火电厂脱硫的几种方法

火电厂脱硫的几种方法
火电厂脱硫的几种方法

火电厂脱硫的几种方法(1)

通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。

其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:1、以CaCO3(石灰石)为基础的钙法,2、以MgO为基础的镁法,3、以Na2SO3为基础的钠法,4、以NH3为基础的氨法,5、以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。A、湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。B、干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。C、半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处

理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。

1脱硫的几种工艺

(1)石灰石——石膏法烟气脱硫工艺

石灰石——石膏法脱硫工艺是世界上应用最广泛的一种脱硫技术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。

它的工作原理是:将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95% 。

(2)旋转喷雾干燥烟气脱硫工艺

喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,消石灰乳由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaSO3,烟气中的SO2被脱除。与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形式随烟气带出吸收塔,进入除尘器被收集下来。脱硫后的烟气经除尘器除尘后排放。为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。该工艺有两种不同的雾化形式可供选择,一种为旋转喷雾轮雾化,另一种为气液两相流。喷雾干燥法脱硫工艺具有技术成熟、工艺流程较为简单、系统可靠性高等特点,脱硫率可达到85%以上。该工艺在美国及西欧一些国家有一定应用范围(8%)。脱硫灰渣可用作制砖、筑路,但多为抛弃至灰场或回填废旧矿坑。

(3) 磷铵肥法烟气脱硫工艺

磷铵肥法烟气脱硫技术属于回收法,以其副产品为磷铵而命名。该工艺过程主要由吸附(活性炭脱硫制酸)、萃取(稀硫酸分解磷矿萃取磷酸)、中和(磷铵中和液制备)、吸收(磷铵液脱硫制肥)、氧化(亚硫酸铵氧化)、浓缩干燥(固体肥料制备)等单元组成。它分为两个系统:

烟气脱硫系统——烟气经高效除尘器后使含尘量小于

200mg/Nm3,用风机将烟压升高到7000Pa,先经文氏管喷水降温调湿,然后进入四塔并列的活性炭脱硫塔组(其中一只塔周期性切换再生),控制一级脱硫率大于或等于70%,并制得30%左右浓度的硫酸,一级脱硫后的烟气进入二级脱硫塔用磷铵浆液洗涤脱硫,净化后的烟气经分离雾沫后排放。

肥料制备系统——在常规单槽多浆萃取槽中,同一级脱硫制得的稀硫酸分解磷矿粉(P2O5 含量大于26%),过滤后获得稀磷酸(其浓度大于10%),加氨中和后制得磷氨,作为二级脱硫剂,二级脱硫后的料浆经浓缩干燥制成磷铵复合肥料。

(4)炉内喷钙尾部增湿烟气脱硫工艺

炉内喷钙加尾部烟气增湿活化脱硫工艺是在炉内喷钙脱硫工艺的基础上在锅炉尾部增设了增湿段,以提高脱硫效率。该工艺多以石灰石粉为吸收剂,石灰石粉由气力喷入炉膛850~1150℃温度区,石灰石受热分解为氧化钙和二氧化碳,氧化钙与烟气中的二氧化硫反应生成亚硫酸钙。由于反应在气固两相之间进行,受到传质过程的影响,反应速度较慢,吸收剂利用率较低。在尾部增湿活化反应器内,增湿水以雾状喷入,与未反应的氧化钙接触生成氢氧

化钙进而与烟气中的二氧化硫反应。当钙硫比控制在

2.0~2.5时,系统脱硫率可达到65~80%。由于增湿水的加入使烟气温度下降,一般控制出口烟气温度高于露点温度10~15℃,增湿水由于烟温加热被迅速蒸发,未反应的吸收剂、反应产物呈干燥态随烟气排出,被除尘器收集下来该脱硫工艺在芬兰、美国、加拿大、法国等国家得到应用,采用这一脱硫技术的最大单机容量已达30万千瓦。(5)烟气循环流化床脱硫工艺

烟气循环流化床脱硫工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成。该工艺一般采用干态的消石灰粉作为吸收剂,也可采用其它对二氧化硫有吸收反应能力的干粉或浆液作为吸收剂。

由锅炉排出的未经处理的烟气从吸收塔(即流化床)底部进入。吸收塔底部为一个文丘里装置,烟气流经文丘里管后速度加快,并在此与很细的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈摩擦,形成流化床,在喷入均匀水雾降低烟温的条件下,吸收剂与烟气中的二氧化硫反应生成CaSO3 和CaSO4。脱硫后携带大量固体颗粒的烟气从吸收塔顶部排出,进入再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高。

此工艺所产生的副产物呈干粉状,其化学成分与喷雾干燥法脱硫工艺类似,主要由飞灰、CaSO3、CaSO4和未反应完的吸收剂Ca(OH)2等组成,适合作废矿井回填、道路基础等。

典型的烟气循环流化床脱硫工艺,当燃煤含硫量为2%左右,钙硫比不大于1.3时,脱硫率可达90%以上,排烟温度约70℃。此工艺在国外目前应用在10~20万千瓦等级机组。由于其占地面积少,投资较省,尤其适合于老机组烟气脱硫。

(6)海水脱硫工艺

海水脱硫工艺是利用海水的碱度达到脱除烟气中二氧化硫的一种脱硫方法。在脱硫吸收塔内,大量海水喷淋洗涤进入吸收塔内的燃煤烟气,烟气中的二氧化硫被海水吸收而除去,净化后的烟气经除雾器除雾、经烟气换热器加热后排放。吸收二氧化硫后的海水与大量未脱硫的海水混合后,经曝气池曝气处理,使其中的SO32-被氧化成为稳定的SO42-,并使海水的PH值与COD调整达到排放标准后排放大海。海水脱硫工艺一般适用于靠海边、扩散条件较好、用海水作为冷却水、燃用低硫煤的电厂。海水脱硫工艺在挪威比较广泛用于炼铝厂、炼油厂等工业炉窑的烟气脱硫,先后有20多套脱硫装置投入运行。近几年,海水

脱硫工艺在电厂的应用取得了较快的进展。此种工艺最大问题是烟气脱硫后可能产生的重金属沉积和对海洋环境的影响需要长时间的观察才能得出结论,因此在环境质量比较敏感和环保要求较高的区域需慎重考虑。

(7) 电子束法脱硫工艺

该工艺流程有排烟预除尘、烟气冷却、氨的充入、电子束照

射和副产品捕集等工序所组成。锅炉所排出的烟气,经过除尘器的粗滤处理之后进入冷却塔,在冷却塔内喷射冷却水,将烟气冷却到适合于脱硫、脱硝处理的温度(约70℃)。烟气的露点通常约为50℃,被喷射呈雾状的冷却水在冷却塔内完全得到蒸发,因此,不产生废水。通过冷却塔后的烟气流进反应器,在反应器进口处将一定的氨水、压缩空气和软水混合喷入,加入氨的量取决于SOx 浓度和NOx浓度,经过电子束照射后,SOx和NOx在自由基作用下生成中间生成物硫酸(H2SO4)和硝酸(HNO3)。然后硫酸和硝酸与共存的氨进行中和反应,生成粉状微粒(硫酸氨(NH4)2SO4与硝酸氨NH4NO3的混合粉体)。这些粉状微粒一部分沉淀到反应器底部,通过输送机排出,其余被副产品除尘器所分离和捕集,经过造粒处理后被送到

副产品仓库储藏。净化后的烟气经脱硫风机由烟囱向大气排放。

(8)氨水洗涤法脱硫工艺

该脱硫工艺以氨水为吸收剂,副产硫酸铵化肥。锅炉排出的烟气经烟气换热器冷却至90~100℃,进入预洗涤器经洗涤后除去HCI和HF,洗涤后的烟气经过液滴分离器除去水滴进入前置洗涤器中。在前置洗涤器中,氨水自塔顶喷淋洗涤烟气,烟气中的SO2被洗涤吸收除去,经洗涤的烟气排出后经液滴分离器除去携带的水滴,进入脱硫洗涤器。在该洗涤器中烟气进一步被洗涤,经洗涤塔顶的除雾器除去雾滴,进入脱硫洗涤器。再经烟气换热器加热后经烟囱排放。洗涤工艺中产生的浓度约30%的硫酸铵溶液排出洗涤塔,可以送到化肥厂进一步处理或直接作为液体氮肥出售,也可以把这种溶液进一步浓缩蒸发干燥加工成颗粒、晶体或块状化肥出售。

