艾默生PEX精密空调故障告警与使用指南

艾默生PEX精密空调故障告警与使用指南
艾默生PEX精密空调故障告警与使用指南

1

PEX 空调机组

常见报警及故障处理指南

空调产品技术部

2009-9-25

序号故障及报警名称页码序号故障及报警名称页码

2

1 公共报警 3 3

2 与主机通信失败12

2 压缩机1 或2 高压

3 33 机组运行13

3 压缩机1 或2 低压 5 3

4 机组关机13

4 冷冻水高温

5 35 睡眠模式13

5 冷冻水水流丢失 5 3

6 备用模式13

6 电加热高温 6 3

7 上电14

7 主风机过载7 38 掉电14

8 气流丢失7 39 自然冷源传感器故障14

9 过滤网堵塞7 40 ON/OFF 键禁止14

10 用户自定义1 8 41 LWD 传感器故障14

11 用户自定义2 8 42 地板溢水14

12 用户自定义3 9 43 RAM/电池故障15

13 用户自定义4 9 44 存储器1 内存不足15

14 自然冷源锁死9 45 压缩机1 或2 过载15

15 维护通知9 46 加湿器故障15

16 回风高温9 47 远程关机16

17 室内高温9 48 除湿运行时间超限16

18 室内低温10 49 自然冷源运行时间超限16

19 室内高湿10 50 压缩机1 或2 防冻保护16

20 室内低湿10 51 压缩机1 或2 抽空故障17

21 传感器A 高温或故障10 52 BMS 掉线17

22 传感器A 低温10 53 数码涡旋1 或2 高温17

23 传感器A 高湿10 54 烟感报警17

24 传感器A 低湿11 55 备用乙二醇泵运行17

25 机组运行时间超限11 56 热水/汽运行时间超限17

26 压缩机1 或2 运行时间超限11 57 电加热1 或2 运行时间超限17

27 加湿器运行时间超限11 58 机组码丢失18

28 送风传感器故障11 59 机组码01~18 不匹配18

29 数码涡旋1 或2 传感器故障11 60 压缩机1 或2 短周期18

30 室内传感器故障12 61 断电报警18

31 低压传感器1 或2 故障12 62 机组上电不能完成自检18 附件:PEX 机组码―――――20 页

3

1. 公共报警

产生原因:在系统发生报警时,事件记录菜单会同时产生一条公共报警记录,

并且主控制板公共报警端子会产生干接点输出变化,主控制板右下角的K3

继电器闭合,左侧红色LED 指示灯亮,同时75/76 公共报警输出端子输出闭

合导通信号。见下图:

K3 在主控制板右下

角位置,耐压125V,

通流能力5 安培

K3 继电器在控制原

理图右上侧位置,系

统有报警时被触发

K3 闭合会输出闭合信

75/76 端子

用户利用75/76 端

子可以在空调有报

警时得到一个闭合

干接点信号,解除办法:当报警解除时,公共报警自动解除,公共报警端子恢复开路。

2. 压 缩机 1 或 2 高压

4

产生原因:有几种可能,一是排气过温报警,二是高压保护报警,三是机组

拆解时将高压保护开关接错,四是保压保护开关本身故障或针阀口憋压。下

图是1 号压缩机的高压保护局部电路图,2 号压缩机类似。

排气温度开关

高压保护开关

如上图所示,先看看第一第二种可能情况,在有制冷需求时,无论高压保护

开关动作还是排气温度开关动作,主控制板上的报警反馈光耦开关U29 都会

得到一个24V 交流电压而触发控制系统报警,此时U29 旁的LED 指示灯常

亮。排气温度开关过温报警的原因通常是压缩机低压运行(低于50PSI),压

缩机由于循环吸排气量下降,压缩机的机械摩擦发热由于循环吸排气量下降

发生冷却不良,压缩机内部机械温度上升,排气温度随之上升,达到125oC

时排气温度开关被触发闭合使U29 得到电压产生报警。高压保护开关在室外

冷凝器散热出现问题压缩机排气压力上升到360PSI(或400PSI)时,COM

端与NO 端闭合同样使U29 得到电压产生报警。第三种可能是机组垂直搬运

上楼时进行过整机解体,上楼后恢复安装时将高压保护开关接错了。最后一

种就是高压开关本身有问题或安装不良(用压力表检测高压正常),

解除办法:由于报警牵涉到压缩机的运行状态,第一件需做的事情是接好双

头压力表,然后在维护菜单的诊断菜单将压缩机报警次数改为0,复位报警

后启动压缩机,检查压缩机的吸排气压力,如果发现低压偏低则因重点怀疑

排气过温异常,如果发现排气压力高则应检查冷凝器的运行状况。如果压力

完全正常,则应检查排出报警反馈电路的连接可靠性及是否有接线错误,检

查高压开关的管路连接可靠性。注意:在某一种高压开关接错线的情况下,会发生既不误报高压报警,实际发生高压保护工况时也不报警的危险情况。

在排除了接线错误后,还有一种可能,就是由于针阀阀芯位置陷得较深,高

5

压开关内的顶针不能有效顶开针阀,解决办法是将高压开关从针阀口拆下来, 将针阀阀芯反时针旋松出来一圈或更多一些,观察到针阀口有一点小小漏气 后再把高压开关装回去,重新上电复位恢复机组运行。 3. 压缩机 1 或 2 低压:

产生原因:下图是 1 号压缩机系统的低压保护局部电路图:

低压报警反馈光藕开关

低压保护开关

低压保护开关 LP 是常通的,当低压开关被触发动作时断开,报警反馈光耦 开关 U28 因为得不到 24V 交流电压而触发控制系统发生报警,此时,U28 旁 边的 LED 指示灯熄灭(正常应该亮)。低压开关 LP1 的动作触发压力为 20PSI , 当压缩机低压运行,吸气压力低于 20PSI 时,控制系统在控制逻辑要求的延 时过后发出低压保护报警。

解除办法:在维修排出低压运行的故障原因,比如排除管路泄漏点,更换管 路上发生堵塞的部件后,将系统下电重新上电开机可以复位。 4. 冷冻水高温:

产生原因:暂时没有应用到控制系统中。 解除办法: 5. 冷冻水水流丢失:

产生原因:对于冷冻水型空调,冷冻水水流开关是选件,标准配置没有,主 控制板 32-4 与 32-8 之间如果开路则不会产生报警,如果闭合则产生报警。 解除办法:检查 32-4 与 32-8 之间是否接了不必要的连线,或是备选的水流

开关误动作,或是冷冻水供水不正常。

6

6. 电加热高温:

产生原因:加热组件过温或其它原因造成在有加热需求时加热接触器无法闭

合,见下图:

加热接触器

如上图所示,如果由于风机检测开关接错,或是加热保护器动作,造成在有

加热需求时,加热接触器RH1 或RH2 控制回路不能闭合,接触器RH1 或RH2 不能吸合,会造成RH1 或RH2 的辅助触点动作不对,触发电加热高温告警(或电加热故障),见下图:

RH1 及RH2

的辅助触点

4RH1 及4RH2 是加热接触器的辅助触点(接在常闭触点上),在有加热需求同时接触器不能闭合导致辅助触点4RH1 或4RH2 开路时,报警反馈光耦U19 得不到24V 电压,就触发加热过温故障报警,维护菜单的报警设置自4 触发项目与此对应。

正常值为

“开”,含义

是开路会触

发加热过温解除办法:将电加热保护的手动复位开关复位,或检查风机气流检测开关接

线是否正确,并将之恢复正常。

7

7. 主风机过载:

产生原因:室内风机电机运行电流过大,通常是因为三相风机电机缺相或市

电电压偏低等原因,造成风机过流保护开关动作,见下图:

风机接触器

辅助触点

开关

风机过载保护器

OL1、OL2 及OL3 为风机过载保护器,在风机运行电流偏大时会开路切断风机接触器MF1、MF2 及MF3 的24V 控制回路,强制室内风机停机,同时,主风机接触器的辅助触点4MF1、4MF2 及4MF3 会由闭合变成开路,风机过载报警反馈光耦开关得不到24V 电压信号,触发主风机过载报警。

解除办法:在排除主风机过流的原因后(比如缺相),手动复位OL1、OL2

及OL3 过载保护开关,报警即可解除。

8. 气流丢失:

产生原因:由于皮带断裂等原因造成室内风机运行不正常时,风机气流检测

开关检测到机组内风机进口附近空气静压与大气压之间的压差小于设定的

压差时,风机气流检测开关的常开、常闭端与公共端之间的通断状态发生变

化,触发风机气流丢失报警,见下示意图:

风机气流检

测开关

在风机运行正常时,AS-C 与AS-NO 之间是接通的,AS-C 与AS-NC 之间不通,当风机由于皮带断裂或其它原因运转不正常时,气流检测开关的导通状

态变为AS-C 与AS-NC 之间导通,报警反馈光耦U15 由于得到24V 控制电压而触发报警。

解除办法:在排除皮带等风机运转不正常的原因后重新开机,报警即可解除。

9. 过滤网堵塞:

8

产生原因:空气滤网太脏后使空气滤网后侧机组内的空气静压与环境大气压之间的压差大于设定值时,过滤网堵塞开关动作就会触发过滤网堵塞报警。

过滤网检测开关

在检测到过滤网后侧空气静压与大气压之间压差大于设定值时开路,U21 由于控制电压24V 被切断而发生报警。

解除办法:更换新的空气滤网或调整过滤网检测开关的设定值,调整办法为:反时针将过滤网检测开关调整螺丝向外旋到底,此时如果风机在运行,系统会报过滤网堵塞报警,然后慢慢将调整螺丝顺时针旋进去直到报警刚解除,再反时针将螺丝旋出来到报警刚发生,最后将螺丝旋进去一圈半。这一圈半的设定值就是我们设定的报警压差。

10. 用户自定义1:

产生原因:是空调机组预留给用户接入的报警,比如用户机房有烟雾探测器,或是火警探测器,可以将这些探测器输出的干结点信号接入PEX 空调的外接报警输入端子,用户自定义的内容可在菜单选“溢水”等多个内容。

接入端子是50/24,见下图:

解除办法:50/24 端子开路时不会产生报警,闭合则产生报警,排除50/24 端子之间外接的器件的闭合条件就可以使报警消除。

11. 用户自定义2:

产生原因:与用户自定义 1 相同,不同的地方是报警接入端子变为 51/24。

9

解除办法:与用户自定义1 相同。

12. 用户自定义3:

产生原因:与用户自定义1 及2 相同,不同的是报警接入端子变为55/24。

解除办法:与用户自定义1 及2 相同。

13. 用户自定义4:

产生原因:用户自定义4 被系统特定来定义电加热组件的报警开关状态,

加热过温检测

系统的加热过温报警反馈端子4RH1 或4RH2 为加热接触器的辅助端子,当系统有加热需求时,加热接触器闭合,此时如果没有发生过温或其它问题,4RH1 及4RH2 应该闭合,U19 得到24V 电压不报警,反之则发生报警。

解除办法:风机安全开关AS 接错,或是加热器过温保护装置动作,或是维护菜单报警设置S220“自4 触发”设置错误(正确值是开),均会触发加热过温报警,检查排除上述相关部位的问题即可消除报警。

14. 自然冷源锁死:

15. 维护通知:

产生原因:维护菜单的维护设置栏目有设置年维护次数和系统自动计时的功能,当系统计时发现已到下次维护时间就会发出“维护通知”。

解除办法:在维护菜单的维护设置栏目下S007“维护确认”项目输入“是”

后,系统会重新计时,到下一次维护时间再发出维护通知。

16. 回风高温:

产生原因:室内机组回风温度高于高温报警设定点(用户菜单U203 或维护菜单S203)。

解除办法:诊断排除系统可能存在的制冷不正常的原因或修改高温报警设定点U203 或S203 项数值,当回风温度低于报警设定点时报警自动解除。17. 室内高温:

产生原因:与回风高温处理相同。

10

解除办法:与回风高温处理相同。

18. 室内低温:

产生原因:室内机组回风温度低于低温报警设定点(用户菜单U204)。

解除办法:修改温度设定值或低温报警设定值(U204),检查电加热组件的

工作及控制是否正常,当回风温度高于低温报警设定点时报警自动解除。

19. 室内高湿:

产生原因:室内机组回风湿度高于高湿度报警设定点(用户菜单U205 或维护

菜单S205)。

解除办法:检查制冷系统工作是否正常、是否能做正常的除湿动作,检查机

房的密封状况是否良好,检查高湿度报警设定点是否适当,当回风湿度低于

高湿度报警设定点时报警自动解除。

20. 室内低湿:

产生原因:室内机组回风湿度低于低湿度报警设定点(用户菜单U206 或维护

菜单S206)。

解除办法:检查机组加湿系统工作是否正常,检查机房密封状况是否良好,

检查低湿度报警设定点是否适当,当回风湿度高于低湿度报警设定点时报警

自动解除。

21. 传感器A 高温或故障:

产生原因:当系统安装了备选传感器A 时,用户菜单U207 项或维护菜单S207 项传感器A 报警选了“是”,此时如果传感器A 是不存在的,则会产生传感

器A 故障报警,如果安装了传感器A,其感应到的温度高于用户菜单U208

或维护菜单S208 传感器A 的高温报警设定点,则会产生传感器A 高温报警。

解除办法:正确设置U207 或S207 的选项,正确设置U208 或S208 数值。

22. 传感器A 低温:

产生原因:当系统安装了备选传感器A 时,传感器A 感应到的温度低于传感器A 的低温报警设定点数值U209 或S209。

解除办法:修改U209 或S209 项的数值。

23. 传感器A 高湿:

产生原因:当系统安装了备选传感器A 时,传感器A 感应到的湿度高于传

11

感器A 的高湿报警设定点U210 或S210。

解除办法:修改U210 或S210 项的数值。

24. 传感器A 低湿:

产生原因:当系统安装了备选传感器A 时,传感器A 感应到的湿度低于传感器A 的低湿报警设定点U211 或S211。

解除办法:修改U211 或S211 项的数值。

25. 机组运行时间超限:

产生原因:用户菜单的“运行时间”U502 记录有风机的运行总时间,并可

设定运行时间限值,当运行总时间达到设定的限值时,就会发出机组运行时

间超限报警。

解除办法:将U502 菜单的机组运行时间清零,可解除报警。

26. 压缩机1 或2 运行时间超限:

产生原因:用户菜单的“运行时间”U503 及U504 分别记录压缩机1 和压缩机2 的运行总时间,当运行总累积时间达到各自设定的时限时,就会发出压缩机1 或2 运行时间超限报警。

解除办法:将503 或U504 的压缩机1 或2 运行时间清零,可解除报警。

27. 加湿器运行时间超限:

产生原因:用户菜单的“运行时间”U510 记录加湿器的累积运行时间,当

累积运行时间达到设定的运行时限时,就会发出加湿器运行时间超限报警。

解除办法:将U510 记录的加湿器运行累积时间清零,可解除报警。

28. 送风传感器故障:

产生原因:维护菜单S124 项送风限制选了“是”,但送风传感器不存在或是有硬件故障。如果有配置有送风传感器,应该接在主控制板P13-1/P13-2 端子上。

解除办法:检查系统是否配置了送风传感器,如果没有,应该将S124 项改为“否”

29. 数码涡旋1 或2 传感器故障:

产生原因:机组码设置如果是数码涡旋的机型,而数码涡旋的传感器连接有

问题或传感器本身有硬件故障,则会发生报警。

12

解除办法:检查机组码设置是否正确。一般风冷型机组的18 位机组码的第4 位为压缩机类型定义,单压缩机为2,双压缩机为3。

30. 室内传感器故障:

产生原因:室内传感器有硬件故障或与主控制板之间连接不正常。

解除办法:检查室内传感器硬件的设置是否正确,及连线是否可靠。下图提

供了室内回风传感器的拨码DIP 开关的设置:

31. 低压传感器1 或2 故障:

产生原因:当高级菜单A116 低压开关类型选为“模拟”,同时低压开关没有连接或传感器有硬件故障时,系统产生低压开关故障报警。

解除办法:检查低压开关是否模拟型的,如果不是修改A116 的设定,如果是,检查低压开关连接及硬件是否有故障。

32. 与主机通信失败:

产生原因:当多台机组进行组网时,U2U 地址为1 的是主机,当主机与U2U 地址不是1 的机组通信异常时,就发生“与主机通信失败”报警。

解除办法:首先需检查网络连接硬件是否正常,2 台设备直接组网可以用交

叉网线直接连接主控制板的以太网口,3 台以上则要通过HUB 集线器与直连网线连接,连接正确时,主控制板以太网口下方的绿色LED 指示灯亮,

否则硬件连接未成功。其次需检查维护菜单网络设置部分是否正确,网络设

置菜单正确的设置为:S802 在线机组数为组网设备台数。S803 选“否”为

Teenwork0 模式,选“1”为Teenwork1 模式,选“2”为Teenwork2 模式。

13

S824 通信地址默认是“3”确定的是通信接口卡(SNMP 和485 卡)与主控制板通信的地址,与组网无关。S831 配置控制及S832 网络控制默认是“否”,组网设置不需改动。S835 监控协议应选择“vlcty”。S836 设定IP 地址。S837 设定子网掩码,一般设为255.255.255.0。S838 设定网关,一般不需设定。

S840 设置U2U 协议,默认是GBP。S841 设置U2U 地址,必须从1 开始排列,排列为1 的就是主机。S842 设置U2U 组号,当组网设备分几个组时,确定哪几台设备是同一个组的,同组设备组号相同。S843 是选择是否让以上

的设置生效,当全部完成以上更改设置时,在S843 导入控制项目选择输

入”S+R”,机组控制系统会发生重启,我们会观察到机组停机后重新启动的

过程,重启完成后组网设置生效,如果没有“与主机通信失败”报警,则组

网成功。

33. 机组运行:

产生原因:在按开机按钮启动机组运行时,机组会自动记录运行信息,包含

启动运行的日期及时间。

解除办法:无需处理。

34. 机组关机:

产生原因:在按下关机按钮时,机组会自动记录下机组关机的日期及时间信

息。

解除办法:无需处理。

35. 睡眠模式:

产生原因:如果系统设置了睡眠模式,在机组睡眠的时刻会在事件记录中产

生一条机组睡眠的记录,记录下机组睡眠发生的日期与时间。一天内可以选

择2 段睡眠时间,如果将2 个时间段的启动及停止睡眠时间均设为零,机组就不会睡眠。

解除办法:无需处理。

36. 备用模式:

产生原因:如果系统设置了主备运行模式,在主机转为备机时,事件记录菜

单会产生一条备用模式信息,记录下转为备机的日期及时间。

解除办法:无需处理。

艾默生PEX精密空调故障告警及使用指南资料-共21页

PEX空调机组 常见报警及故障处理指南 空调产品技术部 2009-9-25

附件:PEX机组码―――――20页

1.公共报警 产生原因:在系统发生报警时,事件记录菜单会同时产生一条公共报警记录, 并且主控制板公共报警端子会产生干接点输出变化,主控制板右下角的K3 继电器闭合,左侧红色LED指示灯亮,同时75/76公共报警输出端子输出闭 合导通信号。见下图: K3在主控制板右下 角位置,耐压125V, 通流能力5安培 K3继电器在控制原 理图右上侧位置,系 统有报警时被触发 K3闭合会输出闭合信 75/76端子 用户利用75/76端 子可以在空调有报 警时得到一个闭合 干接点信号, 解除办法:当报警解除时,公共报警自动解除,公共报警端子恢复开路。 2.压缩机1或2高压

产生原因:有几种可能,一是排气过温报警,二是高压保护报警,三是机组 拆解时将高压保护开关接错,四是保压保护开关本身故障或针阀口憋压。下 图是1号压缩机的高压保护局部电路图,2号压缩机类似。 排气温度开关 高压保护开关 如上图所示,先看看第一第二种可能情况,在有制冷需求时,无论高压保护 开关动作还是排气温度开关动作,主控制板上的报警反馈光耦开关U29都会 得到一个24V交流电压而触发控制系统报警,此时U29旁的LED指示灯常 亮。排气温度开关过温报警的原因通常是压缩机低压运行(低于50PSI),压 缩机由于循环吸排气量下降,压缩机的机械摩擦发热由于循环吸排气量下降 发生冷却不良,压缩机内部机械温度上升,排气温度随之上升,达到125oC 时排气温度开关被触发闭合使U29得到电压产生报警。高压保护开关在室外 冷凝器散热出现问题压缩机排气压力上升到360PSI(或400PSI)时,COM 端与NO端闭合同样使U29得到电压产生报警。第三种可能是机组垂直搬运 上楼时进行过整机解体,上楼后恢复安装时将高压保护开关接错了。最后一 种就是高压开关本身有问题或安装不良(用压力表检测高压正常), 解除办法:由于报警牵涉到压缩机的运行状态,第一件需做的事情是接好双 头压力表,然后在维护菜单的诊断菜单将压缩机报警次数改为0,复位报警 后启动压缩机,检查压缩机的吸排气压力,如果发现低压偏低则因重点怀疑 排气过温异常,如果发现排气压力高则应检查冷凝器的运行状况。如果压力 完全正常,则应检查排出报警反馈电路的连接可靠性及是否有接线错误,检 查高压开关的管路连接可靠性。注意:在某一种高压开关接错线的情况下,会发生既不误报高压报警,实际发生高压保护工况时也不报警的危险情况。在排除了接线错误后,还有一种可能,就是由于针阀阀芯位置陷得较深,高

艾默生机房精密空调的重点日常维护修订稿

艾默生机房精密空调的 重点日常维护 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

艾默生机房精密空调的重点日常维护 时间:2012-06-20 17:02来源:未知作者:zx点击:1563次 一、的结构及工作原理 精密主要由压缩机、冷凝器、膨胀阀和蒸发器组成。 一般来说空调机的制冷过程为:压缩机将经过蒸发器后吸收了热能的制冷剂气体压缩成高压气体,然后送到室外机的冷凝器;冷凝器将高温高压气体的热能通过风扇向周围空气中释放,使高温高压的气体制冷剂重新凝结成液体,然后送到膨胀阀;膨胀阀将冷凝器管道送来的液体制冷剂降温后变成液、气混合态的制冷剂,然后送到蒸发器回路中去;蒸发器将液、气混合态的制冷剂通过吸收机房环境中的热量重新蒸发成气态制冷剂,然后又送回到压缩机,重复前面的过程。 二、计算机机房中选用精密专用空调的原因 1、温度、湿度控制对计算机机房的重要性

