FOERSTER涡流探伤仪检测能力研究

FOERSTER涡流探伤仪检测能力研究
FOERSTER涡流探伤仪检测能力研究

FOERSTER涡流探伤仪检测能力研究

摘要:涡流探伤仪是一种利用涡流原理检测金属表面缺陷的仪器,涡流探伤以交流电磁线圈在金属构件表面感应产生涡流的无损探伤技术。它适用于导电材料,包括铁磁性和非铁磁性金属材料构件的缺陷检测。由于涡流探伤,在检测时不要求线圈与构件紧密接触,也不用在线圈与构件间充满藕合剂,容易实现检验自动化。由德国FOERSTER公司设计的DS2000涡流检测仪以其卓越的性能广泛应用在棒材、管材领域,本文介绍的是FOERSTER涡流探伤仪检测铜管表面缺陷能力的知识。

关键词:涡流探伤仪点式探头纵向伤标准样管

Yin Jing-wen

(Vocational and Technical College, Xinxiang, Henan Xinxiang 453006)

Abstract: The eddy current flaw detectors using eddy current principle to detect metallic surface defects instrument, designed by Germany FOERSTER DS2000 eddy current detector, with its superior performance is widely used in the bar, pipe field,This article describes the knowledge of FOERSTER eddy current flaw detection ability of the copper tube in online defecting.。

Key words: Eddy current flaw detector Point probe longitudinal crack Standard sample tube

1探伤原理介绍

涡流探伤原理是用激磁线圈使导电构件内产生涡电流,借助探测线圈测定涡电流的变化量,从而获得构件缺陷的有关信息。按探测线圈的形状不同,可分为穿过式(用于线材、棒材和管材的检测)、探头式(用于构件表面的局部检测)和插入式(用于管孔的内部检测)三种。目前有实力的铜管企业用的比较多的是德国FOERSTER涡流检测探伤仪,该探伤仪采用穿过式+旋转式三通道检测。

1.1穿过式探伤仪检测原理如图1所示:

图1穿过式探伤仪原理示意图

L1为激励线圈,采用高频振荡电流,产生振荡磁场,振荡磁场使金属试样产生涡流。涡流的作用是产生反磁场,使L2产生电流,L2是由正向绕阻和反向绕阻组成的线圈,如果材料比较均匀,正反绕阻产生的电流互相抵消。如果材料上有缺陷,先检测到的绕阻与其反绕阻就存在电势差,在L2上,就会有电压显示。如果材料上有一纵向长缺陷,缺陷的变化均匀,大小一致,那么,L2绕阻上电势差就会较小或没有电势差,所以难以检测到纵向长缺陷。穿过式线圈只能够检测到裂纹、夹渣、气孔、凹坑、碰扁等点状缺陷或横向缺陷,能够较好控制产品的泄漏,代替水压试验检漏。但对于纵向长缺陷则难以发现,所以在用户使用中有可能出现扩口裂、胀管裂等现象。

1.2 旋转式检测原理如图2所示:

图2旋转式探伤仪原理示意图

如图所示,L1为激励线圈,L2为测量线圈。旋转头的点式探头,制作成一个点状,围绕材料做高速旋转,其测量线圈的制作原理与穿过式一样,也是自比差动式线圈。当探头在高速旋转时,两个测量线圈的位置一前一后。当材料上有缺陷时,前面的线圈首先检测到缺陷,线圈L2就有电势差,能清晰的检测到缺陷。如上图所示。但是目前旋转头的转速最高只有18000转/分,安装双通道的探伤仪,探头轨道宽度为5mm,两个探头的宽度10mm,所以要达到100%探伤材料的运行速度最高不能超过180m/min。但是目前大多数公司现有的精整机的运行速度为350m/min~400 m/min,没有一台机器的速度小于300 m/min。所以旋转头在高速运行探伤时,探头扫描的覆盖率只有43%左右,对长度低于10 mm的缺陷,会产生明显的漏检。另外一个因素是旋转头的检测灵敏度如果提的太高,会检测出较多的不影响使用缺陷,引起伤点过多使产品报废。为防止发现缺陷的数量太多,增加了一个短缺陷抑制功能,不达到一定长度的缺陷不产生报警。所以单独的旋转头探伤方法只能控制一定长度以上的长条形缺陷,对于横向缺陷和短缺陷不能检测出来。为了克服旋转式探伤的缺点和穿过式探伤方法的不足,大多数公司引进了穿过式+旋转式涡流探伤方法。

2目前实际检测能力

在实际生产中,经过取样缺陷统计分析表明FOERSTER探伤仪穿过式通道对夹杂、小坑、扁管有比较高的检测灵敏度,检测效果很好。

旋转式通道对具有一定宽度和一定深度的锯齿伤也有较好的检测效果。表1是在实际生产中我们对锯齿伤进行的金相分析,从该表中可以看出,检测锯齿伤不能单一的来看锯齿伤的深度,同时还要有一定测试样品时间测试宽度(mm)测试深度(mm) 探伤仪是否能检出

1 2010-1-1

2 0.05 0.08 否(旋转无明显信号)

2 2010-5-19 0.2028 0.0442 否(达到25%报警电平)

3 2010-5-19 0.1371 0.0437 否(达到25%报警电平)

4 2010-6-12 0.3089 0.0580 是

5 2010-6-12 0.2921 0.0452 是

6 2010-6-12 0.2500 0.040

7 是

7 2010-6-23 0.1619 0.0435 否(达到40%报警电平)

8 2010-6-23 0.1107 0.0625 否(达到40%报警电平)

9 2010-6-28 0.2425 0.0633 是

10 2010-6-28 0.1984 0.0592 是

表1样品金相分析

的宽度。否则,即使是有的深度高达0.08MM,但宽度只有0.05MM,结果探伤仪检测曲线仍然是无明显信号;而有的深度只有0.04MM,但是宽度达到0.25MM,旋转头仍能有效的检测出来。从目前的探伤灵敏度和对探伤仪的了解来看,深度0.06MM以上,同时宽度0.2MM以上的锯齿伤我们比较有把握探出来,在这个数值以下的,大部分有缺陷信号显示,只有少部分无明显信号。

3目前检测的难点

现在所使用的旋转校准人工伤,也可称作标准样管,一般用微型锯制作,现在精度高的用电火花刻伤机制作。现场我们用的校准人工伤是20mm(长)*0.1mm(宽)*0.06mm(深)的刻槽,对于我们的校准人工伤,探

伤仪有足够的灵敏度余量,但是在实际生产过程中我们发现部分线性锯齿伤,探伤仪没有探测出来的情况,即使是有的锯齿伤深度达到或者超过了标准样管。这是为什么呢?

图3标准样管和锯齿伤横截面

图3是标准样管和线性锯齿伤横截面示意图,标准样管是模拟的横向裂纹、划伤等自然缺陷,探伤仪对这样的缺陷灵敏度比较高,这是因为铜管表面感应的涡流畸变量较大,反应到测量线圈上表现的缺陷信号幅度比较大,因此这样的缺陷比较容易探测出来。而锯齿伤的形成有一点特殊,在成型加工前,它的形状和标准样管的缺陷有点类似,从原理上讲,这样的缺陷探伤仪也有足够的灵敏度和信噪比把它探测出来。但不幸的是,经过成型旋压后,原来的缺陷空隙被碾平,这样感应的涡流畸变量就大大减弱了,相应的缺陷信号就比较弱,若本身的缺陷深度和宽度又比较小,那么从测量线圈检测的信号就十分弱,甚至淹没在噪声信号之中,很难提取出来,造成探伤仪漏检。所以对比较细小的锯齿伤,对旋转探伤仍然是一种挑战!