2燃烧前脱硫

燃烧前脱硫就是在煤燃烧前把煤中的硫分脱除掉,燃烧前脱硫技术主要有物理洗选煤法、化学洗选煤法、煤的气化和液化、水煤浆技术等。洗选煤是采用物理、化学或生物方式对锅炉使用的原煤进行清洗,将煤中的硫部分除掉,

使煤得以净化并生产出不同质量、规格的产品。微生物脱硫技术从本质上讲也是一种化学法,它是把煤粉悬浮在含细菌的气泡液中,细菌产生的酶能促进硫氧化成硫酸盐,从而达到脱硫的目的;微生物脱硫技术目前常用的脱硫细菌有:属硫杆菌的氧化亚铁硫杆菌、氧化硫杆菌、古细菌、热硫化叶菌等。煤的气化,是指用水蒸汽、氧气或空气作氧化剂,在高温下与煤发生化学反应,生成H2、CO、CH4等可燃混合气体(称作煤气)的过程。煤炭液化是将煤转化为清洁的液体燃料(汽油、柴油、航空煤油等)或化工原料的一种先进的洁净煤技术。水煤浆(Coal Water Mixture,简称CWM)是将灰份小于10%,硫份小于0.5%、挥发

份高的原料煤,研磨成250~300μm的细煤粉,按65%~70%的煤、30%~35%的水和约1%的添加剂的比例配制而成,水煤浆可以像燃料油一样运输、储存和燃烧,燃烧时水煤浆从喷嘴高速喷出,雾化成50~70μm的雾滴,在预热到600~700℃的炉膛内迅速蒸发,并拌有微爆,煤中挥发分析出而着火,其着火温度比干煤粉还低。

燃烧前脱硫技术中物理洗选煤技术已成熟,应用最广泛、最经济,但只能脱无机硫;生物、化学法脱硫不仅能脱无机硫,也能脱除有机硫,但生产成本昂贵,距工业应用尚有较大距离;煤的气化和液化还有待于进一步研究完善;

微生物脱硫技术正在开发;水煤浆是一种新型低污染代油燃料,它既保持了煤炭原有的物理特性,又具有石油一样的流动性和稳定性,被称为液态煤炭产品,市场潜力巨大,目前已具备商业化条件。

煤的燃烧前的脱硫技术尽管还存在着种种问题,但其优点是能同时除去灰分,减轻运输量,减轻锅炉的沾污和磨损,减少电厂灰渣处理量,还可回收部分硫资源。

3燃烧中脱硫,又称炉内脱硫

炉内脱硫是在燃烧过程中,向炉内加入固硫剂如CaCO3等,使煤中硫分转化成硫酸盐,随炉渣排除。其基本原理是:

CaCO3→CaO+CO2↑

CaO+SO2→CaSO3

CaSO3+1/2×O2→CaSO4

(1)LIMB炉内喷钙技术

早在本世纪60年代末70年代初,炉内喷固硫剂脱硫技术的研究工作已开展,但由于脱硫效率低于10%~30%,既不能与湿法FGD相比,也难以满足高达90%的脱除率要求。

一度被冷落。但在1981年美国国家环保局EPA研究了炉内喷钙多段燃烧降低氮氧化物的脱硫技术,简称LIMB,并取得了一些经验。Ca/S在2以上时,用石灰石或消石灰作吸收剂,脱硫率分别可达40%和60%。对燃用中、低含硫量的煤的脱硫来说,只要能满足环保要求,不一定非要求用投资费用很高的烟气脱硫技术。炉内喷钙脱硫工艺简单,投资费用低,特别适用于老厂的改造。

(2)LIFAC烟气脱硫工艺

LIFAC工艺即在燃煤锅炉内适当温度区喷射石灰石粉,并在锅炉空气预热器后增设活化反应器,用以脱除烟气中的SO2。芬兰Tampella和IVO公司开发的这种脱硫工艺,于1986年首先投入商业运行。LIFAC工艺的脱硫效率一般为60%~85%。

加拿大最先进的燃煤电厂Shand电站采用LIFAC烟气脱硫工艺,8个月的运行结果表明,其脱硫工艺性能良好,脱硫率和设备可用率都达到了一些成熟的SO2控制技术相当的水平。我国下关电厂引进LIFAC脱硫工艺,其工艺投资少、占地面积小、没有废水排放,有利于老电厂改造。4燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD)

燃煤的烟气脱硫技术是当前应用最广、效率最高的脱硫技术。对燃煤电厂而言,在今后一个相当长的时期内,FGD 将是控制SO2排放的主要方法。目前国内外火电厂烟气脱硫技术的主要发展趋势为:脱硫效率高、装机容量大、技术水平先进、投资省、占地少、运行费用低、自动化程度高、可靠性好等。

4.1干式烟气脱硫工艺

该工艺用于电厂烟气脱硫始于80年代初,与常规的湿式洗涤工艺相比有以下优点:投资费用较低;脱硫产物呈干态,并和飞灰相混;无需装设除雾器及再热器;设备不易腐蚀,不易发生结垢及堵塞。其缺点是:吸收剂的利用率低于湿式烟气脱硫工艺;用于高硫煤时经济性差;飞灰与脱硫产物相混可能影响综合利用;对干燥过程控制要求很高。

(1)喷雾干式烟气脱硫工艺:喷雾干式烟气脱硫(简称干法FGD),最先由美国JOY公司和丹麦Niro Atomier公司共同开发的脱硫工艺,70年代中期得到发展,并在电力工业迅速推广应用。该工艺用雾化的石灰浆液在喷雾干燥塔中与烟气接触,石灰浆液与SO2反应后生成一种干燥的固体反应物,最后连同飞灰一起被除尘器收集。我国曾在四川省白马电厂进行了旋转喷雾干法烟气脱硫的中间试验,

取得了一些经验,为在200~300MW机组上采用旋转喷雾干法烟气脱硫优化参数的设计提供了依据。

(2)粉煤灰干式烟气脱硫技术:日本从1985年起,研究利用粉煤灰作为脱硫剂的干式烟气脱硫技术,到1988年底完成工业实用化试验,1991年初投运了首台粉煤灰干式脱硫设备,处理烟气量644000Nm3/h。其特点:脱硫率高达60%以上,性能稳定,达到了一般湿式法脱硫性能水平;脱硫剂成本低;用水量少,无需排水处理和排烟再加热,设备总费用比湿式法脱硫低1/4;煤灰脱硫剂可以复用;

没有浆料,维护容易,设备系统简单可靠。

4.2湿法FGD工艺

世界各国的湿法烟气脱硫工艺流程、形式和机理大同小异,主要是使用石灰石(CaCO3)、石灰(CaO)或碳酸钠(Na2CO3)等浆液作洗涤剂,在反应塔中对烟气进行洗涤,从而除去烟气中的SO2。这种工艺已有50年的历史,经过不断地改进和完善后,技术比较成熟,而且具有脱硫效率高(90%~98%),机组容量大,煤种适应性强,运行费用较低和副产品易回收等优点。据美国环保局(EPA)的统计资料,全美火电厂采用湿式脱硫装置中,湿式石灰法占39.6%,石灰石法占47.4%,两法共占87%;双碱法占4.1%,碳酸钠法占3.1%。世界各国(如德国、日本等),在大型

火电厂中,90%以上采用湿式石灰/石灰石-石膏法烟气脱硫工艺流程。

石灰或石灰石法主要的化学反应机理为:

石灰法:SO2+CaO+1/2H2O→CaSO3?1/2H2O

石灰石法:SO2+CaCO3+1/2H2O→CaSO3?1/2H2O+CO2

其主要优点是能广泛地进行商品化开

发,且其吸收剂的资源丰富,成本低廉,废渣既可抛弃,也可作为商品石膏回收。目前,石灰/石灰石法是世界上应用最多的一种FGD工艺,对高硫煤,脱硫率可在90%以上,对低硫煤,脱硫率可在95%以上。