在计算机机房中的设备是由大量的微电子、精密机械设备等组成,而这些设备使用了大量的易受温度、湿度影响的电子元器件、机械构件及材料。温度对计算机的电子元器件、绝缘材料以及记录介质都有较大的影响;如对半导体元器件而言,室温在规定范围内每增加10℃,其可靠性就会降低约25%;而对电容器,温度每增加10℃,其使用时间将下降50%;绝缘材料对温度同样敏感,温度过高,印刷电路板的结构强度会变弱,温度过低,绝缘材料会变脆,同样会使结构强度变弱;对记录介质而言,温度过高或过低都会导致数据的丢失或存取故障。 湿度对计算机设备的影响也同样明显,当相对湿度较高时,水蒸汽在电子元器件或电介质材料表面形成水膜,容易引起电子元器件之间出现形成通路;当相对湿度过低时;容易产生较高的静电电压,试验表明:在计算机机房中,如相对湿度为30%,静电电压可达5000V,相对湿度为20%,静电电压可达10000V,相对湿度为5%时,静电电压可达20000V,而高达上万伏的静电电压对计算机设备的影响是显而易见的。 2、与舒适性空调的区别 1)传统的舒适性空调主要是针对家庭、办公场所、宾馆、商场等场所设计的,主要对象是人,送风量小,在制冷的同时也在除湿;因此舒适性空调对计算机机房来说将会使机房内湿度过低,从而使计算机设备内部的电子元器件表面累积静

艾默生精密空调系统

艾默生精密空调系统 为确保机房内计算机系统的安全可靠、正常运行,在机房建设中为机房提供符合要求的场地环境,我们推荐采用恒温恒湿的机房专用空调机-艾默生Liebert.PEX系列机房专用空调。 机房专用空调采用下送风、上回风的送风方式。我们为您选择的机房专用空调是模块化设计的,可根据需要增加或减少模块;也可根据机房布局及几何图形的不同任意组合或拆分模块,且模块与模块之间可联动或集中或分开控制等。 1、Liebert.PEX系列描述 (1)Liebert.PEX机组是基于艾默生全球研发与设计平台的高端机组,针对全球销售,全球同步上市 (2)高可靠性、高灵活性、全寿命成本 (3)产品系列完备,具有风冷、乙二醇冷、水冷和冷冻水等机型 (4)制冷量范围宽,风冷、水冷、乙二醇冷机组20kW~100kW,冷冻水机组28~151kW 2、设备特点: (1)高可靠性、高灵活性、全寿命低成本 (2)可拆卸搬运的结构,100%全正面维护,节省机房占地空间 (3)双Copeland高效涡旋式压缩机,适合环保制冷剂 (4)自张力调节式风机,满足不同机外余压需求 (5)大面积V型蒸发器,快速除湿设计,确保节能 (6)独特的高效远红外加湿系统,加湿速度快,适应恶劣水质,低维护量 (7)超大屏幕全中文图形显示屏 (8)iCOM强大的联控与通讯功能 (9)风冷全调速冷凝器,噪声低 3、高适应性: (1)多项节能设计 (2)多种送风方式,满足不同气流组织需求 (3)多种冷却方式,包括风冷、水冷、乙二醇冷却及冷冻水等,有利于适应现场的实际条件 (4)适应R22、R407C等不同冷媒 (5)多种监控方式 (6)风冷冷凝器提供适合不同温度环境(包括低温启动)的配置 (7)风冷方式提供超远安装距离和超高落差的方案 4、Liebert.PEX机组的设计 Liebert.PEX风冷系统的室内机由压缩机、蒸发器、加热器、风机、控制器、远红外加湿器、热力膨胀阀、视液镜、干燥过滤器等主要部件组成。 水冷系列还包括高效板式换热器、水流量调节阀。 室内侧制冷系统和水系统中可能涉及维护、更换的器件全部采用易拆卸的Rotalock连接方式,使维护更方便。 (1)PEX风冷机组整机性能体现了高可靠性、高灵活性、高节能率、全寿命低成本。 (2)PEX可靠性充分体现在:iCOM智能控制系统;Copeland涡旋压缩机;自适应风机系统;远红外加湿系统;全调速低噪声冷凝器等(3)PEX高灵活性、高节能率充分体现在:iCOM智能控制系统;自适应风机系统;远红外加湿系统;全调速低噪声冷凝器;占地面积小;可拆卸搬运,全正面维护;可直接应用环保制冷剂等 (4)PEX全寿命成本充分体现在:iCOM智能控制系统;Copeland涡旋压缩机;自适应风机系统;V型蒸发器;快速除湿系统;远红外加湿系统;全调速低噪声冷凝器等

艾默生机房精密空调的重点日常维护

艾默生机房精密空调的重点日常维护 时间:2012-06-20 17:02来源:未知作者:zx点击:1563次 一、的结构及工作原理? ? 精密主要由压缩机、冷凝器、膨胀阀和蒸发器组成。? ? 一般来说空调机的制冷过程为:压缩机将经过蒸发器后吸收了热能的制冷剂气体压缩成高压气体,然后送到室外机的冷凝器;冷凝器将高温高压气体的热能通过风扇向周围空气中释放,使高温高压的气体制冷剂重新凝结成液体,然后送到膨胀阀;膨胀阀将冷凝器管道送来的液体制冷剂降温后变成液、气混合态的制冷剂,然后送到蒸发器回路中去;蒸发器将液、气混合态的制冷剂通过吸收机房环境中的热量重新蒸发成气态制冷剂,然后又送回到压缩机,重复前面的过程。? ? 二、计算机机房中选用精密专用空调的原因? ? 1、温度、湿度控制对计算机机房的重要性? ? 在计算机机房中的设备是由大量的微电子、精密机械设备等组成,而这些设备使用了大量的易受温度、湿度影响的电子元器件、机械构件及材料。温度对计算机的电子元器件、绝缘材料以及记录介质都有较大的影响;如对半导体元器件而言,室温在规定范围内每增加10℃,其可靠性就会降低约25%;而对电容器,温度每增加10℃,其使用时间将下降50%;绝缘材料

对温度同样敏感,温度过高,印刷电路板的结构强度会变弱,温度过低,绝缘材料会变脆,同样会使结构强度变弱;对记录介质而言,温度过高或过低都会导致数据的丢失或存取故障。? ? 湿度对计算机设备的影响也同样明显,当相对湿度较高时,水蒸汽在电子元器件或电介质材料表面形成水膜,容易引起电子元器件之间出现形成通路;当相对湿度过低时;容易产生较高的静电电压,试验表明:在计算机机房中,如相对湿度为30%,静电电压可达5000V,相对湿度为20%,静电电压可达10000V,相对湿度为5%时,静电电压可达20000V,而高达上万伏的静电电压对计算机设备的影响是显而易见的。? ? 2、与舒适性空调的区别? ? 1)传统的舒适性空调主要是针对家庭、办公场所、宾馆、商场等场所设计的,主要对象是人,送风量小,在制冷的同时也在除湿;因此舒适性空调对计算机机房来说将会使机房内湿度过低,从而使计算机设备内部的电子元器件表面累积静电,放电损坏设备,干扰数据的传输和储存,同时由于50%左右的能量用于除湿,大大地增加了能耗;而专用精密空调由于采用了控制蒸发器内的蒸发压力和使蒸发器的表面温度高于露点温度等技术就克服了舒适性空调的上面的一些缺点。? ?

