.林芳.杨秦欢.李正军.张廷有季铵盐型魔芋葡甘聚糖衍生物的合成、表征及生物学活性[期刊论文]-光谱学与光谱分析 2008(5)

11.裘兰兰.李明梅.陈丽娟.刘红星红外光谱法在药物定量分析中的应用[期刊论文]-中国实验方剂学杂志

2011(18)

引用本文格式:马国欣.王成龙.范多旺.邢达.钱隆.王锦辉.刘颂豪.MA Guo-xin.WANG Cheng-long.FAN Duo-wang. XING Da.QIAN Long.WANG Jin-hui.LIU Song-hao红外光谱法测定农药中吡虫啉含量[期刊论文]-光谱学与光谱分析 2006(3)

第九章红外光谱法 基本要求:了解红外吸收光谱和吸收峰特征的表达, 掌握红外吸收光谱产生的条件,影响吸收峰位置、峰数和强度的因素, 掌握主要的IR谱区域以及在这些区域里引起吸收的键振动的类型, 掌握常见基团的特征吸收频率,利用IR谱鉴别构造异构体并能够解析简单化合物的结构,了解红外 吸收光谱的实验技术,了解拉曼光谱的原理及应用。 重点:IR光谱产生的条件,影响吸收峰位置,峰数和强度的因素,常见基团的特征吸收频率。 难点:键振动的类型,IR谱解析,FT-IR的原理和特点。 部分习题解答 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 条件:(1)分子的振动或转动必须伴随偶极矩的变化;(2)红外辐射应具有能满足分子产生振动跃迁所需的能量(红外辐射频率等于振动量子数差值和振动频率的乘积) 不是所有的分子振动都会产生红外吸收光谱。只有满足上述两个条件的分子振动才会产生红外吸收光谱。例如,同核双原子分子(O2、N2、Cl2)等的振动没有红外活性。 5. 计算CO2和H2O的分子振动自由度,它们分别有几种振动形式,在红外吸收光谱中能看到几个吸收普带?数目是否相符?为什么? CO2:线性分子振动自由度3N-5=3*3-5=4 四种振动形式两个吸收带数目不符对称伸缩振动无偶极矩变化,无红外活性,无吸收峰;面内弯曲和面外弯曲振动简并,只显示一个吸收峰。 H2O:非线性分子振动自由度3N-6=3*3-6=3 三种振动形式三个吸收带数目相符 6.判断正误。 (1)对(2)错(3)错(4)对(5)错(6)错 7、下列同分异构体将出现哪些不同的特征吸收带? (1)CH3 CO2H CO2CH3 (2)C2H3COCH3CH3CH2CH2CHO (3) 解:(1)CH3——COH 在3300~2500cm-1处有v O—H, 其v C=O位于1746~1700cm-1 COCH3无v OH吸收,其v C=O位于1750~1735cm-1(2)C2H5CCH3其v C=O位于1720~1715cm-1 CH3CH2CH2CH 其2820cm-1及2720cm-1有醛基费米共振双峰。 O O O

红外吸收光谱法 一.填空题 1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。 3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则 称为红外非活性的。一般来说,前者在红外光谱图上出现吸收峰。5.红外分光光度计的光源主要有能斯特灯和硅碳棒。 6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。 7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。 8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。 二、选择题 1.二氧化碳分子的平动、转动和振动自由度的数目分别(A) A. 3,2,4 B. 2,3,4 C. 3,4,2 D. 4,2,3 2.乙炔分子的平动、转动和振动自由度的数目分别为(C) A. 2,3,3 B. 3,2,8 C. 3,2,7 D. 2,3,7 4.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH 3CH 2 COH的吸收 带?(D) A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。 B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。 C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。 D. 3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1。 1900—1650cm-1为 C==O伸缩振动,3000—2700cm-1为饱和碳氢C—H伸缩振动(不饱和的其频率高于3000 cm-1),1475——1300cm-1为C—H变形振动(如—CH 3 约在1380—1460cm-1)。