传统的石灰/石灰石工艺有其潜在的缺陷,主要表现为设备的积垢、堵塞、腐蚀与磨损。为了解决这些问题,各设备制造厂商采用了各种不同的方法,开发出第二代、第三代石灰/石灰石脱硫工艺系统。

湿法FGD工艺较为成熟的还有:氢氧化镁法;氢氧化钠法;美国Davy Mckee公司Wellman-Lord FGD工艺;氨法等。在湿法工艺中,烟气的再热问题直接影响整个FGD工艺的投资。因为经过湿法工艺脱硫后的烟气一般温度较低

(45℃),大都在露点以下,若不经过再加热而直接排入烟囱,则容易形成酸雾,腐蚀烟囱,也不利于烟气的扩散。所以湿法FGD装置一般都配有烟气再热系统。目前,应用较多的是技术上成熟的再生(回转)式烟气热交换器(GGH)。GGH价格较贵,占整个FGD工艺投资的比例较高。近年来,日本三菱公司开发出一种可省去无泄漏型的GGH,较好地解决了烟气泄漏问题,但价格仍然较高。前德国SHU公司开发出一种可省去GGH和烟囱的新工艺,它将整个FGD装置安装在电厂的冷却塔内,利用电厂循环水余热来加热烟气,运行情况良好,是一种十分有前途的方法。

5等离子体烟气脱硫技术

等离子体烟气脱硫技术研究始于70年代,目前世界上已较大规模开展研究的方法有2类:

(1)电子束辐照法(EB)

电子束辐照含有水蒸气的烟气时,会使烟气中的分子如O2、H2O等处于激发态、离子或裂解,产生强氧化性的自由基O、OH、HO2和O3等。这些自由基对烟气中的SO2

和NO进行氧化,分别变成SO3和NO2或相应的酸。在有

氨存在的情况下,生成较稳定的硫铵和硫硝铵固体,它们被除尘器捕集下来而达到脱硫脱硝的目的。

(2)脉冲电晕法(PPCP)

脉冲电晕放电脱硫脱硝的基本原理和电子束辐照脱硫脱硝的基本原理基本一致,世界上许多国家进行了大量的实验研究,并且进行了较大规模的中间试验,但仍然有许多问题有待研究解决。

6海水脱硫

海水通常呈碱性,自然碱度大约为1.2~2.5mmol/L,这使得海水具有天然的酸碱缓冲能力及吸收SO2的能力。国外一些脱硫公司利用海水的这种特性,开发并成功地应用海水洗涤烟气中的SO2,达到烟气净化的目的。

海水脱硫工艺主要由烟气系统、供排海水系统、海水恢复系统等组成。

脱硫法以及脱硫法的方程式:

(1) SO2被液滴吸收;

SO2(气)+H2O→H2SO3(液)

(2) 吸收的SO2同溶液的吸收剂反应生成亚硫酸钙;

Ca(OH)2(液)+H2SO3(液)→CaSO3(液)+2H2O

Ca(

OH)2 (固) +H2SO3(液)→CaSO3(液)+2H2O

(3) 液滴中CaSO3达到饱和后,即开始结晶析出; CaSO3(液)→CaSO3(固)

(4) 部分溶液中的CaSO3与溶于液滴中的氧反应,氧化成硫酸钙;

CaSO3(液)+1/2O2(液)→CaSO4(液)

(5) CaSO4(液)溶解度低,从而结晶析出

CaSO4(液)→CaSO4(固)

SO2与剩余的Ca(OH)2 及循环灰的反应

Ca(OH)2 (固) →Ca(OH)2 (液)

SO2(气)+H2O→H2SO3(液)

Ca(OH)2 (液)+H2SO3(液)→CaSO3(液)+2H2O CaSO3(液)→CaSO3(固)

CaSO3(液)+1/2O2(液)→CaSO4(液) CaSO4(液)→CaSO4(固)

火电厂脱硫的几种方法

火电厂脱硫的几种方法(1) 通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:1、以CaCO3(石灰石)为基础的钙法,2、以MgO为基础的镁法,3、以Na2SO3为基础的钠法,4、以NH3为基础的氨法,5、以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。A、湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。B、干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。C、半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处

理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 1脱硫的几种工艺 (1)石灰石——石膏法烟气脱硫工艺 石灰石——石膏法脱硫工艺是世界上应用最广泛的一种脱硫技术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。 它的工作原理是:将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95% 。 (2)旋转喷雾干燥烟气脱硫工艺

HPF脱硫工艺流程图

粗焦炉煤气脱硫工艺有干法和湿法脱硫两大类。干法脱硫多用于精脱硫,对无机硫和有机硫都有较高的净化度。不同的干法脱硫剂,在不同的温区工作,由此可划分低温(常温和低于100 ℃) 、中温(100 ℃~400 ℃) 和高温(> 400 ℃)脱硫剂。 干法脱硫由于脱硫催化剂硫容小,设备庞大,一般用于小规模的煤气厂脱硫或用于湿法脱硫后的精脱硫。 湿法脱硫又分为“湿式氧化法”和“胺法”。湿式氧化法是溶液吸收H2S后,将H2S直接转化为单质硫,分离后溶液循环使用。目前我国已经建成(包括引进)采用的具有代表性的湿式氧化脱硫工艺主要有TH法、FRC法、ADA法和HPF法。胺法是将吸收的H2S 经再生系统释放出来送到克劳斯装置,再转化为单质硫,溶液循环使用,主要有索尔菲班法、单乙醇胺法、AS法和氨硫联合洗涤法。湿法脱硫多用于合成氨原料气、焦炉气、天然气中大量硫化物的脱除。当煤气量标准状态下大于3000m3/h 时,主要采用湿法脱硫。 HPF法脱硫工艺流程: 来自煤气鼓风机后的煤气首先进入预冷塔,与塔顶喷洒的循环冷却液逆向接触,被冷却至25℃~30℃;循环冷却液从塔下部用泵抽出送至循环液冷却器,用低温水冷却至2 3℃~28℃后进入塔顶循环喷洒。来自冷凝工段的部分剩余氨水进行补充更新循环液。多余的循环液返回冷凝工段。

预冷塔后煤气并联进入脱硫塔A、脱硫塔B,与塔顶喷淋下来的脱硫液逆流接触,以吸收煤气中的硫化氢(同时吸收煤气中的氨,以补充脱硫液中的碱源)。脱硫后煤气进入下道工序进行脱氨脱苯。 脱硫基本反应如下: H2S+NH4OH→NH4HS+H2O 2NH4OH+H2S→(NH4)2S+2H2O NH4OH+HCN→NH4CN+H2O NH4OH+CO2→NH4HCO3 NH4OH+NH4HCO3→(NH4)2CO3+ H2O 吸收了H2S、HCN的脱硫液从脱硫塔A、B下部自流至反应槽,然后用脱硫液循环泵抽送进入再生塔再生。来自空压机站压缩空气与脱硫富液由再生塔下部并流进入再生塔A、B,对脱硫液进行氧化再生,再生后的溶液从塔顶经液位调节器自流回脱硫塔循环使用。 再生塔内的基本反应如下: NH4HS+1/2O2→NH4OH+S (NH4)2S+1/2O2+ H2O→ 2NH4OH+S (NH4)2Sx+1/2O2+ H2O→2NH4OH+Sx 除上述反应外,还进行以下副反应: 2NH4HS+2O2→(NH4)2S2O3+ H2O 2(NH4)2S2O3+O2→2(NH4)2SO4+2S 从再生塔A、B顶部浮选出的硫泡沫,自流入硫泡沫槽,在此经搅拌,沉降分离,排出清液返回反应槽,硫泡沫经泡

现运行的各种脱硫工艺流程图汇总

现运行的各种脱硫工艺流程图汇总 通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普 遍使用的商业化技术是钙法,所占比例在90%以上。 按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、 干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态 下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等 优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。 干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水 废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、 设备庞大等问题。 半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗 活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾

干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 烧结烟气脱硫 海水脱硫技术

火电厂脱硫脱硝及烟气除尘的技术分析

火电厂脱硫脱硝及烟气除尘的技术分析 发表时间:2019-01-08T15:23:57.747Z 来源:《电力设备》2018年第24期作者:步晓波 [导读] 摘要:在改革开放的新时期,我国的社会经济有了突飞猛进的进步,经济的高速发展与煤炭资源有着密切关系,但是由于煤炭资源利用率在不断增加,这样煤炭资源在燃烧的过程中,污染物就在不断增加,这样就给我国的环境带来了严重的影响。 (国家能源集团大武口热电有限公司宁夏石嘴山 753000) 摘要:在改革开放的新时期,我国的社会经济有了突飞猛进的进步,经济的高速发展与煤炭资源有着密切关系,但是由于煤炭资源利用率在不断增加,这样煤炭资源在燃烧的过程中,污染物就在不断增加,这样就给我国的环境带来了严重的影响。针对这样的情况,就必须要不断对火电厂锅炉的排放进行合理设置,这样就可以很大程度上提高煤炭燃烧的效率。基于此,本文主要对火电厂锅炉脱硫脱硝及烟气除尘技术进行了详细分析,希望能够给有关人士提供参考意见。 关键词:火电厂锅炉;脱硫脱硝;烟气除尘;技术 引言 我国既是煤炭的重要生产国,也是最大的煤炭消费国,伴随着我国工业的快速发展,污染问题愈加突出,环境污染会威胁人们的生命健康。在火电厂发电过程中,会排放出大量的NOx和SO2,火电厂发电已然成为工业污染的重要来源之一,合理应用火电厂锅炉脱硫脱硝及烟气除尘技术,可以减少其工业污染,对我国社会经济的可持续发展具有重要意义。 1研究火电厂锅炉脱硫脱硝及烟气除尘技术的现实意义 科学技术水平的提升,使得各行各业的发展对煤炭能源的需求量越来越大。据统计,平均每天直接用于燃烧的煤炭量高达12t。其中火电厂对煤炭的燃耗量,在当前节能减排的发展背景下,仍呈现出递增趋势。这种情况下,火电厂大量排放的污染物就会对周边的生态环境建设造成严重的污染影响,严重的甚至会形成酸雨。基于此,我国采用脱硫方式,来降低污染物的排放量,截止到2014年,市场环境中的火电厂脱硫容量达到了3600万kW。虽然处于运行状态的燃煤机组的脱硫设备安装基本完成,但其脱硝以及除尘设备的应用,仍有很大的提升改造空间。为此,相关建设人员应在明确脱硫脱硝及烟气除尘技术应用现状的情况下,找出优化控制的方法策略。这是实现工业发展可持续目标的重要课题内容,相关人员应将其充分重视起来,以用于实践。 2脱硫脱硝技术发展 2.1脱硫技术 在脱硫技术当中主流是以石灰石-石膏湿法进行处理,然而在火力发电厂进行脱硫处理之时其重点为吸收塔,吸收塔的形制不同,所达到的效果也会产生明显的差异性,一般情况下吸收塔可分成三类:⑴填料塔。这一种类型是应用内部固体填料,来促使浆液从填料层表层流入,和炉膛当中的烟气相融合,从而便可达到脱硫效果,然而其缺点也十分明显即较易造成堵塞;⑵液柱塔。采用烟气和气、液互相融合的方式,来达到脱硝效果,尽管其脱硝率较高,然而在芦荡当中没有阻塞,烟气所导致的阻力会造成较大脱硫损失;⑶喷淋吸收塔。这一技术是当前应用较为普遍的一种脱硫技术手段,一般炉膛当中的烟气是由上到下运动的,喷淋吸收塔形制为喇叭状,或是通过特定角度来向下喷射,可较为充分的吸收烟气。 2.2脱硫技术的发展 我们都知道,脱硫技术主要是采用石灰石或者石膏湿的方法,但是对于火电厂来说,脱硫技术重点的部分主要在吸收塔。但是由于吸收塔的型号和样式有很大不同,这样就使得其产生的效果也有很大区别。一般通常下,吸收塔可以分为四种类型,第一种就是填料塔,这种类型的塔主要是通过利用结构内部的填料将其固定,然后将浆液填料在表面层,这样浆液就会从表面顺流而下,从而就与锅炉内部的烟气进行有效融合和反应,即完成了脱硫。但是这种方式非常容易出现堵塞情况,并且实际操作相对比较少。第二种就是液柱塔,这种类型主要是将烟气与气、液体相融合,这样就从充分进行质的传递,从而就完成了脱硝。尽管这种类型的脱硝使用效率非常大,但是由于锅炉内部没有出现堵塞的情况,这样产生的大量烟气就会导致比较多的脱硫损失。第三种就是喷淋吸收塔,从目前的现状来看,这种技术是应用最多的一种脱硫技术,一般情况下,锅炉内部的烟气在运动的时候,采用的形式是自上而下的,同时这种类型的吸收塔主要是喇叭垂直的,并且是以一种角度直接向下喷射,从而就使得其能够更加充分进行烟气吸收。尽管从结构和价格上比之前的两种类型要更好,但是烟气的分布非常不均匀。第四种就是鼓泡塔,这种类型主要是通过利用石灰石将烟气压在下面,但是由于烟气与浆液融合在一起之后,会产生很多鼓泡,这样就会有非常好的脱硫效果,并且效率很高,此外,其也有很多缺陷,例如:阻碍压力比较大,以及结构比较复杂。 2.3火电厂锅炉除尘技术 在火电厂中,除尘技术在锅炉生产阶段的稳定性相对较高,具有较高的除尘效率,就目前来看,利用旋转电极形式进行除尘处理是未来发展的主要方向。在火电厂中,旋转清灰刷、回转阳极板共同组成了旋转电极阳极部分,灰尘积累到一定厚度时,需要对其予以彻底清除,防止出现二次烟尘,此种方法具有较为合理的除尘效果。在实际除尘过程中,如果具有较高的粉尘排放标准,那么需要将湿式静电除尘设备予以适当增设。与干式电除尘器进行比较,利用这种除尘设备可以避免二次灰尘的出现,除尘较为高效。通常情况下,其除尘率约在70%。就目前来看,在火电厂锅炉生产过程中,利用脱硫脱硝技术和除尘技术依然存在一定局限,对此,可以选择一体化作用模式,将煤炭燃烧技术与烟气脱硝技术结合,将脱硫技术与除尘技术相结合,如在脱硫工作开始之前利用干式先转电极除尘器,在脱硫完成之后利用湿式除尘器,可以让热量增加,完成装置回收工作,进而有效提升除尘效率。 2.4创新研究 由当前的实际情况来分析,在火电常锅炉生产阶段,将脱硫脱硝以及烟气除尘这三项技术予以综合应用之时,仍然会存在着不少的问题情况,这也会在一定程度上导致火力发电厂的未来的发展将面临着巨大的挑战。有经济性角度来看,火力发电厂采取脱硫、脱销与烟气除尘技术所需花费的改造成本较大,由此也就会造成在火力发电企业的经营阶段,会产生出一笔不斐的运营成本,进而也便会导致火力发电厂在较长的一段时期内都无法开展相关的技术改造与运行。在火力发电厂当中,应用脱硫技术之时,可将煤炭燃烧技术和锅炉在生产后的烟气脱硝技术相结合,从而便可达到一定的资金节约目的。并且,锅炉在处于较低的运行负荷之时,如果温度达到要求,同时和催化剂发生了反应,则便可在该温度区域内增设脱销设备。在火电厂锅炉运行时若应用脱硝技术,应尽可能选用液柱和喷淋配合使用的双塔技术,在前塔位置应选用液柱塔,同时将烟气内绝大多数的二氧化硫彻底清除,所清除的二氧化硫一般需达到整体烟气的70%以上;之后便应直接进到逆流喷淋塔内,从而便可由本质上将残存的二氧化硫基本脱除,采取这一方式所能够达到的脱硫率最大可达到98%以上。在应

