丝状菌澎账的原因及解决方法

丝状菌澎账的原因及解决方法
丝状菌澎账的原因及解决方法

正常的活性污泥沉降性能好,其SVI约为50—150(70—120)之间为正常。

SVI=活性污泥体积/MLSS,当SVI>200并继续上升时,称为污泥膨胀

(1)丝状菌繁殖引起的膨胀

原因:污泥中丝状菌过渡增长繁殖的结果,丝状菌作为菌胶团的骨架,细菌分泌的外酶通过丝状菌的架桥作用将千万个细菌凝结成菌胶团

吸附有机物形成活性污泥的生态系统。但当丝状菌大量生长繁殖,活性菌胶团结构受到破坏,形成大量絮体而漂浮于水面,难于沉降。这种现象称为丝状菌繁殖膨胀。

丝状菌增长过快的原因:

a、溶解氧过低,<0.7—2.0mg/l

b、冲击负荷——有机物超出正常负荷,引起污泥膨胀

c、进水化学条件变化:

一是营养条件变化,一般细菌在营养为BOD5:N:P=100:5:1的条件下生长,但若磷含量不足,C/N升高,这种营养情况适宜丝状菌生活。

二是硫化物的影响,过多的化粪池的腐化水及粪便废水进入活性污泥设备,会造成污泥膨胀。含硫化物的造纸废水,也会产生同样的问题。一般是加5~10mL/L氯加以控制或者用预曝气的方法将硫化物氧化成硫酸盐。

三是碳水化合物过多会造成膨胀。

四是pH值和水温的影响,pH过低,温度高于35度易引起丝状菌生长。

解决办法:

a、保持一定的活性污泥浓度,控制每天排除污泥的净增量,控制回流比。

b、控制F/M(污泥负荷)调节进水和回流污泥

c、保持污泥龄不变

d、污泥膨胀严重时投加铁盐絮凝剂或有机阳离子凝聚剂。

活性污泥膨胀的控制

摘要:从污泥膨胀产生的内在因素着手,分析丝状菌过量繁殖的原因,针对几种常见的活性污泥工艺提出解决方案和思路。

关键词:丝状菌污泥膨胀选择池活性污泥工艺

污泥膨胀问题是活性污泥自产生以来一直伴随并常常发生的一个棘

手的问题。其主要特征是:污泥结构松散,质量变轻,沉淀压缩性能差;SV值增大,有时达到90%,SVI达到300以上;大量污泥流失,出水浑浊;二次沉淀难以固液分离,回流污泥浓度低,有时还伴随大量的泡沫的产生,无法维持生化处理的正常工作。污泥膨胀是生化处理系统较为严重的异常现象之一,它直接影响出水水质,并危害整个生化系统的运作。

污泥膨胀的发生率是相当高的,在欧洲近50%的城市污水厂每年都会有不同程度的污泥膨胀发生,在我国的发生率也非常高。基本上目前各种类型的活性污泥工艺都会发生污泥膨胀。污泥膨胀不但发生率

高,发生普遍,而且一旦发生难以控制,通常都需要很长的时间来调整。针对污泥膨胀,各方面的理论很多,但并不完全一致,甚至有很多相互矛盾,这给水处理工作者造成很大的麻烦。本文将从污泥膨胀的内在因素着手,整理出几种较为成熟且有普遍意义的观点,并归纳一下污泥膨胀控制的一般方法。

1、污泥膨胀的原因

污泥膨胀分为丝状菌膨胀和非丝状菌膨胀。非丝状菌膨胀主要发生在废水水温较低而污泥负荷太高的时候,此时细菌吸附了大量有机物,来不及代谢,在胞外积贮大量高粘性的多糖物质,使得表面附着物大量增加,很难沉淀压缩。而当氮严重缺乏时,也有可产生膨胀现象。因为若缺氮,微生物便于工作不能充分利用碳源合成细胞物质,过量的碳源将被转弯为多糖类胞外贮存物,这种贮存物是高度亲水型化合物,易形成结合水,从而影响污泥的沉降性能,产生高粘性的污泥膨胀。非丝状菌污泥膨胀发生时其生化处理效能仍较高,出水也还比较清澈,污泥镜检也看不到丝状菌。非丝状菌膨胀发生情况较少,且危害并不十分严重,在这里就不着重研究。

丝状菌膨胀在日常实际工作中较为常见,成因也十分复杂。影响丝状菌污泥膨胀的因素有很多,但我们首先应该认识到的是活性污泥是一个混合培养系统,其中至少存在着30种可能引起污泥膨胀的丝状菌。而丝状菌在与活性胶团系统共生的关系中是不可缺少的一类重要微

生物。它的存在对净化污水起着很好的作用。它对保持污泥的絮体结构,保持生化处理的净化效率,及在沉淀中起着对悬浮物的过滤作用

等都有很重要的意义。事实也证明在丝状菌与菌胶团细菌平衡时是不会产生污泥膨胀,只有当丝状菌生长超过菌胶团细菌时,才会出现污泥膨胀现象。

1、污泥负荷对污泥膨胀的影响

一般认为活性污泥中的微生物的增长都是符合Monod方程的:

式中X----生物体浓度,mg/L;

S----生长限制性基质浓度,mg/L;

μ----生长限制性基质浓度,mg/L;

KS-----饱和常数,其值为μ=μmax/2时的基质浓度,mg/L;

μmax-----在饱和浓度中微生物的最大比增长速率,d-1

研究证明大多数的丝状菌的KS和μmax值比菌胶团的低,所以,按照以上Monond方程,具有低KS和μmax值的丝状菌在低基质浓度条件下具有高的增长速率,而具有较高KS和μmax值的菌胶团在高基质浓度条件下才占优势。同样认为低负荷对于丝状菌生长有利的理论还有表面积/容积比(A/V)假说。这里的表面积和容积,是指活性污泥中微生物的表面积与体积。该假说认为伸展于絮凝体之外的丝状菌的比表面积(A/V)要大大超过菌胶团细菌的比表面积。当微生物处于受基质限制和控制的状态时,比表面积大的丝状菌在取得底物方面要比菌胶团有利,结果在曝气池内丝状菌就变成了优势菌。

低负荷易导致污泥膨胀这一观点无论是在实际运行中还是在理论上都有了较为成熟的解释。但在我国,通常生化反应的负荷设计都是较高的,的大量污泥膨胀却是在高负荷条件下发生的,这引起了人们对

该理论的怀疑。事实上,在高负荷条件下的污泥膨胀往往是由于供氧不足、曝气池内DO浓度降低引起的。我们下面就针对溶解氧DO对于污泥膨胀的影响。

2、溶解氧浓度对污泥膨胀的影响

微生物对有机物的降解过程实质上就是对氧的利用过程。溶解氧在活性污泥法的运行中是一个重要的控制参数,曝气池中DO浓度的高低直接影响着有机物的去除效率和活性污泥的生长。低DO浓度一直被认为是引起丝状菌污泥膨胀的主要因素之一。丝状菌由于具有较大的比表面积和较低的氧饱和常数,在低DO浓度下比絮状菌增殖得快,从而导致丝状菌污泥膨胀。根据各方面的研究反应,DO对于污泥膨胀影响的的临界值并不确定。DO浓度的要求是与污泥负荷息息相关的,负荷越高,则对应的临界值就越大。这一值的确定与工艺选择、池型及进水类型都有着密切关系,必须根据实际情况结合实验才可以得出。

3、其它方面对污泥膨胀的影响

1) 污水种类

污水种类对污泥膨胀有着明显的影响。通常来说,那些含有易生物降解和溶解的有机成份,特别是低分子量的烃类、糖类和有机酸类等类型基质的污水易引起污泥膨胀,例如酿酒、乳品、石化和造纸废水等。

2) 营养成分的不3) 均衡

当污水中N、P不足时,易引起污泥膨胀的发生。通宵认为,N、P 的合适比例为BOD5:N:P=100:5:1。很多研究表明许多丝状菌

对营养物质N、P有着较强的亲和力,这可能就是缺乏营养物质导致污泥膨胀的原因。

4) pH值与温度

一般认为pH偏低易引起丝状菌的大量繁殖。而温度的对丝状菌的影响也是很普遍的。例如,冬天Microthix parvicella在丝状菌群中占优势,而温暖季节时Nocardia form,0041型或Nostocoida limnicda 较易大量繁殖。

另外污水在进水处理系统前的早期厌氧消化产生的有机酸和硫化氢也可能导致污泥膨胀的发生。硫磺菌的的贝氏硫菌、硫丝菌等能从硫化氢氧化中获取能量。而这么细菌以非常长的丝状性增殖,有时能长达1厘米,从而导致污泥膨胀的发生。

2、污泥膨胀的一般解决办法

第一类:应急措施

适用于临时应急,主要方法是投加药物增强污泥沉降性能或是直接杀死丝状菌。投加铁盐铝盐等混凝剂可以直接提高污泥的压密性保证沉淀出水。另外,投加一些化学药剂,如氯气,加在回流污泥中也可以达到消除污泥膨胀现象。投加过氧化氢和臭氧也可以起到破坏丝状菌的效果。

采用这种方法一般能较快降低SVI值,但这些方法并没有从根本上控制丝状菌的繁殖,一旦停止加药,污泥膨胀现象可以又会卷土重来。而且投药有可能破坏生化系统的微生物生长环境,导致处理效果降低,所以,这种办法只能做为临时应急时用。

第二类:改善生化环境

污水厂发生污泥膨胀的时候,一般无法从工艺流程、池型和曝气方式的改变来解决,只能在正在运行的流程基础上通过改变生化池内的微生物生长环境来抑制或消除丝状菌的过度繁殖。在不同的工艺和水质的情况下,很难有一个放之四海而皆准的解决方案。但生化工艺常遇见的几种应该注意的问题必须加以注意。