4解决方案

对于目前出现漏检的锯齿伤,我们分两种考虑,第一种情况是,旋转探伤有缺陷信号,但是未能达到报警电平;第二种情况是旋转探伤无明显信号,从曲线上很难判断铜管本身有缺陷。

第一种情况的解决方案目前有2种:第一,提高灵敏度或者降低报警电平。这种方法好处是把一些临近报警电平的有缺陷的铜管检测出来,对检测锯齿伤有些帮助,但是灵敏度毕竟不能无限制的提高,提的太高,随之而来的是噪音信号也跟着急剧增加,对产品的成材率影响非常大,有些得不偿失。同样的道理,降低报警电平效果也是一样的。我们只能利用试验和经验来设置一个合适的灵敏度和报警电平,使之尽可能的在探出缺陷的同时兼顾成品率。事实上我们现在的灵敏度已经不低了,所以单独靠用这一种方法不能完全解决问题;第二种方法是利用探伤曲线评价,一线操作工人现场操作,发现探伤曲线异常,及时检查确认铜管表面质量。另一方面,探伤工程师及巡检人员在线监控探伤曲线,及时记录,发现曲线异常及时和现场沟通,确认铜管表面质量。目前,这项工作已在进行中,收到了不错的效果。

第二种情况的解决方案比较棘手,出现这种情况,往往线性锯齿伤深度浅,宽度小,即使是旋转探伤也不是很敏感,探伤曲线没有明显的异常,目前的解决方案是一线工人加强检查,做到每盘必检;另外一方面,技术人员加强抽查力度。

5结束语

综上所述,目前应用的穿过式+旋转式的检测方式,对绝大多类型的缺陷有比较好的检测效果,旋转探伤在对线性缺陷的检测效果上比穿过式好,但是对比较细小的锯齿伤,目前仅靠探伤仪不能保证100%检测出。

实际上,任何设备都不是一劳永逸的,一套参数不可能把所有的缺陷都检测出来,要想根本上解决线性锯齿伤的问题,还得从每一个工序做起,严把质量关,才能从根本上杜绝锯齿伤的存在。

参考文献:

[1]任吉林.电磁检测[M].北京:机械工业出版社,2000.

[2]肖宁辉.现代无损检测新技术新工艺与应用技术标准大全[M].北京:银声音像出版社,2004.

[3]邵泽波.无损探伤工[M].北京:化学工业出版社,2006:9787502590246

[4]全国无损检测标准化技术委员会.金属无损检测与探伤卷[M].北京:中国标准出版社,2005.

实验 涡流探伤实验指导书

实验涡流探伤实验(烟台大学王海波) 一、实验目的 1.了解涡流探伤的基本原理; 2.掌握涡流探伤的一般方法和检测步骤; 3.熟悉涡流探伤的特点。 二、实验原理 1. EEC-35/RFT涡流检测仪简介 EEC-35/RFT智能全数字式多频远场涡流检测仪是新一代涡流无损检测设备,它采用了最先进的数字电子技术、远场涡流技术及微处理机技术,能实时有效地检测铁磁性和非铁磁性金属管道的内、外壁缺陷。EEC-35/ RFT 既是一套完整的远场涡流检测系统,也可与常规的多频、多通道的普通涡流检测系统融为一体成为高性能、多用途、智能化的涡流检测新型设备。 EEC-35/RFT由于具备了四个相对独立的测试通道,可同时获得二个绝对、二个差动的涡流信号。仪器可通过软开关切换成两台二频二通道的涡流检测仪,同时连接两只探头进检测。具有5Hz 至5MHz 的可变频率范围,因此 EEC-35/RFT 特别适用于核能、电力、石化、航天、航空等部门在役铜、钛、铝、锆等各种管道、金属零部件的探伤和壁厚测量以及各种铁磁性管道的探伤、分析和评价。例如:锅炉管、热交换器管束、地下管线和铸铁管道等的役前和在役检测。EEC-35/RFT 具有可选的多个检测程序,同屏多窗口显示模式,同屏显示多个涡流信号的相位、幅度变化及其波形的情况。多个相对独立的检测通道,有多达三个混频单元,能抑制在役检测中由支撑板、凹痕、沉积物及管子冷加工产生的干扰信号,去伪存真,提高对涡流检测信号的评价精度。且由于采用了全数字化设计,能够在仪器内建立标准检测程序,方便用户现场检测时调用。 此外,仪器还具有组态分析功能,能够用于金属表面硬度、硬化深度层深等的检测及材料分选。 2.涡流检测原理 涡流检测是以电磁感应为基础的,它的基本原理可以描述为:当载有交变电

超声波探伤仪安全操作规程

行业资料:________ 超声波探伤仪安全操作规程 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共5 页

超声波探伤仪安全操作规程 1.数字式超声波探伤仪是精密仪器,没有经过培训的人员不得操作。 2.使用外接电源时,为防止反向感应电流冲击应该先将交流适配器先接通220V电源,等交流适配器的指示灯亮后再把交流适配器的DC12V插头插到超声波探伤仪的插孔,等仪器的电源指示灯闪亮,才可开启仪器电源开关。 3.当超声波探伤仪关机后需要停止外接交流适配器工作,为防止反向感应电流冲击,必须先切断交流适配器与超声波探伤仪的连接,然后再拨掉交流适配器的220V交流插头。 4.对超声波探伤仪内置电池进行充电时,超声波探伤仪与交流适配器的连接、断开及交流适配器与220V电源的连接、断开程序按第2、第3条规定执行。 5.为延长电池寿命,给超声波探伤仪内置电池充电,应在内置电池电量用尽后再给电池充电,一次充电全程应不少于16小时。 6.交流适配器插上电源后,不应以身体其他部位接触外接交流适配器DC12V的插头,以免短路引起损伤。 7.仪器长期不使用,应每两个月充电、开机一次。 8.仪器在连接I/O接口(报警或同步控制系统接口)和RS-232接口(打印机、计算机接口)时必须关断仪器电源。 9.关闭仪器后再次开机要在放开ON/OFF按键以后间隔30秒。 10.仪器使用后要将仪器、探头、探头线、交流适配器上的油污、 第 2 页共 5 页

水渍擦拭干净,放到仪器箱内,存放到干燥的工具橱中。 超声波气浮除油装置安全操作规程 本规程规定了超声波气浮除油的安全操作内容及要求。 本规程适用于湿法冶炼车间超声波气浮除油岗位工。 2内容 1.上岗前,必须穿戴好安全帽、工作服、防护鞋、防护手套、防护眼镜等劳保用品。 2.检查确认设备正常,确认气浮装置的超声波室、气浮室内液位在溢流位置附近,溢流栅板打开。确认压缩风压力正常(大于0.3Mpa)。 3、开机启动提升泵、打开与砂滤池联接管道的阀门。启动溶气泵、打开溶气泵的进口阀门,关闭溶气泵的出口阀门,略开溶气泵的冷却水阀门,确认有冷却水流出。 4、打开溶气罐到气浮室的阀门,打开溶气罐排气阀,待排气阀无气体流出后关闭排气阀。 5、启动溶气泵,慢慢打开溶气泵的出口阀门。待溶气罐内压力达到0.2Mp时,打开溶气罐供气阀门。调节供气阀门,使气浮室内溶液布满微小气泡。 6、启动超声波慢慢打开并调节超声波室内供气阀门,使超声波室内供气压力为0.3-0.6Mpa。 7、供液:打开供液阀门,启动反萃泵,往超声波气浮除油装置供 第 3 页共 5 页

