N1 选修4-1 几何证明选讲

N1   选修4-1  几何证明选讲
N1   选修4-1  几何证明选讲

N 选修4系列

N1 选修4-1 几何证明选讲

22.N1[2012·辽宁卷]

如图1-8,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连结DB并延长交⊙O于点E,证明:

(1)AC·BD=AD·AB;

(2)AC=AE.

22.证明:(1)由AC与⊙O′相切于A,得

∠CAB=∠ADB,

同理∠ACB=∠DAB,

所以△ACB∽△DAB.从而AC

AD=AB BD,

即AC·BD=AD·AB.

(2)由AD与⊙O相切于A,得∠AED=∠BAD,

又∠ADE=∠BDA,得

△EAD∽△ABD.从而

AE AB=AD BD,

即AE·BD=AD·AB.

结合(1)的结论,得AC=AE.

22.N1[2012·课标全国卷]如图1-5,D,E分别为△ABC边AB,AC的中点,直线DE 交△ABC的外接圆于F,G两点.若CF∥AB,证明:

(1)CD=BC;

(2)△BCD∽△GBD.

22.证明:(1)因为D,E分别为AB,AC的中点,

所以DE∥BC.

又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以四边形ADCF是平行四边形,故CD=AF.

因为CF∥AB,所以BC=AF,故CD=BC.

(2)因为FG∥BC,故GB=CF.

由(1)可知BD=CF,所以GB=BD.

而∠DGB=∠EFC=∠DBC,故△BCD∽△GBD.

12.N1[2012·全国卷] 正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,

AE =BF =1

3

.动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角

等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( )

A .8

B .6

C .4

D .3

12.B [解析] 本小题主要考查反射原理及三角形相似知识的应用,解题的突破口为确定反射后点P 的位置.

结合点E 、F 的位置实行作图推理,利用反射过程中平行直线及相似三角形作图可得点P 回到E 点时与正方形的边碰撞次数为6次,故选B.

15.N1[2012·广东卷] (几何证明选讲选做题)如图1-3所示,直线PB 与圆O 相切于点B ,D 是弦AC 上的点,∠PBA =∠,则AB =________.

图1-3

15.mn [解析] 本题考查弦切角定理以及三角形相似知识,解决本题的突破口是利用弦切角定理得到∠PBA =∠ACB ,再利用三角形相似求出.因为PB 是圆的切线,所以∠PBA =∠ACB .又因为∠PBA =∠DBA ,所以∠DBA =∠ACB .又因为∠A =∠A ,所以△ABD ∽△

ACB ,所以AB AC =AD

AB ,所以AB 2=AD ×AC =mn ,所以AB =mn .

21 A .N1 [2012·江苏卷]如图1-7,AB 是圆O 的直径,D ,E 为圆O 上位于AB 异侧的两点,连结BD 并延长至点C ,使BD =DC ,连结AC ,AE ,DE .

求证:∠E =∠C .

21A.证明:如图,连结OD ,因为BD =DC ,O 为AB 的中点, 所以OD ∥AC ,于是∠ODB =∠C .

因为OB =OD ,所以∠ODB =∠B .因为点A ,E ,B ,D 都在圆O 上,且D ,E 为圆O 上位于AB 异侧的两点,所以∠E 和∠B 为同弧所对的圆周角,

故∠E =∠B .所以∠E =∠C . 15 B. N1[2012·陕西卷]如图1-6,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF ⊥DB ,垂足为F ,若AB =6,AE =1,则DF ·DB =________.

图1-6

15B :5 [解析] 本题考查了射影定理的知识,解题的突破口是找出直角三角形内的射影定理.连接AD ,在Rt △ABD 中,DE ⊥AB ,所以DE 2=AE ×EB =5,在Rt △EBD 中,EF ⊥DB ,所以DE 2=DF ×DB =5.

13.N1[2012·天津卷] 如图1-3所示,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D .过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,

AF =3,FB =1,EF =3

2

,则线段CD 的长为________.

13.4

3

[解析] 由相交弦的性质可得AF ×FB =EF ×FC , ∴FC =AF ×FB EF =3×1

3

2

=2,

又∵FC ∥BD ,∴AC AD =FC BD =AF AB =34,即BD =8

3

由切割线定理得BD 2=DA ×DC =4DC 2,解之得DC =4

3

.

N2 选修4-2 矩阵

21 B .N2 [2012·江苏卷]已知矩阵A 的逆矩阵A

-1

=????

??-14 34

12 -12,求矩阵A 的特征值.

21 B .解:因为A -

1A =E ,所以A =(A -

1)-

1.

因为A -1=????

??-

143412-1

2

,所以A =(A -1)-

1=?????

?2 32 1, 于是矩阵A 的特征多项式为f (λ)=????

??λ-2 -3-2 λ-1=λ2

-3λ-4.

令f (λ)=0,解得A 的特征值λ1=-1,λ2=4.

3.C3、N2[2012·上海卷] 函数f (x )=????

??

sin x 2-1 cos x 的最小正周期是________.

3.π [解析] 考查二阶矩阵和三角函数的值域,以矩阵为载体,实为考查三角函数的性质,易错点是三角函数的化简.

f (x )=sin x cos x +2=12sin2x +2,由三角函数周期公式得,T =2π

2

=π.

N3 选修4-4 参数与参数方程

23.N3[2012·辽宁卷]在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4. (1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);

(2)求圆C 1与C 2的公共弦的参数方程. 23.解:(1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ. 解?

????

ρ=2,ρ=4cos θ得ρ=2,θ=±π3,

故圆C 1与圆C 2交点的坐标为????2,π3,?

???2,-π3. 注:极坐标系下点的表示不唯一.

(2)(解法一) 由?????

x =ρcos θ,y =ρsin θ

得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3). 故圆C 1与C 2的公共弦的参数方程为?????

x =1,y =t ,-3≤t ≤ 3.

(或参数方程写成?

????

x =1,

y =y , -3≤y ≤3)

(解法二)

在直角坐标系下求得弦C 1C 2的方程为 x =1(-3≤y ≤3).