1) 污水性质的控制

首先应该检查和调整pH值,当pH值低于5以下时,不仅对污泥膨胀会有利,而且对正常的生化反应也会有一定的危害,所以当pH值偏低时应及时调整。另外在北方寒冷地区一定应注意冬季时的水温,若水温偏低应加热,因为低温也会导致污泥膨胀的发生。采用鼓风曝气能有效的在冬季较高的水温。当污水中营养成份不足或失衡时,应补充投加。N、P含量应控制在BOD:N:P=100:5:1左右。若污水处理生化系统前已有消化现象的发生,产生的低分子有机酸将有利于丝状菌的生长,这时可以对废水在调节池内预曝气来加以改善。一般采用空气扩散器向3-5米有效水深的调节池曝气,供气量可以控制在0.5-1.0m3/废水米3·小时。它能使调节池的废水保持新鲜,并有效防止由于厌氧所会带来的臭气。

2) 保持池内足够的溶解氧对于高负荷的生化系统特别重要,

3) 一般至少应控制DO>2毫克/L。

4) 沉淀池内的污泥应及时排出或回流,5) 防止其发生厌氧现象。若发生厌氧现象,6) 产生的各种气体吸附在污泥上,7) 也会使污泥上

浮,8) 沉降性能变差。而9) 且发生厌氧的污泥回流也会引发丝状菌的大量繁殖。这种情况时除排泥和清除沉淀池内的死角,10) 并缩短污泥在池内的停留时间外,11) 还应提高曝气池DO值,12) 使出入沉淀池的水保持较的溶解氧,13) 或者在污泥回流进入生化池前曝气再生。如左图所示。

在解决了以上问题后,如果污泥膨胀现象仍得不到控制,就得根据实际情况加以分析,下面针对几中常见的工艺提出一些指导性的方法,供污水处理工作者参考。

A. 高负荷活性污泥工艺

目前国内对活性污泥工艺的设计通常采用中等负荷

(0.3KgBOD5/(kgMLSS·d)),而在实际中人们从经济角度考虑总是采用较高的负荷,所以高负荷下的污泥膨胀在中国具体较为广泛的意义。在高负荷情况下,最常见的是DO不足,所以先采取提高气水比,强化曝气,在推流式曝气池内首端采用射流曝气等方式,观察一段时间,找出问题的所在。

如果在以上措施采取后一段时间情况仍无好转,则可考虑在曝气池头部加设软填料。这一部份对于有机酸去除率很高,从而去除丝状菌的生长促进因素,帮助絮状菌生长。这个方法比较有效,但造价较高,且对以后的维修管理造成不便。或者在曝气池前设置一个水力停留时间约为15min的选择器,一般能很有效的抑制丝状菌的生长。

对于间歇式进水的SBR工艺来说,反应器本身是完全混合式的,而且在时间上其污染物的基质就存在浓度梯度,所以无需再另设选择

器。通常间歇式SBR工艺产生污泥膨胀的原因是,污泥浓度过高,而进水有机物浓度偏低或水量偏小而导致污泥负荷偏低。对于这种情况,降低排出比,提高基质初始浓度,并对SBR强制排泥,一般就能够对污泥膨胀现象进行有效的控制。而对于连续进水的SBR如ICEAS和CASS等工艺如果发生污泥膨胀的话,就有必要在进水端设置一个预反应区或生物反应器了。

B. 低负荷活性污泥工艺

低负荷活性污泥工艺曝气池内基质浓度较低,丝状菌容易获得较高的增长效率,所以是最容易产生污泥膨胀。除了在水质和曝气上想办法外,最根本和有效的是将曝气池分成多格且以推流方式运行,或增设一个分格设置的小型预曝气池作为生物选择器,在这个选择器内采用高污泥负荷,吸附部分有机物并消除有机酸。这个办法不但有助于抑制污泥膨胀,并能有效的改善生化处理效果。在曝气池内增加填料的方法也同样在低负荷完全混合工艺中适用。

对于A/O和A2/O工艺可通过在在好氧段前设置缺氧段和厌氧段以及污泥回流系统,使混合菌群交替处于缺氧和好氧状态,并使有机物浓度发生周期性变化,这既控制了污泥膨胀又改善了污泥的沉降性能。而交替工作式氧化沟和UNITANK工艺等连续进水的系统因为其本身在时间和空间上就有了实际上的“选择器”,所以对污泥膨胀有着效强的控制能力。如果这两种工艺发生污泥膨胀,则可通过调整曝气控制溶氧量和控制回流污泥量来调节池内的污泥负荷及DO,通过一段时间的改善,一般能够控制住污泥膨胀现象。

3、总结

总的来说,污泥膨胀由于丝状菌的种类繁多,且生长适宜的环境也不尽相同。在不同工艺不同水质的情况下,微生物的生长环境非常微妙,这就要求发生污泥膨胀时,需要水处理工作者根据实际情况作大量切实的实验和分析,大胆实践,才能解决污泥膨胀问题。这里对本文观点作一个总结。

丝状菌是生长处理微生物中不可缺少的一部份。污泥膨胀现象在于丝状菌的过度生长,消除污泥膨胀的根本在于使丝状菌与活性污泥菌胶团平衡生长;完全混合式较推流式更产生污泥膨胀,低污泥负荷较高污泥负荷易易产生污泥膨胀;进水水质在水温、pH、营养成份及是否有处理前的消化反应等方面是处理污泥膨胀应该首先考察的问题;高负荷下的污泥膨胀一般在于溶氧不足;低负荷下的污泥膨胀采用生物选择器是行之有效的办法。由于丝状菌的多样性,关于污泥膨胀的理论解释和实际报道仍有很多不尽一致,大胆实践不断总结并和同行广泛交流,才能更快找到行之有效地解决方法。

影响因素】

1.污泥负荷对污泥膨胀的影响

一般认为活性污泥中的微生物的增长都是符合Monod方程的:

式中μ----微生物比增长速率,d-1 ;μ=1/X * dX/d

t

X----生物体浓度,mg/L;

S----生长限制性基质浓度(残留与溶液中的基质浓度),mg/ L;

Ks-----饱和常数(半速度常数),其值为μ=μmax/2时的基质浓度,mg/L;

μmax-----在饱和浓度中微生物的最大比增长速率,d

大多数的丝状菌的KS和μmax值比菌胶团的低,所以,按照以上Monond方程,具有低KS和μmax值的丝状菌在低基质浓度条件下具有高的增长速率,而具有较高KS和μmax值的菌胶团在高基质浓度条件下才占优势。同样认为低负荷对于丝状菌生长有利的理论还有表面积/容积比(A/V)假说。这里的表面积和容积,是指活性污泥中微生物的表面积与体积。该假说认为伸展于絮凝体之外的丝状菌的比表面积(A/V)要大大超过菌胶团细菌的比表面积。当微生物处于受基质限制和控制的状态时,比表面积大的丝状菌在取得底物方面要比菌胶团有利,结果在曝气池内丝状菌就变成了优势菌。

低负荷易导致污泥膨胀这一观点无论是在实际运行中还是在理论上都有了较为成熟的解释。但在中国,通常生化反应的负荷设计都是较高的,的大量污泥膨胀却是在高负荷条件下发生的。

事实上,在高负荷条件下的污泥膨胀往往是由于供氧不足、曝气池内DO浓度降低引起的。

2.溶解氧浓度对污泥膨胀的影响

微生物对有机物的降解过程实质上就是对氧的利用过程。溶解氧在活性污泥法的运行中是一个重要的控制参数,曝气池中D O浓度的高低直接影响着有机物的去除效率和活性污泥的生长。低DO浓度一直被认为是引起丝状菌污泥膨胀的主要因素之一。丝状菌由于具有较大的比表面积和较低的氧饱和常数,在低DO 浓度下比絮状菌增殖得快,从而导致丝状菌污泥膨胀。根据各方面的研究反应,DO对于污泥膨胀影响的的临界值并不确定。DO 浓度的要求是与污泥负荷息息相关的,负荷越高,则对应的临界值就越大。这一值的确定与工艺选择、池型及进水类型都有着密切关系,必须根据实际情况结合实验才可以得出。

3.其它方面对污泥膨胀的影响

(1)污水种类

污水种类对污泥膨胀有着明显的影响。通常来说,那些含有易生物降解和溶解的有机成份,特别是低分子量的烃类、糖类和有机酸类等类型基质的污水易引起污泥膨胀,例如酿酒、乳品、石化和造纸废水等。

(2)营养成分的不均衡

当污水中N、P不足时,易引起污泥膨胀的发生。N、P的合适比例为BOD5:N:P=100:5:1。很多研究表明许多丝状菌

对营养物质N、P有着较强的亲和力,这可能就是缺乏营养物质导致污泥膨胀的原因。

(3)pH值与温度

一般认为pH偏低易引起丝状菌的大量繁殖。而温度的对丝状菌的影响也是很普遍的。例如,冬天Microthixparvicella在丝状菌群中占优势,而温暖季节时Nocardiaform,0041型或Nost ocoidalimnicda较易大量繁殖。

另外污水在进水处理系统前的早期厌氧消化产生的有机酸和硫化氢也可能导致污泥膨胀的发生。硫磺菌的的贝氏硫菌、硫丝菌等能从硫化氢氧化中获取能量。而这么细菌以非常长的丝状性增殖,有时能长达1厘米,从而导致污泥膨胀的发生。

【应急措施】

临时应急主要方法是投加药物增强污泥沉降性能或是直接杀死丝状菌。投加铁盐铝盐等混凝剂可以直接提高污泥的压密性保证沉淀出水。另外,投加一些化学药剂,如氯气,加在回流污泥中也可以达到消除污泥膨胀现象。投加过氧化氢和臭氧也可以起到破坏丝状菌的效果。