火电厂工艺流程简介教学提纲

火电厂工艺流程 火力发电厂。 以煤、石油或天然气作为燃料的发电厂统称为火电厂 1、火电厂的分类 (1)按燃料分类: ①燃煤发电厂,即以煤作为燃料的发电厂;邹县、石横青岛等电厂 ②燃油发电厂,即以石油(实际是提取汽油、煤油、柴油后的渣油)为燃料的发电厂; 辛电电厂 ③燃气发电厂,即以天然气、煤气等可燃气体为燃料的发电厂; ④余热发电厂,即用工业企业的各种余热进行发电的发电厂。此外还有利用垃圾及工 业废料作燃料的发电厂。 (2)按原动机分类:凝汽式汽轮机发电厂、燃汽轮机发电厂、内燃机发电厂和蒸汽-燃汽轮机发电厂等。 (3)按供出能源分类: ①凝汽式发电厂,即只向外供应电能的电厂; ②热电厂,即同时向外供应电能和热能的电厂。 ( 4)按发电厂总装机容量的多少分类: 容量发电厂,其装机总容量在100MW以下的发电厂; ②中容量发电厂,其装机总容量在100~250MW范围内的发电厂; ③大中容量发电厂,其装机总容量在250~600MW范围内的发电厂; ④大容量发电厂,其装机总容量在600~1000MW范围内的发电厂; ⑤特大容量发电厂,其装机容量在1000MW及以上的发电厂。 (5)按蒸汽压力和温度分类:①中低压发电厂,其蒸汽压力在3.92MPa(40kgf/cm2)、温度为450℃的发电厂,单机功率小于25MW;地方热电厂。 ②高压发电厂,其蒸汽压力一般为9.9MPa(101kgf/cm2)、温度为540℃的发电厂,单机功率小于100MW; ③超高压发电厂,其蒸汽压力一般为13.83MPa(141kgf/cm2)、温度为540/540℃的发电厂,单机功率小于200MW; ④亚临界压力发电厂,其蒸汽压力一般为16.77MPa(171 kgf/cm2)、温度为540/540℃的发电厂,单机功率为30OMW直至1O00MW不等; ⑤超临界压力发电厂,其蒸汽压力大于22.llMPa(225.6kgf/cm2)、温度为550/550℃的发电厂,机组功率为600MW及以上,德国的施瓦茨电厂; ⑥超超临界压力发电厂, 其蒸汽压力不低于31 MPa、温度为593℃. 水的临界压力:22.12兆帕;临界温度:374.15℃ (6)按供电范围分类: ①区域性发电厂,在电网内运行,承担一定区域性供电的大中型发电厂; ②孤立发电厂,是不并入电网内,单独运行的发电厂; ③自备发电厂,由大型企业自己建造,主要供本单位用电的发电厂(一般也与电网相连)。

醇胺法脱硫工艺流程图

1.醇胺法脱硫工艺流程图。 (一) 工艺流程 醇胺法脱硫脱碳的典型工艺流程见图2-2。由图可知,该流程由吸收、闪蒸、换热和再生(汽提)四部分组成。其中,吸收部分是 将原料气中的酸性组分脱除至规定指标或要求;闪蒸部分是将富液 (即吸收了酸性组分后的溶液)在吸收酸性组分时所吸收的一部分烃 类通过闪蒸除去;换热是回收离开再生塔的贫液热量;再生是将富液 中吸收的酸性组分解吸出来成为贫液循环使用。 图2-2中,原料气经进口分离器除去游离液体和携带的固体杂质后进入吸收塔底部,与由塔顶自上而下流动的醇胺溶液逆流接 触,吸收其中的酸性组分。离开吸收塔顶部的是含饱和水的湿净化气, 经出口分离器除去携带的溶液液滴后出装置。通常,都要将此湿净化 气脱水后再作为商品气或管输,或去下游的NGL回收装置或LNG生产 装置。 由吸收塔底部流出的富液降压后进入闪蒸罐,以脱除被醇胺溶液吸收的烃类。然后,富液再经过滤器进贫富液换热器,利用热贫 液将其加热后进入在低压下操作的再生塔上部,使一部分酸性组分在 再生塔顶部塔板上从富液中闪蒸出来。随着溶液自上而下流至底部, 溶液中剩余的酸性组分就会被在重沸器中加热汽化的气体(主要是水 蒸气)进一步汽提出来。因此,离开再生塔的是贫液,只含少量未汽 提出来的残余酸性气体。此热贫液经贫富液换热器、溶液冷却器冷却 和贫液泵增压,温度降至比塔内气体烃露点高5~6℃以上,然后进 入吸收塔循环使用。有时,贫液在换热与增压后也经过一个过滤器。 从富液中汽提出来的酸性组分和水蒸气离开再生塔顶,经冷凝器冷却与冷凝后,冷凝水作为回流返回再生塔顶部。由回流罐分出 的酸气根据其组成和流量,或去硫磺回收装置,或压缩后回注地层以 提高原油采收率,或经处理后去火炬等 2.甘醇法吸收脱水工艺流程 1. 工艺流程 图3-5为典型的三甘醇脱水装置工艺流程。该装置由高压吸收系统和低压再生系统两部分组成。通常将再生后提浓的甘醇溶液称为贫甘醇,吸收气体中水蒸 气后浓度降低的甘醇溶液称为富甘醇。

脱硫工艺流程

现运行得各种脱硫工艺流程图汇总

通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况得分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫与燃烧后脱硫等3类、 其中燃烧后脱硫,又称烟气脱硫(Flue gasdesulfurization,简称FGD),在FGD技术中,按脱硫剂得种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础得钙法,以MgO为基础得镁法,以Na2SO3为基础得钠法,以NH3为基础得氨法,以有机碱为基础得有机碱法、世界上普 遍使用得商业化技术就是钙法,所占比例在90%以上。 按吸收剂及脱硫产物在脱硫过程中得干湿状态又可将脱硫技术分为湿法、干法与半干(半湿)法。湿法FGD技术就是用含有吸收剂得溶液或浆液在湿状态下脱硫与处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。 干法FGD技术得脱硫吸收与产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。 半干法FGD技术就是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)得烟气脱硫技术。特别就是在湿状态下脱硫、在干状态下处理脱硫产物得半干

法,以其既有湿法脱硫反应速度快、脱硫效率高得优点,又有干法无污水废酸排出、脱硫后产物易于处理得优势而受到人们广泛得关注。按脱硫产物得用途,可分为抛弃法与回收法两种、 烧结烟气脱硫

火电厂脱硫技术全解

火电厂脱硫技术全解 目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术较为成熟,效率高,操作简单。传统的石灰石/石灰—石膏法烟气脱硫工艺采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。双碱法烟气脱硫技术是为了克服石灰石—石灰法容易结垢的缺点而发展起来的。 一、主要来源: 近年来,随着机动车的增多,汽车尾气已成为主要的大气污染源,酸雨也因此更加频繁,严重危害到了建筑物、土壤和人类的生存环境。因此,世界各国纷纷提出了更高的油品质量标准,进一步限制油品中的硫含量、烯烃含量和苯含量,以更好地保护人类的生存空间。 随着对含硫原油加工量的增加及重油催化裂化的普及,油品含硫量超标及安定性不好的现象也越来越严重。由于加氢脱硫在资金及氢源上的限制,对中小型炼油厂来说进行非加氢精制的研究具有重要的意义。本文简单介绍了非加氢脱硫技术进展及未来的发展趋势。 二、硫的分布: 原油中有数百种含硫烃,目前已验证并确定结构的就有200余种,这些含硫烃类在原油加工过程中不同程度地分布于各馏分油中。 燃料油中的硫主要有两种存在形式:通常能与金属直接发生反应的硫化物称为“活性硫”,包括单质硫、硫化氢和硫醇;而不与金属直接发生反应的硫化物称为“非活性硫”,包括硫醚、二硫化物、噻吩等。对于汽油馏分而言,含硫烃类以硫醇、硫化物和单环噻吩为主,其主要来源于催化裂化(简称FCC)汽油。因此,要使汽油符合低硫汽油的指标必须对FCC汽油原料进行预处理或对FCC汽油产品进行后处理。而柴油馏分中的含硫烃类有硫醇、硫化物、噻吩、苯并噻吩和二苯并噻吩等,其中二苯并噻吩的4,6位烷基存在时,由于烷基的位阻作用而使脱硫非常困难,而且随着石油馏分沸点的升高,含硫化合物的结构也越来越复杂。 三、生产方法: 1.酸碱精制

浅谈火电厂中的烟气脱硫技术(标准版)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 浅谈火电厂中的烟气脱硫技术 (标准版)