将x =1代入?????

x =ρcos θ,

y =ρsin θ得ρcos θ=1,

从而ρ=1

cos θ

.

于是圆C 1与C 2的公共弦的参数方程为?

????

x =1,

y =tan θ,

-π3≤θ≤π3

. 23.N3[2012·课标全国卷]已知曲线C 1的参数方程是?????

x =2cos φ,y =3sin φ

(φ为参数),以坐标

原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD

的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为???

?2,π3. (1)求点A ,B ,C ,D 的直角坐标;

(2)设P 为C 1上任意一点,求|P A |2+|PB |2+|PC |2+|PD |2的取值范围. 23.解:(1)由已知可得

A ?

???2cos π3,2sin π3, B ????2cos ????π3+π2,2sin ????π3+π2, C ???

?2cos ????π3+π,2sin ????π3+π, D ???

?2cos ????π3+3π2,2sin ????π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1). (2)设P (2cos φ,3sin φ),令S =|P A |2+|PB |2+|PC |2+|PD |2,则 S =16cos 2φ+36sin 2φ+16 =32+20sin 2φ.

因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].

21 C .N3[2012·江苏卷]在极坐标系中,已知圆C 经过点P ?

???2,π

4,圆心为直线ρsin ????θ-π3=-3

2

与极轴的交点,求圆C 的极坐标方程. 21C .解:在ρsin ????θ-π3=-3

2

中令θ=0,得ρ=1, 所以圆C 的圆心坐标为(1,0).

因为圆C 经过点P ?

???2,π4, 所以圆C 的半径PC =(2)2+12-2×1×2cos π

4

=1,

于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ. 10.N3[2012·湖南卷] 在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =________.

10.2

2

[解析] 本题考查直线与圆的极坐标方程,具体的解题思路和过程:把直线与圆

的极坐标方程转化为普通方程,求出直线与坐标轴的交点代入圆方程求解.

直线方程为2x +y -1=0,与x 轴的交点为???

?2

2,0,圆的方程为x 2+y 2=a 2,把交点

????22,0代入得???

?222+02=a 2,又a >0,所以a =22.

[易错点] 本题易错一:不会转化,无法把极坐标方程转化为普通方程;易错二:直线与圆的交点实为直线与x 轴的交点,如果不会转化,导致计算增大,多走弯路.

14.N3[2012·广东卷] (坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线C 1和

C 2的参数方程分别为??

?

x =5cos θy =5sin θ

????θ为参数,0≤θ≤π2和

???

x =1-2

2

t y =-2

2

t (t 为参数),则曲线

C 1与C 2的交点坐标为________.

14.(2,1) [解析] 利用方程思想解决,C 1化为一般方程为:x 2+y 2=5,C 2化为直角坐标

方程为:y =x -1,联立方程组得:?????

y =x -1,

x 2+y 2=5,

即x 2-x -2=0,解得x 1=-1,x 2=2.又

由C 1中θ的取值范围可知,交点在第一象限,所以交点为(2,1).

15 C. N3 [2012·陕西卷]直线2ρcos θ=1与圆ρ=2cos θ相交的弦长为________.

15C : 3 [解析] 本题考查了极坐标的相关知识,解题的突破口为把极坐标化为直角坐标.由2ρcos θ=1得2x =1①,由ρ=2cos θ得ρ2=2ρcos θ,即x 2+y 2=2x ②,联立①②得y

=±3

2

,所以弦长为 3.

N4 选修4-5 不等式选讲

15 A .N4 [2012·陕西卷]若存有实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________.

15.A :-2≤a ≤4 [解析] 本题考查了不等式解法的相关知识,解题的突破口是理解不等式的几何意义.||x -a +||x -1≤3表示的几何意义是在数轴上一点x 到1的距离与到a 的距离之和小于或等于3个单位长度,此时我们能够以1为原点找离此点小于或等于3个单位长度的点即为a 的取值范围,不难发现-2≤a ≤4.

24.N4[2012·辽宁卷]已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}.

(1)求a 的值;

(2)若???

?f (x )-2f ????x 2≤k 恒成立,求k 的取值范围. 24.解:(1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意.

当a >0时,-4a ≤x ≤2

a

,得

a =2.

(2)记h (x )=f (x )-2f ???

?x 2,则h (x )=?????

1, x ≤-1,

-4x -3,-1

所以|h (x )|≤1,所以k ≥1.

21 D .N4 [2012·江苏卷]已知实数x ,y 满足:|x +y |<13,|2x -y |<16,求证:|y |<5

18

.

21D .证明:因为3|y |=|3y |=|2(x +y )-(2x -y )|≤2|x +y |+|2x -y |,

由题设知|x +y |<13,|2x -y |<16,从而3|y |<23+16=5

6

所以|y |<5

18

.

24.N4[2012·课标全国卷]已知函数f (x )=|x +a |+|x -2|. (1)当a =-3时,求不等式f (x )≥3的解集;

(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围. 24.解:(1)当a =-3时,f (x )=????

?

-2x +5,x ≤2,1,2

2x -5,x ≥3.

当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;

当2

当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4; 所以f (x )≥3的解集为{x |x ≤1}∪{x |x ≥4}. (2)f (x )≤|x -4|?|x -4|-|x -2|≥|x +a |. 当x ∈[1,2]时,|x -4|-|x -2|≥|x +a | ?4-x -(2-x )≥|x +a | ?-2-a ≤x ≤2-a .

由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0. 故满足条件的a 的取值范围为[-3,0].

N5 选修4-7 优选法与试验设计

11.N5[2012·湖南卷] 某制药企业为了对某种药用液体实行生物测定,需要优选培养温度,试验范围定为29℃~63℃,精确度要求±1℃.用分数法实行优选时,能保证找到最佳培养温度需要的最少试验次数为________.

11.7 [解析] 本题考查优选法中的分数法,以及对斐波那契数列的了解,意在考查考生在分数法中寻找最佳点的次数.具体的解题思路和过程:先由区间的间距,确定等分区间的份数,再对应斐波那契数列找出对应的次数.

试验范围定为29℃~63℃ ,间距是63-29=34,故应分成34份,刚好对应斐波那契数列的F 8=34,所以保证找到最佳培养温度需要的最少试验次数为8-1=7.