艾默生PEX精密空调故障告警及使用指南设计

1 PEX空调机组 常见报警及故障处理指南 空调产品技术部 2009-9-25

序号故障及报警名称页码序号故障及报警名称页码 2 1 公共报警 3 3 2 与主机通信失败12 2 压缩机1或2高压 3 33 机组运行13 3 压缩机1或2低压 5 3 4 机组关机13 4 冷冻水高温 5 35 睡眠模式13 5 冷冻水水流丢失 5 3 6 备用模式13 6 电加热高温 6 3 7 上电14 7 主风机过载7 38 掉电14 8 气流丢失7 39 自然冷源传感器故障14 9 过滤网堵塞7 40 ON/OFF键禁止14 10 用户自定义1 8 41 LWD传感器故障14 11 用户自定义2 8 42 地板溢水14 12 用户自定义3 9 43 RAM/电池故障15 13 用户自定义4 9 44 存储器1内存不足15 14 自然冷源锁死9 45 压缩机1或2过载15 15 维护通知9 46 加湿器故障15 16 回风高温9 47 远程关机16 17 室内高温9 48 除湿运行时间超限16 18 室内低温10 49 自然冷源运行时间超限16 19 室内高湿10 50 压缩机1或2防冻保护16 20 室内低湿10 51 压缩机1或2抽空故障17 21 传感器A高温或故障10 52 BMS掉线17 22 传感器A低温10 53 数码涡旋1或2高温17 23 传感器A高湿10 54 烟感报警17 24 传感器A低湿11 55 备用乙二醇泵运行17 25 机组运行时间超限11 56 热水/汽运行时间超限17 26 压缩机1或2运行时间超限11 57 电加热1或2运行时间超限17 27 加湿器运行时间超限11 58 机组码丢失18 28 送风传感器故障11 59 机组码01~18不匹配18 29 数码涡旋1或2传感器故障11 60 压缩机1或2短周期18 30 室内传感器故障12 61 断电报警18 31 低压传感器1或2故障12 62 机组上电不能完成自检18 附件:PEX机组码―――――20页

艾默生30K精密空调系统

目录 目录 -------------------------------------------------------------------------------------------------------------- 1第一章LIEBERT.PEX 系列空调------------------------------------------------------------------------- 2 1前言 --------------------------------------------------------------------------------------------------------- 2 1.1机房环境的特殊要求 ------------------------------------------------------------------------------ 2 1.2L IEBERT.PEX系列空调——机房的专业空调 ------------------------------------------------- 2 2产品介绍 --------------------------------------------------------------------------------------------------- 4 2.1外观介绍 ---------------------------------------------------------------------------------------------- 4 2.2型号说明------------------------------------------------------------------------------------------------ 5 2.3主要特点 ---------------------------------------------------------------------------------------------- 5 2.4标准部件 ---------------------------------------------------------------------------------------------- 6 3简易操作手册 ------------------------------------------------------------------------------------------ 12 3.1空气开关位臵介绍 ------------------------------------------------------------------------------- 12 3.2开机界面 -------------------------------------------------------------------------------------------- 15 3.3主界面 ----------------------------------------------------------------------------------------------- 15 3.4用户菜单 -------------------------------------------------------------------------------------------- 16 3.4.1开机 ------------------------------------------------------------------------------------------------ 17 3.4.2关机 ------------------------------------------------------------------------------------------------ 17 3.5维护检查核对表 ---------------------------------------------------------------------------------- 20

艾默生机房精密空调的重点日常维护精修订

艾默生机房精密空调的重点日常维护 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

艾默生机房精密空调的重点日常维护 时间:2012-06-20 17:02来源:未知作者:zx点击:1563次 一、的结构及工作原理 精密主要由压缩机、冷凝器、膨胀阀和蒸发器组成。 一般来说空调机的制冷过程为:压缩机将经过蒸发器后吸收了热能的制冷剂气体压缩成高压气体,然后送到室外机的冷凝器;冷凝器将高温高压气体的热能通过风扇向周围空气中释放,使高温高压的气体制冷剂重新凝结成液体,然后送到膨胀阀;膨胀阀将冷凝器管道送来的液体制冷剂降温后变成液、气混合态的制冷剂,然后送到蒸发器回路中去;蒸发器将液、气混合态的制冷剂通过吸收机房环境中的热量重新蒸发成气态制冷剂,然后又送回到压缩机,重复前面的过程。 二、计算机机房中选用精密专用空调的原因 1、温度、湿度控制对计算机机房的重要性 在计算机机房中的设备是由大量的微电子、精密机械设备等组成,而这些设备使用了大量的易受温度、湿度影响的电子元器件、机械构件及材料。温度对计算机的电子元器件、绝缘材料以及记录介质都有较大的影响;如对半导体元器件而言,室温在规定范围内每增加10℃,其可靠性就会降低约25%;而对电容器,温度每增加10℃,其使用时间将下降50%;绝缘材料对温度同样敏感,温度过高,印刷电路板的结构强度会变弱,温度过低,绝缘材料会变脆,同样会使结构强度变弱;对记录介质而言,温度过高或过低都会导致数据的丢失或存取故障。 湿度对计算机设备的影响也同样明显,当相对湿度较高时,水蒸汽在电子元器件或电介质材料表面形成水膜,容易引起电子元器件之间出现形成通路;当相对湿度过低时;容易产生较高的静电电压,试验表明:在计算机机房中,如相对湿度为30%,静电电压可达5000V,相对湿度为20%,静电电压可达10000V,相对湿度为5%时,静电电压可达20000V,而高达上万伏的静电电压对计算机设备的影响是显而易见的。 2、与舒适性空调的区别 1)传统的舒适性空调主要是针对家庭、办公场所、宾馆、商场等场所设计的,主要对象是人,送风量小,在制冷的同时也在除湿;因此舒适性空调对计算机机房来说将会使机房内湿度过低,从而使计算机设备内部的电子元器件表面累积静电,放电损坏设备,干扰数据的传输和储存,同时由于50%左右的能量用于除湿,大大地增加了能耗;而专用精密空调由于采用了控制蒸发器内的蒸发压力和使蒸发器的表面温度高于露点温度等技术就克服了舒适性空调的上面的一些缺点。

艾默生机房精密空调的重点日常维护

艾默生机房精密空调的重 点日常维护 Prepared on 22 November 2020

艾默生机房精密空调的重点日常维护 时间:2012-06-20 17:02来源:未知作者:zx点击:1563次 一、的结构及工作原理? ? 精密主要由压缩机、冷凝器、膨胀阀和蒸发器组成。? ? 一般来说空调机的制冷过程为:压缩机将经过蒸发器后吸收了热能的制冷剂气体压缩成高压气体,然后送到室外机的冷凝器;冷凝器将高温高压气体的热能通过风扇向周围空气中释放,使高温高压的气体制冷剂重新凝结成液体,然后送到膨胀阀;膨胀阀将冷凝器管道送来的液体制冷剂降温后变成液、气混合态的制冷剂,然后送到蒸发器回路中去;蒸发器将液、气混合态的制冷剂通过吸收机房环境中的热量重新蒸发成气态制冷剂,然后又送回到压缩机,重复前面的过程。? ? 二、计算机机房中选用精密专用空调的原因? ? 1、温度、湿度控制对计算机机房的重要性? ? 在计算机机房中的设备是由大量的微电子、精密机械设备等组成,而这些设备使用了大量的易受温度、湿度影响的电子元器件、机械构件及材料。温度对计算机的电子元器件、绝缘材料以及记录介质都有较大的影响;如对半导体元器件而言,室温在规定范围内每增加10℃,其可靠性就会降低约25%;而对电容器,温度每增加10℃,其使用时间将下降50%;绝缘材料对温度同样敏感,温度过高,印刷电路板的结构强度会变弱,温度过低,绝缘材料会变脆,同样会使结构强度变弱;对记录介质而言,温度过高或过低都会导致数据的丢失或存取故障。? ? 湿度对计算机设备的影响也同样明显,当相对湿度较高时,水蒸汽在电子元器件或电介质材料表面形成水膜,容易引起电子元器件之间出现形成通路;当相对湿度过低时;容易产生较高的静电电压,试验表明:在计算机机房中,如相对湿度为30%,静电电压可达5000V,相对湿度为20%,静电电压可达10000V,相对湿度为5%时,静电电压可达20000V,而高达上万伏的静电电压对计算机设备的影响是显而易见的。? ? 2、与舒适性空调的区别? ? 1)传统的舒适性空调主要是针对家庭、办公场所、宾馆、商场等场所设计的,主要对象是人,送风量小,在制冷的同时也在除湿;因此舒适性空调对计算机机房来说将会使机房内湿度过低,从而使计算机设备内部的电子元器件表面累积静电,放电损坏设备,干扰数据的传输和储存,同时由于50%左右的能量用于除湿,大大地增加了能耗;而专用精密空调由于采用了控制蒸发器内的蒸发压力和使蒸发器的表面温度高于露点温度等技术就克服了舒适性空调的上面的一些缺点。? ?