采用这种方法一般能较快降低SVI值,但这些方法并没有从根本上控制丝状菌的繁殖,一旦停止加药,污泥膨胀现象可以又会卷土重来。而且投药有可能破坏生化系统的微生物生长环境,导致处理效果降低,所以,这种办法只能做为临时应急时用。【控制方法】

1.絮凝法

膨胀活性污泥的密度一般比水小,作为应急处理措施,可考虑投加混凝剂,以改善其沉降性能。初步选择了常用的高分子混凝剂——阳离子型聚丙烯酰胺和无机混凝剂——硫酸亚铁进行对比试验。

在处理水量为50L/h的小试装置中投加阳离子型聚丙烯酰胺,使其浓度分别达到10、20、30、40、50和60mg/L,污泥的SV值变化。聚丙烯酰胺的投加对于污泥的沉降性能的改善有一定的效果,且存在一个最佳投加量,但是,效果不是很理想。该中水回用系统采用新型淹没式复合膜生物反应器,曝气量大、水力搅拌强烈,聚集起来的絮体颗粒容易遭到破坏,从而导致混凝效果不理想;当投加量高于最佳投加量时,絮凝体除中和胶体的负电荷以外,过多的正电荷又使胶体离子带上正电荷而重新稳定。处理水量为50L/h的小试装置中投加硫酸亚铁溶液,使其质量浓度在10至180mg/L之间变化,污泥的SV值变化;投药前后菌胶团状态。

投加硫酸亚铁溶液后污泥沉降性能得到明显改善,SV值下降了约百分之十五。但是超过60mg/L后污泥沉降性能没有进一步的改善,所以确定实际运行时硫酸亚铁的投加量为60mg/L。在投加硫酸亚铁(60mg/L)前后,测量混合液PH值从7.63降至7.07,对污泥活性的负面影响很小。阳离子型聚丙烯酰胺的投加效果受水力条件等因素的限制不是十分理想,同时其单体有毒

性、难降解,存在二次污染问题,经济效益较投加硫酸亚铁差。硫酸亚铁价格便宜、使用简单,对膜及污泥没有负面影响,其对污泥密度的影响是有效的,但其不能从根本上解决营养比例失调的问题,所以只能作为应急控制措施。

2.营养盐调整法

在污泥膨胀问题的研究中,对污泥膨胀的恢复与控制是一个十分重要的环节。在该中水回用工程的运行过程中发现,投加硫酸亚铁后,沉降性能一度改善的活性污泥在原有有机负荷条件下如停止投加,继续进行处理,则活性污泥的沉降性能就会逐渐恶化,三日后恢复到投加前的状态。所以需要寻找一种在活性污泥膨胀后行之有效的恢复控制方法。

3.其他控制方法

在污泥粘性膨胀最严重的情况下(用容器装一些污泥,无论用什么方法污泥始终粘附在容器的表面),可考虑适当排掉一些膨胀的污泥,再重新取一些新泥,以减少多糖类物质对污泥的覆盖;同时增加水力停留时间,使没有被完全氧化的有机物有足够的时间被消耗掉。

由于原水中洗涤剂含量很高,加之曝气强度较大,经常出现白色、粘稠的泡沫,并且越积越多,当污泥发生膨胀时,危害较大。除投加消泡剂以外,采取水力消泡的方法。在反应池上方安装喷头,用MBR反应器的出水对反应池上部进行喷淋,以控制膨胀污泥和泡沫对反应器的危害,会取得较好效果。

活性污泥膨胀的防治措施

所谓活性污泥膨胀是指活性污泥质量变轻,体积膨大,沉降性能恶化,在二沉池内不能正常沉池下来,污泥指数异常增高达400以上。活性污泥膨胀,根据诱因可分为:因丝状菌异常增殖所导致的丝状菌性膨胀和因粘性物质大量产生积累的非丝状菌膨胀。前者为易发与多发性膨胀,导致产生丝状菌性污泥膨胀的细菌主要有:球衣菌属,假单胞菌属,黄杆菌属,酶菌属。污泥膨胀的对策,当在活性污泥系统产生污泥膨胀现象时,可按下图所列程序对污泥膨胀的类型,诱因与性质进行调查,并采取相应的措施加以消除。具体措施说明如下:

措施A,投药处理,能够杀灭丝状菌的药剂有氯,臭氧,过氧化氢等,有效氯为10—20mg/l时,就能够有效杀灭球衣菌,贝代硫菌:高于20mg/l时,可能对絮凝体形成菌产生危害,因此,在使用氯时一定要按投加量的允许范围合理投加。而臭氧,过氧化氢等氧化剂只

有在

较高的计量条件下才对球衣菌有杀灭效果。

措施B,改善,提高活性污泥的絮凝性,在曝气池的入口处投加硫酸铝,三氯化铁,高分

子混凝剂等絮凝剂。

措施C,改善,提高活性污泥的沉降性,密实性。在曝气池的入口处投加粘土,消石灰,

生污泥或消化污泥。

措施D,加大回流污泥量,通过这一措施,高粘性膨胀的致因物质,即多糖类物降低了,

在多数情况下,能够解脱高粘性膨胀。有条件的地方还可在回流污泥前进行内源呼吸期,提

高了絮凝体形成细菌群摄取有机物的能力和与丝状菌竞争的能力,丝状菌性膨胀也能够得到

抑制。在曝气过程中,可以考虑加入氯,磷等营养物质,这样可以强化污泥活性。

措施E,使废水经常处于新鲜状态,防止形成厌氧状态,如有条件采取预曝气措施,使废

水经常处于预曝气状态,吹脱硫化氢等有害气体,并避免贝代硫菌加以利用增殖。

措施F,加强曝气,提高混和液DO浓度,防止混和液缺氧或厌氧状态,即或是局部的或

是一时的呈厌氧状态,也不利于絮体形成菌的生理活动,而有利于丝状菌的增殖。

措施G,在有利条件下,可以考虑改变水温,水温在15摄氏度以下易于发生高粘性膨胀,

而丝状菌性膨胀则多发生在20摄氏度以上。

措施H,降低污泥在二沉池内停留时间,防止形成厌氧状态。措施I,调整污泥负荷,运

行经验表明,如果污泥负荷超过0.35kgBOD/kgMLSS.d易于发生丝状菌性污泥膨胀。

措施J,调整混合液中的营养物质平衡,即保证BOD:N:P=10:5:1的要求,当混和液

失去营养平衡时,往往会发生高粘性污泥膨胀。

措施K,控制丝状菌的增殖,对已产生大量球衣菌属的活性污泥,用浓度为50mg/l的硫

酸铜,保持5mg/l的残留浓度,能够抑制球衣菌属的增殖。

污泥膨胀解决办法

所谓活性污泥膨胀是指活性污泥质量变轻,体积膨大,沉降性能恶化,在二沉池内不能正常沉池下来,污泥指数异常增高达400以上。

活性污泥膨胀,根据诱因可分为:因丝状菌异常增殖所导致的丝状菌性膨胀和因粘性物质大量产生积累的非丝状菌膨胀。前者为易发与多发性膨胀,导致产生丝状菌性污泥膨胀的细菌主要有:球衣菌属,假单胞菌属,黄杆菌属,酶菌属。

污泥膨胀的对策,当在活性污泥系统产生污泥膨胀现象时,可按下图所列程序对污泥膨胀的类型,诱因与性质进行调查,并采取相应的措施加以消除。具体措施说明如下:

1、投药处理,能够杀灭丝状菌的药剂有氯,臭氧,过氧化氢等,有效氯为10—20mg/l时,就能够有效杀灭球衣菌,贝代硫菌:高于20mg/l 时,可能对絮凝体形成菌产生危害,因此,在使用氯时一定要按投加量的允许范围合理投加。而臭氧,过氧化氢等氧化剂只有在较高的计

量条件下才对球衣菌有杀灭效果。

2、改善,提高活性污泥的絮凝性,在曝气池的入口处投加硫酸铝,三氯化铁,高分子混凝剂等絮凝剂。

3、改善,提高活性污泥的沉降性,密实性。在曝气池的入口处投加粘土,消石灰,生污泥或消化污泥。

4、加大回流污泥量,通过这一措施,高粘性膨胀的致因物质,即多糖类物降低了,在多数情况下,能够解脱高粘性膨胀。有条件的地方还可在回流污泥前进行内源呼吸期,提高了絮凝体形成细菌群摄取有机物的能力和与丝状菌竞争的能力,丝状菌性膨胀也能够得到抑制。在曝气过程中,可以考虑加入氯,磷等营养物质,这样可以强化污泥活性。