[易错点] 本题易错一:对分数法的等分份数不理解,导致无法等分;易错二:对斐波那契数列的不了解,导致无法找到对应的点,求不出要做的试验次数.

2012模拟题

1.[2012·郑州模拟] 如图Z7-1,锐角△ABC 的内心为I ,过点A 作直线BI 的垂线,垂足为H ,点E 为内切圆I 与边CA 的切点.

(1)求证:四点A ,I ,H ,E 共圆; (2)若∠C =50°,求∠IEH

1.解:(1)证明:由圆I 与边AC 相切于点E , 得IE ⊥AE ,

结合IH ⊥AH ,得∠AEI =∠AHI =90°. 所以,四点A ,I ,H ,E 共圆. (2)由(1)知四点A ,I ,H ,E 共圆, 得∠IEH =∠HAI , 在△HIA 中,

∠HIA =∠ABI +∠BAI =12∠B +12∠A =12(∠B +∠A )=12(180°-∠C )=90°-1

2

∠C .

结合IH ⊥AH ,得∠HAI =90°-∠HIA =1

2

∠C ,

所以∠IEH =1

2

∠C ,

由∠C =50°,得∠IEH =25°.

2.[2012·辽宁两校联考] 如图Z7-2,直线AB 经过⊙O 上的点C ,并且OA =OB ,CA =CB ,⊙O 交直线OB 于E ,D ,连接EC ,CD .

(1)求证:直线AB 是⊙O 的切线;

(2)若tan ∠CED =1

2

,⊙O 的半径为3,求OA 的长.

2.解:(1)证明:连接OC ,∵OA =OB ,CA =CB , ∴OC ⊥AB ,又∵OC 是圆的半径,∴AB 是圆的切线. (2)∵ED 是直径,∴∠ECD =90°. ∴∠EDC +∠E =90°,又∠BCD +∠OCD =90°,∠OCD =∠ODC ,∴∠BCD =∠E ,又∠CBD =∠EBC ,

∴△BCD ∽△BEC ,∴BC BE =BD BC =CD

EC

?BC 2=BD ·BE ,

又tan ∠CED =CD EC =12,∴BD BC =CD EC =1

2

.

设BD =x ,则BC =2x ,∵BC 2=BD ·BE ,

∴(2x )2=x (x +6),∴BD =2, ∴OA =OB =BD +OD =2+3=5.

3.[2012·唐山一模] 以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标

系取相等的长度单位.已知直线l 的参数方程为?

?

x =12+t cos α,

y =t sin α

(t 为参数,0<α<π),曲线C

的极坐标方程为ρ=2cos θ

sin 2θ

.

(1)求曲线C 的直角坐标方程;

(2)设直线l 与曲线C 相交于A 、B 两点,当α变化时,求|AB |的最小值.

3.解:(1)由ρ=2cos θ

sin 2θ

,得(ρsin θ)2=2ρcos θ,

所以曲线C 的直角坐标方程为y 2=2x .

(2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0. 设A 、B 两点对应的参数分别为t 1、t 2,则

t 1+t 2=2cos αsin 2α,t 1t 2=-1

sin 2α

∴|AB |=|t 1-t 2|=(t 1+t 2)2

-4t 1t 2=4cos 2αsin 4

α+4sin 2α=2sin 2α

, 当α=π

2

时,|AB |的最小值为2.

4.[2012·辽宁两校联考] 已知曲线C 的极坐标方程是ρ=2sin θ,设直线l 的参数方程是?

?

x =-3

5

t +2,

y =45

t (t 为参数).

(1)将曲线C 的极坐标方程转化为直角坐标方程;

(2)设直线l 与x 轴的交点是M ,N 为曲线C 上一动点,求|MN |的最大值.

4.解:(1)曲线C 的极坐标方程可化为:ρ2=2ρsin θ, 又x 2+y 2=ρ2,x =ρcos θ,y =ρsin θ. 所以,曲线C 的直角坐标方程为: x 2+y 2-2y =0.

(2)将直线l 的参数方程化为直角坐标方程得:

y =-4

3

(x -2),

令y =0得x =2,即M 点的坐标为(2,0), 又曲线C 为圆,圆C 的圆心坐标为(0,1), 半径r =1,则|MC |=5,

∴|MN |≤|MC |+r =5+1.∴|MN |的最大值为5+1.

5.[2012·唐山一模] 设f (x )=2|x |-|x +3|. (1)求不等式f (x )≤7的解集S :

(2)若关于x 的不等式f (x )+|2t -3|≤0有解,求参数t 的取值范围.

5.解:(1)f (x )=????

?

-x +3,x <-3,-3x -3,-3≤x ≤0,

x -3,x >0,

如图,函数y =f (x )的图象与直线y =7相交于横坐标为x 1=-4,x 2=10的两点,

由此得S =[-4,10].

(2)由(1)知,f (x )的最小值为-3,

则不等式f (x )+|2t -3|≤0有解必须且只需-3+|2t -3|≤0,解得0≤t ≤3,所以t 的取值范围是[0,3].

6.已知函数f (x )=|x -a |-2|x -1|(a ∈R ). (1)当a =3时,求函数f (x )的最大值; (2)解关于x 的不等式f (x )≥0.

6.解:(1)当a =3时,f (x )=|x -3|-2|x -1|=????

?

x +1(x ≤1),-3x +5(1

-x -1(x ≥3),

所以,当x =1时,函数f (x )取得最大值2.

(2)由f (x )≥0得|x -a |≥2|x -1|, 两边平方得:(x -a )2≥4(x -1)2, 即3x 2+2(a -4)x +4-a 2≤0, 得[x -(2-a )][3x -(2+a )]≤0.

所以,①当a >1时,不等式的解集为?

???

2-a ,a +23;

②当a =1时,不等式的解集为{x |x =1};

③当a <1时,不等式的解集为????a +2

3,2-a .