红外光谱分析采用Nicolet Impact 410 型红外光谱仪,样品的结构及骨架振动采用KBr 支撑片,在400-4000 cm-1范围内记录样品的骨架振动红外吸收峰。 吡啶FT-IR 分析:首先将压成自支撑薄片的样品(~20 mg)装入原位红外样品池中,在200 ℃,10-4mmHg 高真空条件下处理0.5 h 以活化样品,降温至室温。将吡啶引入真空系统中。吸附0.5 h 后,抽真空至10-4mmHg 清除吸附后余气,再利用Nicolet-Impact 410 型红外光谱仪进行红外扫描,测定吡啶吸附态的红外光谱。 采用美国Nicolet公司的Nexus 670型傅立叶变换红外光谱仪测试,测试分辨率为4cm-1,扫描次数为32次,测试范围为400-4000cm-1。 红外光谱制样方法: 1、用玛瑙研钵将KBr固体研成极细的粉末,放入玻璃小盒内,放到100℃烘箱里保存,以防KBr粉末潮解; 2、称取0.2g KBr粉末和2-4mg样品(无机材料),放入研钵内研磨,将二者充分混合; 3、用药匙加适量样品至压片磨具中,用圆柱体铁棒旋转压实。套上空心圈及顶盖; 4、讲磨具放到压片机上,拧到上方转盘固定,拧紧下方螺旋钮; 5、摆动右侧长臂,至压力为8-9MPa,等待30s即可取出。 注意事项: 1、KBr粉末不用时,最好放入烘箱中,否则易潮解; 2、若样品为有机物,则加入样品量1mg即可; 3、样品量过多会造成出现宽峰的情况,此时数据无效; 4、KBr粉末潮解后,压片以后容易粘在磨具上,无法取下导致压片失败; 5、压力过大可能导致压片破裂,视破裂程度也可能进行红外测定(中间未破损即可测量)。红外光谱测试方法: 测试分辨率:4cm-1,扫描次数:64次,测试范围400-4000cm-1 点测量快捷键,改文件名和保存路径; 改变设置:OPTIC→Aperture Setting→1.5mm(狭缝设置) OPTIC→preamp Gain→Ref(放大倍数) Check signal:1万以上(若低于1万有可能液氮量不够,补充液氮即可) Basic→Background Signal Channel(采背景,大概60s,此时不放置样品) Background→Save Background 装样品,点Sample Signal Channel 选中点,可变换颜色,点---校准峰 保存:选中图(变换颜色按钮),File→Save as→名称→路径 Mode→Data point table(保存以后为DPH文件,大小为69k)

第三章红外光谱 一、名词解释 基频峰、倍频峰、费米共振、特征频率区、指纹区 基频峰:当分子吸收一定频率的红外线后,振动能级从基态(V )跃迁到第一激 发态(V 1 )时所产生的吸收峰,称为基频峰。 倍频峰:如果振动能级从从基态(V 0)跃迁到第二激发态(V 2 )、第三激发态(V 3 )…… 所产生的吸收峰称为倍频峰。 费米共振:当一振动的倍频(或组频)与另一振动的基频吸收峰接近时,由于发生相互作用而产生很强的吸收峰或发生裂分,这种倍频(或组频)与基频峰之间的振动偶合称费米共振。 特征频率区:特征谱带区有机化合物的分子中一些主要官能团的特征吸收多发生在红外区域的 4000~1500cm-2 。该区域吸收峰比较稀疏, 容易辨认, 故通常把该区域叫特征谱带区。 红外光谱指纹区:红外吸收光谱上 1500~40Ocm-1的低频区, 通常称为,在核指纹区。该区域中出现的谱带主要是 C-X (X=C,N s O) 单键的伸缩振动以及各种弯曲振动对和确认有机化合物时用处很大。 二、填空 1.红外光谱的产生是由于------------------。 化学键的振动与转动跃迁。 2.红外光谱产生的条件是-----------------------------、 --------------------------------------------------。 红外光谱产生的条件是辐射的能量满足跃迁所需能量,辐射引起偶极矩的变化。 3.红外光谱中影响基团频率位移的因素有外部因素和内部因素,内部因素主要有、、等。此外,振动耦合、费米共振等也会使振动频率位移。 外部因素(样品的状态等)、电子效应(诱导效应、共轭效应和偶极场效应)、空间效应、氢键 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为,相反则称为。红外活性,非红外活性。 5.基团-OH和-NH,-C≡N和-C≡CH,-C=C-和-C=N-的伸缩振动频率范围分别是cm-1, cm-1, cm-1。4000—2500(3000) 、 2500—2000 、2000—1500