艾默生机房精密空调的重点日常维护修订稿

艾默生机房精密空调的重点日常维护 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

艾默生机房精密空调的重点日常维护 时间:2012-06-20 17:02来源:未知作者:zx点击:1563次 一、的结构及工作原理 精密主要由压缩机、冷凝器、膨胀阀和蒸发器组成。 一般来说空调机的制冷过程为:压缩机将经过蒸发器后吸收了热能的制冷剂气体压缩成高压气体,然后送到室外机的冷凝器;冷凝器将高温高压气体的热能通过风扇向周围空气中释放,使高温高压的气体制冷剂重新凝结成液体,然后送到膨胀阀;膨胀阀将冷凝器管道送来的液体制冷剂降温后变成液、气混合态的制冷剂,然后送到蒸发器回路中去;蒸发器将液、气混合态的制冷剂通过吸收机房环境中的热量重新蒸发成气态制冷剂,然后又送回到压缩机,重复前面的过程。 二、计算机机房中选用精密专用空调的原因 1、温度、湿度控制对计算机机房的重要性 在计算机机房中的设备是由大量的微电子、精密机械设备等组成,而这些设备使用了大量的易受温度、湿度影响的电子元器件、机械构件及材料。温度对计算机的电子元器件、绝缘材料以及记录介质都有较大的影响;如对半导体元器件而言,室温在规定范围内每增加10℃,其可靠性就会降低约25%;而对电容器,温度每增加10℃,其使用时间将下降50%;绝缘材料对温度同样敏感,温度过高,印刷电路板的结构强度会变弱,温度过低,绝缘材料会变脆,同样会使结构强度变弱;对记录介质而言,温度过高或过低都会导致数据的丢失或存取故障。 湿度对计算机设备的影响也同样明显,当相对湿度较高时,水蒸汽在电子元器件或电介质材料表面形成水膜,容易引起电子元器件之间出现形成通路;当相对湿度过低时;容易产生较高的静电电压,试验表明:在计算机机房中,如相对湿度为30%,静电电压可达5000V,相对湿度为20%,静电电压可达10000V,相对湿度为5%时,静电电压可达20000V,而高达上万伏的静电电压对计算机设备的影响是显而易见的。 2、与舒适性空调的区别 1)传统的舒适性空调主要是针对家庭、办公场所、宾馆、商场等场所设计的,主要对象是人,送风量小,在制冷的同时也在除湿;因此舒适性空调对计算机机房来说将会使机房内湿度过低,从而使计算机设备内部的电子元器件表面累积静电,放电损坏设备,干扰数据的传输和储存,同时由于50%左右的能量用于除湿,大大地增加了能耗;而专用精密空调由于采用了控制蒸发器内的

恒温恒湿艾默生空调系统说明

空调系统说明 1、系列描述 描述: 机组是基于艾默生全球研发与设计平台的高端机组,针对全球销售,全球同步上市 高可靠性、高灵活性、全寿命成本 产品系列完备,具有风冷、乙二醇冷、水冷和冷冻水等机型 制冷量范围宽,风冷、水冷、乙二醇冷机组20kW~100kW,冷冻水机组28~151kW 应用范围: 中、大型交换机房和移动机房 计算机房和数据中心(IDC) 高科技环境及实验室 工业控制室和精密加工设备 标准检测室和校准中心 UPS和电池室 生化培养室 医院和检测室 高适应性: 多项节能设计 多种送风方式,满足不同气流组织需求 多种冷却方式,包括风冷、水冷、乙二醇冷却及冷冻水等,有利于适应现场的实际条件适应R22、R407C等不同冷媒 多种监控方式 风冷冷凝器提供适合不同温度环境(包括低温启动)的配置 风冷方式提供超远安装距离和超高落差的方案

2、系列数据 下送风风冷机组技术参数

3、机组的特点 ●高可靠性、高节能性、全寿命低成本 同等制冷量条件下,占地面积最小。侧面及背面不需要维护空间,前面只需要600mm 维护空间 可拆卸后搬运,保证重新组装与整机无差别,适合特殊场地搬运(如利用小电梯或狭小通道) 艾默生Copeland高效涡旋式压缩机,直接适合环保制冷剂(R407C)。 自适应风机系统,满足不同机外余压需求 大面积V型蒸发器,快速除湿设计,确保节能 独特的高效远红外加湿系统,加湿速度快,适应恶劣水质,低维护量 全中文图形显示屏 iCOM强大的群控与通讯功能 4、机组的设计 风冷系统的室内机由压缩机、蒸发器、加热器、风机、控制器、远红外加湿器、热力膨胀阀、视液镜、干燥过滤器等主要部件组成。 水冷系列还包括高效板式换热器、水流量调节阀。 室内侧制冷系统和水系统中可能涉及维护、更换的器件全部采用易拆卸的Rotalock连接方式,使维护更方便。 PEX风冷机组整机性能体现了高可靠性、高灵活性、高节能率、全寿命低成本。 PEX可靠性充分体现在:iCOM智能控制系统;Copeland涡旋压缩机;自适应风机系统; 远红外加湿系统;全调速低噪声冷凝器等 PEX高灵活性、高节能率充分体现在:iCOM智能控制系统;自适应风机系统;远红外加湿系统;全调速低噪声冷凝器;占地面积小;可拆卸搬运,全正面维护;可直接应用

艾默生iCOM 控制器机房精密空调简易操作手册2014

艾默生精密空调iCOM 控制器简易操作手册 简易手册 1 控制器 艾默生PEX系列空调和CRV空调均采用iCOM 控制器,用户界面操作简洁。多级密码保护,能有效防止非法操作。控制器具有掉电自恢复功能,以及高/低电压保护。通过菜单操作可以准确了解各主要部件运行时间。专家级故障诊断系统,可以自动显示当前故障内容,方便维护人员进行设备维护。可存储400条历史事件记录。配置RS485接口,通信协议采用信息产业部标准通信协议。微处理控制器面板如图1-2所示。 图1-1 微处理控制器面板iCOM控制器 iCOM控制器采用菜单式操作,监控、显示并运行精密冷却空调设备,控制环境保持在设定的范围内。本章主要介绍iCOM 控制器菜单操作,控制特点和参数设置。 1.1 液晶显示屏 Liebert.PEX系列空调正面有一个液晶显示屏,可显示机房当前状态,如温度和湿度等;用户还可以从显示屏上查看和修改机器配置。 液晶显示屏采用蓝色背光,超过一定时间(可配置,默认为5min)无任何按键操作时,背光熄灭;下次按键操作时,背光点亮。 1.2 按键指示灯面板 按键指示灯面板上设置有上移键、下移键、左移键、右移键、回车键、退出键、开/关键、报警消音键、帮助键以及报警指示灯和工作指示灯,如图5-1所示。 图1-2 控制器按键和指示灯 1.报警指示灯 有报警产生时,报警指示灯呈红色;报警消除时,报警指示灯熄灭。 2.工作指示灯 机组工作时,工作指示灯呈绿色;机组关闭时,工作指示灯呈黄色。 3.开/关键