涡流检测的技术

目录 涡流检测技术及进展 (2) 涡流检测自然裂纹与信号处理 (5) 压力容器列管涡流检测技术的研究 (9) 金属锈蚀的涡流检测 (11)

涡流检测技术及进展 1 引言 涡流检测是建立在电磁感应原理基础上的无损检测方法。如图1,已知法拉第电磁感应定律,在检测线圈上接通交流电,产生垂直于工件的交变磁场。检测线圈靠近被检工件时,该工件表面感应出涡流同时产生与原磁场方向相反的磁场,部分抵消原磁场,导致检测线圈电阻和电感变化。若金属工件存在缺陷,将改变涡流场的强度及分布,使线圈阻抗发生变化,检测该变化可判断有无缺陷。 随着微电子学和计算机技术的发展及各种信号处理技术的采用,涡流检测换能器、涡流检测信号处理技术及涡流检测仪器等方面出现长足发展。 2 涡流检测的信号处理技术 提高检测信号的信噪比和抗干扰能力,实现信号的识别、分析和诊断,以得出最佳的信号特征和检测结果。 2.1 信号特征量提取 常用的特征量提取方法有傅里叶描述法、主分量分析法和小波变换法。 傅里叶描述法是提取特征值的常用方法。其优点是,不受探头速度影响,且可由该描述法重构阻抗图,采样点数目越多,重构曲线更逼近原曲线。但该方法只对曲线形状敏感,对涡流检测仪的零点和增益不敏感,且不随曲线旋转、平移、尺寸变换及起始点选择变化而变化。 用测试信号自相关矩阵的本征值和本征矢量来描绘信号特征的方法称为主分量分析法,该方法对于相似缺陷的分辨力较强。

小波变换是一种先进的信号时频分析方法。将小波变换中多分辨分析应用到涡流检测信号分析中,对不同小波系数处理后,再重构。这种经小波变换处理后的信号,其信噪比会得到很大的提高。 2.2 信号分析 (1) 人工神经网络 人工神经网络的输入矢量是信号的特征参量,对信号特征参量的正确选择与提取是采用神经网络智能判别成功的关键。组合神经网络模型,采用分级判别法使网络输入变量维数由N2 降到N,网络结构大为简化,训练速度很快,具有较高的缺陷识别率和实用价值。 神经网络可实现缺陷分类,具有识别准确度高的优点,对不完全、不够清晰的数据同样有效。 (2) 信息融合技术 信息融合是对来自不同信息源检测、关联、相关、估计和综合等多级处理,得到被测对象的统一最佳估计。 涡流C 扫描图像的融合,将图像分解为多子带图像,并在转换区内采用融合算法实现图像融合。Ka Bartels等采用信噪比最优方法合并涡流信号,并用空间频率补偿方法使合并前高频信号变得模糊而低频信号变得清晰。Z Liu等利用最大值准则选择不同信号的离散小波变换系数,选取待融合系数的最大绝对值作为合并转换系数。因此融合信号可基于这些系数,利用逆小波变换来重构。小波变换可按不同比例有效提取显著特征。在融合信号过程中,所有信号的有用特征都被保存下来,因此内部和表面缺陷信息得到增强。 2.3 涡流逆问题求解 换能器检测到的信号隐含缺陷位置、形状、大小及媒质性质等信息,由已知信号反推媒质参数(电导率)或形状(缺陷),属于电磁场理论中的逆问题。 为求解涡流逆问题,先要建立缺陷识别的数学模型,有形状规则的人工缺陷、边界复杂的自然缺陷、单缺陷和多缺陷等模型;在媒质类型方面,有复合材料和被测件表面磁导率变化等模型。 随着计算机技术发展,缺陷模型各种数值解法也获得进展。出现有限元法、矩量法和边界元法等。 3 涡流检测设备 美国的EM3300 和MIZ-20 为采用阻抗平面显示技术典型产品,而TM-128 型涡流仪是我国首台配有微机带有阻抗平面显示的涡流探伤仪。MFE-1三频涡流仪是我国研制的首台多频涡流检测设备。随后,国内研制成功多种类型的多频涡流检测仪,如EEC-35、EEC-36、EEC-38、EEC-39 和ET-355、ET-555、ET-556 等。 目前,我国在有限元数值仿真、远场涡流探头性能指标分析及检测系统的研制等方面取得研究成果,推出商品化远场涡流检测仪器,其中ET-556H和 EEC-39RFT 已用于化工炼油设备的钢质热交换管和电厂高压加热器钢管的在 役探伤。 今后涡流检测技术研发包括:完善换能器设计理论,研制性能更好的涡流检测换能器;研究缺陷大小形状位置深度的涡流定位技术和三维成像技术;研究并

涡流检测原理及部件

涡流原理及主要配件上海佳创精工机械有限公司

一、概述 1.1 涡流检测的原理 涡流检测就是运用电磁感应原理,将激励信号加到探头线圈,当探头接近金属表面时,线圈周围的交变磁场在金属表面产生感应电流。对于平板金属,感应电流的流向是以线圈同心的圆形,形似漩涡,成为涡流。涡流的大小、相位及流动形式受到试件导电性能的影响。涡流也会产生一个磁场,这个磁场反过来又会使检测线圈的阻抗发生变化。 因此当导体表面或近表面出现缺陷或测量的金属材料发生变化时,将影响到涡流的强度和分布,涡流的变化又引起了检测线圈电压和阻抗的变化,根据这一变化,就可以间接地知道导体内缺陷的存在及金属材料的性能是否有变化。 1.2 涡流检测技术的特点 涡流检测时一种应用较为广泛的无损检测技术,它具有如下技术特点: ●检测速度快,且易于实现自动化。 ●表面、亚表面缺陷检出灵敏度高。 ●能在高温状态下进行检测。 ●抑制多种干扰因素。 涡流检测的对象必须是导电材料,且不适用于检测金属材料深层的内部缺陷,这是涡流检测在应用上的局限所在。其次,涡流检测至今仍处于当量比较阶段,对缺陷作出准确的定性定量判断技术尚待开发研究。 1.3 涡流的探伤及材质分选 涡流法可以用来测量非金属表面层的电导率,也可以用来检验与电导率数值有对应关系的性能,如化学成分和组织状态等。因此,涡流检测可以成功地用于按牌号分选合金,检验材料热处理质量及机械性能等。 涡流探伤不仅对于导电材料表面上或近表面的裂纹、孔洞以及其它类型的缺陷,涡流实验具有良好的检测灵敏度并能提供缺陷深度的信息,还可以发现于薄的油漆层或涂层下的这些缺陷。 涡流检测仪的操作请参考《多频多通道智能数字涡流检测仪操作使用说明书》。