第十二章 红外吸收光谱法 思考题和习题 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 33,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1。 烯烃主要特征峰为H C C C H C -==-=γνν ,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1。 νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γ νν ,,,其中H C -≡ν 峰位在3333-3267cm -1。C C ≡ν 峰位在 2260-2100cm -1,是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ 分裂为双峰。如果是异丙基,双峰分别 位于1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1和1395 cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动(ν=C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动(νc=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动(γ =C-H ),910~665cm -1 14.试用红外吸收光谱区别羧酸、酯、酸酐。 羧酸的特征吸收峰为v OH 、v C=O 及γOH 峰。v OH (单体)~3550 cm -1 (尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。羧酸的γOH 峰位在955~915 cm -1范围内为一宽谱带,其形状较独特。 酯的特征吸收峰为v C=O 、v c-o-c 峰,具体峰位值是:v C=O ~1735cm -1 (S);v c-o-c 1300~1000cm -1 (S)。v as c-o-c 峰的强度大而宽是其特征。 酸酐的特征吸收峰为v as C=O 、v s C=O 双峰。具体峰位值是:v as C=O 1850~1800 cm -1(s)、v s C=O 1780~1740 cm -1 (s),两峰之间相距约60 cm -1,这是酸酐区别其它含羰基化合物主要标志。 7.某物质分子式为C 10H 10O 。测得红外吸收光谱如图。试确定其结构。

红外吸附光谱法的学习 吸附研究方法多种多样,经典的方法有吸热法,比表面积,吸附等温线等。近代研究方法增加了红外光谱法,表面电压法,紫外光电子能谱等多个新研究方法技术。我主要对红外吸附光谱法进行了学习。 红外吸附法可提供吸附质及吸附剂—固体键的资料。通过吸附质在吸附前后红外吸收光谱地位移,考察表面吸附情况。不同的振动频率代表了吸附分子中不同的原子和表面成键。该方法有助于区别物理吸附和化学吸附。物理吸附靠范德华力,一般只能观察到谱带位移,不产生新谱带;而化学吸附形成新的化学键,能出现新谱带。该方法还能确定化学吸附分子的构型,如采用红外光谱测定CO在Pd上的吸附构型,表明覆盖率增加直线式结构增强。下面将具体介绍利用红外光谱仪测定CO在Pd/ Al 2O3 催化剂及载体上的吸附性能。 实验用催化剂系将一定浓度的含活性组分的混合溶液,浸渍于载体,然后经干燥、还原和活化而成。在红外测定前,将样品充分还原后,研磨成小颗粒,置于可用于吸附态测定的漫反射池中。采用 NaCl 做吸收池窗片。首先在高纯氮气吹扫下以 2 ℃ / mi n 的升温速率升至 180 ℃脱气,跟踪记录样品表面脱附情况 , 直至观测到的红外光谱图基本不变化。降至室温后切换为 CO 吸附气,并开始跟踪记录红外光谱图的变化。为防止催化剂表面吸附的物质对下次实验造成影响,每次实验均更换为新鲜催化剂。 首先是CO在载体Al2O3上吸附的红外光谱。众所周知 ,载体的作用不仅是稀释、支撑、分散金属活性组分 ,而且也具有明显的吸附剂特征。图 1 为 120 ℃时 CO 在载体Al2O3上吸附的红外-光谱图。从图 1 中可以看出 , CO 在Al2O3表面上有 HCOO-的形成 ( 1600 cm-1、 1383 cm-1) ,这是由于在Al2O3表面上存在不同的表面OH-可与-吸附在载体上的 CO 生成羧基等表面吸附态 , 即CO + O H-→ HCOO-。另外 , 在Al2O3上不可避免地会吸附少量的水 , 也可促进 HCOO-的生成。从图1还可发现 , 在Al2O3上有少量吸附态HCO3-的生成( 1465 cm-1,1254 cm-1)。 比较不同温度下 CO 在Al2O3上吸附的红外光谱 , 如图 2 所示 , 在室温时 , 可以发现少量的HCO3-吸收峰 ( 1656 cm-1、 1465 cm-1和1254cm-1 ,随着温度升高 , HCO3-吸收峰强度逐-渐减弱。温度至 100 ℃时 ,在 1600 cm-1处出现了一个新峰 , 且随温度的升高而逐渐增强。同时 ,1383 cm-1峰附近的 1349 cm-1处峰也随温度升-高逐渐增大 , 到100 ℃时强度已明显超出 1383cm-1处峰。 1600 cm-1和 1383 cm-1峰分别对应于HCOO-的不对称和对称伸缩振动 , 这说明HCO3-在升温过程中转变为 HCOO-, 至 120 ℃-时催化剂表面只有少量的HCO3-吸附态。 其次是CO 在催化剂Pd表面上吸附的红外光谱研究。图 3 为反应温度 120 ℃时 CO 在 Pd/ Al2O3催-化剂表面上吸附的红外光谱图。图 3 中的 2176cm-1、 2116 cm-1-处峰为