5、使废水经常处于新鲜状态,防止形成厌氧状态,如有条件采取预曝气措施,使废水经常处于预曝气状态,吹脱硫化氢等有害气体,并避免贝代硫菌加以利用增殖。

6、加强曝气,提高混和液DO浓度,防止混和液缺氧或厌氧状态,即或是局部的或是一时的呈厌氧状态,也不利于絮体形成菌的生理活动,而有利于丝状菌的增殖。

7、在有利条件下,可以考虑改变水温,水温在15摄氏度以下易于发生高粘性膨胀,而丝状菌性膨胀则多发生在20摄氏度以上。

8、降低污泥在二沉池内停留时间,防止形成厌氧状态。

9、调整污泥负荷,运行经验表明,如果污泥负荷超过0.35kgBOD/kgMLSS.d易于发生丝状菌性污泥膨胀。

10、调整混合液中的营养物质平衡,即保证BOD:N:P=100:5:1的要求,当混和液失去营养平衡时,往往会发生高粘性污泥膨胀。

11、,控制丝状菌的增殖,对已产生大量球衣菌属的活性污泥,用浓度为50mg/l的硫酸铜,保持5mg/l的残留浓度,能够抑制球衣菌属的增殖。

丝状菌澎账的原因及解决方法

正常的活性污泥沉降性能好,其SVI约为50—150(70—120)之间为正常。SVI=活性污泥体积/MLSS,当SVI>200并继续上升时,称为污泥膨胀 (1)丝状菌繁殖引起的膨胀 原因:污泥中丝状菌过渡增长繁殖的结果,丝状菌作为菌胶团的骨架,细菌分泌的外酶通过丝状菌的架桥作用将千万个细菌凝结成菌胶团吸附有机物 形成活性污泥的生态系统。但当丝状菌大量生长繁殖,活性菌胶团结构受到破坏,形成大量絮体而漂浮于水面,难于沉降。这种现象称为丝状菌繁殖膨胀。 丝状菌增长过快的原因: a、溶解氧过低,<—l b、冲击负荷——有机物超出正常负荷,引起污泥膨胀 c、进水化学条件变化: 一是营养条件变化,一般细菌在营养为BOD5:N:P=100:5:1的条件下生长,但若磷含量不足,C/N升高,这种营养情况适宜丝状菌生活。 二是硫化物的影响,过多的化粪池的腐化水及粪便废水进入活性污泥设备,会造成污泥膨胀。含硫化物的造纸废水,也会产生同样的问题。一般是加5~10mL/L氯加以控制或者用预曝气的方法将硫化物氧化成硫酸盐。 三是碳水化合物过多会造成膨胀。 四是pH值和水温的影响,pH过低,温度高于35度易引起丝状菌生长。解决办法: a、保持一定的活性污泥浓度,控制每天排除污泥的净增量,控制回流比。 b、控制F/M(污泥负荷)调节进水和回流污泥

c、保持污泥龄不变 d、污泥膨胀严重时投加铁盐絮凝剂或有机阳离子凝聚剂。 活性污泥膨胀的控制 摘要:从污泥膨胀产生的内在因素着手,分析丝状菌过量繁殖的原因,针对几种常见的活性污泥工艺提出解决方案和思路。 关键词:丝状菌污泥膨胀选择池活性污泥工艺 污泥膨胀问题是活性污泥自产生以来一直伴随并常常发生的一个棘手的问题。其主要特征是:污泥结构松散,质量变轻,沉淀压缩性能差;SV值增大,有时达到90%,SVI达到300以上;大量污泥流失,出水浑浊;二次沉淀难以固液分离,回流污泥浓度低,有时还伴随大量的泡沫的产生,无法维持生化处理的正常工作。污泥膨胀是生化处理系统较为严重的异常现象之一,它直接影响出水水质,并危害整个生化系统的运作。 污泥膨胀的发生率是相当高的,在欧洲近50%的城市污水厂每年都会有不同程度的污泥膨胀发生,在我国的发生率也非常高。基本上目前各种类型的活性污泥工艺都会发生污泥膨胀。污泥膨胀不但发生率高,发生普遍,而且一旦发生难以控制,通常都需要很长的时间来调整。针对污泥膨胀,各方面的理论很多,但并不完全一致,甚至有很多相互矛盾,这给水处理工作者造成很大的麻烦。本文将从污泥膨胀的内在因素着手,整理出几种较为成熟且有普遍意义的观点,并归纳一下污泥膨胀控制的一般方法。 1、污泥膨胀的原因 污泥膨胀分为丝状菌膨胀和非丝状菌膨胀。非丝状菌膨胀主要发生在废水水温较低而污泥负荷太高的时候,此时细菌吸附了大量有机物,来不及代谢,

污泥膨胀原因和解决办法

污泥膨胀原因和解决办法标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

污泥膨胀原因和解决办法 废水生物处理是利用有关微生物的代谢过程,是对废水中有机物进行降解或转化的过程。微生物在降解有机物的同时其本身也得到了增殖。污泥膨胀有两种类型,一是由于活性污泥中大量丝状菌的繁殖而引起的污泥丝状菌膨胀,二是由于菌胶团细菌体内大量累积高粘性物质(如葡萄糖、甘露糖、阿拉伯糖、鼠李糖和脱氧核糖等形成的多类糖)而引起的非丝状菌性膨胀。污泥丝状菌膨胀可根据丝状微生物对环境条件和基质种类要求的不同而划分为五类类型:(1)低基质浓度型;(2)低溶解氧浓度型;(3)营养缺乏型;(4)高硫化物型;(5)pH不平衡型。在实际运行中,一般以污泥丝状菌膨胀为主,占90%以上。发生污泥膨胀时,主要有以下特征:(1)二沉池中污泥的SVI值大于200ml/g;(2)回流污泥浓度下降;(3)二沉池中污泥层增高。 污泥膨胀相关理论: (1)A/V假说:当混合液中基质收到限制或控制时,由于比表面积大的丝状菌获取基质的能力要强于菌胶团,因而菌胶团受到抑制,丝状菌大量繁殖; (2)动力选择性理论:以微生物生长动力学为基础,根据不同种类微生物具有不同的最大比生长速率和饱和常数,分析丝状菌与菌胶团的竞争情况; (3)饥饿假说:将活性污泥中微生物分为三类,第一类是菌胶团细菌,第二类是具有高基质亲和力但生长缓慢的耐饥饿丝状菌,第三类是对溶解氧有高亲和力、对饥饿高度敏感的快速生长丝状菌; (4)存储选择理论:在底物风度的状态下,非丝状菌具有贮存底物的能力,而被贮存物质在底物匮乏时能够被代谢产生能量或合成蛋白质。但是一些丝状菌也具有底物贮存能力,底物贮存能力不能完全用来解释污泥膨胀机理; (5)氮氧化氮假说:CASEY提出低负荷生物脱氮除磷工艺的污泥膨胀假说,如果缺氧区的反硝化不充分,导致好氧区存在亚硝酸氮,那中间产物NO、N2O就会抑制菌胶团的好氧细胞色素,进而抑制其好氧情况下的基质利用,相反一些丝状菌只能将硝酸氮还原为亚硝酸氮,因此不会在反硝化条件下胞内积累NO和N2O,丝状菌就不会在好氧段被抑制,因而更具竞争优势。亚硝酸与SVI有一定的正相关性。沉淀性能良好的污泥粒径分布较广,且以球菌为主,膨胀污泥的粒径大都在10μm以内,污泥较为细碎。 影响污泥膨胀的因子: 1、温度

污泥膨胀分丝状菌膨胀和非丝状菌膨胀

污泥膨胀分丝状菌膨胀和非丝状菌膨胀. 引起丝状菌膨胀原因主要有: 1.进水有机质少 2.营养比例失调. 3.do太低 4.水质,水量波动太大 引起非丝状菌膨胀原因主要有: 1.高负荷时的粘性膨胀 2.污泥中毒 如果污泥发生膨胀先确定原因,再针对原因调整参数 造成污泥丝状膨胀的的因素有:(1)污水水质:含溶解性炭化物高是污水往往发生由浮游球衣细菌引起的丝状膨胀,另外水温和PH值也会对污泥膨胀有明显的影响。水温在低于15度时。一般不会膨胀。PH低时,容易产生膨胀。(2)运行条件:目前关于污泥负荷对污泥膨胀的影响没有一个确切的结论,对于有些废水来说,不论污泥负荷高或低都回发生膨胀,而对有些废水则相反,都不会发生膨胀; 非丝状菌性膨胀主要发生在污水水温较低而污泥负荷太高时。微生物的负荷高,细菌吸取大量的营养物,但由于温度低,代谢速度慢,就积贮大量粘性的多糖类物质。这些多糖物质的积贮,使活性污泥的表面附着水大大增加,是SVI值升高,形成膨胀污泥。 抑制措施:(1)控制溶解氧,使曝气池的溶解氧不低于1-2mg/L,不超过4mg/L(2)调整PH(3)投加适量的含氮和含磷化合物 活性污泥膨胀暂时没有一个标准快速的解决办法,只能通过调试才能慢慢恢复。也不能急于用药,在“吃药”之前首先必须要搞清楚是什么类型的污泥膨胀,要是用错了方法只会让问题更严重。此时镜检是必须的,仔细观察污泥絮体的结构,微生物群体情况,由此推断膨胀的严重程度。而实际污泥膨胀异丝状菌膨胀居多。 所谓活性污泥膨胀是指活性污泥质量变轻,体积膨大,沉降性能恶化,在二沉池内不能正常沉池下来,污泥指数异常增高达400以上。活性污泥膨胀,根据诱因可分为:因丝状菌异常增殖所导致的丝状菌性膨胀和因粘性物质大量产生积累的非丝状菌膨胀。前者为易发与多发性膨胀,导致产生丝状菌性污泥膨胀的细菌主要有:球衣菌属,假单胞菌属,黄杆菌属,酶菌属。污泥膨胀的对策,当在活性污泥系统产生污泥膨胀现象时,可按下图所列程序对污泥膨胀的类型,诱因与性质进行调查,并采取相应的措施加以消除。具体措施说明如下:措施A,投药处理,能够杀灭丝状菌的药剂有氯,臭氧,过氧化氢等,有效氯为10—20mg/l 时,就能够有效杀灭球衣菌,贝代硫菌:高于20mg/l时,可能对絮凝体形成菌产生危害,因此,在使用氯时一定要按投加量的允许范围合理投加。而臭氧,过氧化氢等氧化剂只有在较高的计量条件下才对球衣菌有杀灭效果。措施B,改善,提高活性污泥的絮凝性,在曝气池的入口处投加硫酸铝,三氯化铁,高分子混凝剂等絮凝剂。措施C,改善,提高活性污泥的沉降性,密实性。在曝气池的入口处投加粘土,消石灰,生污泥或消化污泥。措施