开关机。 系统运行时,按下开关键,系统关闭;系统关闭时,按下开/关键,系统开启。 注意 系统上电后机组的运行状态将按照上次掉电时机组的运行状态,例如在掉电时系统若处于工作状态,那么上电之后系统将自动进入运行状态,无须用户手动开启。 4.回车键 进入选择的菜单界面,参数修改完毕后,按回车键确认并保存设定值。进入菜单条或修改参数时,菜单和参数反显。5.退出键 退出本级菜单界面至正常界面或上一级菜单界面。 6.上移键 在浏览状态下,按上移键将当前菜单向上滚动一行或一屏。 7.下移键 在浏览状态下,按下移键将当前菜单向下滚动一行或一屏。 8.左移键 在设定操作中左移参数设定值的当前修改位。 9.右移键 在设定操作中右移参数设定值的当前修改位。 10.报警消音键 系统报警时将发出报警音,按报警消音键将消除报警音。 11.帮助键 显示帮助说明文字。 1.3 主界面 开机后,经20秒后显示主界面。主界面显示有关设备状况的一般性信息,包括当前的温度和湿度,温湿度设定值,设备输出状态(风机、压缩机、制冷、制热、除湿、加湿等),报警及维护情况。主界面有图形界面和简易界面两种显示模式,区别在于图形界面(图5-3)下显示各功能部件输出的百分比图,简易界面(图5-4)下只显示当前运行模式的图标。两种显示模式的切换可以通过菜单操作实现,参见5.6.7 显示设置。 主界面的左上角显示的为当前的机组编号;右上角显示为当前的的系统状态。若处于其它菜单显示屏时,超过255s无任何按键动作,则回到该主界面。 图1-3 主界面图形模式 主界面图形模式和简易模式中的图标具体含义如表1-1所示。 表1-1 图标含义

艾默生pe精密空调故障告警及使用指南

1 PEX 空调机组 常见报警及故障处理指南 空调产品技术部 2009-9-25

附件:PEX 机组码―――――20 页

1. 公共报警 产生原因:在系统发生报警时,事件记录菜单会同时产生一条公共报警记录, 并且主控制板公共报警端子会产生干接点输出变化,主控制板右下角的 K3 继电器闭合,左侧红色 LED 指示灯亮,同时 75/76 公共报警输出端子输出闭 合导通信号。见下图: K3 在主控制板右下 角位置,耐压 125V, 通流能力 5 安培 K3 继电器在控制原 理图右上侧位置,系 统有报警时被触发 K3 闭合会输出闭合信 75/76 端子 用户利用 75/76 端 子可以在空调有报 警时得到一个闭合 干接点信号,

解除办法:当报警解除时,公共报警自动解除,公共报警端子恢复开路。 2. 压缩机 1 或 2 高压

4 产生原因:有几种可能,一是排气过温报警,二是高压保护报警,三是机组拆解时将高压保护开关接错,四是保压保护开关本身故障或针阀口憋压。下图是 1 号压缩机的高压保护局部电路图,2 号压缩机类似。 排气温度开关 高压保护开关 如上图所示,先看看第一第二种可能情况,在有制冷需求时,无论高压保护开关动作还是排气温度开关动作,主控制板上的报警反馈光耦开关 U29 都会得到一个 24V 交流电压而触发控制系统报警,此时 U29 旁的 LED 指示灯常亮。排气温度开关过温报警的原因通常是压缩机低压运行(低于 50PSI),压缩机由于循环吸排气量下降,压缩机的机械摩擦发热由于循环吸排气量下降发生冷却不良,压缩机内部机械温度上升,排气温度随之上升,达到 125oC 时排气温度开关被触发闭合使 U29 得到电压产生报警。高压保护开关在室外冷凝器散热出现问题压缩机排气压力上升到 360PSI(或 400PSI)时,COM 端与 NO 端闭合同样使 U29 得到电压产生报警。第三种可能是机组垂直搬运上楼时进行过整机解体,上楼后恢复安装时将高压保护开关接错了。最后一种就是高压开关本身有问题或安装不良(用压力表检测高压正常), 解除办法:由于报警牵涉到压缩机的运行状态,第一件需做的事情是接好双头压力表,然后在维护菜单的诊断菜单将压缩机报警次数改为 0,复位报警后启动压缩机,检查压缩机的吸排气压力,如果发现低压偏低则因重点怀疑排气过温异常,如果发现排气压力高则应检查冷凝器的运行状况。如果压力

艾默生精密空调产品方案

设计方: 负责人: 联络电话: E-MAIL: 设计人: 联络电话: E-MAIL: 设计时间:

- 目录 - 第一部分:冷负荷计算及空调型号推荐 (3) 一、工程概况及需求 (3) 二、精密空调设计及负荷计算建议 (3) 第二部分:(艾默生)DATAMATE3000机房专用空调介绍 (5) 第三部分:资质及应用介绍 (11)

第一部分:冷负荷计算及空调型号推荐 一、工程概况及需求 根据贵单位对机房精密空调的设计要求: 面积约30平米。” 艾默生网络能源公司推荐采用精密机房空调系统2台DataMate 3000(DME07M),总制冷量15kW。 二、精密空调设计及负荷计算建议 (一)机房设计标准 网络数据机房属于大型重要的中心机房。机房内有严格的温、湿度要求,机房内按国标GB2887-89《计算机场地安全要求》的规定配置空调设备: 同时,主机房区的噪声声压级小于68分贝 主机房内要维持正压,与室外压差大于9.8帕 送风速度不小于3米/秒 在表态条件下,主机房内大于0.5微米的尘埃不大于18000粒/升 为使机房能达到上述要求,应采用精密空调机组才能满足要求。 (二)、实际工程热负荷估算 在实际工程方案设计中由于建筑物机构的复杂性,通常根据下表来选择机房单位面

积的冷量需求,然后根据总面积计算出冷量需求。 根据行业设计经验,贵单位机房所需的冷量大约为350W/m2。在制冷系统设计中,根据负载的重要等级,艾默生推荐采取一定的冗余设计,故推荐专门针对小型机房设计的精密空调,并要求总制冷量大于机房负载发热量的最小值。 采用艾默生DataMate 3000(DME07)制冷系统2台,单压缩机制冷量为7.5kW,系统总冷量达到7.5*2=15kW,保证网络机房环境温度保持在国标规定的A级机房环境要求,并符合冗余备份的条件。

-艾默生PEX精密空调故障告警及使用指南

PEX 空调机组 常见报警及故障处理指南 空调产品技术部 2009-9-25

附件: PEX 机组码20 页

1.公共报警 产生原因:在系统发生报警时,事件记录菜单会同时产生一条公共报警记录, 并且主控制板公共报警端子会产生干接点输出变化,主控制板右下角的K3 继电器闭合,左侧红色LED 指示灯亮,同时75/76 公共报警输出端子输出闭 合导通信号。见下图: K3 在主控制板右下角位 置,耐压 125V ,通流能 力 5 安培 K3 继电器在控制原 理图右上侧位置,系 统有报警时被触发 K3 闭合会输出闭合信 用户利用 75/76 端子 可以在空调有报警时 得到一个闭合干接点 信号, 解除办法:当报警解除时,公共报警自动解除,公共报警端子恢复开路 2.压缩机1 或2 高压

产生原因:有几种可能,一是排气过温报警,二是高压保护报警,三是机组拆解时将高压保护开关接错,四是保压保护开关本身故障或针阀口憋压。下图是1 号压缩机的高压保护局部电路图,2 号压缩机类似。 排气温度开关 如上图所示,先看看第一第二种可能情况,在有制冷需求时,无论高压保护开关动作还是排气温度开关动作,主控制板上的报警反馈光耦开关U29 都会 得到一个24V 交流电压而触发控制系统报警,此时U29 旁的LED 指示灯常亮。排气温度开关过温报警的原因通常是压缩机低压运行(低于50PSI),压 缩机由于循环吸排气量下降,压缩机的机械摩擦发热由于循环吸排气量下降发生冷却不良,压缩机内部机械温度上升,排气温度随之上升,达到125oC 时排气温度开关被触发闭合使U29 得到电压产生报警。高压保护开关在室外冷凝器散热出现问题压缩机排气压力上升到360PSI(或400PSI)时,COM 端与NO 端闭合同样使U29 得到电压产生报警。第三种可能是机组垂直搬运上楼时进行过整机解体,上楼后恢复安装时将高压保护开关接错了。最后一种就是高压开关本身有问题或安装不良(用压力表检测高压正常),解除办法:由于报警牵涉到压缩机的运行状态,第一件需做的事情是接好双头压力表,然后在维护菜单的诊断菜单将压缩机报警次数改为0,复位报警 后启动压缩机,检查压缩机的吸排气压力,如果发现低压偏低则因重点怀疑排气过温异常,如果发现排气压力高则应检查冷凝器的运行状况。如果压力完全正常,则应检查排出报警反馈电路的连接可靠性及是否有接线错误,检查高压开关的管路连接可靠性。注意:在某一种高压开关接错线的情况下,会发生既不误报高压报警,实际发生高压保护工况时也不报警的危险情况。 在排除了接线错误后,还有一种可能,就是由于针阀阀芯位置陷得较深,高压开关内的顶针不能有效顶开针阀,解决办法是将高压开关从针阀口拆下来,将针阀阀芯反时针旋松出来一圈或更多一些,观察到针阀口有一点小小漏气后再把高压开关装回去,重新上电复位恢复机组运行。 3.压缩机1 或2 低压: 产生原因:下图是1 号压缩机系统的低压保护局部电路图: 低压报警反馈光藕开关