第一章质谱习题 1、有机质谱图的表示方法有哪些?是否谱图中质量数最大的峰就是分子离子峰,为什么? 2、以单聚焦质谱仪为例,说明质谱仪的组成,各主要部件的作用及原理。 3、有机质谱的分析原理及其能提供的信息是什么? 4、有机化合物在离子源中有可能形成哪些类型的离子?从这些离子的质谱峰中可以得到一些什么信息? 5、同位素峰的特点是什么?如何在谱图中识别同位素峰? 6、谱图解析的一般原则是什么? 7.初步推断某一酯类(M=116)的结构可能为A或B或C,质谱图上m/z 87、m/z 59、m/z 57、m/z29处均有离子峰,试问该化合物的结构为何? (B) (A) (C) 8.下列化合物哪些能发生McLafferty重排? 9.下列化合物哪些能发生RDA重排? 10.某化合物的紫外光谱:262nm(15);红外光谱:3330~2500cm-1间有强宽吸收,1715 cm-1处有强宽吸收;核磁共振氢谱:δ11.0处为单质子单峰,δ2.6处为四质子宽单峰,δ2.12处为三质子单峰,质谱如图所示。参照同位素峰强比及元素分析结果,分子式为C5H8O3,试推测其结构 式。

部分习题参考答案 1、表示方法有质谱图和质谱表格。质量分析器出来的离子流经过计算机处理,给出质谱图和质谱数据,纵坐标为离子流的相对强度(相对丰度),通常最强的峰称为基峰,其强度定为100%,其余的峰以基峰为基础确定其相对强度;横坐标为质荷比,一条直线代表一个峰。也可以质谱表格的形式给出质谱数据。 最大的质荷比很可能是分子离子峰。但是分子离子如果不稳定,在质谱上就不出现分子离子峰。根据氮规则和分子离子峰与邻近峰的质量差是否合理来判断。 2、质谱仪的组成:进样系统,离子源,质量分析器,检测器,数据处理系统和真空系统。 进样系统:在不破坏真空度的情况下,使样品进入离子源。气体可通过储气器进入离子源;易挥发的液体,在进样系统内汽化后进入离子源;难挥发的液体或固体样品,通过探针直接插入离子源。 真空系统:质谱仪需要在高真空下工作:离子源(10-3~10-5Pa );质量分析器(10 -6 Pa )。真空系统保持质谱仪需要的真空强度。 离子源:是质谱仪的“心脏”。离子源是样品分子离子化和各种碎片离子的场所。质谱分析时离子源的选择至关重要。采用高能电子轰击气态有机分子,使其失去一个电子成为分子离子,分子离子可以裂解成各种碎片离子,这些离子在电场加速下达到一定的速度,形成离子流进入质量分析器。

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基,却在1773cm -1和1736 cm -1处出现两个吸收峰,这是 因为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍,每个球从静止位置伸长1cm ,哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器,同紫外可见分光光度法有哪些相似和不同之处? 答: 红外 紫外 基本原理 当物质分子吸收一定波长的光能,能引起分子振动和转动的能及跃迁,产生的吸收光谱一 般在中红外区,称为红外光谱 当物质分子吸收一定波长的光能,分子外层电子或分子轨道电子由基态跃迁到激发态,产生的吸收光 谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的,同时伴随转动能级跃迁,一般振动能级间隔约为0.05~1eV 。

红外吸收光谱法 思考题和习题 红外光谱仪与紫外-可见分光光度计在主要部件上的不同。 3.简述红外吸收光谱产生的条件。 (1)辐射应具有使物质产生振动跃迁所需的能量,即必须服从νL= △V·ν (2)辐射与物质间有相互偶合作用,偶极矩必须发生变化,即振动过程△μ≠0; 4.何为红外非活性振动? 有对称结构分子中,有些振动过程中分子的偶极矩变化等于零,不显示红外吸收,称为红外非活性振动。 5、何为振动自由度?为何基本振动吸收峰数有时会少于振动自由度? 振动自由度是分子基本振动的数目,即分子的独立振动数。对于非直线型分子,分子基本振动数为3n-6。而对于直线型分子,分子基本振动数为3n-5。 振动吸收峰数有时会少于振动自由度其原因可能为: 分子对称,振动过程无偶极矩变化的红外非活性活性。 两个或多个振动的能量相同时,产生简并。 吸收强度很低时无法检测。 振动能对应的吸收波长不在中红外区。