丝状菌膨胀控制

污泥膨胀控制方案 一、污泥膨胀的定义 污泥膨胀就是指由于某种原因,活性污泥质量变轻、体积膨大、沉降性能恶化,造成二沉池中泥水分离效果差,污泥随出水流失,影响出水水质,从而破坏工艺正常运行的现象。根据其诱因可以分为丝状菌异常增殖导致的丝状菌膨胀和因黏性物质大量积累导致的非丝状菌膨胀,其中丝状菌膨胀最为常见。 二、丝状菌膨胀的预警 丝状菌膨胀,防重于治,当预警指标在以下范围时,应引起足够重视,并采取相应措施。 预警指标的指示范围 指标及监测体系可能发生污泥膨胀的指示范围 丝状菌数量≥30% SVI >150mg/L 负荷<0.25 kgBOD5/kgMLSS·d 营养物类型易降解小分子有机物、硫化物、洗涤剂、油类物质 水温<15℃ 溶解氧<0.3mg/L 泥龄>10d 三、丝状菌膨胀的成因 通过对近些年来国内外活性污泥膨胀问题研究的分析,可以将活性污泥丝状菌膨胀的原因主要分为五种类型: (1) 基质限制,即进水有机物较低或负荷(F/M)较低,或可溶性小分子有机物较高; (2) 溶解氧限制,曝气量较小; (3) 营养物缺乏型,氮、磷等营养物质缺乏; (4) 低PH冲击引起,进水多呈酸性或偏酸性; (5) 腐败废水或高硫化氢因素等膨胀类型,进水在市政管网中停留时间过长。 总之,污泥丝状膨胀的根本原因是丝状菌具有更大的比表面积,对系统中较低营养的吸收或不良环境的适应能力比菌胶团细菌更强,丝状菌目前已发现30余种,每种丝状菌的增

殖条件也不尽相同,水厂在日常运行中一定要注意保持进水的连续性、均匀性及水质的稳定性,才能为后续工艺控制提供条件。 四、丝状菌污泥膨胀的控制措施 控制类型控制措施 工艺控制措施1、加强排泥,大多数丝状菌繁殖一代的时间较长(一般≥9d),而菌胶团细菌世代时间较短,可通过加大剩余污泥排放,缩短污泥龄,使丝状菌在活性污泥系统中逐渐减少。 2、提高好氧池pH值,低pH值有利于丝状菌生长,可通过投加片碱的方式,使曝气池内pH控制在7.2~8.5 范围内,可有效抑制丝状菌生长。 3、加大回流污泥量,降低污泥在二沉池内停留时间,以免丝状菌在此厌氧环境发生优势增殖。 4、提高溶解氧,加强曝气,提高曝气池内DO值,尽量控制曝气池的DO值大于1.0mg/L 以上,改善生化系统环境,利用生物竞争机制抑制丝状菌的过度繁殖。 5、调整进水的营养物质平衡,即保证C∶N∶P=100:5:1的要求,如有机物较低,可投加大分子链的淀粉等物质,不要投加小分子的葡萄糖;如N、P缺乏,可投加尿素、磷酸二铵等物质。 6、控制负荷,通过降低污泥浓度或提高进水底物浓度,将食微比(F/M)控制在0.25-0.45kgBOD5/(kgMLVSS·d)之间。 7、进行预曝气,如进水腐败或高H2S,可通过打开旋流沉砂池,对进水进行预曝气使进水保持新鲜。 应急性控制措施1、在曝气池入口处投加硫酸铝、三氯化铁、PAC等絮凝剂,可以改善、提高活性污泥的絮凝性,也可投加粘土、消石灰、生污泥或消化污泥,以改善、提高活性污泥的沉降性,密实性。 2、投加浓度为11%的次氯酸钠(NaCIO)溶液或双氧水,能有效杀死丝状菌,投加时一定要注意投加的量,要控制到刚好能杀死丝状菌而不能或少伤害到絮体微生物,一般投加量为1~10g有效氯/(kgMLSS.d),投加时要从小剂量开始,逐渐增加至预期的效果。 预防措施提醒 水厂要接种污泥时,一定要对接种污泥进行镜检,如接种污泥中存在丝状菌,一定不要接种,因为丝状菌一旦引入系统,很难彻底消除。

SBR工艺中污泥负荷对丝状菌污泥膨胀的影响

SBR工艺中污泥负荷对丝状菌污泥膨胀的影响 周利彭永臻高春娣丁峰 (哈尔滨建筑大学市政环境工程学院) 摘要在严格控制SBR工艺试验运行条件下,就污泥负荷对丝状菌污泥膨胀的影响规律进行了研究。结果表明,高污泥负荷不仅不是导致污泥膨胀的因素,而且对污泥膨胀有抑制作用;在污泥负荷降低到一定程度(“临界负荷”)后,SVI迅速升高,加速污泥膨胀的发生。还发现,进水底物浓度与“临界负荷”及低于“临界负荷”后污泥膨胀的最大程度SVImax 之间呈负相关关系,且都可用微生物的选择性理论来解释。 关键词污水处理SBR 丝状菌膨胀污泥负荷SVI 污泥膨胀可分为由丝状菌和非丝状菌引起两大类,但由前者引起的膨胀占95%以上。影响污泥膨胀的因素有很多[1],其中污泥负荷被认为是最重要的因素之一。污泥负荷与污泥膨胀之间的关系非常复杂,原因是还有其他因素起协同作用,因此,研究者在不同的研究条件下不免得出不尽相同甚至相互矛盾的研究结果。例如,Pipes调查了32个活性污泥处理厂,发现污泥负荷在0.25~0.45kgCOD/(kgMLSS·d)范围内污泥沉降性能好,超出这个范围会导致SVI值升高。Chao和Keinath在研究中发现[2],负荷在0.6~1.3kgCOD/(kgMLSS·d)和大于1.8kgCOD/(kgMLSS·d)时易发生污泥膨胀。德国一研究组经过多年的调查研究指出[3],当完全混合式曝气池中比较频繁地出现污泥膨胀时,其负荷小于0.05kgBOD/(kgMLSS·d);而推流式曝气池中污泥负荷超过0.5kgBOD/(kgMLSS·d)时才出现污泥膨胀。 针对目前关于污泥膨胀的研究中肯定污泥负荷是重要的影响因素但其结果又比较混乱的状况,利用SBR能够严格控制试验条件的特点,进行了污泥负荷对污泥膨胀影响的试验研究。因为在活性污泥法污水处理厂中,污泥负荷最容易随进水水质水量变化而波动,成为影响污泥膨胀的首要因素。 1 试验装置与方法 试验中以化工和啤酒两种工业废水作为研究对象。化工废水中主要含有乙酸、苯酐、偏苯酸三酸、油脂等有机物,啤酒废水主要含有各种糖类、色素、蛋白质、多种氨基酸等有机物,二者都是常见的易于发生污泥膨胀的工业废水。 试验装置及控制系统如图1所示。SBR反应器为圆柱型,有效容积38 L,底部采用微孔曝气头,外部缠有电热丝并通过温控仪控制反应器内恒温20 ℃,在线检测DO和ORP。进水方式为一次性加注。 试验中严格控制如进水底物浓度、起始污泥浓度、曝气量及反应时间等试验条件。为了专门研究污泥负荷对污泥膨胀的影响,对其他能够影响污泥膨胀的因素也进行严格的控制,使其不能成为污泥膨胀的有利因素。为此,在试验中: ①溶解氧浓度≥3.0 mg/L; ②反应器进水中的N、P含量通过投加氯化铵和磷酸二氢钾来调节,根据水中有机物浓度控制在BOD5∶N∶P=100∶5∶1; ③pH值控制在6.5~8.5; ④反应器内污泥浓度控制在2 000 mg/L左右。

丝状菌澎账的原因及解决方法

丝状菌澎账的原因及解 决方法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

正常的活性污泥沉降性能好,其SVI约为50—150(70—120)之间为正常。 SVI=活性污泥体积/MLSS,当SVI>200并继续上升时,称为污泥膨胀 (1)丝状菌繁殖引起的膨胀 原因:污泥中丝状菌过渡增长繁殖的结果,丝状菌作为菌胶团的骨架,细菌分泌的外酶通过丝状菌的架桥作用将千万个细菌凝结成菌胶团吸附有机物形成活性污泥的生态系统。但当丝状菌大量生长繁殖,活性菌胶团结构受到破坏,形成大量絮体而漂浮于水面,难于沉降。这种现象称为丝状菌繁殖膨胀。 丝状菌增长过快的原因: a、溶解氧过低,<—l b、冲击负荷——有机物超出正常负荷,引起污泥膨胀 c、进水化学条件变化: 一是营养条件变化,一般细菌在营养为BOD5:N:P=100:5:1的条件下生长,但若磷含量不足,C/N升高,这种营养情况适宜丝状菌生活。 二是硫化物的影响,过多的化粪池的腐化水及粪便废水进入活性污泥设备,会造成污泥膨胀。含硫化物的造纸废水,也会产生同样的问题。一般是加5~10mL/L氯加以控制或者用预曝气的方法将硫化物氧化成硫酸盐。 三是碳水化合物过多会造成膨胀。

四是pH值和水温的影响,pH过低,温度高于35度易引起丝状菌生长。 解决办法: a、保持一定的活性污泥浓度,控制每天排除污泥的净增量,控制回流比。 b、控制F/M(污泥负荷)调节进水和回流污泥 c、保持污泥龄不变 d、污泥膨胀严重时投加铁盐絮凝剂或有机阳离子凝聚剂。 活性污泥膨胀的控制 摘要:从污泥膨胀产生的内在因素着手,分析丝状菌过量繁殖的原因,针对几种常见的活性污泥工艺提出解决方案和思路。 关键词:丝状菌污泥膨胀选择池活性污泥工艺 污泥膨胀问题是活性污泥自产生以来一直伴随并常常发生的一个棘手的问题。其主要特征是:污泥结构松散,质量变轻,沉淀压缩性能差;SV值增大,有时达到90%,SVI达到300以上;大量污泥流失,出水浑浊;二次沉淀难以固液分离,回流污泥浓度低,有时还伴随大量的泡沫的产生,无法维持生化处理的正常工作。污泥膨胀是生化处理系统较为严重的异常现象之一,它直接影响出水水质,并危害整个生化系统的运作。 污泥膨胀的发生率是相当高的,在欧洲近50%的城市污水厂每年都会有不同程度的污泥膨胀发生,在我国的发生率也非常高。基本上目前各种类型的活性污泥工艺都会发生污泥膨胀。污泥膨胀不但发