艾默生PEX系列精密空调技术手册

PEX系列空调 技术手册 资料版本V1.1 归档时间20080223 BOM编码31020706 艾默生网络能源有限公司为客户提供全方位的技术支持,用户可与就近的艾默生网络能源有限公司办事处或客户服务中心联系,也可直接与公司总部联系。 艾默生网络能源有限公司 版权所有,保留一切权利。内容如有改动,恕不另行通知。 艾默生网络能源有限公司 地址:深圳市南山区科技工业园科发路一号 邮编:518057 公司网址:https://www.360docs.net/doc/e210788218.html, 客户服务投诉热线:0755-******** E-mail: info@https://www.360docs.net/doc/e210788218.html,

目录 第一章前言 (1) 1.1 机房环境的特殊要求 (1) 1.2 PEX系列空调——机房的专业空调 (1) 第二章产品介绍 (3) 2.1 外观介绍 (3) 2.2 型号说明 (4) 2.3 主要特点 (4) 2.4 标准部件 (5) 2.4.1 室内机 (5) 2.4.2 室外机(适用风冷系列) (8) 2.4.3 控制系统 (9) 2.5 选配部件 (10) 第三章技术参数 (11) 3.1 风冷机组技术参数 (11) 3.1.1 上出风风冷机组技术参数 (11) 3.1.2 下出风风冷机组技术参数 (17) 3.2 水冷机组技术参数 (24) 3.2.1 上出风水冷机组技术参数 (24) 3.2.2 下出风水冷机组技术参数 (26) 3.3 使用条件 (29) 第四章尺寸参数 (30) 4.1 机械尺寸 (30) 4.1.1 室内机 (30) 4.1.2 室外机 (34) 4.2 安装底座尺寸 (36) 4.3 风帽尺寸 (37) 4.4 维护空间 (38) 第五章应用指导 (39) 5.1 制冷剂管路 (39) 5.1.1 一般原则 (39) 5.1.2 布管 (40) 5.1.3 接管 (41) 5.2 水冷系统 (42) 5.2.1 一般原则 (42) 5.2.2 布管 (43)

艾默生机房空调日常维护规程

机房空调日常检查规程 精密空调性能的正常发挥,和日常检查与维护关系密切。通过检查,可以及时发现并消除空调机组故障隐患,保证机房运行安全。 一、不停机检查项目 1、检查控制屏显示的温度、湿度是否在正常范围内; 2、检查是否有报警状态图标显示; 3、聆听机组运行有无异常杂音; 4、检查室内机侧板表面是否有结霜或结露现象; 5、检查冷凝器翅片是否有较多灰尘(注意:在检查时,要查看冷凝器翅片进风侧的灰 尘程度); 6、检查冷凝风机马达是否正常运转;仔细聆听冷凝器运行有无杂音。 二、停机检查项目 确认机组已停机,主电源已切断,拆下机组前部面板,依次检查 1、检查空气过滤网(重要!) 简易判断:⑴、过滤网是否透光。⑵、过滤网上侧是否有较多灰尘。 处理方法:⑴、将过滤网拆下,曝晒,轻轻敲打,除去灰尘。 ⑵、经处理后过滤网仍然有很多灰尘或不透光,需更换新的过滤网。 2、检查控制、电气部分 简易判断:⑴、打开面板后有无烧糊异味。 ⑵、察看各电缆接头处有无变色。 处理方法:⑴、关闭空调机组总电源!紧固松动的接头。 ⑵、查看接触器触点有无拉弧烧黑痕迹。 3、检查加湿器 简易判断:如果控制屏显示的湿度值达不到房间要求,可能加湿罐内已结垢。需拆下来清理。加湿罐在机组底部中间位置。 处理方法:拆下加湿器上部的电缆和蒸汽管。解开固定加湿罐体的扎带,将加湿器取出清理水垢。注意:加湿罐中的水可能是热的,小心烫伤! 4、室内风机组件检查 简易判断:如果机组运行时有明显杂音或感觉机组风量不够,需检查风机组件情况。 处理方法:⑴、打开风机组件检修面板。查看风机皮带是否有开裂或断开;皮带附近是否有许多磨损下来的黑色粉沫。 ⑵、皮带松紧度是靠风机马达重力自动调整的。如果皮带磨损情况较重,以 至皮带不能拉紧,则需要更换皮带。

恒温恒湿艾默生空调系统说明

空调系统说明 1、Liebert.PEX系列描述 应用范围: 中、大型交换机房和移动机房 计算机房和数据中心(IDC) 高科技环境及实验室 工业控制室和精密加工设备 标准检测室和校准中心 UPS和电池室 生化培养室 医院和检测室 高适应性: 多项节能设计 多种送风方式,满足不同气流组织需求 多种冷却方式,包括风冷、水冷、乙二醇冷却及冷冻水等,有利于适应现场的实际条件适应R22、R407C等不同冷媒 多种监控方式 风冷冷凝器提供适合不同温度环境(包括低温启动)的配置 风冷方式提供超远安装距离和超高落差的方案

2、Liebert.PEX系列数据下送风风冷机组技术参数

3、Liebert.PEX机组的特点 ●高可靠性、高节能性、全寿命低成本 ●同等制冷量条件下,占地面积最小。侧面及背面不需要维护空间,前面只需要600mm 维护空间 ●可拆卸后搬运,保证重新组装与整机无差别,适合特殊场地搬运(如利用小电梯或狭小 通道) ●艾默生Copeland高效涡旋式压缩机,直接适合环保制冷剂(R407C)。 ●自适应风机系统,满足不同机外余压需求 ●大面积V型蒸发器,快速除湿设计,确保节能 ●独特的高效远红外加湿系统,加湿速度快,适应恶劣水质,低维护量 ●全中文图形显示屏 ●iCOM强大的群控与通讯功能 4、Liebert.PEX机组的设计 Liebert.PEX风冷系统的室内机由压缩机、蒸发器、加热器、风机、控制器、远红外加湿器、热力膨胀阀、视液镜、干燥过滤器等主要部件组成。 水冷系列还包括高效板式换热器、水流量调节阀。 室内侧制冷系统和水系统中可能涉及维护、更换的器件全部采用易拆卸的Rotalock连接方式,使维护更方便。 ?PEX风冷机组整机性能体现了高可靠性、高灵活性、高节能率、全寿命低成本。 ?PEX可靠性充分体现在:iCOM智能控制系统;Copeland涡旋压缩机;自适应风机系统; 远红外加湿系统;全调速低噪声冷凝器等 ?PEX高灵活性、高节能率充分体现在:iCOM智能控制系统;自适应风机系统;远红外 加湿系统;全调速低噪声冷凝器;占地面积小;可拆卸搬运,全正面维护;可直接应用

相关文档
最新文档