浅谈火电厂中的烟气脱硫技术(标准版)导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 摘要:目前我国的发电还是主要已火力发电为主,其火电脱硫技术在我国脱硫技术中的应用比较广泛,但后期造成环境污染也受到了群众的重视,本文主要对湿法脱流中的工艺及防腐问题进行了分析。 关键词:火电厂;烟气脱硫;防腐 我公司总承包的新疆天龙矿业股份有限公司电解铝技改配套(1×200MW)发电机组烟气脱硫工程配置一套石灰石-石膏湿法脱硫装置(简称FGD),全烟气脱硫,脱硫效率要求不小于95%,不设GGH,有增压风机、设置全烟气旁路。 本工程是采用的石灰石/石膏湿法脱硫。即CaCO3+ SO2Ca2SO3·1/2H2O,然后将亚硫酸钙(Ca2SO3·1/2H2O)充分氧化成石膏。脱硫岛的关键设备是脱硫吸收塔。吸收塔为圆筒型常压设备,吸收塔下部内径为φ12400mm,上部内径为φ9700mm,烟气入口高度为11715mm,烟气出口高度为25525mm,液位高度为8430mm,吸收塔高为27070mm。吸收塔底部浆液池设有一层氧化空气管网和3台侧进式搅拌

火力发电厂生产工艺流程介绍

火力发电厂生产工艺流程介绍 1、前言 火力发电厂是利用化石燃料燃烧释放的热能发电的动力设施,包括燃料燃烧释热和热能电能转换以及电能输出的所有设备、装置、仪表器件,以及为此目的设置在特定场所的建筑物、构筑物和所有有关生产和生活的附属设施。主要有蒸汽动力发电厂、燃气轮机发电厂、内燃机发电厂几种类型. 2、火力发电厂生产流程如下图所示。 3、汽轮机本体 汽轮机本体(steam turbine proper)是完成蒸汽热能转换为机械能的汽轮机组的基本部分,即汽轮机本身。它与回热加热系统、调节保安系统、油系统、凝汽系统以及其他辅助设备共同组成汽轮机组。汽轮机本体由固定部分(静子)和转动部分(转子)组成。固定部分包括汽缸、隔板、喷嘴、汽封、紧固件和轴承等。转动部分包括主轴、叶轮或轮鼓、叶片和联轴器等。固定部分的喷嘴、隔板与转动部分的叶轮、叶片组成蒸汽热能转换为机械能的通流部分。汽缸是约束高压蒸汽不得外泄的外壳。汽轮机本体还设有汽封系统。如下图所示。

4、锅炉本体 锅炉设备是火力发电厂中的主要热力设备之一。它的任务是使燃料通过燃烧将化学能转变为热能,并且以此热能加热水,使其成为一定数量和质量(压力和温度)的蒸汽。 由炉膛、烟道、汽水系统(其中包括受热面、汽包、联箱和连接管道)以及炉墙和构架等部分组成的整体,称为“锅炉本体”。如下图所示。

5、热力系统及辅助设备 汽轮机部分的辅助设备有凝汽器、水泵、回热加热器、除氧器等。把锅炉、汽轮机及其辅助设备按汽水循环过程用管道和附件连接起来所构成的系统,叫做发电厂的热力系统。 发电厂的热力系统按照不同的使用目的分为“原则性热力系统”、“全面性热力系统”、“汽轮机组热力系统”等。如下图所示。

脱硫工艺流程

脱硫工艺流程 1、石灰石/石膏湿法脱硫工艺过程简介 石灰石/石膏湿法脱硫工艺是以石灰石溶解后制成的碱性溶液作为吸收剂对烟气中含有的酸性气体污染物(主要是二氧化硫)进行吸收处理的一种工艺。湿法脱硫工艺的主要过程可分为以下几个部分: (1)混合和加入新鲜的吸收液;(2)吸收烟气中的二氧化硫并反应生成亚硫酸钙;(3)氧化亚硫酸钙生成石膏;(4)从吸收液中分离石膏。 2 、吸收塔系统在湿法脱硫工艺中的重要地位 吸收塔系统是石灰石/石膏湿法脱硫工艺的核心部分,在湿法脱硫工艺的四个部分中,(1)~(3)三个部分是在吸收塔系统中实现的,即在吸收塔系统中完成了对烟气中二氧化硫进行吸收、氧化和结晶的整个反应过程。 2.1吸收塔系统的构成 吸收塔系统主要由如下几个子系统构成:吸收塔本体系统、石灰石浆液供应系统、氧化空气供应系统、石膏浆液排出系统。此外,石膏一级脱水系统及排空系统等也与吸收塔系统的运行密切相关。 2.2 吸收塔系统的工作原理 2.2.1 吸收塔本体吸收系统:在吸收塔的喷淋区,石灰石、副产物和水等混合物形成的吸收液经循环浆液泵打至喷淋层,在喷嘴处雾化成细小的液滴,自上而下地落下,而含有二氧化硫的烟气则逆流而上,气液接触过程中,发生如下反应: CaCO3+2 SO2+H2O <=> Ca(HSO3)2+CO2 除SO2外,烟气中三氧化硫、氯化氢和氟化氢等酸性组分也以很高的效率从烟气中去除。浆液中的水将烟气冷却至绝热饱和温度,消耗的水量由工艺水补偿。为优化吸收塔的水利用,这部分补充水被用来清洗吸收塔顶部的除雾器。 2.2.2氧化空气供应系统 在吸收塔的浆池区,通过鼓入空气,使亚硫酸氢钙在吸收塔氧化生成石膏,反应如下: Ca(HSO3)2+O2+ CaCO3+3 H2O 2CaSO4.2H2O+CO2

电厂脱硫工艺及脱硫工艺大全解析

我国国情和技术条件都决定了控制火电厂二氧化硫排放的关键 和有效的手段是电厂脱硫工艺烟气脱硫。近年来,我国很多城市空气二氧化硫污染严重,以煤炭为主的能源消耗结构是引起我国二氧化硫污染日趋严重的最重要原因。煤火力发电站是煤炭消耗的主体,其排放的二氧化硫已接近全社会排放总量的50%这一特点决定了控制燃煤排放的二氧化硫是我国二氧化硫污染控制的重点,控制火电厂二氧化硫排放量又是控制燃煤二氧化硫污染的主要突破口。目前火电厂减排二氧化硫的主要途径有:煤炭洗选、洁净煤燃烧技术、燃用低硫煤和烟气脱硫脱硝技术手册中的烟气脱硫。煤炭洗选目前仅能除去煤炭中的部分无机硫,对于煤炭中的有机硫尚无经济可行的去除技术。我国高硫煤产区中,煤中有机硫成分都较高,很难用煤炭洗选的方法达到有效控制二氧化硫排放的目的。洁净煤燃烧技术在国际上是近10年 开发的新技术,目前工业发达国家虽已有成熟的商业化技术,但单机容量都不大;洁净煤燃烧技术投资大、技术要求高,很难在短时间内 在国内大面积推广使用。其次,煤炭燃烧方式与常规锅炉燃烧方式差别很大,在不更换锅炉的情况下,洁净煤发电技术难以用于解决现役电厂的环保问题。根据烟气脱硫脱硝技术手册烟气脱硫技术比较成熟。 电厂脱硫工艺分析 1、 WTG-8200电厂脱硫工艺SO2在线分析成套系统概述

WTG-8200烟气连续排放监测系统是根据国家环保要求 , 针对国内燃煤发电锅炉专业研制生产的烟气连续排放监测系统。 WTG-8200烟气连续排放监测系统的最大特点是具有开放性结构,可进一步扩充或开发新的功能,满足用户更多的要求。 系统不仅是燃煤发电锅炉的专用烟气连续排放监测系统,而且还可通用于钢铁、水泥、化工及其它工业锅炉和工业、生活与医疗有毒有害废弃物的垃圾焚烧炉。 2、 WTG-8200电厂脱硫工艺SO2在线分析成套系统系统功能 烟气连续排放监测系统具有四大子系统: ? 烟气采样、处理、分析子系统; ? 烟尘检测子系统; ? 辅助参数测量子系统; ? 数据采集、处理和通讯子系统。 系统的基本功能: 参数测量 气体检测基本项目: SO 2 、 NO x 、 O 2 气体检测可选项目: CO 、 CO 2