6.基频峰的分布规律有哪些? (1)折合质量越小,伸缩振动频率越高 (2)折合质量相同的基团,伸缩力常数越大,伸缩振动基频峰的频率越高。 (3)同一基团,一般ν> β > γ 7、举例说明为何共轭效应的存在常使一些基团的振动频率降低。 共轭效应的存在,常使吸收峰向低频方向移动。由于羰基与苯环共轭,其π电子的离域增大,使羰基的双键性减弱,伸缩力常数减小,故羰基伸缩振动频率降低,其吸收峰向低波数方向移动。 以脂肪酮与芳香酮比较便可说明。 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 3 3 ,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1。 烯烃主要特征峰为H C C C H C -==-=γνν,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1。νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γνν,,,其中H C -≡ν峰位在3333-3267cm -1。C C ≡ν峰位在2260-2100cm -1 , 是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ分裂为双峰。如果是异丙基,双峰分别位于 1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1和1395 cm -1左 右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动(ν=C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动(νc=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动(γ =C-H ),910~665cm -1 11.简述傅立叶变换红外光谱仪的工作原理及傅立叶变换红外光谱法的主要特点。 傅里叶变换红外光谱仪是通过测量干涉图和对干涉图进行快速Fourier 变换的方法得到红外光谱。它主要由光源、干涉仪、检测器、计算机和记录系统组成。同色散型红外光谱仪比较,在单色器和检测器部件上有很大的不同。由光源发射出红外光经准直系统变为一束平行光束后进人干涉仪系统,经干涉仪调制得到一束干涉光,干涉光通过样品后成为带有样品信息的干涉光到达检测器,检测器将干涉光讯号变为电讯号,但这种带有光谱信息的干涉信号难以进行光谱解析。将它通过模/数转换器(A/D)送入计算机,由计

一、红外光谱法测定样品方法 红外光谱的试样可以是液体、固体或气体,一般应要求: 1. 试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。 2. 试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。 3. 试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。 二、制样的方法 1. 气体样品 气态样品可在玻璃气槽内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气槽抽真空,再将试样注入。 2. 液体和溶液试样 (1)液体池法 沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。 (2)液膜法 沸点较高的试样,直接滴在两片盐片之间,形成液膜。对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。 3. 固体试样 (1)压片法 将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 (2)石蜡糊法 将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。

(3)薄膜法 主要用于高分子化合物的测定。可将它们直接加热熔融后涂制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。 仪器操作 1. 样品准备(固体样品) 取样品约0.5mg在红外灯下充分研磨,再加入干燥KBr粉末约50mg,继续研磨至混合均匀。 2. 模具准备 将干燥器中保存的简易模具取出,确认模具洁净。若其表面不洁净,可用棉花沾少许无水乙醇轻轻擦拭(绝对不可用力,以免模具表面被划伤),然后在红外灯下干燥。 3. 制片方法 将试样与纯KBr混合粉末置于模具中,用(5~10)′107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。 样品测试过程中的注意事项 1. 测试样品一定要干燥,干燥不充分的样品可以在红外灯下烘烤1小时左右。样品研磨要充分,否则会损伤模具。 2. 所有用具应保持干燥、清洁;使用前可以用脱脂棉蘸酒精小心擦拭。 3. 压片过程应在红外灯照射下进行。 4. 操作过程中应保持模具表面干燥、清洁;防止药品腐蚀模具(KBr对模具表面腐蚀很严重) 5. 易吸水和潮解的样品不宜用压片法。 6. KBr在粉末状态下极易吸水、潮解,应放在干燥器中保存,定期在干燥箱中110℃或在真空烘箱中恒温干燥2小时。