高速涡流探伤仪

高速涡流探伤仪 高速涡流探伤仪集数字涡流技术、微处理器技术等技术于一体,其检测速度高达每秒6米,仪器性能可靠、稳定、灵敏。高速涡流探伤仪对金属管、棒、线、丝材的缺陷,如表面裂纹、暗缝、气孔、夹杂和开口裂纹等缺陷,具有很高的检测灵敏度。 涡流检测是许多无损检测方法之一,它应用“电磁学”基本理论作为导体检测的基础。涡流的产生源于一种叫做电磁感应的现象。当将交流电施加到导体,例如铜导线上时,磁场将在导体内和环绕导体的空间内产生磁场。 高速涡流探伤仪可配接耦合间隙要求很低的穿过式线圈,亦可连接只有盒大小的平面组合探头,探头的选择完全可根据用户的检测要求而定,检测系统可配备高精度延时打标模块、测速装置、打标机和万向可调探头架,实现涡流在线自动探伤。系统具有内外时钟控制的同步报警输出功能,及高精度打标标志宽度可控制功能。 南京博克纳自动化系统有限公司总部位于美丽的中国古都南京,是国内专业研制高速涡流探伤仪的高科技企业。公司致力于涡流、漏磁及各种非标设备的研制,已拥有自主研发的多项国家专利。产品被广泛应用于航天航空、军工、汽车、电力、铁路、冶金机械等行业。产品出口:美国、俄罗斯、德国、新加坡、泰国、印度、香港、南非、台湾、越南、哈萨克斯坦、伊朗、日本、韩国、巴西。

BKN公司追求精益求精,坚持科技创新、坚持持续改进。以高品质、高技术的产品和真诚的服务为广大用户提供完善的产品和服务;回馈客户和社会。 BKN科技作为无损检测仪器及设备、传感器开发的公司,一直是研发和制造高质量、高性能无损检测仪器及设备的创新厂家。我们以客户为中心提供设计服务,以满足用户的不同应用需求。 BKN将与您携手,与时俱进,为中国工业无损检测仪器及设备走向世界、走向未来而不懈奋斗!

涡流检测电路的设计【开题报告】

开题报告 电子信息工程 涡流检测电路的设计 一、 二、综述本课题国内外研究动态,说明选题的依据和意义 作为新兴检测技术的一种,电涡流检测是以电磁感应原理为基础,其基本理论是通过对处于探头线圈形成的电磁场中的被测体(必须为金属导体)及其周围空间区域列出麦克斯韦方程及边界条件,然后进行求解,以确定探头线圈的阻抗特性(或感应电压)的变化与被测体各影响因素之间的关系。电涡流检测是近年来发展快速的一项无损检测技术,它同磁粉检测、射线检测、超声波检测、渗透检测一起和称为五大无损检测技术。同其他无损检测技术相比,电涡流检测技术具有非接触、无污染、操作方便等特点,因此受到无损检测工作者的青睐。 1.涡流检测技术的国内外现状 早在19世纪初期,法国科学家傅科就在实验中发现了涡流现象。休斯,在1879年,首先利用涡流检测对不同金属和合金进行了判断。但是由于各种试验参数对涡流检测的影响,该技术发展缓慢。真正在理论和实践上完善涡流检测技术的是德国的福斯特博士,他提出的以阻抗分析法来抑制涡流检测仪中的干扰因素,为涡流检测机理的分析和设备提供了理论依据。在我国,涡流检测技术的应用与研究可追朔到60年代,但是涡流检测技术在国内得到推广应用的第一个高潮却是在70年代末和80年代初。同时许多有价值的研究论文,如“涡流检测的有限元模型和表面涡流探头的有限元分析”和“不锈钢管表面缺损涡流检测信号的仿真计算”等也被发表出来。目前,我国在该领域的研究已接近发达国家水平,推动了我国涡流检测理论的发展。电涡流检测的主要技术如下:(1)脉冲涡流检测技术 70年代中后期,脉冲涡流检测技术(Pulsed Eddy Current)在世界范围内得到广泛地研究。脉冲涡流检测技术最早是20世纪50年代由密苏里大学的DonaldWaidelich研究,脉冲涡流地激励电流为一个脉冲,通常为具有一定占空比地方波,施加在探头尚的激励方波会感应出脉冲涡流在被测体中的传播。根据电磁感应原理,此脉冲涡流又会感应出一股快速衰减的磁场,随着感生磁场的衰减,检测线圈上就会感应出随时间变化的电压。由于脉冲包含很宽的频谱,感应的电压信号中就包含重要的深度信息。 (2)多频涡流检测技术

多口径钢管涡流探伤系统的研究与设计张吉亮

多口径钢管涡流探伤系统的研究与设计 张吉亮,张双伟,王桂敏 (山东省煤田地质钻探工具厂,山东泰安272400) 摘 要 该文针对实际生产过程中,钢管口径种类多的情况,研究设计了一种新型涡流探伤系统。该系统实现了自动化控制,操作安全可靠,生产效率高。适合Φ73 Φ340mm 口径钢管探伤工艺,具有广阔的推广应用前景。关键词 多口径钢管 涡流探伤 点探头 自动控制 中图分类号TG115.28 文献标识码 B Research and Design of ET for many Diameter Tubes Abstract In view of the actual production process ,the steel pipe diameter many kinds of situations ,study design a kind of new ET system.This system realizes the automatic control ,safe and reliable operation ,high production efficiency.Suitable for a Φ73 Φ340mm pipe diameter ,has the broad appli-cation prospect.Key words many Diameter Tubes ET probe automatic control 1钢管无损探伤概述 无损探伤是在不损害被检对象的前提下,探测其 内部或外表缺陷的现代化检验技术,近年来已被广泛 应用于钢管生产检验中。用于无缝钢管生产中的无损 探伤方法主要有超声波探伤、磁力探伤、涡流探伤以及渗透探伤等。各种探伤方法都有其一定的使用范围。几种主要探伤方法的特点及比较见表1。 表1钢管无损探伤方法的比较 项目 超声波法涡流法磁力法 磁粉 漏磁 渗透法 基本原理缺陷对超声波的反射和吸收缺陷处漏电流的变化引起感应磁场的变化表面缺陷产生的漏磁对磁粉的吸引表面缺陷产生的漏磁的直接检测显示液对表面裂纹渗透 探伤部位表面,内部表面,内部表面(限于磁性材料)表面(限于磁性材料)表面灵敏度很高 高 较高 较高 高 检测纪录及显示方式 自动在线,立即显示 自动在线,立即显示 着色磁粉显示或荧光磁粉在暗室显示 自动在线,立即显示 着色液显示或荧光液在暗室显示 超声波探伤是一种最基本的无损探伤方法。它的 优点是能发现其他探伤方法不能发现的内部缺陷,能准确地确定缺陷的位置 ,而且操作简单、迅速。这种方法的缺点是,不能判断缺陷的性质,对钢管表面粗糙度要求达2.5 5μm 。 磁粉探伤方法可用于探测铁磁性材料表面上或近表面的裂纹以及其他缺陷。磁粉探伤对表面缺陷的灵敏度最大;对表面以下的缺陷,探伤的灵敏度随着缺陷埋藏深度的增加而迅速降低。采用磁粉探伤方法检验铁磁性材料的表面缺陷,比采用超声波探伤有更高的灵敏度,而且操作简单,结果可靠。因此磁粉探伤是一种良好的表面探伤方法。 涡流探伤就是使导电的试件(导体)内产生涡电流(简称涡流),通过测量涡流的变化量来进行探伤的 *收稿日期:2011-09-07 作者简介:张吉亮(1982-),男,汉族,山东省平阴县人,工程师,硕士在读,煤炭矿山机电方向。 探伤方法。涡流探伤的优点是:探伤结果可以直接用 电信号输出,便于进行自动化检测;由于采用非接触式的方法,探伤速度很快;适用于表面缺陷的探伤。缺点是:对表面下较深部位的缺陷不能检测;容易产生杂乱信号;难以直接从检测所得的显示信号来判别缺陷的种类。 渗透探伤是以液体对固体的润湿能力和毛细现象(包括渗透和上升现象)为基础的探伤方法。和别的探伤方法相比,渗透探伤的优点是设备和探伤材料简单,显示缺陷直观,并同时可以显示各个方向的各类缺陷。其缺点是只能检查开口暴露于表面的缺陷,另外操作工序较繁杂。2 钢管涡流探伤现状分析 根据工业无损探伤的特点,为了实现探伤系统的自动化控制,目前我国钢管加工企业中,Ф180mm 以下规格无缝钢管涡流检测大多采用传统的穿过式线圈探伤方法。对于超过Ф180mm 的无缝钢管如果采用传统 2 712012年第1期