0807.丝状菌污泥膨胀理论分析

丝状菌污泥膨胀理论分析 早期控制丝状菌污泥膨胀(简称污泥膨胀)的主要手段是投加药剂杀死丝状菌,或投加混凝剂和助凝剂以增加污泥絮体的比重[1],但这些方法往往无法彻底解决污泥膨胀问题,相反地可能会带来出水水质恶化的不良后果。其后人们逐渐认识到,活性污泥中的菌胶团细菌和丝状菌构成一个共生的微生物生态体系,在这种共生关系中,丝状菌是不可缺少的重要微生物,对于高效、稳定地净化污水起着重要作用,并逐渐地从简单杀死丝状菌过渡到利用曝气池中的生长环境调整丝状菌的比例,从而达到控制污泥膨胀的发生即进入环境调控阶段。环境调控概念的使用是人们在污泥膨胀控制技术和实践上的一大进步,其主要出发点是使曝气池中的生态环境有利于选择性地发展菌胶团细菌,利用生物竞争机制抑制丝状菌的过度生长和繁殖,将丝状菌数量控制在一个合理的范围之内,从而控制污泥膨胀的发生和发展,同时利用丝状菌的特性净化污水,稳定处理工艺。近年来选择器理论得到充分的发展和应用就是这一概念的具体体现。 1 污泥膨胀理论的统一 活性污泥是一混合培养系统,其中至少存在着30种可能引起污泥膨胀的丝状菌。在丝状菌与菌胶团细菌平衡生长时不会产生污泥膨胀问题,只有当丝状菌生长超过菌胶团细菌时,才会出现污泥膨胀。丝状菌和菌胶团细菌的生理和生化性质差异见表1。

通过近年来国内外对活性污泥膨胀问题研究进展的分析和综合,可以将引起丝状菌污泥膨胀的原因分为5种类型,即a.基质限制;b.DO限制;c.营养物缺乏; d.pH影响; e.H2S影响[2]。 1.1 广义Monod方程 丝状菌与菌胶团细菌竞争的数学模型遵循多种基质限制的广义Monod方程,即Monod McGee方程[1]: μ=μmax(S1/K1+S1)(S2/K2+S2)…(Sn/Kn+Sn) (1) 式中μmax——最大生长速率,d-1 Ki——第i种基质亲和力,mg/L Si——第i种基质浓度 根据式(1)可知,基质限制、DO限制和营养物缺乏型的污泥膨胀问题都可用广义Monod方程来加以解释(当氮严重缺乏时的污泥膨胀不能归入这一理论,原因在于若缺乏氮,微生物便不能充分利用碳源合成细胞物质,过量的碳源将被转变为多糖类胞外贮存物,这种贮存物是高度亲水型化合物,易形成结合水,影响污泥的沉降性能,从而产生高粘性膨胀,其不属于丝状菌污泥膨胀范畴)。

控制丝状菌污泥膨胀的方法

控制丝状菌污泥膨胀的方法 ①采用化学药剂杀灭丝状菌 丝状菌因同环境接触表面积大,故对药物较为敏感,在加药剂量合适时,可做到既杀灭丝状细菌,又不至于过多地损伤菌胶团细菌,在丝状菌明显受到抑制后即可停止加药,并投加合适营养,采取适当复壮措施。 常用的药物及剂量如下: 漂白粉量按有效氯为MLSS的0.5?0.8%投加; 投加液氯或漂白粉,使余氯为1mg/L时球衣菌30死亡;余氯为0.5mg/L时球衣菌经120'死亡。 加废碱液,使曝气池pH上升至8.5?9.0左右,维持一段时间后,镜检可见丝状菌萎缩、断裂。 上述方法在生产中应用时,最好先通过小样试验,以确定合适的投加剂量。由于微生物具有较强的变异能力,在多次使用同一药物后,丝状菌往往会产生适应性,并导致方法的失败。 ②改变进水方式及流态 对容易膨胀的废水,应避免采用完全混合活性污泥法(CMAS推荐选用流态为推流式(PFR或批式(SBR活性污泥法。J. H. Ren si nl对上述三种进水方式及流态进行了平行对比试验,结果表明SBR PFR中丝状菌数量少、污泥的SVI值低,而CMAS中丝状菌数量多、污泥的SVI值高,污泥呈严重的膨胀状态。 ③改变曝气池构型 ④控制曝气池的DO 模仿厌氧、好氧区的A/0工艺(Anoxic/Oxic procesS)来防止污泥膨胀。兼氧段不曝气,且保证有足够的反应时间)

⑤调节废水的营养配比 对因缺乏N、P而引起SVI值上升、造成污泥膨胀的处理系统,须在进水中追加N、P。我们于1972?1976年在处理某染色厂的废水过程中,当出现污泥膨胀时分别投加尿素、含氮量高的污泥消化池上清液或腐化污泥后,取得了良好效果。 综上所述,在污泥发生膨胀时我们应及时改变曝气池中微生物所处的环境条件,在有两大类微生物一胶团细菌和丝状细菌共存并相互竞争的污泥体系中,创造适合于菌胶团细菌生长的环境条件,使丝状菌得不到优势生长,以达到改善污泥沉降压缩性能、控制或预防污泥膨胀的目的。 废水生物处理是利用有关微生物的代谢过程,是对废水中有机物进行降解或 转化的过程。微生物在降解有机物的同时其本身也得到了增殖。 污泥膨胀有两种类型,一是由于活性污泥中大量丝状菌的繁殖而引起的污泥丝状菌膨胀,二是由于菌胶团细菌体内大量累积高粘性物质(如葡萄糖、甘露糖、阿拉伯糖、鼠李糖和脱氧核糖等形成的多类糖)而引起的非丝状菌性膨胀。污泥丝状菌膨胀可根据丝状微生物对环境条件和基质种类要求的不同而划分为五类类型:( 1)低基质浓度型;( 2)低溶解氧浓度型;( 3)营养缺乏型;( 4)高硫化物型;( 5)pH 不平衡型。在实际运行中,一般以污泥丝状菌膨胀为主,占90%以上。发生污泥膨胀时,主要有以下特征:( 1)二沉池中污泥的SVI值大于200ml/g ; (2)回流污泥浓度下降;(3)二沉池中污泥层增高。 污泥丝状菌膨胀形成的相关理论。(1)表面积容积比(A/V)假说。当微 生物处于基质限制和控制时,比表面积大的丝状菌获取底物的能力要强于菌胶团微生物,因而丝状菌占优势,菌胶团受到抑制,导致污泥的沉降性能下降。 (2)积累/再生(AC/SC假说。在高负荷条件下菌胶团微生物累积有机基质的能力强,丝状菌较差。但是此时微生物处于溶解氧限制和控制,因此丝状菌需

非丝状菌膨胀如何控制有这4种手段

非丝状菌膨胀如何控制?有这4种手段! 1、什么是非丝膨胀膨胀 非丝状菌膨胀,顾名思义不是丝状菌过量繁殖导致的膨胀,但是膨胀表现却和丝状菌膨胀的情形差不多,都具有沉淀性能严重下降,二沉池跑泥严重,SV最高可达90%。 具体说下两者的区别,非丝状菌膨胀是因为:1、过高的碳源进入系统,在高基质下,细菌吸附的碳源代谢不了,并在细菌表面分泌出亲水性多糖,并部分进入系统,细菌处于对数期,这时候细菌具有最强的活性,导致菌胶团解体。2、CNP比严重失调,过多的碳源因为缺少NP元素,无法继续代谢,导致只能形成亲水性多糖储存和分泌胞外!丝状菌膨胀是因为丝状菌的过渡繁殖,丝状菌伸出菌胶团,并与其相邻的丝状菌形成松散的絮团,导致絮团密度减少严重影响沉降性能。其中最明显的表观区别是:丝状菌膨胀和非丝膨胀在曝气池区

别是一个是浮泥,一个是泡沫!(节选自原创|我的环保日记之那些年遇到的泡沫(完结版)) (高负荷导致的泡沫) CNP比失调的非丝膨胀只需要调整到合适的CNP比就可以消除了!所以我们平常运行中常常遇到的是高负荷导致的非丝膨胀,所以本文仅详解高负荷膨胀的控制手段! 2、高负荷导致的非丝膨胀控制 1、负荷和溶解氧的影响 采用城市污水负荷为0.4kgBOD5/(kgMLSS·d)~ 0.8kgBOD5/(kgMLSS·d),溶解氧浓度1.0mg/L~2.0mg/L,污泥龄为20天的完全混合曝气池(截面积1.0m2,高3.0m)。第一阶段由于丝状菌的过度增殖,SVI从280mL/g上升到800mL/g,污泥浓度下降至0.68g/L,二沉池中污泥不断流失。 一般认为在溶解氧为1.0mg/L~2.0mg/L条件下运行的曝气池不会发生污泥膨胀,而试验中溶解氧浓度一直维持在这一水平,仍然发生了污泥膨胀。在第二阶段,从第16天提高溶解氧浓度至3.0mg/L~5.0mg/L(平均4mg/L)可以观察到SVI很缓慢地逐渐下降,污泥浓