火电厂烟气脱硫脱硝技术应用与节能环保 王美玲

火电厂烟气脱硫脱硝技术应用与节能环保王美玲 发表时间:2018-10-01T11:37:19.413Z 来源:《电力设备》2018年第16期作者:王美玲 [导读] 摘要:由于我国火电厂使用的仍旧是传统的煤炭,因此会产生大量的二氧化硫以及氮氧化物,如何解决这一问题已经成为我国污染防治工作中的重点内容。 (大唐环境产业集团股份有限公司特许经营分公司三门峡项目部河南三门峡 472100) 摘要:由于我国火电厂使用的仍旧是传统的煤炭,因此会产生大量的二氧化硫以及氮氧化物,如何解决这一问题已经成为我国污染防治工作中的重点内容。虽然我国掌握了一定的烟气脱硫和脱硝技术,但是由于成本较高,根本无法进行大范围推广。经过长期的研究之后,脱硫脱硝一体化技术的出现为我国火电厂污染防治工作带来了新的希望。基于此,本文对火电厂烟气脱硫脱硝技术应用与节能环保进行分析。 关键词:火电厂;脱硫;脱硝;应用;节能环保 1火电厂烟气脱硫脱硝现状 火电行业由于烟气排放所产生的污染较重,因此行业开始脱硫时间也比较早,早期发展的技术主要是从外国引进的,由于激烈的行业竞争,致使厂商在价格上一直在打持久战。为了在市场上获取有利竞争位置,一些厂商不惜牺牲生产质量,最终致使很多脱硫设施出现问题,影响实际脱硫效果。当前,国家已经对环保工作开始重视,污染排放也得到了一定的控制,但是一些火电厂仍采用原有的方式进行脱硫脱硝处理,这样做的后果只会增加火电厂的运营成本,使火电厂更难维持下去,因此,就当前的情况来看,火电厂的脱硫脱硝技术仍有待加强。 2电厂烟气脱硫脱硝技术 2.1活性炭技术 活性炭技术的主要原理是在整个脱硫体系当中加入一定量的氨,然后借助氧气与水蒸气的共同作用,可以同时将硝酸根离子与二氧化硫气体除去,该项技术的脱硫效率可以达到90%以上,脱硝可达50%以上。具体而言,该项技术主要是借助活性炭的吸附能力,将火电厂烟气当中的二氧化硫等有害气体吸附,同时在反应中加入适量的催化剂,从而将二氧化硫和硝酸根等转化为溶于水的硫酸与硝酸,最终将这两者完全吸附在活性炭上的过程,最终完成烟气的脱硫脱硝处理。再者,在烟气中脱离出来的部分二氧化硫还会经过二次加工,让其中的有害物质与催化剂一同发生反应,最终形成氮气。此外,在一层设备中存留在活性炭中的硫酸会受到一定的高温处理,进而将硫酸中的二氧化硫气体释放出来,确保后期阶段释放出的烟气效果更为理想,据相关数据报道,在火电厂的烟气脱硫脱硝处理中使用活性炭技术,其效率有时可达95%,这也是该项技术一直备受关注的重要原因。 2.2低氮燃烧技术 低氮燃烧技术是一种有效的反硝化技术,主要应用于火力发电厂的燃煤过程。在使用该技术的过程中,火电厂的相关人员会改变一定的燃烧条件,以降低燃烧速率。烟气中氮氧化物含量低的主要目的是保证烟气中有害氮氧化物含量的明显降低。通过对低氮燃烧技术的详细分析,发现低氮燃烧技术可分为五大类:一是循环流化床锅炉燃烧技术;二是空气分级燃烧技术;三是烟气再循环技术;四是氮氧化物燃烧器技术;五是燃料分级燃烧技术。在火电厂采用上述低碳燃烧技术时,将采用改变燃料燃烧方式的方法来达到脱氮效果。在具体使用过程中,降低空气比,改变空气混合方式,避免脱氮效果。低氮燃烧技术虽然在理论上效果理想,但脱氮率在25%~40%之间,反硝化效果不太好。 2.3石灰石-石膏法 石灰石-石膏法作为火电厂除烟的主要方法,应用频率相对较高,因此,也是当下阶段的热门技术,该项技术操作相对简单,技术较为成熟,操作也较为稳定,再加上其较高的脱硫效率,因此颇受火电厂欢迎,相比于其他技术,这项技术更容易将烟气中的二氧化硫等气体吸收,从而最大程度的降低大气污染。石灰石-石膏法的烟气脱硫体系主要由四个系统构成,分别为烟气系统、脱水系统、二氧化硫系统以及浆液制备系统。将石灰石与水进行混合处理,制成浆液,然后借助水力旋流器装置进行分离,结合实际生产需求,将浆液放到一定的存储装置内进行存贮。之后再借助浆液泵,将存储的浆液送到吸收塔内。应用这种方法进行烟气脱硫脱硝处理,其处理效率能达到90%以上,该种方法由于对煤的要求较低,处理时所需的材料来源较广,成本相对较低,因此很受厂家欢迎。 2.4高能辐射技术 该技术也是一种先进的烟气脱硫脱氮技术,主要是为了达到火电厂烟气中有害物质辐射脱硫脱氮的目的。在对我国高能辐射技术进行深入研究和实际应用的基础上,该方法可分为脉冲电晕等离子体法和电子辐照法两种,其中脉冲电晕等离子体法主要由脉冲电晕等离子体法和电子辐照法两种方法组成。指烟气中所含的水分子通过高能电子裂解,氧等分子可以产生大量的氧化颗粒,从而有效地分离二氧化硫和氮气。在此阶段,人们认为脉冲功率等离子体法也将经历氧化过程。采用热化学反应途径和还原途径对火电厂烟气进行脱硫脱氮。电子辐照主要是利用电子加速器从其工作区域的烟气中去除二氧化硫。有害物质(如二氧化氮)的气化可确保在强烈氧化时,可与外界水中的氧气发生反应,进而导致以物理和化学形式消除硫酸,并与烟气中的氨气发生反应,形成硝酸氨和硫酸氨,有效地净化烟气并直接排放到大气中。 2.5海水脱硫技术 海水脱硫是火电厂烟气脱硫的一项重要技术。由于天然海水中的碱度,它的碱度将用于从烟气中分离二氧化硫,同时也可以生产火电厂。有效地降低了烟气中二氧化硫的浓度,减少了烟气对大气的污染。 3火电厂烟气脱硫脱硝节能措施 当前阶段,国内各项新能源竞相发展,已经出现了太阳能、风能、潮汐能等众多可再生资源,且这些资源已经进入了深入的研究并逐渐走入人们的生活中,但是由于现阶段的新能源开发仍存在很多的困难,还很难将其应用到实际的工业生产当中,因此工业生产的主要发电方式还是以火电厂发电为主,从上文中我们了解到实际火电发电过程中会产生很多的有害物质,大气污染物、分成等,都会对人们的身体健康造成一定的影响,因此在实际的火电厂生产中要做好相应的烟气脱硫脱硝处理。为了处理好烟气排放所产生的大气污染物,除了要引入脱硫脱硝技术外,还要结合火电厂的实际情况开展相应的节能减排处理,从而从根本上减少大气污染。 在使用烟气脱硫脱硝技术时,为了进一步实现节能减排,达到最佳的环保效果,在实际的烟气处理过程中管理人员要控制好烟气二次

脱硫工艺流程

现运行的各种脱硫工艺流程图汇总

脱硫技术简介

通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。 其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普 遍使用的商业化技术是钙法,所占比例在90%以上。 按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。 干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。 半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的