涡流探伤仪

涡流探伤仪总说明书 2013年6月NDT工程技术有限公司 1、综述 2、测试条件 3、供货范围 4、详细说明书 5、交货时间 6、验收 7、资料 8、质保 9、价格基础 1.综述 1.1这是涡流探伤仪的技术说明说,用于铝扁管的单条生产线探测1.2铝扁管的探测应该在整个挤压工艺的推进方向连续不断探测,目的是探测材料表面的任何横向缺陷和气孔缺陷 1.3单独的探测系统要求能够并行测试 1.4传感器布置在挤压线探测系统的周围 1.5涡流探伤通道可以通过客户提供的耦合P/C连接到操作网络。按照标准协议,界面应该按照以太网TCP/IP协议执行(可选项)1.6传感器系统安装在冷却之后卷曲之前 1.7涡流探伤管路整个装配在国际标准化19英寸的标准机架上,包括异常报警和灯控模块

1.8缺陷尺寸可以用通过喷墨打印机的两个组块或者标记喷雾设备的两种不同颜色来描绘(小尺寸/大尺寸) 2.材料条件 1)尺寸:宽度5.0 ~ 30.0 mm 厚度:1.0 mm ~ 5.0 mm 2) 温度:材料表面温度低于50 ℃ 2.3 操作条件 1) 迁移方式: 扁管往前推进 2) Line speed : Max线速度最大3 m/s 2.4公共设施(客户提供) 1) 电源: V AC 220 ± 10%,单相, 50/60 Hz, 10 KV A 2) 压缩空气: 6 Bar, App. 100 N?/h 3) Exclusive Ground : 2 points ( for Elect. & Mac . ) 3.供货范围 1.铝扁管表面探伤仪 1)扁管表面探伤系统 1-1涡流探伤仪主体DEFECTOMAT CI一套 包括一套传感系统和一套卷缆 1-2一套完整的单线铝管导向系统一套 1-319英寸机架1800mm操控台一套 1-4异常报警和电控模块一套 1-5机架式显示装置一套

磁粉探伤仪操作规程

一、开工前准备工作 1、操作者必须经过培训合格后持证上岗,劳保用品穿戴齐全、整齐。 2、详细检查仪器各部位是否良好,各部位接线是否牢靠。 3、磁粉为非荧光干法黑磁粉,80-160目。 二、作业准备 1、闭合电源开关。 2、打开“电源开关”,电源接通,电源指示红灯亮。 3、详细检查各表、按钮工作是否正常。 4、检查干粉喷撒器喷撒状况,有无堵塞。 5、灵敏度及提升力试验符合标准要求。 三、探伤操作 1、将控制开关全部置于“开”的位置。 2、均匀喷撒磁粉并磁化,磁轭移动过程中,应保证纵、横两个方向都能 分别磁化,无漏探。 3、作业时,要注意安全,工件吊运过程中,不得野蛮操作,防止造成人 身事故。 四、探伤作业结束 1、关断控制面板开关。 2、关断总电源开关。 资阳晨风工业有限公司

1、操作人员应详细了解仪器和探伤机性能特点,熟悉探伤仪器各种按钮 作用,操作方法和注意事项,严格按说明书操作。 2、操作人员每天工作前须检查探伤仪电流和电压表、提升力。 3、探伤仪不能空载,以防电流过大烧坏仪器。 4、马蹄不允许硬砸,以防开叉后探伤灵敏度达不到要求。 5、仪器每天使用完毕,将电源开关关闭并将电源拔掉。 6、仪器每次使用后,应将打结的连接电缆整理顺畅。 7、仪器每次使用完毕,应将仪器连接电缆、马蹄磁轭的外表清洁干净, 并整齐放置于规定位置。 资阳晨风工业有限公司

1、正确开关机。开机时先连接好外接电源,再按开关键,关机时先按 开关键,再拔掉外接电源。 2、用外接交流电时,仪器必须接地良好。 3、避免水、油进入仪器内部。 4、搬动仪器时应避免强烈振动,并存于干燥的地方。 5、操作面板按键时必须用手指,不能用其它物品代替,用力必须适中。 6、仪器每次用完,应进行外部清洁。 资阳晨风工业有限公司 编制:审核:批准:

涡流检测电路的设计

文献综述 电子信息工程 涡流检测电路的设计 前沿 电涡流传感器有着诸多优点,这让它成为了科学研究和工业生产中广泛使用的非接触无损检测仪器。当金属导体处于交变磁场中时,导体表面就会产生感应电流,这种电流在导体中是自行闭合的,像水中漩涡那样在导体内旋状,所以称之为电涡流或者涡流。电涡流的产生必然要消耗一部份能量,从而使产生磁场的线圈阻抗发生变化,这一物理现象就称为涡流效应。根据此涡流效应而制成的传感器,我们就称之为电涡流传感器。 由于对被测材料的敏感,电涡流传感器的广泛应用一直受到制约。为了消除传感器对被测材料的敏感性,可以采用新的变换电路原理。本文对电涡流传感器的建模和涡流特性进行了三维有限元仿真分析,同时电涡流传感器设计了新型的测量电路,并对该测量电路进行了仿真、优化和实验。[2] [1] 主题 一、电涡流传感器发展历程及应用 在一般的工程实际中,涡流检测包括测量和检测。对一些物理量,诸如距离、速度、加速度、转速等进行测量,对材料的化学成分和力学、电磁性能进行评估,对设备表面和内部线缺陷裂纹实施在线检测、分类和重构。随着涡流检测技术更深入广泛地应用,实际工程问题对涡流检测技术提出了更高的要求,成为推动涡流问题研究向更复杂更具体方向发展的源动力。 目前关于电涡流传感器的研究主要集中在非磁性被测体方面,关于磁性被测体的研究较少。早在1998年,英国universityofDerby的Tian等人就研究了电涡流传感器的输出与被测体的电磁特性之间的定性关系,他在论文中指出,对于非铁磁性被测体,其电阻率对输出的影响较大,而对于铁磁性被测体,其相