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

1、红外光区是如何划分的?写出相应的能级跃迁类型。 红外线(或红外辐射)是波长长于可见光而短于微波的电磁波(0.76~1000μm)。习惯上按红外线波长的不同,将红外线划分为三个区域,0.76~2.5μm称为近红外区(低于1000nm 为分子价电子,1000~2500nm为分子基团振动),2.5~25μm为中红外区(振动能级跃迁),25μm以上为远红外区(转动能级跃迁)。 2、红外吸收光谱法与紫外-可见吸收光谱法有何不同? 红外吸收光谱法,即根据样品(中)红外吸收光谱进行定性、定量及测定分子结构的方法。因为红外线的照射能量较低,只能引起分子振动能级的跃迁。而紫外-可见吸收光谱法紫外-可见光区为200~800nm,属于电子光谱,作用于具有共轭结构有机分子外层电子和有色无机物价电子,是由电子跃迁引起的光谱。 3、简述红外吸收光谱产生的条件。 满足两个条件: ①红外辐射的能量必须与分子的振动能级差相等,即E L=△V·hν或νL=△V·ν 即分子(或基团)的振动频率与振动量子数之差△V之积等于红外辐射的照射频率。 ②分子振动过程中其偶极矩必须发生变化,即△μ≠0,只有红外活性振动才能产生吸收峰。 4、何为红外非活性振动? 红外非活性振动是不能引起偶极矩变化,不吸收红外线的振动。(补充:红外活性振动就是能引起偶极矩变化而吸收红外线的振动,简并是振动形式不同但是振动频率相同而合并的现象。) 5、何为振动自由度?为何基本振动吸收峰数有时会少于振动自由度? 振动自由度是分子基本振动的数目,即分子的独立振动数。 原因:①首要原因:简并。②只有在真的过程中偶极矩发生变化的振动才能吸收能量相当的红外辐射,而在红外吸收光谱上才能观测到吸收峰。即红外非活性振动是又一原因。 6、基频峰的分布规律有哪些? ①折合相对原子质量越小,基团的伸缩振动频率越高。所有含氢基团折合相对原子质量较小,因此其伸缩振动的基频峰,一般都会出现在中红外吸收光谱高波数区(左端)。 ②折合相对原子质量相同的基团,其化学键力常数越大,伸缩振动基频峰的频率越高。 ③折合相对原子质量相同的基团,一般ν(伸缩振动)>β(面内弯曲振动)>γ(面外弯曲振动)。 7、举例说明为何共轭效应的存在常使一些基团的振动频率降低。 比如脂肪酮和芳香酮。前者频率1715㎝-1,后者频率1685㎝-1。由于羰基与苯环共轭,其π电子的离域增大,使羰基的双键性减弱,伸缩力常数减小,故羰基伸缩振动频率降低,其吸收峰向低波数方向移动。 8、如何利用红外吸收光谱区别烷烃、烯烃及炔烃? P242,脂肪烃类。 9、如何在谱图上区别异丙基及叔丁基? 当2个或3个甲基连接在同一碳原子上时,则δs CH3吸收峰分裂为双峰。如果是异丙基,双峰分别位于1385㎝-1和1375cm-1左右,其峰强基本相等;如果是叔丁基,双峰分别位于1365㎝-1和1395㎝-1附近,且1365㎝-1峰的强度约为1395㎝-1的两倍。 10、如何利用红外吸收光谱确定芳香烃类化合物? P244 11、简述傅里叶变换红外光谱仪的工作原理及傅里叶变换红外光谱法的主要特点? 工作原理:它主要由光源、干涉仪、检测器、计算机和记录系统组成。由光源发射出红

红外吸收光谱法 第六章红外吸收光谱法 一、选择题 1.在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带 ( ) (1) 向高波数方向移动 (2) 向低波数方向移动 (3) 不移动 (4) 稍有振动 2. 红外吸收光谱的产生是由于 ( ) (1) 分子外层电子、振动、转动能级的跃迁 (2) 原子外层电子、振动、转动能级的跃迁 (3) 分子振动-转动能级的跃迁 (4) 分子外层电子的能级跃迁 3. 色散型红外分光光度计检测器多用 ( ) (1) 电子倍增器 (2) 光电倍增管 (3) 高真空热电偶 (4) 无线电线圈 4.一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 -15.一个含氧化合物的红外光谱图在3600,3200cm有吸收峰, 下列化合物最可能 的是 ( ) (1) CH,CHO (2) CH,CO-CH 333 (3) CH,CHOH-CH (4) CH,O-CH-CH 33 323 6. Cl分子在红外光谱图上基频吸收峰的数目为 ( ) 2