几何证明选讲(教师版)

B C D O A P 1.如图,点P 在圆O 直径AB 的延长线上, 且PB=OB=2,PC 切圆O 于C 点,CD ⊥AB 于D 点,则PC= , CD= . 2.如图,AB 是⊙O 的直径,P 是AB 延长线上的一点,过P 作⊙O 的切线,切点为C , ,32=PC 若∠CAP =30°,则⊙O 的直径AB =___________ 答案4 3.已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC ,圆心O 到AC 的距离为22,3AB =,则切线AD 的长为 _____。 解:依题意,BC =,∴AC =5,2 AD =.AB AC =15, ∴AD =15 4.如图,PA 切O 于点A ,割线PBC 经过圆心O ,OB=PB=1, OA 绕点O 逆时针旋转60°到OD ,则PD 的长为 . 解:∵PA 切O 于点A ,B 为PO 中点,∴AB=OB=OA, ∴60AOB ∠= ,∴120POD ∠= , 在 △ POD 中 由 余 弦 定 理 , 得 2222cos PD PO DO PO DO POD =+-?∠=1 414()72 +-? -= ∴PD 5.如图,在⊙O 中,AB 为直径,AD 为弦,过B 点的切线与AD AD=DC ,则 sin ∠ACO=_________ 解:由条件不难得ABC ?为等腰直角三角形,设圆的半径为1,则1OB =,2BC =, OC =

sin BCO ∠= = ,s co BCO ∠= ∴ sin ∠ACO=0sin(45BCO -∠)=1010 6.如图,PT 是O 的切线,切点为T ,直线PA 与O 交于A 、B 两点,TPA ∠的平分线分别交直线TA 、 TB 于D 、E 两点,已知2PT =,PB =,则PA = , TE AD = . ; 7.已知AB 是圆O 的直径,EF 切圆O 于C ,AD ⊥EF 于D ,AD =2,AB =6,则AC 长为_______. 、23; 8.已知AB 是半圆O 的直径,点C 在半圆上,CD AB ⊥于点D ,且4AD DB =,设 COD θ∠=,则cos 2θ= . 解:()44,AD DB OC OD OC OD =∴+=- 即35OC OD =, 22 2 37cos 22cos 12121525OD OC θθ???? =-=?-=?-=- ? ? ???? 9.如图,圆O 是 ABC ?的外接圆,过点C 的切线交AB 的延长线于点D ,CD =3AB BC ==。则BD 的长______________ , AC 的长______________. 4,; 10.如图,⊙O 的直径AB =6cm ,P 是AB 延 长线上的一点,过P 点作⊙O 的切线,切点为C ,连接AC , 若CPA ∠=30°,PC = 。 解:连接OC ,PC 是⊙O 的切线,∴∠OCP=Rt ∠. ∵CPA ∠=30°,OC= 2AB =3, ∴0 3tan 30PC =,即PC= 11.如右图所示,AB 是圆O 的直径, AD DE =,10AB =,8BD =,则cos BCE ∠= . 35 12.如图:PA 与圆O 相切于A ,PCB 为圆O 的割线, P

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

高中数学选修 几何证明选讲相关知识点

高中数学选修4-4,几何证明选讲相关 知识点 相似三角形的判定及有关性质 知识点1:比例线段的有关定理 平行线等分线段定理: 推论1: 推论2: 平行线等分线段成比例定理: 推论:(1) (2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边. 知识点2:相似图形 1、相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形. 叫做相似比(或相似系数) 2、相似三角形的判定方法 预备定理:平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理的基本图形语言:

数学符号语言表述是:BC DE // ∴ADE ∽ABC . 判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似. 判定定理2:如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 判定定理3:如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两个三角形相似. 判定定理4:直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似. 三角形相似的判定方法与全等的判定方法的联系列表如下: 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法. 3、相似三角形的性质定理: (1)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于 ; (2)相似三角形的周长比等于 ; (3)相似三角形的面积比等于 ; (4)相似三角形内切圆与外接圆的直径比、周长比等于相似比,面积比等于相似比的平方. 4、直角三角形的射影定理 从一点向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影;一条线段在直线上的正射影,是指线段的两个端点在这条直线上的正射影间的线段. 点和线段的正射影简称为射影 直角三角形的射影定理:

(完整版)高一数学常考立体几何证明的题目及答案.docx

实用标准文案 1、如图,已知空间四边形ABCD 中,BC AC , AD BD ,E是AB的中点。 求证:( 1)AB平面CDE;(2)平面CDE平面ABC。A E B C 2、如图,在正方体ABCD A1B1C1D1中, E 是 AA1的中点,D 求证: AC1 // 平面 BDE 。A D1 B1C E A 3、已知ABC 中ACB 90o,SA面ABC,AD SC , D B C 求证: AD面 SBC .S D A B ABCD A1B1C1D1,O是底ABCD对角线的交点.C 4、已知正方体 D1C1求证: (1 ) C1O∥面AB D; (2) AC面 AB D . B1 1 11 1 1 A1 D C O A B 5、正方体ABCD A ' B 'C ' D ' 中,求证: (1) AC 平面 B ' D ' DB ; (2) BD ' 平面 ACB ' . 6、正方体 ABCD —A B C D中. 1111 D 1C 1 (1) 求证:平面 A1 BD∥平面 B1D1C; A B1 (2) 若 E、 F 分别是 AA , CC的中点,求证:平面 EB D1F ∥平面 FBD . 1111 E G C

实用标准文案 2o 7、四面体ABCD 中,AC BD , E, F 分别为 AD , BC 的中点,且 EF AC ,BDC 90 , 求证: BD平面ACD 8、如图,在正方体ABCD A1B1C1D1中, E 、F、G分别是AB、AD、 C1 D1的中点.求证:平面 D1EF ∥平面 BDG . 9、如图,在正方体ABCD A1B1C1D1中, E 是 AA1的中点. (1)求证:A1C //平面BDE; (2)求证:平面A1AC平面BDE . 10、已知ABCD是矩形,PA平面ABCD,AB 2 , PA AD 4 , E 为 BC 的中点. ( 1)求证:DE平面PAE; ( 2)求直线DP与平面PAE所成的角. 11、如图,在四棱锥P ABCD 中,底面ABCD 是DAB 600且边长为 a 的菱形, 侧面 PAD 是等边三角形,且平面 PAD 垂直于底面 ABCD .( 1)若G为AD的中点,求证:BG平面PAD; ( 2)求证:AD PB. 12、如图 1,在正方体ABCD A B C D中, M 为 CC的中点, AC 交 BD 于点 O,求证:AO平面 MBD . 1 1 1 111 13 、如图2,在三棱锥A- BCD 中, BC= AC, AD= BD, 作BE⊥ CD,E为垂足,作 AH⊥ BE 于 H.求证: AH⊥平面 BCD.