对磁导率和电阻率都会对输出产生影响。国内外很多文献也都指出了传感器输出对被测体电磁特性的敏感问题,并开展了相应的研究,但至今尚未发现改善这一缺陷的有效方法和思路。 二、电涡流传感器技术国内外研究现状 线圈的磁场分布直接影响传感器的性能,而线圈磁场分布又与探头结构和及其几何参数紧密相关。因此目前国内外关于电涡流传感器性能影响参数的研究主要集中在对线圈及其几何参数的研究。比如Garcia和Fava分别提出了一种计算任意形状线圈生成的磁场分布的方法。Theodoulidis提出了在具有矩形截面的矩形柱线圈作用下,位于其正下方的半无限大导体中的涡流分布闭合表达式。Fava等人通过二阶矢量势方法得到了矩形螺旋线圈产生的电磁场的解析表达式。sabbag和Buvat提出用体积积分法模拟含磁芯的传感器的工作状况来解决铁氧体磁芯引入后代来的空心圆柱线圈数学模型不再适用的问题;Burke利用半经验模型预测含磁芯的传感器线圈阻抗,并利用汉克转换计算线圈阻抗值。 国内对这方面的研究较少,主要是通过电涡流传感器对称轴上任意点的磁场强度与线圈几何参数的关系来反映电涡流传感器的性能。 目前传统的电涡流传感器处理电路一般都通过提取阻抗信号中的一个(电阻或感抗、幅值或相位)信息来反映被测量的变化,这方面的研究也较成熟。目前对电涡流传感器电路的研究主要集中在非线性校正和温度补偿方面。 三、电涡流传感器未来发展趋势 随着计算机技术、人工智能和信号处理技术的迅速发展,涡流问题的研究也取得了长足进展,使涡流检测技术在飞机机翼与螺栓连接疲劳损伤检测、核电站热输出管道检测、飞机燃气涡轮发动机叶片检测、海底石油管道及以发电机组为代表的旋转机械等重要零部件检测中得以运用。结合目前涡流检测技术研究存在不足,涡流检测技术的研究将会呈现以下趋势: 1.进一步完善不同被测体下线圈阻抗的求解理论。这里的不同被测体是指具有不同电磁特性的被测体。关于该方面的研究应包含两部分:一是不同被测体下线圈阻抗表达式的理论推导;二是研究获得线圈阻抗值的算法。当电磁场理论应用于电涡流传感器时,因为自身几何结构和边界条件的复杂性,导致线圈阻抗

智能涡流探伤仪

智能涡流探伤仪可对仪器进行检测,因其检测灵敏、性价比高等优点,受到广大用户的喜爱,常用于军工、铁矿等多个行业,应用范围较广。为了使我们更好地了解和使用探伤仪,您可以读一读以下关于探伤仪的使用说明书。 智能金属涡流探伤仪具有64Hz ~2MHz测试频率范围,能够适用于各种不同金属的检测要求,并且由于采用全数字化设计,因此,能够在仪器内建立标准检测程序,方便用户在改换金属管道规格时灵活调用。 1、基本原理 涡流检测是以电磁感应为基础的,它的基本原理可以描述为:当载有交变电流的检测线圈靠近导电试件时,由于线圈中交变的电流产生交变的磁场,从而试件中会感生出涡流。涡流的大小、相位及流动形式受到试件导电性能等的影响,而涡流的反作用磁场又使检测线圈的阻抗发生变化,因此,通过测定检测线圈阻抗的变化,就可以得出被测试件的导电性差别及有无缺陷等方面的结论。 2、产生涡流的基本条件 变化着的磁场接近导体材料或导体材料在磁场中运动时,由于电磁感应现象的存在,导体材料内将产生旋涡状电流,这种旋涡状的电流叫涡流。同时,旋涡状电流在导体材料中流动又形成一个磁场,即涡流场。

3、涡流仪器的基本结构 根据电磁感应的互感原理,只有两个导体之间才能产生互感效应。故产生涡流的基本条件是:能产生交变激励电流及测量其变化的装置,检测线圈(探头)和被检工件(导体)。通常受检工件包括金属管、棒、线材,成品或半成品的金属零部件等。 4、注意事项 请不要随意打开仪器外表面,以免金属物等导电物体不慎落入仪器内部。仪器出现问题,请不要自行拆机,避免出现更大的问题,只有合格的技术人员才可执行维修。 注意外部设备连接的额定值:为了防止火灾或电击危险,请注意仪器及外边设备连接措施。在对本仪器进行连接安装之前,请先仔细阅读本说明书,或者询问相关工作人员,以便进一步了解本仪器及相关设备的工作条件和须知。 请勿在无仪器盖板时操作仪器,避免接触裸露电路。 在遇到可疑故障时请关闭电源,询问相关工作人员,或者将仪器寄回厂家维修。不要剧烈振动或撞击仪器。请将仪器放置于牢固位置,避免仪器滑落损伤。请不要将重物压于仪器上,以免仪器变形损坏。 南京博克纳自动化系统有限公司总部位于美丽的中国古都南京,是国内专业研制无损检测仪器及设备的高科技企业。公司致力于涡流、漏磁和超声波仪器及各种非标设备的研制,已拥有自主研发的多项国家专利。产品被广泛应用于航天航空、军工、汽车、电力、铁路、冶金机械等行业。产品出口:美国、

涡流检测基本原理

涡流检测基本原理 发布者::IDEA 发布时间::2009-10-23 10:50浏览次数::76 涡流检测是许多NDT(无损检测)方法之一,它应用―电磁学‖基本理论作为导体检测的基础。涡流的产生源于一种叫做电磁感应的现象。当将交流电施加到导体,例如铜导线上时,磁场将在导体内和环绕导体的空间内产生磁场。涡流就是感应产生的电流,它在一个环路中流动。之所以叫做―涡流‖,是因为它与液体或气体环绕障碍物在环路中流动的形式是一样的。如果将一个导体放入该变化的磁场中,涡流将在那个导体中产生,而涡流也会产生自己的磁场,该磁场随着交流电流上升而扩张,随着交流电流减小而消隐。因此当导体表面或近表面出现缺陷或测量金属材料的一些性质发生变化时,将影响到涡流的强度和分布,从而我们就可以通过一起来检测涡流的变化情况,进而可以间接的知道道题内部缺陷的存在及金属性能是否发生了变化。 涡流作为一种NDT工具的一大优点是它能够做多种多样的检查和测量。在适当的环境下,涡流可以用于: 1、裂缝、缺陷检查 2、材料厚度测量 3、涂层厚度测量 4、材料的传导性测量 涡流检测的优越性主要包括: 1、对小裂纹和其它缺陷的敏感性 2、检测表面和近表面缺陷速度快,灵敏度高 3、检验结果是即时性的

4、设备接口性好 5、仅需要作很少的准备工作 6、测试探头不需要接触被测物 7、可检查形状尺寸复杂的导体 无损检测-声脉冲 发布者::IDEA 发布时间::2009-11-20 09:48浏览次数::19 1.什么叫声脉冲? 由一串声波所形成的脉冲。 2.简述声脉冲检测的原理。 当一串声波沿管子传播时,如果遇到管子存在开口、孔洞、鼓胀、凹陷、裂缝、内部腐蚀和沉积 等,就会有反射波返回发射端,由于声波的传播速度是固定的,通过计算机系统的处理,便可以准确地 得到管子发生异常的具体位置。 3.简述声脉冲检测的应用范围。 声脉冲快速检漏仪适用于有色金属、黑色金属和非金属管道的快速检漏。如电站高、低加,冷凝器 管,锅炉四管;化工厂的热交换管;酒楼大厦中央空调器管的在役检漏等,4.声脉冲检测的特性是什么? ①在役管道高速检漏,可达每小时500~1000根管子; ②管子材质不限,铁磁非铁磁性或非金属管均宜; ③直管、弯管、缠绕管均宜; ④可快速发现存在于管子上的穿透性缺陷等; ⑤实时记录检测波形,便于下次检测时回放比较。 5.声脉冲检测仪器的技术特性有哪些? □增益范围0 ~ 48dB , 步长0.5 dB □观察长度(2~50M)及管径(10 ~ 100MM)

