高斯公式和格林公式的运用分部积分法

高斯公式和格林公式的运用分部积分法
高斯公式和格林公式的运用分部积分法

1

第八节 高斯公式和格林公式的运用

1、(空间Green 第一公式)设S 为光滑闭曲面,S 围成区域为V ,u 在V ,S 上有二阶连续的偏导数,w 有连续的偏导数,证明:

1)

V

S V

u w

w

dxdydz uwdydz u dxdydz x x ??=-??????????ò; 2)

V

S

V u

u w u w u w w udxdydz w

dS dxdydz n x x y y z z ??????????=-++ ?????????

?????????ò. 2、.V,S 条件同上题,0u ?=,0S

u

=,函数u 为V 上有连续的二阶偏导数,证明:

()0,,,u x y z V =∈.

3、V,S 条件同上题,0u ?=,函数,u v 为V 上有连续的二阶偏导数,且0S

v

=.

证明:0V u v u v u v dxdydz x x y y z z ??

??????++= ????????

????

4、 V,S 条件同上题,0u ?=,

函数,u w 为V 上有连续的二阶偏导数,且()0S

w u -=

证明:

222222V V u u u w w w dxdydz dxdydz x y z x y z ????

??????????????????++≤++???? ? ? ? ? ? ???????????????????????????

??????。

2

证明 在第 3题公式中,取u w v -=,

得到

()0V

u w u d μ???-=?,

从而

2||||V u d μ??V u wd μ=????21||||2

V

u d μ≤??21

||||2V

w d μ+

??, 故成立2||||V

u d μ??2||||V

w d μ≤??

5.(空间Green 第二公式)dxdydz v

u v u dS v

u n v n u

V S

?????

??=????,

这里区域V 的边界为S ,,u v 在V+S 有二阶连续的偏导数,n v

为S 的单位外

法线方向.

例1. 设3R Ω?是高斯公式中的闭区域,)(,2Ω∈C v u ,n 表示Ω?的单位外法向量场.

求证:(1)μσd u d n u

??

Ω

Ω??=??; (2)μμσd u v vd u d n

u

v

???ΩΩΩ

??+???=??;

(3)μσd v u u v d n

v

u n u v

)()(?-?=??-????ΩΩ

?,

(此公式称为格林第二公式,非常有用.这三个公式实质上多重积分的分部积分公

3

式.)

证明(1)应用高斯公式,得

σσd z n z

u y n y u x n x u d n u )),cos(),cos(),cos((??Ω?Ω???+??+??=?? μd z

u

y u x u )(222222?Ω??+??+??=μd u ?Ω?=;

(2)应用高斯公式,得

σσd z n z u

v y n y u v x n x u v d n u v

)),cos(),cos(),cos((??

Ω?Ω

???+??+??=??

μd z

u

v z y u v y x u v x ))()()([

????+????+????=μμd u v vd u ??ΩΩ?+???=;

(3)利用(2)的结果,得μμσd u v vd u d n

u

v

???ΩΩΩ

??+???=??,

μμσd v u vd u d n

v

u

???

ΩΩΩ

??+???=??,

此两式两边分别相减,

即得

μσd v u u v d n

v

u n u v

)()(?-?=??-????

ΩΩ

? .

例 2. 设(,)u x y 在单位圆盘22:1D x y +≤上具有连续的二阶偏导数,

且2222()

22x y u u e x y -+??+=??,证明()2D

u u x y dxdy x y e π??+=???? .

4

证明 取221()2v x y =+,显然1

|2

D v ?=;

利用格林公式,并利用条件,得

()D

D

u u

x

y dxdy v udxdy x y ??+=?????????D D u v ds v udxdy n ??=-??????12D D u ds v udxdy n ??=-?????? 12D D udxdy v udxdy =

?-?????2222()22()

11()22x y x y D D

e dxdy x y e dxdy -+-+=-+???? 222121300001122r r d e rdr d e r dr ππθθ--=

-????222121

00|()|222r r r e r e e e

πππ---=----= . 例3. 设(,)f x y 是22{(,)1}D x y x y =+≤上二次连续可微函数,

满足222222f f

x y x y

??+=??,

计算积分2222(

D

I dxdy x y x y x y

=??++??.

解 设22(,)x y x y υ=+,

并利用条件,得

(

)D

f f I dxdy x x y y υυ????=+?????? D D

f ds fdxdy n υυ??=-?????

D D f

ds fdxdy n υ??=

-????? D D

fdxdy fdxdy υ=?-????? 222222D

D

x y dxdy x y x y dxdy =-+??

5

21

21

222222220

cos sin cos sin r r rdrd r r r rdrd π

π

θθθθθθ=??-????

?

?

?