活性污泥膨胀的原因及控制方法

活性污泥膨胀的原因及控制方法 邹源 摘要:控制活性污泥膨胀是活性污泥法工艺良好运行的关键技术之一。本文从进水水质和反应器环境两方面分析了可能诱发活性污泥膨胀的多种因素,着重介绍了由丝状菌引起污泥膨胀的控制方法,供相关工程技术人员参考。 关键词:活性污泥;膨胀;原因;控制方法 活性污泥法自1914年提出以来,已广泛应用于生活污水和工业废水的处理中。其反应器的形式也不断发展,是一个仍处于不断变革中的水处理工艺装备。活性污泥法的关键技术是活性污泥沉降性能的好坏,它直接影响了出水水质,而污泥膨胀是恶化处理水质的重要原因。污泥膨胀的发生具有普遍性,据报道美国60%、德国约50%的污水处理厂存在着污泥膨胀现象,Madoni[1]等人调查了意大利167家活性污泥法水处理厂,其中的81家存在着污泥膨胀问题。我国绝大部分的活性污泥法水处理厂,也不同程度地存在着污泥膨胀问题。 1 污泥膨胀的概念及测定指标 1.1 污泥膨胀的概念 活性污泥是活性污泥处理系统在运行过程中出现的异常情况之一,其表观现象是活性污泥絮凝体的结构与正常絮凝体相比要松散一些,体积膨胀,含水率上升,不利于污泥底物对污水中营养物质的吸收降解,并且影响后续工序的沉淀效果。 一般从以下三个方面定义污泥膨胀:沉降性能差,区域沉降速

度小;污泥松散,不密实,污泥指数较大;由丝状菌引起的污泥膨胀中,丝状菌总长度大于1×104m/g。 1.2 污泥膨胀的理论 Chudoba在1973年提出了选择性理论,该理论以微生物生长动力学为基础,根据不同种类微生物的最大生长速率μmax及其饱和常数Ks值的不同,分析丝状菌与菌胶团细菌的竞争情况。该理论认为活性污泥中存在A、B两种类型微生物种群,丝状菌属于A型;具有低的 Ks和μmax值,在低基质浓度时具有高的生长速率并占优势;而菌胶团细菌属于B 型,具有较高的Ks和μmax值,在高的基质浓度条件下生长速率大并占优势。1980年Plam又对理论加以扩展,认为该理论对溶解氧也成立,即DO与碳源基质一样,其浓度的高低影响着两种类型细菌的生长速率及其优势地位。 选择性理论能从微生物生长动力学基础上对污泥膨胀现象给予了合理的解释,已被人们广泛接受并成为污泥膨胀研究领域中主要理论。在该理论的指导下,已成功地开发出了选择性反应器工艺来控制污泥膨胀。另外,关于污泥膨胀理论还有A/V假说、饥饿假说和积累-再生假说等。 1.3 测定指标 在污泥膨胀问题的早期研究中[2],常用的指标有塞里奥尔特(Theriault)指标、唐纳森(Donaldson)指标、哈兹尔廷(Haseltine)指标和莫尔曼(83*0-9.4)指标。其中,由德国人莫尔曼于1914年提出的污泥容积指数,至今仍是常用的测定指标。

污水厂巧用 SV30 判断污泥膨胀丝状菌丰度

经验之谈:污水厂巧用SV30判断污泥膨胀丝状菌丰度 污泥丝状菌膨胀问题实为恼人。奈何即便高人坐镇且尽责用心,污水厂活性污泥法系统污泥丝状菌膨胀屡有犯境,况且大能少且不愿 亲身一线?众多的新手们(环境专业),甚至是外行新人(非环境专业)勇挑污水运行重任。勇气可嘉之余,作为新人的你们、我们、他们,总希望有制胜法宝提供克难助力。何谓法宝,个人认为,经验,经历验证后被你我他拍手称赞的经验。经验是可以总结的,现在跟大 家分享一个。 SV30,大家都知道,污泥沉降比。 定义:污泥沉降比(SV)是指将混匀的曝气 池活性污泥混合液迅速倒进1000ml量筒中 至满刻度,静置沉淀30分钟后,则沉淀污 泥与所取混合液之体积比为污泥沉降比(%), 以mL/L表示。 从定义看,SV很简单,30分钟后的一个数值而已。如果仅是如此,距离真的污师渐行渐远。因为,SV的意义,觉不只是一个数值, 它的重要意义是0-30min的沉降过程,这个过程,志愿成为污师的新 手应该不离不弃,目不转睛,小心翼翼的观察。众多过来人的经历表明,踏踏、认真的陪伴SV,比貌似的守在茶水、报纸、电脑、美女 旁边更有意思。 这不,因为这样的,那样的,这些的,哪些的原因,污水厂活性

污泥生病了——污泥丝状菌膨胀。要想解决这种问题,有很多工作要做,其中之一就是判断污泥丝状菌膨胀的程度——确定丝状菌的丰度。最专业的方式是利用显微镜的方式进行确定,比如下图1和图2。 图1 丝状菌丰度0-6级 图2 丝状菌丰度0-6级说明

问题在于: 1.利用显微镜判断,能够精准判断丝状菌丰度,但是对操作人员的微生物的专业性要求更高。 2.相对繁琐,而且眼睛有点“累”。 在此,还有一个相对准确,又省心省力而且实用的方法,那就是用SV判断,判断的要诀就是,不但要结果,更要过程,总结他人及个人经历,要点如下: 结束语: SV30是个好东西,简单方便省力气。志愿成为污师的朋友,要给予SV足够的过程观察重视,多观察,多总结。在发现问题的时候,会用到SV,在解决问题的时候,也要用到SV。有朝一日,经验慢慢丰富,别人束手的问题,也许你就用SV搞定。 经验告诉大家:SV可以帮助我们搞定污泥丝状菌膨胀,搞定污泥上浮,搞定污泥老化…………

污泥膨胀原因及解决办法

污泥膨胀原因及解决办法

污泥膨胀原因和解决办法 废水生物处理是利用有关微生物的代谢过程,是对废水中有机物进行降解或转化的过程。微生物在降解有机物的同时其本身也得到了增殖。污泥膨胀有两种类型,一是由于活性污泥中大量丝状菌的繁殖而引起的污泥丝状菌膨胀,二是由于菌胶团细菌体内大量累积高粘性物质(如葡萄糖、甘露糖、阿拉伯糖、鼠李糖和脱氧核糖等形成的多类糖)而引起的非丝状菌性膨胀。污泥丝状菌膨胀可根据丝状微生物对环境条件和基质种类要求的不同而划分为五类类型:(1)低基质浓度型;(2)低溶解氧浓度型;(3)营养缺乏型;(4)高硫化物型;(5)pH不平衡型。在实际运行中,一般以污泥丝状菌膨胀为主,占90%以上。发生污泥膨胀时,主要有以下特征:(1)二沉池中污泥的SVI值大于200ml/g;(2)回流污泥浓度下降;(3)二沉池中污泥层增高。 污泥膨胀相关理论: (1)A/V假说:当混合液中基质收到限制或控制时,由于比表面积大的丝状菌获取基质的能力要强于菌胶团,因而菌胶团受到抑制,丝状菌大量繁殖; (2)动力选择性理论:以微生物生长动力学为基础,根据不同种类微生物具有不同的最大比生长速率和饱和常数,分析丝状菌与菌胶团的竞争情况; (3)饥饿假说:将活性污泥中微生物分为三类,第一类是菌胶团细菌,第二类是具有高基质亲和力但生长缓慢的耐饥饿丝状菌,第三类是对溶解氧有高亲和力、对饥饿高度敏感的快速生长丝状菌; (4)存储选择理论:在底物风度的状态下,非丝状菌具有贮存底物的能力,而被贮存物质在底物匮乏时能够被代谢产生能量或合成蛋白质。但是一些丝状菌也具有底物贮存能力,底物贮存能力不能完全用来解释污泥膨胀机理; (5)氮氧化氮假说:CASEY提出低负荷生物脱氮除磷工艺的污泥膨胀假说,如果缺氧区的反硝化不充分,导致好氧区存在亚硝酸氮,那中间产物NO、N2O 就会抑制菌胶团的好氧细胞色素,进而抑制其好氧情况下的基质利用,相反一些丝状菌只能将硝酸氮还原为亚硝酸氮,因此不会在反硝化条件下胞内积累NO 和N2O,丝状菌就不会在好氧段被抑制,因而更具竞争优势。亚硝酸与SVI有一