高中数学-几何证明选讲知识点汇总与练习(内含答案)

高中数学-《几何证明选讲》知识点归纳与练习(含答案) 一、相似三角形的判定及有关性质 平行线等分线段定理 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。 推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。 推理2 :经过梯形一腰的中点,且与底边平行的直线平分另一腰。 平分线分线段成比例定理 平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 相似三角形的判定及性质 相似三角形的判定: 定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似三角形对应边的比值叫做相似比(或相似 系数)。 由于从定义岀发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给岀过如下几个判定两个三角形相似的简单方法: (1 )两角对应相等,两三角形相似; (2 )两边对应成比例且夹角相等,两三角形相似; (3 )三边对应成比例,两三角形相似。 预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相似。 判定定理1 :对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三 角形相似。简述为:两角对应相等,两三角形相似。 判定定理2 :对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等, 那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 判定定理3 :对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个 三角形相似。简述为:三边对应成比例,两三角形相似。 引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;

如何做几何证明题(方法总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的 系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两

的角平分线AD、CE相交于O。 (补

AE=BD,连结CE、DE。

求证:BC=AC+AD B、C作此射线的垂线BP和CQ。 设M为BC的中点。求证:MP=MQ

几何证明选讲

1.如图4所示,圆O的直径AB=6, C为圆周上一点,BC=3过C作 圆的切线I ,过A作I的垂线AD垂足为D,则/ DAC=() A 15 B. 30 C 45 D. 60 C 66cm D. 99cm 【解析】由弦切角定理得◎,戈AD丄匚故如C二3兀 故选& 2?在肋URC中,CD、CE分别是斜边朋上的高和中线,是该图中共有x个三甬形与WC相僦则“() A.0 B. 1 C.2 D. 3【解析】2个;AACD和人仙此故选U 3. 一个圆的两眩相交,一条眩被分为辽和辽ea两段.另一弦被分为3:乳则另一 弦的长为〔) XL 1 lrw B. 33ci^ 【解析】设另一弦被分的两段长分别为魏昭L叽由相交弦定理得 3Jl?jt=12kL83解得k = h故所求弦长为3Jt+8/t =llJt = 33 COT.故选 B. 4?如图」在ilSC和AZZSE孔一=—=—=-,若3C与D£ BE DE 3 M)£E^周长之差为Wm,则WC的周长为( 25 「0 S .?_、cm U —cm ■+ ~ 3 几20 cm D. 25 cm 【解祈】利用相似三角形的村似比等于周长比可得答峯良 5. Zl O的割线PAB交心O于凤月两点,割线PCD经过圆心】已知 __ ______ 22 3 ,则00的半径为() PA 6,PO 12, AB A.4 C.6 .14 D8 【解析】U O 22 半径为r,由割线定理有6(622)(12 r)(12 r) 6.如图,AB是半圆0的直径,点C在半圆上,CD AB于点D ,

tan2— 且AD 3DB ,设COD ,则2 =() 1 1 A. 3 B. 4 C. 4 2y/3 D 3 Off析】设半径为九则AD^-r.BD^丄儿由CD1 AD得= 从而 2 2 2 0 = —.ifctan2—= 3 2 3 匸在辺?中,D=E分别为AB=ACh的点,且DE^BC3 MDE的面积是曲,梯^DBCE的面积为弘存,则C的值为〔) A1;击 B.1;2 G 1;3 D. 1:4 【解折】仙丘-WC、和用面积比等于相似比的平方可得答案良 8. 半径分别为1和2的两圆外切,作半径为3的圆与这两圆均相切,一共可作()个. A.2 B3 C.4 D5 【解析】一共可作5个,其中均外切的2个,均内切的1个,一外切一内切的2个,故选D. 9. 如图甲,四边形ABCD是等腰梯形,AB//CD .由4个这样的 等腰梯形可以拼出图乙所示的平行四边形 则四边形ABCD中A度数为()

选修4-1几何证明选讲习题一

F E D C B A E C B A 选修4-1 几何证明选讲习题一 相似三角形的判定及有关性质 1、如图4-1-1,已知在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=6,DB=5,则 图4-1-3 2、如图4-1-2,已知在△ABC中,∠C=90°,正方形CDEF内接于△ABC,AC=1,BC=2,则AF与FC比值为; 3、如图4-1-3,在直角梯形ABCD中,DC//AB,CB⊥AB,AB=AD=2CD=a,点E、F分别为线段AB、AD的中点,则EF= ; 4、在△ABC中,点D在边BC上,∠BAC=∠ADC,AC=8,BC=16,则CD= ; 5、在梯形ABCD中,上底AB的长为2,下底CD的长为6,对角线AC和BD相交于点P,(1)若P A的长为4,则PC的长为,(2)△P AB与△PCD的面积比为; 6、如图4-1-4,在△ABC中,AD//BC,连接DB,E是边AB上一点,过E作EG//BC, 分别与DB、AC相交于F、G,若AD=6,BC=9, 3 2 = AE ,则FG的长为; 图4-1-6 7、如图4-1-5,△ABC是一块锐角三角形钢板,边BC=12cm,边BC上的高AH=8cm,由它截出一个正方形DEFG,D、E在边BC上,G、F分别在边AB、AC上,则正方形DEFG的边长为cm; 8、如图4-1-6,在△ABC中,AB=AC,若边BC上的高AD=10,边AC上的高AD=12. (1)求证: 3 5 = BD AB ;(2)求△ABC的周长。 2021年1月21日星期四

a 答案:1、4;2、0.5;3、 ;4、4;5、(1)12,(2)1:8;6、4;7、4.8;8、9、10、 2

初一几何证明典型例题

初一几何证明典型例题 1、已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC 在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=2ADBC 2、已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2ABCDEF21证明:连接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴△BCF≌△EDF (S、 A、S)∴ BF=EF,∠CBF=∠DEF连接BE在△BEF中,BF=EF∴ ∠EBF=∠BEF。∵ ∠ABC=∠AED。∴ ∠ABE=∠AEB。∴ AB=AE。在△ABF和△AEF中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴△ABF≌△AEF。∴ ∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=DE,EF//AB,求证:EF=ACBACDF21E 过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD= ∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC=CG又 EF=CG∴EF=ACA 4、已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD =∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=