半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。 烧结烟气脱硫

干法脱硫-工艺流程及原理说明

工艺流程及原理说明?????一个典型的CFB-FGD系统由预电除尘器、吸收剂制备、吸收塔、脱硫灰再循环、注水系统、脱硫除尘器以及仪表控制系统等组成,其工艺流程见上图。 首先从锅炉的空气预热器出来的烟气温度一般为120~180℃左右,通过预除尘器后从底部进入吸收塔(当脱硫渣与粉煤灰须分别处理时,才需要一级除尘器,否则烟气可直接进入脱硫塔),在此处高温烟气与加入的吸收剂、循环脱硫灰充分预混合,进行初步的脱硫反应,在这一区域主要完成吸收剂与HCl、HF的反应。然后烟气通过吸收塔底部的文丘里管的加速,进入循环流化床体,物料在循环流化床内,气固两相由于气流的作用,产生激烈的湍动与混合,充分接触,在上升的过程中,不断形成絮状物向下返回,而絮状物在激烈湍动中又不断解体重新被气流提升,使得气固间的滑落速度高达单颗粒滑落速度的数十倍;吸收塔顶部结构进一步强化了絮状物的返回,进一步提高了塔内颗粒的床层密度,使得床内的Ca/S比高达50以上。这样循环流化床内气固两相流机制,极大地强化了气固间的传质与传热,为实现高脱硫率提供了根本的保证。 ????在文丘里的出口扩管段设一套喷水装置,喷入的雾化水以降低脱硫反应器内的烟温,使烟温降至高于烟气露点20℃左右,从而使得SO2与Ca(OH)2的反应转化为可以瞬间完成的离子型反应。吸收剂、循环脱硫灰在文丘里段以上的塔内进行第二步的充分反应,生成副产物CaSO3·1/2H2O,还与SO3、HF和HCl反应生成相应的副产物CaSO4·1/2H2O、CaF2、CaCl2·Ca(OH)2·2H2O 等。 烟气在上升过程中,颗粒一部分随烟气被带出吸收塔,一部分因自重重新回流到循环流化床内,进一步增加了流化床的床层颗粒浓度和延长吸收剂的反应时间。由于提供的脱硫系统有清洁烟气再循环技术,无论锅炉负荷如何变化,烟气在文丘里以上的塔内流速均为5m/s左右,从文丘里以上的塔高大约40m左右,这样烟气在塔内的气固接触时间大约为8秒左右,从而有效地保证了脱硫效率。 ????从化学反应工程的角度看,SO2与氢氧化钙的颗粒在循环流化床中的反应过程是一个外扩散控制的反应过程;SO2与氢氧化钙反应的速度主要取决于SO2在氢氧化钙颗粒表面的扩散阻力,或说是氢氧化钙表面气膜厚度。当滑落速度或颗粒的雷诺数增加时,氢氧化钙颗粒表面的气膜厚度减小,SO2进入氢氧化钙的传质阻力减小,传质速率加快,从而加快SO2与氢氧化钙颗粒的反应。 只有在循环流化床这种气固两相流动机制下,才具有最大的气固滑落速度。同时,脱硫反应塔内的气固最大滑落速度是否能在不同的锅炉负荷下始终得以保持不变,是衡量一个循环流化床干法脱硫工艺先进与否的一个重要指标,也是一个鉴别干法脱硫能否达到较高脱硫率的一个重要指标。当气流速度大于10m/s时,气固间滑落速度很小或只在脱硫塔某个局部具有滑落速度,要达到很高的脱硫率是不可能的。 ????喷入的用于降低烟气温度的水,通过以激烈湍动的、拥有巨大的表面积的颗粒作为载体,在塔内得到充分的蒸发,保证了进入后续除尘器中的灰具有良好的流动状态。 由于SO3全部得以去除,加上排烟温度始终控制在高于露点温度20℃,因此烟气不需要再加热,同时整个系统也无须任何的防腐处理。 ????净化后的含尘烟气从吸收塔顶部侧向排出,然后转向进入脱硫除尘器,再通过锅炉风机排入烟囱。经除尘器捕集下来的固体颗粒,通过除尘器下的再循环系统,返回吸收塔继续参加反应,如此循环,多余的少量脱硫灰渣通过物料输送至脱硫灰仓内,再通过罐车或二级输送设备外排。 ????在循环流化床脱硫塔中,Ca(OH)2与烟气中的SO2和几乎全部的SO3,HCl,HF等,完成化学反应,主要化学反应方程式如下: ????????Ca(OH)2+ SO2=CaSO3·1/2 H2O +1/2 H2O ????????Ca(OH)2+ SO3=CaSO4·1/2 H2O +1/2 H2O ????????CaSO3·1/2 H2O+ 1/2O2=CaSO4·1/2 H2O ????????Ca(OH)2+ CO2=CaCO3 + H2O ????????Ca(OH)2+ 2HCl=CaCl2·2H2O(~75℃)(强吸潮性物料) ????????2Ca(OH)2+ 2HCl= CaCl2·Ca(OH)2·2H2O(>120℃) ????????Ca(OH)2+ 2HF=CaF2 + 2H2O(从上述化学方应方程可以看出,Ca(OH)2应尽量避免在75℃左右与HCl反应)

HPF脱硫工艺流程图

H P F脱硫工艺流程图 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

粗焦炉煤气脱硫工艺有干法和湿法脱硫两大类。干法脱硫多用于精脱硫,对无机硫和有机硫都有较高的净化度。不同的干法脱硫剂,在不同的温区工作,由此可划分低温(常温和低于100 ℃) 、中温(100 ℃~400℃)和高温(>400℃)脱硫剂。 干法脱硫由于脱硫催化剂硫容小,设备庞大,一般用于小规模的煤气厂脱硫或用于湿法脱硫后的精脱硫。 湿法脱硫又分为“湿式氧化法”和“胺法”。湿式氧化法是溶 液吸收H 2S后,将H 2 S直接转化为单质硫,分离后溶液循环使用。目前我国 已经建成(包括引进)采用的具有代表性的湿式氧化脱硫工艺主要有TH 法、FRC法、ADA法和HPF法。胺法是将吸收的H 2 S 经再生系统释放出来送到克劳斯装置,再转化为单质硫,溶液循环使用,主要有索尔菲班法、单乙醇胺法、AS法和氨硫联合洗涤法。湿法脱硫多用于合成氨原料气、焦炉气、天然气中大量硫化物的脱除。当煤气量标准状态下大于3000m3/h 时,主要采用湿法脱硫。 H P F法脱硫工艺流程: 来自煤气鼓风机后的煤气首先进入预冷塔,与塔顶喷洒的循环冷却液逆向接触,被冷却至25℃~30℃;循环冷却液从塔下部用泵抽出送至循环液冷却器,用低温水冷却至23℃~28℃后进入塔顶循环喷洒。来自冷凝工段的部分剩余氨水进行补充更新循环液。多余的循环液返回冷凝工段。

预冷塔后煤气并联进入脱硫塔A、脱硫塔B,与塔顶喷淋下来的脱硫液逆流接触,以吸收煤气中的硫化氢(同时吸收煤气中的氨,以补充脱硫液中的碱源)。脱硫后煤气进入下道工序进行脱氨脱苯。 脱硫基本反应如下: H 2S+NH 4 OH→NH 4 HS+H 2 O 2NH 4 OH+H 2 S→(NH 4 ) 2 S+2H 2 O N H 4O H+H C N→N H 4 C N+H 2 O N H 4 O H+C O 2 →N H 4 H C O 3 N H 4O H+N H 4 H C O 3 →(N H 4 ) 2 C O 3 +H 2 O 吸收了H 2 S、HCN的脱硫液从脱硫塔A、B下部自流至反应槽,然后用脱硫液循环泵抽送进入再生塔再生。来自空压机站压缩空气与脱硫富液由再生塔下部并流进入再生塔A、B,对脱硫液进行氧化再生,再生后的溶液从塔顶经液位调节器自流回脱硫塔循环使用。 再生塔内的基本反应如下: NH 4HS+1/2O 2 →NH 4 OH+S (NH 4 ) 2 S+1/2O 2 + H 2 O→ 2 N H 4 O H+S (N H 4) 2 S x+1/2O 2 +H 2 O→2N H 4 O H+S x 除上述反应外,还进行以下副反应: 2NH 4HS+2O 2 →(NH 4 ) 2 S 2 O 3 + H 2 O 2(NH 4 ) 2 S 2 O 3 +O 2 →2(NH 4) 2 S O 4 +2S 从再生塔A、B顶部浮选出的硫泡沫,自流入硫泡沫槽,在此经 搅拌,沉降分离,排出清液返回反应槽,硫泡沫经泡沫泵加压后送压滤机进行脱水,形成硫膏成品。

相关文档
最新文档