涡流探头

涡流探伤是一种无损检测的方式,利用的基本原理是电磁感应。探伤机之所以能够成功探测被测物体的缺陷,靠的就是探头,探头无论对于探伤机本身,还是进行无损检测,都起着重要作用。涡流探头使用中可能会出现一些小故障,我们来看看解决方案吧。 在涡流检测当中,有时候可能会检测不到信号,或者对涡流检测探头的检出信号产生了怀疑,可以采用下面的措施对探头做一些简单有效的测试。 仔细核对操作频率是否在探头的工作频率范围之内。如果探头没有进行适当的平衡,仪器可能会进入“饱和状态”譬如如由提离,缺陷或者边缘效应所产生的信号互相叠加,没有相位差,饱和状态就发生了。这有可能是因为频率太高了,或者探头线圈和平衡线圈不匹配。试试降低探头的激励电压,因为有些探伤仪器有很高的输出电压,可能远超过了探头的承受范围。 试试移动探头的电缆连接线,特别是它和探头的接口处很容易损坏。假如屏幕显示信号断断续续,那么需要更换这条接线了。并且,可能需要清洁连接头。 仔细查看涡流探伤仪器的滤波器设置。现在许多探伤仪器都提供大范围的高通滤波和低通滤波器,这些对抑制干扰、提取缺陷信号非常有用,但如果设

置不当,会引起各种现象,诸如出现死点,或者信号很小又严重扭曲等现象。 高通滤波器设置不当总是可能会给平衡点带来死点,在高增益设置下,警如用 于旋转式探头扫描时,死点将会在平衡点上静止不动。对于手动操作,可以将 高通滤波器关闭或设置为0Hz。低通滤波器则会使得显示信号依赖于扫捕速度,手动使用的典型值设置是100Hz, 但如果信号太嘈杂,则须率可能要减小,扫 描速度也需要随之降低,以减小噪声信号。 检查探头的测试表面,看看是否已经受伤或者毁坏了。观察存在的线痕或 其他破坏,有可能的话在探头表面使用聚四氟乙烯磁带,这将会降低了探头磨损,并防止可能接触铁氧体,因为那样会产生大的噪声信号。 如果需要设置高信噪比时,在线圈和孔内表面间插入一小块片海绵或者泡 沫橡胶来增强接触是一个好的方式,这种技术会大大减小噪声、增加检测灵敏度。 南京博克纳自动化系统有限公司总部位于美丽的中国古都南京,是国内专 业研制无损检测仪器及设备的高科技企业。公司致力于涡流、漏磁和超声波仪 器及各种非标设备的研制,已拥有自主研发的多项国家专利。产品被广泛应用 于航天航空、军工、汽车、电力、铁路、冶金机械等行业。产品出口:美国、 俄罗斯、德国、新加坡、泰国、印度、香港、南非、台湾、越南、哈萨克斯坦、伊朗、日本、韩国、巴西。 博克纳科技作为无损检测仪器及设备、传感器开发的公司,一直是研发和 制造高质量、高性能无损检测仪器及设备的创新厂家。我们以客户为中心提供 设计服务,以满足用户的不同应用需求。

涡流探伤原理知识讲解

涡流探伤原理

涡流无损检测原理 最佳答案 涡流检测是建立在电磁感应原理基础之上的一种无损检测方法,它适用于导电材料。当把一块导体置于交变磁场之中,在导体中就有感应电流存在,即产生涡流。由于导体自身各种因素(如电导率、磁导率、形状,尺寸和缺陷等)的变化,会导致涡流的变化,利用这种现象判定导体性质,状态的检测方法,叫涡流检测。 至于区别,每一种检测方法都有它的局限性,要根据被检工件来选择检测方法,涡流检测适用于导电材料的金属表面缺陷检测,一般都用来检测小管子的,出场的时候都要检测的。 涡流检测的特点(Eddy-current testing) ET是以电磁感应原理为基础的一种常规无损检测方法,使用于导电材料。 一、优点 1、检测时,线圈不需要接触工件,也无需耦合介质,所以检测速度快。 2、对工件表面或近表面的缺陷,有很高的检出灵敏度,且在一定的范围内具有良好的线性指示,可用作质量管理与控制。 3、可在高温状态、工件的狭窄区域、深孔壁(包括管壁)进行检测。 4、能测量金属覆盖层或非金属涂层的厚度。 5、可检验能感生涡流的非金属材料,如石墨等。

6、检测信号为电信号,可进行数字化处理,便于存储、再现及进行数据比较和处理。 二、缺点 1、对象必须是导电材料,只适用于检测金属表面缺陷。 2、检测深度与检测灵敏度是相互矛盾的,对一种材料进行ET时,须根据材质、表面状态、检验标准作综合考虑,然后在确定检测方案与技术参数。 3、采用穿过式线圈进行ET时,对缺陷所处圆周上的具体位置无法判定。 4、旋转探头式ET可定位,但检测速度慢。 涡流检测是运用电磁感应原理,将载有正弦波电流激励线圈,接近金属表面时,线圈周围的交变磁场在金属表面感应电流(此电流称为涡流)。也产生一个与原磁场方向相反的相同频率的磁场。又反射到探头线圈,导致检测线圈阻抗的电阻和电感的变化,改变了线圈的电流大小及相位。因此,探头在金属表面移动,遇到缺陷或材质、尺寸等变化时,使得涡流磁场对线圈的反作用不同,引起线圈阻抗变化,通过涡流检测仪器测量出这种变化量就能鉴别金属表面有无缺陷或其它物理性质变化。涡流检测实质上就是检测线圈阻抗发生变化并加以处理,从而对试件的物理性能作出评价。

电涡流位移传感器设计 (1)

电涡流位移传感器设计 技术要求: 1、量程:0~20mm 2、精度:1mm 3、激励频率:1M Hz 4、输入电压:24V 5、介质温度: -50℃~250℃ 6、表面的粗糟度: 0.4μm~0.8μm 7、线性误差:<±2% 8、工作温度:探头(-20~120)℃,延长电缆(-20~120)℃,前置器(-30~50)℃ 9、频率响应:0~5KHz 一、总体设计方案 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点。根据下面的组成框图,构成传感器。 根据组成框图,具体说明各个组成部分的材料: (1)敏感元件:传感器探头线圈是通过与被测导体之间的相互作用,从而产生被测信号的部分,它是由多股漆包铜线绕制的一个扁平线圈固定在框架上构成,线圈框架的材料是聚四氟乙烯,其顺耗小,电性能好,热膨胀系数小。 (2)传感元件: 前置器是一个能屏蔽外界干扰信号的金属盒子,测量电路完全装在前置器中,并用环氧树脂灌封。 (3)测量电路:本电路拟采用晶体振子及其外围电路来产生振荡。同时考虑到当采用晶体振子构成正弦波振荡电路时,有众多的模拟要素需要处理。如电路常数的确定,工作点的设定和负载阻抗的选用等。因此本电路将采用由COMS反向器与晶体振子组成的最简单且稳定性高的电路,来产生频率为1M的方波信号源。 二、电涡流传感器的基本原理 2.1 电涡流传感器工作原理 根据法拉第电磁感应定律,当传感器探头线圈通以正弦交变电流i1时,线圈