高一数学常考立体几何证明题及答案

高一数学常考立体几何证明题 1、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 2、如图,在正方体1111 ABCD A B C D -中,E 是 1 AA 的中点, 求证: 1// A C 平面BDE 。 3、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥, 求证:AD ⊥面SBC . 4、已知正方体 1111 ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C1O ∥面11 AB D ;(2) 1 AC ⊥面 11 AB D . 5、正方体''''ABCD A B C D -中,求证: ''AC B D DB ⊥平面; 6、正方体ABCD —A1B1C1D1中. (1)求证:平面A1BD ∥平面B1D1C ; (2)若E 、F 分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD . 7、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且 22EF AC = ,90BDC ∠=, A E D B C A E D 1 C B 1 D C B A S D C B A D 1 O D B A C 1 B 1 A 1 C A 1 A B 1 B C 1 C D 1 D G E F

求证:BD ⊥平面ACD 8、如图,在正方体 1111 ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、 11 C D 的中点.求证:平面 1D EF ∥平面BDG . 9、如图,在正方体1111 ABCD A B C D -中,E 是 1 AA 的中点. (1)求证: 1// A C 平面BDE ; (2)求证:平面1A AC ⊥ 平面BDE . 10、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==, E 为BC 的中点. 求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 11、如图,在四棱锥P ABCD -中,底面ABCD 是0 60DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥. 12、如图1,在正方体 1111 ABCD A B C D -中,M 为 1 CC 的中点,AC 交BD

几何证明选讲知识点总结

相似三角形的判定及有关性质一一备课人:李发 知识点1比例线段的相关概念 比例线段:对于四条线段a b c、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即- - b d (或a:b=cd )那么这四条线段叫做成比例线段,简称比例线段. 注意:⑴在求线段比时,线段单位要统一,单位不统一应先化成同一单位. ⑵当两个比例式的每一项都对应相同,两个比例式才是同一比例式. ⑶比例线段是有顺序的,如果说a是b,c,d的第四比例项,那么应得比例式为:b d c a 知识点2:比例的性质 基本性质:(1) a: b c: d ad bc;(2) a : c c: b c a b . 反比性质(把比的前项、后项交换): a c b d b d a c b a d c a c a b cd 合比性质:?.发生同样和差变化比例仍成立.如: a c a c等等. b d b d a b c d a b c d o p p m八,,小、a c e m a 等比性质:如果一(b d f n 0),那么 b d f n b d f n b 注意:实际上,由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如ad be,除 了可化为a:b c:d,还可化为a:c b:d , c: d a : b , b:d a : c , b:a d:c, c:a d:b, d : c b: a , d:b c:a. 知识点3:比例线段的有关定理 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等?推论1:经过三角形一边的中点与另一边平行的直线必平分第三边?(三角形中位线定理的逆定理) 推论2 :经过梯形一腰的中点,且与底边平行的直线平分另一腰?(梯形中位线定理的逆定理) 平行线等分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 推论:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. (2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边. 知识点:4 :黄金分割 把线段AB分成两条线段AC,BC(AC BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线 段AB的黄金分割点,其中AC AB 0.618AB . 2 知识点5:相似图形 1、相似图形的定义:把形状相同的图形叫做相似图形(即对应角相等、对应边的比也相等的图形) 相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形.相似三角形对应边的比值叫 做相似比(或相似系数) (1 )相似三角形是相似多边形中的一种;

高考数学几何证明选讲

几何证明选讲 沙市五中高三数学组 一、填空题(每小题6分,共48分) 1.如图所示,l1∥l2∥l3,下列比例式正确的有________(填序号). (1)AD DF = CE BC ;(2) AD BE = BC AF ;(3) CE DF = AD BC ;(4) AF DF = BE CE . 2.如图所示,D是△ABC的边AB上的一点,过D点作DE∥BC交AC于E.已 知AD DB = 2 3 ,则 S △ADE S 四边形BCED = __________________________________________________________________. 3.如图,在四边形ABCD中,EF∥BC,FG∥AD,则EF BC + FG AD =________.

4.在直角三角形中,斜边上的高为6,斜边上的高把斜边分成两部分,这两部分的比为3∶2,则斜边上的中线的长为________. 5.(2010·苏州模拟)如图,在梯形ABCD中,AD∥BC,BD与AC相交于点O,过点O的直线分别交AB,CD于E,F,且EF∥BC,若AD=12,BC=20,则EF=________. 6.如图所示,在△ABC中,AD⊥BC,CE是中线,DC=BE,DG⊥CE于G,EC 的长为4,则EG=________. 7.(2010·天津武清一模)如图,在△ABC中,AD平分∠BAC,DE∥AC,EF ∥BC,AB=15,AF=4,则DE=________. 8.如图所示,BD、CE是△ABC的中线,P、Q分别是BD、CE的中点,则PQ BC = ________. 二、解答题(共42分) 9.(14分)如图所示,在△ABC中,∠CAB=90°,AD⊥BC于D,BE是∠ABC 的平分线,交AD于F,求证:DF AF = AE EC .