(1) 0 (2) 1 (3) 2 (4) 3 7. 下列关于分子振动的红外活性的叙述中正确的是 ( ) (1)凡极性分子的各种振动都是红外活性的, 非极性分子的各种振动都不是红外活性的 (2) 极性键的伸缩和变形振动都是红外活性的 (3) 分子的偶极矩在振动时周期地变化, 即为红外活性振动 (4) 分子的偶极矩的大小在振动时周期地变化, 必为红外活性振动, 反之则不是 8. 羰基化合物中, C=O伸缩振动频率最高者为 ( ) O RC) R(1 O C) R F(2 O C) R Cl(3 O C) R Br(4 9.用红外吸收光谱法测定有机物结构时, 试样应该是 ( ) (1) 单质 (2) 纯物质 (3) 混合物 (4) 任何试样 10 以下四种气体不吸收红外光的是 ( ) (1)HO (2)CO (3)HCl (4)N 222 11. 红外光谱法, 试样状态可以是 ( ) (1) 气体状态 (2) 固体状态

红外吸收光谱法 第一节概述 一、红外光谱测定的优点 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 二、红外波段的划分 σ=104/λ(λnm σcm-1) 红外波段范围又可以进一步分为远红外、中红外、近红外 波段波长nm 波数cm-1 近红外0.75~2.5 13300~4000 中红外 2.5~15.4 4000~650 远红外15.4~830 650~12 三、红外光谱的表示方法 红外光谱图多以波长λ(nm)或波数σ(cm-1)为横坐标,表示吸收峰的位置,多以透光率T%为纵坐标,表示吸收强度,此时图谱中的吸收“峰”,其实是向下的“谷”。一般吸收峰的强弱均以很强(ε大于200)、强(ε在75-200)、中(ε在25-75)、弱(ε在5-25)、很弱(ε小于5),这里的ε为表观摩尔吸收系数 红外光谱中吸收峰的强度可以用吸光度(A)或透过率T%表示。峰的强度遵守朗伯-比耳定律。吸光度与透过率关系为 A=lg( ) T1 所以在红外光谱中“谷”越深(T%小),吸光度越大,吸收强度越强。第二节红外吸收光谱的基本原理

一、分子的振动与红外吸收 任何物质的分子都是由原子通过化学键联结起来而组成的。分子中的原 子与化学键都处于不断的运动中。它们的运动,除了原子外层价电子跃迁以 外,还有分子中原子的振动和分子本身的转动。这些运动形式都可能吸收外 界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此 在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测 得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。 1、双原子分子的振动 分子的振动运动可近似地看成一些用弹簧连接着的小球的运动。以双原子 分子为例,若把两原子间的化学键看成质量可以忽略不计的弹簧,长度为r (键 长),两个原子分子量为m 1、m 2。如果把两个原子看成两个小球,则它们之 间的伸缩振动可以近似的看成沿轴线方向的简谐振动,如图3—2。因此可以 把双原子分子称为谐振子。这个体系的振动频率υ(以波数表示),由经典力 学(虎克定律)可导出: C ——光速(3×108 m/s ) υ= K ——化学键的力常数(N/m ) μ——折合质量(kg ) μ= 如果力常数以N/m 为单位,折合质量μ以原子质量为单位,则上式可简 化为 υ=130.2 双原子分子的振动频率取决于化学键的力常数和原子的质量,化学键越强,相对原子质量越小,振动频率越高。 H-Cl 2892.4 cm -1 C=C 1683 cm -1 C-H 2911.4 cm -1 C-C 1190 cm -1 同类原子组成的化学键(折合质量相同),力常数大的,基本振动频率就 大。由于氢的原子质量最小,故含氢原子单键的基本振动频率都出现在中红 外的高频率区。 2、多原子分子的振动 (1)、基本振动的类型 1πμ2c K m 1m 2m 1m2+ K μ

仪器分析实验 ——红外吸收光谱的测定及结构分析 学号:2 班级:应用化工技术11-2 姓名:韩斐 一、实验的目的与要求 1.掌握红外光谱法进行物质结构分析的基本原理,能够利用红外光谱鉴别官能团,并根据 官能团确定未知组分的主要结构; 2.了解仪器的基本结构及工作原理; 3.了解红外光谱测定的样品制备方法; 4.学会傅立叶变换红外光谱仪的使用。 二、原理 红外吸收光谱法就是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置与峰的强度加以表征。测定未知物结构就是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度与形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱与度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。 三、仪器与试剂 1、Nicolet 510P FT-IR Spectrometer(美国Nicolet公司); 2、 FW-4型压片机(包括压模等)(天津市光学仪器厂);真空泵;玛瑙研钵;红外灯;镊子;可拆式液体池;盐片(NaCl, KBr, BaF2等)。 3、试剂:KBr粉末(光谱纯);无水乙醇(AR);滑石粉;丙酮;脱脂棉; 4、测试样品:对硝基苯甲酸;苯乙酮等。 四、实验步骤 1.了解仪器的基本结构及工作原理