钢丝绳探伤仪操作规程

MTC 钢丝绳探伤仪操作规程 一、一般要求: 1、MTC型钢丝绳检测仪是一种定性定量定位检测钢丝绳中内外部断丝和因磨损、锈蚀、绳径等引起的钢丝绳横截面中金属截面积总和变化的计算机化无损检测仪器。采用了LF型探伤传感器和LMA型探伤传感器,检测信号经过放大、滤波等处理后由计算机采集和判别,检测的结果可显示、存储、打印。 2、使用前务必阅读操作说明书。 二、整体连接: 1、将传感器并置于需检测的钢丝绳上。 2、将信号线的三芯插头插入传感器编码器的三芯插孔中,将四芯插头插入传感器上、下体的四芯插孔中(上、下插头不区分),并拧紧,以防检测过程中脱落。 3、将信号线的另一端头与MRC实时报警器(电源配置器)连接,再用RS232连接线(或USB to RS232传输线)与计算机连接上。 4、系统連接好,打开电源开关和启动计算机,即可开始工作。 5、硬件连接完毕 三、传感器安装 检测位置的选择, 对于一次安全检测,是一项十分重要的第一步,选择好的安装位置,它将直接影响到此次检测顺利进行。检测位的选择应择时择地,经过对在役钢丝绳详细周密的观察,在确定安全保障的情况进行适当选择。

1、传感器安装位置的选择 应将传感器安装在钢丝绳摆动最小的位置。安装要具有一定的柔性,采用悬浮式固定,以避免钢丝绳在探头中晃动;只有通过传感器部分的钢丝绳才能被检测到,因此,当检测存在死区时,应选择多点检测。远离热源、磁源、及其它受强磁场影响的仪器等 检测位置可以选择在钢丝绳检修处。需要注意的是,检测位置要留有一定的操作空间,以保证人员和设备的安全。检测位置一定的情况下,检测仪器的稳定性主要由检测人员来实现。架空检测时,检测人员必须系上安全带,并对检测仪器采用必要的软联接(比如采用尼龙绳,安全带等)。由操作者手扶时,受测钢丝绳移动速度应小0.5 m/s为佳。 2、检测位置的标记 检测中应做好检测所需的标记,做到完全检测。如:检测起始标记、区域段标记等。 3、传感器安装的方法 对于在役钢丝绳仪器的安装采用静态安装法。即在未开机的状态下,将仪器安装在检测方案确定的检测起始标记处,在设备带动钢丝绳运作的同时,对钢丝绳段进行检测的一种方法。注意事项如下: (1)安装时应使仪器处于相对稳定的状态。 (2)不影响设备的正常运转。 (3)使用必要的软联接对检测仪器进行安全保护。 (4)正确选择钢丝绳运行方向。

水冷壁远场涡流探伤仪操作作业指导书

水冷壁远场涡流探伤仪操作作业指导书水冷壁远场涡流自动化探伤作业指导书 水冷壁远场涡流自动化探伤 操作工艺指导书 文件号: 替代: 版本: 修改: 受控状态: 发布号: 编制: 审核: 批准: 日期: 日期: 日期: 水冷壁远场涡流自动化探伤作业指导书 一、目的 1、规范远场涡流探伤作业过程。 2、确保检测质量稳定有效,操作员工对作业过程更易于了解、方便操作。 二、被检工件参数: 1. 钢管外径:φ30,159mm 钢管壁厚;3,20mm 钢管状态:直的热轧的或热处理的无松散氧化铁皮无缝钢管。 平直度:2.0mm,1000mn, 沿钢管总长不超过10mm, 椭圆度:不大于外径公差的80,。 壁厚不均:不超过壁厚公差的80,。

凹坑:凹坑宽不大于5mm,深度不大于lmm。 管两端:管端无毛刺并且与轴线间正确的角度切割。三、对比试样制备: 1)参照GB/T7735-2004检测标准制作对比标样管;用于制备对比试样的钢管应于被探伤钢管的公称尺寸相同、化学成份,表面状况及热处理状态相似,即有相似的电磁特性; 2)长度:2m,平直,表面无异物,无影响校准的缺陷; 3)人工缺陷: 形状为外穿管壁并垂直于钢管表面的孔,人工缺陷五个,其中三个横向裂纹处于对比样管中间部位,两端分别为3mm通孔和4mm30%平底孔,彼此之间的轴向距离不小于150mm; 4)人工缺陷是涡流探伤设备校准灵敏度的,通孔尺寸不能理解为就是采用这种设备可能探出的最小尺寸缺陷。钻孔公称直径分为A级和B级。 4.样管制作技术要求: (1)管体弯曲<1%。 (2)表面无氧化铁皮,无影响校准的自然缺陷,本底噪声小。 (3)钻孔时要保持钻头,要防止局部过热和表面产生毛刺。 (4)普碳钢材用45,合金钢必须与产品相同。 (5)以4,6mm壁厚为宜。 (6)钻孔直径的允许偏差: 直径<1.10mm时,?0.10mm; 直径?1.10mm 时,?0.20mm。 水冷壁远场涡流自动化探伤作业指导书 三、实施要求 1、检测前准备: 1)充分了解被检现场工况,包括工件及鳍片间距尺寸、工件材质、现场供电、安全设施等;

旋转式涡流探伤仪

利用导电材料在交变磁场中产生涡流的性质,检测导电材料叠加磁场的变化信号以表征材料缺陷的仪器。如果将一个导体放入该变化的磁场中,涡流将在那个导体中产生,而涡流也会产生自己的磁场,该磁场随着交流电流上升而扩张,随着交流电流减小而消隐。因此当导体表面或近表面出现缺陷或测量金属材料的一些性质发生变化时,将影响到涡流的强度和分布,从而我们就可以通过一起来检测涡流的变化情况,进而可以间接的知道道题内部缺陷的存在及金属性能是否发生了变化。那么旋转式涡流探伤仪的应用领域有哪些呢?本位就为大家介绍一下,希望对大家有所帮助。 1、轴承外圈、轴承内圈、齿轮坯、环型金属零件、汽车零部件。 2、冷凝器管、空调器管、汽车油管等检测。 3、适合于各种金属管棒线材的无损探伤。 4、石油套管、抽油杆、空心轴等无损探伤。 5、铜管、钢管、不锈钢管、焊接管、铝塑管、钢丝、双层管、铜包铝、铜包钢、铝丝金属棒材等生产线在线及离线上的无损探伤。

旋转式涡流探伤仪哪家专业?小编为您推荐南京博克纳自动化系统有限公司。 南京博克纳自动化系统有限公司总部位于美丽的中国古都南京,是国内专业研制无损检测仪器及设备的高科技企业。公司致力于涡流、漏磁及各种非标设备的研制,已拥有自主研发的多项国家专利。产品被广泛应用于航天航空、军工、汽车、电力、铁路、冶金机械等行业。产品出口:美国、俄罗斯、德国、新加坡、泰国、印度、香港、南非、台湾、越南、哈萨克斯坦、伊朗、日本、韩国、巴西。 BKN公司追求精益求精,坚持科技创新、坚持持续改进。以高品质、高技术的产品和贴心服务为广大用户提供完善的产品和服务;回馈客户和社会。 BKN科技作为无损检测仪器及设备、传感器开发的公司,一直是研发和制造高质量、高性能无损检测仪器及设备的创新厂家。我们以客户为中心提供设计服务,以满足用户的不同应用需求。 BKN公司与国内知名的院校、科研所组成了社会化科研协作网络,具有强大的研发、生产能力。保证了BKN公司的工业无损检测技术国内、国际过硬的技术地位。

相关文档
最新文档