高中数学立体几何证明题汇总

高中数学立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 考点:线面垂直,面面垂直的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D C B D C B A A H G F E D C B A E D B C S D C B A D 1 O D B A C 1 B 1 A 1 C

N M P C B A 6、正方体''''ABCD A B C D -中, 求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. 考点:线面垂直的判定 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面 FBD . 考点:线面平行的判定(利用平行四边形) 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点, 且2 2 EF AC = , 90BDC ∠=o ,求证:BD ⊥平面ACD 考点:线面垂直的判定,三角形中位线,构造直角三角形 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,3AN NB = (1)求证:MN AB ⊥;(2)当90APB ∠=o ,24AB BC ==时, 求MN 的长。 考点:三垂线定理 10、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、 AD 、11C D 的中点.求证:平面1D EF ∥平面BDG . 考点:线面平行的判定(利用三角形中位线) 11、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE . 考点:线面平行的判定(利用三角形中位线),面面垂直的判定 12、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点. (1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 考点:线面垂直的判定,构造直角三角形 A 1 A B 1 C 1 D 1 D G E F

(一)几何证明选讲

(一)几何证明选讲 1.如图,O 是△ABC 外接圆的圆心,∠ACB =54°,求∠ABO 的值. 解 连结OA ,因为O 是圆心,所以∠AOB =2∠ACB , 所以∠ABO =12(180°-∠AOB ) =12 (180°-2∠ACB ) =90°-∠ACB =90°-54°=36°. 2.如图,已知A ,B ,C 是圆O 上的三点,BE 切圆O 于点B ,D 是CE 与圆O 的交点,若∠BAC =60°,BE =2,BC =4,求线段CD 的长. 解 因为BE 切圆O 于点B ,所以∠CBE =∠BAC =60°. 因为BE =2,BC =4,由余弦定理得EC =2 3. 又BE 2=EC ·ED ,所以DE = 233, 所以CD =EC -ED =23-233=433 . 3.如图,已知点C 在圆O 的直径AB 的延长线上,CD 是圆O 的一条切线,D 为切点,点D 在AB 上的射影是点E ,CB =3BE . 求证:(1)DB 是∠CDE 的平分线; (2)AE =2EB . 证明 (1)连结AD ,∵AB 是圆O 的直径, ∴∠DAB +∠DBA =90°,

∵DE ⊥AB ,∴∠BDE +∠DBA =90°, ∴∠DAB =∠BDE , ∵CD 切圆O 于点D , ∴∠CDB =∠DAB , ∴∠BDE =∠CDB , ∴DB 是∠CDE 的平分线. (2)由(1)可得DB 是∠CDE 的平分线, ∴CD DE =CB BE =3,即CD =3DE . 设BE =m (m >0),DE =x (x >0),则CB =3m ,CD =3x , 在Rt △CDE 中, 由勾股定理可得(3x )2=x 2+(4m )2,则x =2m , 由切割线定理得CD 2=CB ·CA ,(32m )2=3m ·CA , CA =6m ,AB =3m ,AE =2m , 则AE =2EB . 4.(2018·江苏海安中学质检)如图,在Rt △ABC 中,∠B =90°,它的内切圆分别与边BC ,CA ,AB 相切于点D ,E ,F ,连结AD ,与内切圆相交于另一点P ,连结PC ,PE ,PF ,已知PC ⊥PF , 求证:(1)PF FD =PD DC ;(2)PE ∥BC . 证明 (1)连结DE , 则△BDF 是等腰直角三角形, 于是∠FPD =∠FDB =45°, 故∠DPC =45°. 又∠PDC =∠PFD ,则△PFD ∽△PDC , 所以PF FD =PD DC .① (2)由∠AFP =∠ADF ,∠AEP =∠ADE , 知△AFP ∽△ADF ,△AEP ∽△ADE . 于是,EP DE =AP AE =AP AF =FP DF . 故由①得EP DE =PD DC ,②

初一几何典型例题

初一几何典型例题 1、如图,∠AOB=90°,OM平分∠AOB,将直角三角尺的顶点P在射线OM上移动,两直角分别与OA,OB相较于C,D两点,则PC与PD相等吗?试说明理由。 PC=PD 证明:作PE⊥OA于点E,PF⊥OB于点F ∵OM是角平分线 ∴PE=PF ∠EPF=90° ∵∠CPD=90° ∴∠CPE=∠DPF ∵∠PEC=∠PFD=90° ∴△PCE≌△PDF ∴PC=PD 2、如图,把两个含有45°角的三角尺按图所示的方式放置,D在BC上,连接AD、BE,AD的延长线交BE于点F。试判断AF与BE的位置关系。并说明理由。 AF⊥BE 证明: ∵CD=CE,CA=CB,∠ACD=∠BCE=90° ∴△ACD≌△BCE

∵∠CBE+∠BEC=90° ∴∠EAF+∠AEF=90° ∴∠AFE=90° ∴AF⊥BE 3、如图,已知直线l1‖l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上。 (1)如果点P在A、B两点之间运动,试求出∠1、∠2、∠3之间的关系,并说明理由; (2)如果点P在A、B两点外侧运动时(点P与A、B不重合),试探究∠1、∠2、∠3之间的关系,请画出图形,并说明理由。解:(1)∠1+∠2=∠3; 理由:过点P作l1的平行线PQ, ∵l1∥l2,∴l1∥l2∥PQ, ∴∠1=∠4,∠2=∠5. ∵∠4+∠5=∠3,∴∠1+∠2=∠3; (2)同理:∠1-∠2=∠3或∠2-∠1=∠3. 理由:当点P在下侧时,过点P作l1的平行线PQ, ∵l1∥l2 ∴l1∥l2∥PQ, ∴∠2=∠4,∠1=∠3+∠4,

当点P在上侧时,同理可得∠2-∠1=∠3. 4、D、E是三角形△ABC内的两点,连接BD、DE、EC,求证AB+AC>BD+DE+EC 解答:延长DE分别交AB、AC于F、G。 由于FB+FD>BD AF+AG>FG EG+GC>EC 所以 FB+FD+FA+AG+EG+GC>BD+FG+EC 即AB+AC+FD+EG>BD+FD+EG+DE+EC 所以AB+AC>BD+DE+EC 5、D为等边△ABC的边BC上任意一点,延长BC至G。作∠ADE=60°(E.C在AD同侧)与∠ACG的角平分线相交于E,连AE。求证:ADE为等边三角形。 解:如图,作DF‖AC交AB于F. ∵DF‖AC.等边△ABC. ∴等边△BFD.