第十二章 红外吸收光谱法 一、选择题 1.中红外区的特征区是指( )cm -1范围内的波数。 A 、4000~200 B 、4000~1250 C 、1250~200 D 、10 000~10 2.已知CO 2的结构式为O=C=O ,请推测其红外光谱中,基本振动数为( )。 A 、4个 B 、3个 C 、2个 D 、1个 3.红外光谱中,不是分子的所有振动形式的相应红外谱带都能被观察到,这是因为( ) A 、分子中既有振动运动,又有转动运动 B 、分子中有些振动能量是简并的 C 、因为分子中有C 、H 、O 以外的原子存在 D 、分子中有些振动能量相互抵消 4.关于红外光谱的吸收峰,下列叙述不正确的是( ) A 、共轭效应使红外吸收峰向低波数方向移动 B 、诱导效应使红外吸收峰向高波数方向移动 C 、氢键使红外吸收峰向低波数方向移动 D 、氢键使红外吸收峰向高波数方向移动 5.若 O —H 键的键力常数 K = 7.12N /cm ,则它的振动波数( cm -1)为( ) A 、3584 B 、3370 C 、3474 D 、3500 6.欲获得红外活性振动,吸收红外线发生能级跃迁,必须满足( )条件。 A 、△μ>0或△μ<0 B 、△μ≠0并服从νL=v△V C 、△μ=0及vL=△Vv D 、△μ≠0 7.CO 2的下列振动中,属于红外非活性振动的是( )。 8.下列三种物质:甲R-CO-CH 2CH 3、乙R-CO-CH=C (CH 3)2、、丙R-COCl ,问其V C=O 波数大小次序为( )。 A 、甲>乙>丙 B 、乙>甲>丙 C 、丙>乙>甲 D 、丙>甲>乙 9.三种振动νc=o ,νc=N 及νc=C 的频率大小次序为( )。(电负性:C 为2.6,N 为3.0,O 为3.5) A 、νc=o >νc=N >νc=C B 、νc= C >νc=N >νc=o C 、νc=N >νc=C >νc=o D 、νc=N >νc=o >νc=C 10.同一分子中的某基团,其各振动形式的频率大小顺序为( )。 A 、γ>β>ν B 、 ν>β>γ

第六章红外吸收光谱法 基本要点: 1.红外光谱分析基本原理; 2.红外光谱与有机化合物结构; 3.各类化合物的特征基团频率; 4.红外光谱的应用; 5.红外光谱仪. 学时安排:3学时 第一节概述 分子的振动能量比转动能量大,当发生振动能级跃迁时,不 可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。 红外吸收光谱也是一种分子吸收光谱。 当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域 的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。 一、红外光区的划分 红外光谱在可见光区和微波光区之间,波长范围约为0.75 ~ 1000μm,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区(0.75 ~ 2.5μm),中红外光区(2.5 ~ 25μm ),远红外光区(25 ~ 1000μm)。

近红外光区(0.75 ~ 2.5μm) 近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收等产生的。该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。 中红外光区(2.5 ~ 25μm) 绝大多数有机化合物和无机离子的基频吸收带出现在该光区。由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数据资料,因此它是应用极为广泛的光谱区。通常,中红外光谱法又简称为红外光谱法。 远红外光区(25 ~1000μm)该区的吸收带主要是由气体分子中的纯转动跃迁、 振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。由于低频骨架振动能很灵敏地反映出结构变化,所以对异构体的研究特别方便。此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究。但由于该光区能量弱,除非其它波长区间内没有合适的分析谱带,一般不在此范围内进行分析。 红外吸收光谱一般用T~λ曲线或T~ 波数曲线表示。纵坐标为百分透射比T%,因而吸收峰向下,向上则为谷;横坐标是波长λ(单位为μm),或波数(单位为cm-1)。 波长λ与波数之间的关系为: 波数/cm-1=104/(λ / μm) 中红外区的波数范围是4000 ~ 400cm-1。 二、红外光谱法的特点 紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶

相关文档
最新文档