活性污泥丝状菌膨胀的控制

摘要:本文对丝状菌污泥膨胀现象进行分析和综合,并在广义的Monod方程的基础上,提出了统一的污泥膨胀理论。该模型可以很好的解释基质限制、溶解氧限制、营养物缺乏型,高、低pH和硫化氢因素引起的五种类型主要活性污泥丝状菌膨胀。这包括了大部分的污泥膨胀现象。利用广义的Monod方程采用双基质限制(碳源和溶解氧)模型和系统动力学方程进行了计算机模拟研究。对负荷与溶解氧,水质和水量变化等因素对于菌胶团细菌和丝状菌的竞争关系的影响进行了深入的研究,并在此基础上对于不同的膨胀类型对应提出了对应的控制策略。 关键词:污泥膨胀丝状菌菌胶团菌广义Monod方程 The Theory and Study for Filamentous Bacteria Caused Sludge Bulking Problems Abstract:In this paper, the analysis and summarize of filamentous bacteria caused sludge bulking phenomena have been conducted. Based on generalized Monod model, an unified theory for sludge bulking has been proposed. It has been found that generalized Monod model can well explain the substrate limiting, dissolved oxygen limiting, nutrients and trace elements deficiency, high and low pH and high sulfide concentration caused sludge bulking problems. These are included most kinds of sludge bulking phenomena. Based on the Monod model for carbon and dissolved oxygen limiting, system kinetic equations are formulated, the computer simulation has conducted according to above models. The effects of loading rate, dissolved oxygen, variation of flow rate and concentration etc. factors on the competition relationship floc-forming bacteria and filamentous bacteria have been studied intensively. According to the results of computer simulation, the different strategies for sludge bulking have proposed. Key Word:Sludge bulking,filamentous bacteria,floc-forming bacteria, Monod model 一、污泥膨胀控制方法的演化过程 早期控制丝状菌引起的污泥膨胀(简称污泥膨胀)的主要手段是利用丝状菌具有较大的比表面积值,采用药剂杀死丝状菌,或是投加无机或有机混凝剂或助凝剂以增加污泥絮体的比重<1>。这些方法往往无法彻底解决污泥膨胀问题,并且相反地会带来出水水质恶化的不良后果。人们逐渐认识到活性污泥中的菌胶团细菌和丝状菌形成一个共生的微生物生态体系。在这种共生关系中,丝状微生物是不可缺少的重要微生物,其在活性污泥工艺中对于高效、稳定地净化污水起重要作用。人们逐渐的从简单地杀死丝状菌过渡到利用曝气池中的生长环境,调整丝状菌的比例,控制污泥膨胀的发生--即环境调控阶段。环境调控概念的使用是人们在污泥膨胀控制技术和实践上的一大进步。其主要出发点是使曝气池中的生态环境,有利于选择性地发展菌胶团细菌,应用生物竞争的机制抑制丝状菌的过度生长和繁殖,将丝状菌控制在一个合理的范围之内,从而控制污泥膨胀的发生和发展。同时利用丝状菌特性净化污水,稳定处理工艺。近年选择器理论得到充分发展和应用就是这一概念具体体现<2><3>。 二、统一的污泥膨胀的理论 由于活性污泥是一混合培养系统,活性污泥是菌胶团细菌与丝状菌的共生系统,任何活性污泥系统中都存在着丝状茵。丝状菌也不仅仅是一种菌存在,活性污泥中存在着至少30种可能引起污泥膨胀的丝状菌,污泥膨胀的原因是复杂的。在丝状茵与菌胶团细菌平衡生长时,不会产生膨胀问题。只有当丝状茵生长超过菌胶团细菌时,就会出现膨胀问题。污泥膨胀是由丝状茵和菌胶团细菌生理和生化性质不同所决定的,这两类细菌性质的差异见表1。

污泥膨胀原因及措施

污泥膨胀原因及对策 所谓活性污泥膨胀是指活性污泥质量变轻,体积膨大,沉降性能恶化,在二沉池内不能正常沉池下来,污泥指数异常增高达400以上。 活性污泥膨胀,根据诱因可分为:因丝状菌异常增殖所导致的丝状菌性膨胀和因粘性物质大量产生积累的非丝状菌膨胀。前者为易发与多发性膨胀,导致产生丝状菌性污泥膨胀的细菌主要有:球衣菌属,假单胞菌属,黄杆菌属,酶菌属。 污泥膨胀的对策,当在活性污泥系统产生污泥膨胀现象时,可按下图所列程序对污泥膨胀的类型,诱因与性质进行调查,并采取相应的措施加以消除。具体措施说明如下: 措施A,投药处理,能够杀灭丝状菌的药剂有氯,臭氧,过氧化氢等,有效氯为10—20mg/l时,就能够有效杀灭球衣菌,贝代硫菌:高于20mg/l时,可能对絮凝体形成菌产生危害,因此,在使用氯时一定要按投加量的允许范围合理投加。而臭氧,过氧化氢等氧化剂只有在较高的计量条件下才对球衣菌有杀灭效果。 措施B,改善,提高活性污泥的絮凝性,在曝气池的入口处投加硫酸铝,三氯化铁,高分子混凝剂等絮凝剂。 措施C,改善,提高活性污泥的沉降性,密实性。在曝气池的入口处投加粘土,消石灰,生污泥或消化污泥。 措施D,加大回流污泥量,通过这一措施,高粘性膨胀的致因物质,即多糖类物降低了,在多数情况下,能够解脱高粘性膨胀。有条件的地

方还可在回流污泥前进行内源呼吸期,提高了絮凝体形成细菌群摄取有机物的能力和与丝状菌竞争的能力,丝状菌性膨胀也能够得到抑制。在曝气过程中,可以考虑加入氯,磷等营养物质,这样可以强化污泥活性。 措施E,使废水经常处于新鲜状态,防止形成厌氧状态,如有条件采取预曝气措施,使废水经常处于预曝气状态,吹脱硫化氢等有害气体,并避免贝代硫菌加以利用增殖。 措施F,加强曝气,提高混和液DO浓度,防止混和液缺氧或厌氧状态,即或是局部的或是一时的呈厌氧状态,也不利于絮体形成菌的生理活动,而有利于丝状菌的增殖。 措施G,在有利条件下,可以考虑改变水温,水温在15摄氏度以下易于发生高粘性膨胀,而丝状菌性膨胀则多发生在20摄氏度以上。 措施H,降低污泥在二沉池内停留时间,防止形成厌氧状态。 措施I,调整污泥负荷,运行经验表明,如果污泥负荷超过0.35kgBOD/kgMLSS.d易于发生丝状菌性污泥膨胀。 措施J,调整混合液中的营养物质平衡,即保证BOD:N:P=10:5:1的要求,当混和液失去营养平衡时,往往会发生高粘性污泥膨胀。 措施K,控制丝状菌的增殖,对已产生大量球衣菌属的活性污泥,用浓度为50mg/l的硫酸铜,保持5mg/l的残留浓度,能够抑制球衣菌属的增殖。 解体多为系统控制不当造成的,一般有几个原因 1.污泥负荷过高或是过低 2.系统溶氧过高

丝状菌膨胀成因及对策

丝状菌膨胀成因及对策 The Standardization Office was revised on the afternoon of December 13, 2020

活性污泥的甄别和培养量 污泥的甄别 (1)膨胀污泥通过测定污泥体积指数(SVI)可以了解活性污泥沉降絮凝的性能,一般规定污泥沉降体积指数在200ml/g以上,而且筒内污泥层的浓度从5mg/L起变为压密相的污泥称为膨胀污泥,一种是由丝状菌引起的,另一种是非丝状菌引起的。 (2)上升污泥在30min沉降实验的测定时间内,沉降良好但数小时内污泥又上升,如果用棒搅拌对上升污泥加以破坏立即再沉淀。这种现象是由已进行硝化反应的污泥混合液进入沉淀池后产生反硝化作用,并在反硝化过程中产生的氮气附着在泥上而使其上浮引起的。 (3)腐化污泥有时候,虽然没有发生硝化和反硝化过程,但沉淀下去的污泥再次上浮。这种现象是因为已经沉淀的污泥变成厌氧状态,并产生硫化氢,二氧化碳和甲烷、氢气等气体,结果这些气体将污泥推向表层而发生的。(4)解絮污泥对混合液进行沉淀时,虽然大部分污泥容易容易沉淀下去,但上清液中仍然有一种能使水混浊的物质。这种现象可以认为是由于毒物的混入、温度急剧变化、废水pH值突变等的冲击引起的,使污泥絮体解絮。通过减少污泥回流量能使解絮现象得到某种的控制。 (5)污泥发黑这种情况是DO过低,有机物厌氧分解释放H2S,其与Fe 生成FeS引起的。可以增加回流量或增加曝气量。 (6)污泥变白生物镜检会发现丝状菌或固着型纤毛虫大量繁殖,如果进水pH过低,曝气池pH小于6引起的丝状菌大量生成,只要提高进水pH就能改善。

污泥丝状菌的成因及相关理论

污泥丝状菌的成因及相关理论 (一).污泥膨胀的成因 活性污泥膨胀的诱因很多,从目前已有的研究成果来看,可归纳如下: (1)废水水质成分 1.有机物类型 1)废水中碳源有机物含量多且以糖类为主时,容易产生污泥膨胀。 2)废水中可溶性有机物含量多和悬浮物固体含量低时也易于发生污泥膨胀。 3)废水中含有有毒物质和重金属时也会诱发污泥膨胀。 2.氮和磷营养物质的缺乏也会诱发污泥膨胀。 为了进行正常生长,繁殖,活性污泥微生物除了需要碳源外,还需要氮和磷等营养物质。氮,磷和碳之间应该有适当的比例,一般经验提出的比例通常是BOD:N:P=100:5:1。当废水中的氮和磷含量不足时容易产生污泥膨胀。在活性污泥中丝状菌的比表面积相对其他微生物来说要大些,易于获取底物,仍能正常代谢活动生长繁殖。而活性污泥中的其他微生物,由于氮和磷得不到满足,以至逐渐衰退,由于菌胶团细菌和丝状菌的比例失衡,发生了丝状菌污泥膨胀。 另外,当废水中的氮和磷含量不足,相对而言就是碳源较多,在这种情况下,如果糖类物质较多,代谢产物多糖类

高粘性物质增加,使得活性污泥也易于发生非丝状菌污泥膨胀。 3.微量金属元素的缺乏也会诱发污泥膨胀。 4.废水中硫化氢含量高也会发生污泥膨胀。 (2)水温 温度是影响微生物生长与生存的重要因素之一,每种微生物都有各自的适宜生长温度。 如球衣菌的适宜生长温度在30度左右,在15度以下生长不良。 (3)溶解氧 曝气池中若DO浓度太低则容易发生污泥膨胀。再低DO 条件下大部分好氧菌几乎不能继续生长繁殖时,丝状菌虽然是好氧菌,但因其具有较长的菌丝,比表面积大,在低DO 的条件下比菌胶团细菌更易得到DO进行繁殖生长,(丝状菌对DO的亲和力约为菌胶团细菌的3.7倍),故在低氧环境中它们仍可在竞争中取得优势,从而使得丝状菌性污泥膨胀易于发生。而且即使保持在相当时间的厌氧状态下,丝状菌也不会失去活力,一旦恢复好氧状态,他们就会重新生长繁殖。 (4)PH值 为了使活性污泥正常发育,生长,曝气池混合液的PH 值应保持6.5-8.5范围内,国内外研究报道,曝气池混合液的PH值低于6.0,有利于丝状菌的生长,而菌胶团细菌的生

相关文档
最新文档