高中数学高考总复习几何证明选讲习题及详解

高中数学高考总复习几何证明选讲习题 (附参考答案) 一、选择题 1.已知矩形ABCD ,R 、P 分别在边CD 、BC 上,E 、F 分别为AP 、PR 的中点,当P 在BC 上由B 向C 运动时,点R 在CD 上固定不变,设BP =x ,EF =y ,那么下列结论中正确的是( ) A .y 是x 的增函数 B .y 是x 的减函数 C .y 随x 的增大先增大再减小 D .无论x 怎样变化,y 为常数 [答案] D [解析] ∵E 、F 分别为AP 、PR 中点,∴EF 是△P AR 的中位线,∴EF =12 AR ,∵R 固定,∴AR 是常数,即y 为常数. 2.(2010·湖南考试院)如图,四边形ABCD 中,DF ⊥AB ,垂足为F ,DF =3,AF =2FB =2,延长FB 到E ,使BE =FB ,连结BD ,EC .若BD ∥EC ,则四边形ABCD 的面积为( ) A .4 B .5 C .6 D .7 [答案] C [解析] 由条件知AF =2,BF =BE =1, ∴S △ADE =12AE ×DF =12 ×4×3=6, ∵CE ∥DB ,∴S △DBC =S △DBE ,∴S 四边形ABCD =S △ADE =6. 3.(2010·广东中山)如图,⊙O 与⊙O ′相交于A 和B ,PQ 切⊙O 于P ,交⊙O ′于Q

和M ,交AB 的延长线于N ,MN =3,NQ =15,则PN =( ) A .3 B.15 C .3 2 D .3 5 [答案] D [解析] 由切割线定理知: PN 2=NB ·NA =MN ·NQ =3×15=45, ∴PN =3 5. 4.如图,Rt △ABC 中,CD 为斜边AB 上的高,CD =6,且AD BD =32,则斜边AB 上的中线CE 的长为( ) A .5 6 B.56 C.15 D.3102 [答案] B [解析] 设AD =3x ,则DB =2x ,由射影定理得CD 2=AD ·BD ,∴36=6x 2,∴x =6,∴AB =56, ∴CE =12AB =562 . 5.已知f (x )=(x -2010)(x +2009)的图象与x 轴、y 轴有三个不同的交点,有一个圆恰好经过这三个点,则此圆与坐标轴的另一个交点的坐标是( ) A .(0,1) B .(0,2)

专题:几何证明选讲

专题:几何证明选讲 【知识梳理】 1.相似三角形的判定定理: 判定定理1.两角对应相等的三角形相似。 判定定理2.三边对应成比例的两个三角形相似。 判定定理3.两边对应成比例,并且夹角相等的两个三角形相似。 2.相似三角形的性质 性质定理1.相似三角形对应边上的高、中线和它们的周长的比都等于相似比。 性质定理2.相似三角形的面积比等于相似比的平方。 3.平行截割定理 三条平行线截任意两条直线,所截出的对应线成比例。 4.射影定理 直角三角形中,每一条直角边是这条直线边在斜边上的射影和斜边的比例中项;斜边上的高是两条直角边在斜边上的射影的比例中项。 5.圆周角与弦切角 圆的切线判定定理:经过圆的半径的外端切垂直于这条半径的直线,是圆的切线。 圆的切线的性质定理:圆的切线垂直过圆的半径。 推论1.从圆外的一个已知点所引的两条切线长相等。 推论2.经过圆外的一个已知点和圆心的直线,平分从这个点向圆所做的两条切线所夹的角。 6.圆周角定理 圆周角的度数等于它所对弧的度数的一半。 推论1.直径所对的圆周角都是直角 推论2.同弧或等弧所对的圆周角相等。 推论3.等于直角的圆周角所对的弦是圆的直径。 7.弦切角定理 弦切角的度数等于它所夹的弧的度数的一半。 推论:弦切角等于它所夹弧所对的圆周角。 8.圆幂定理 相交弦定理:圆内的两条相交弦,被交点分成的两条线短长的积相等。 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。圆幂定理:(不用掌握) 9.圆内接四边形的性质 定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。 10.圆内接四边形的判定 定理:如果一个四边形的一组对角互补,那么这个四边形内接于圆。 【知识梳理】 平行线等分线段定理 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。 推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。 推理2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。平分线分线段成比例定理 平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。相似三角形的判定及性质

4-28几何证明选讲(选修4-1)

高考专题训练二十八 几何证明选讲(选修4-1) 班级________ 姓名_______ 时间:45分钟 分值:100分 总得分_______ 一、填空题(每小题6分,共30分) 1.(2011·陕西)如图,∠B =∠D ,AE ⊥BC ,∠ACD =90°,且AB =6,AC =4,AD =12,则BE =________. 解析:由∠B =∠D ,AE ⊥BC ,知△ABE ∽△ADC , ∴AE AC =AB AD ,∴AE =AB AD ·AC =6×412 =2,∴BE =AB 2-AE 2=32=4 2. 答案:4 2 2.(2011·湖南)如图,A 、E 是半圆周上的两个三等分点,直线BC =4,AD ⊥BC ,垂足为D ,BE 与AD 相交于点F ,则AF 的长为________. 解析:

如图所示,∵A 、E 是半圆周上两个三等分点, ∴△ABO 和△AOE 均为正三角形. ∴AE =BO =12 BC =2.∵AD ⊥BC , ∴AD =22-12=3,BD =1. 又∠BOA =∠OAE =60°,∴AE ∥BD . ∴△BDF ∽△EAF ,∴DF AF =BD AE =12 . ∴AF =2FD ,∴3AF =2(FD +AF )=2AD =23, ∴AF =233 . 答案:233 3.(2011·深圳卷)如图,A ,B 是两圆的交点,AC 是小圆的直径,D 和E 分别是CA 和CB 的延长线与大圆的交点,已知AC =4,BE =10,且BC =AD ,则DE =________. 解析:连接AB ,设BC =AD =x ,结合图形可得

相关文档
最新文档