2200111cos 4111cos 4642742d d ππθθθθ--=-??116474ππ=?-?168π

=

. 例4. 设(,)u x y 在单位圆盘22:1D x y +≤上具有连续的一阶偏导数,

且|0D u ?=,

试证 成立 22

01(0,0)lim 2x y

D xu yu u dxdy x y εεπ+→+-=+??, 其中222{(,)|1}D x y x y εε=≤+≤.

证明 取22v x y =+0,(,)(0,0)v x y ?=≠;

记222:L x y εε+=,

利用格林公式,并利用条件|0D u ?=,得

22

x y D D xu yu dxdy u vdxdy x y ε

ε

+=???+??

??D D v

u

ds u vdxdy n ε

ε

??=

-?????? 11

2(0,0),(0)L L L v u ds u ds uds u n εε

ε

πεεε+?=-=-=-→-→????蜒?, 即结论得证.

或者利用在极坐标表示下有2221,x y x y xu yu u

u r

xu yu r r x y r r

+??=+=?+?,

格林公式及其在曲线积分求解中的应用

南昌工程学院 《数分选讲》课程设计题目格林公式及其在曲线积分求解中的应用 课程名称数分选讲 系院理学院 专业信息与计算科学 班级2012级1班 学生姓名魏志辉 学号2012101316 指导教师禹海雄 设计起止时间:2015年6月11日至2015年6月15日

什么是曲线积分?? 1.设L为xOy平面上的一条光滑的简单曲线弧,f(x,y)在L上有界,在L上任意插 入一点列M1,M2,M3…,Mn 把L 分成n个小弧段ΔLi的长度为ds,又Mi(x,y)是L上的任一点,作乘积f(x,y)i*ds,并求和即Σf(x,y)i*ds,记λ=max(ds) ,若Σf(x,y)i*ds的极限在当λ→0的时候存在,且极限值与L的分法及Mi在L的取法无关,则称极限值为f(x,y)在L上对弧长的曲线积分,记为:∫f(x,y)*ds ; 其中f(x,y)叫做被积函数,L叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。 2.曲线积分的类别: 曲线积分分为:对弧长的曲线积分(第一类曲线积分) 对坐标轴的曲线积分(第二类曲线积分) 两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号33。 3.两种曲线积分的联系: 对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式ds=√[1+(dy/dx)^2]*dx; 或者ds=√[1+(dx/dy)^2]*dy;这样对弧长的曲线积分都可以转换成对 坐标轴的曲线积分了。

基本积分公式

§5.3基本积分公式 重点与难点提示 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式. (1) ( 5.6 ) (2) ( 5.7 ) (3) ( 5.8 ) (4) ( 5.9 ) (5) ( 5.10 ) (6) ( 5.11 ) (7) ( 5.12 ) (8) ( 5.13 ) (9) ( 5.14 )

(10) ( 5.15 ) (11) ( 5.16 ) 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有.

是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数)

分部积分的计算方法

§7.2分部积分法与换元积分法 (一) 教学目的:熟练掌握第一、二换元积分法与分部积分法. (二) 教学内容:第一、二换元积分法;分部积分法. ———————————————————————— 如何计算不定积分 ?xdx 2cos ?我们知道, ?+=C x xdx sin cos ,那么是否有 C x xdx +=?2sin 2cos ?显然不对。 计算不定积分,仅有直接积分法还是不行的。如?xdx 2cos 、?xdx ln 、? xdx tan 等积分就不能直接积分,下面探讨其它的计算不定积分的方法。 一、换元积分法 1.凑微分法 定理1(第一换元积分法)若函数)(x u φ=在[a,b]可导,且βφα≤≤)(x ,],[βα∈?u ,有 )()(x f x F =',则函数)()]([x x f φφ'存在原函数)]([x F φ,即 C x F dx x x f +='?)]([)()]([φφφ **具体应用此定理计算不定积分时,其过程是这样的: ???+====+======'==C x F C u F du u f x d x f dx x x f x u x u )]([)()()()]([)()]([) ()(φφφφφφφ 例7.求 ? +dx x 3 5 分析:我们有公式 ? +=C x dx x 34 3 4 3 ,而上述积分中被积函数根号里面还要加5,不能直接用公式。 为了能用公式计算,进行凑微分: )5(+=x d dx 解: C x C u du u x d x dx x x u x u ++====+=====++=+? ?? +=+=34 53 4 3 5 3 3 )5(4 343)5(55 例8.求? +dx x )85sin( 分析:为了能应用公式计算,进行凑微分:)85(51 += x d dx 解:???+=====++=+udu x d x dx x x u sin 5 1)85()85sin(51 )85sin(85 C x C u x u ++-====+-=+=)85cos(5 1 cos 5185 一般地,在计算积分的时候,有时为了化为能用公式计算,我们常根据需要作下面的凑微分公式: (1))()(1 )(b ax d b ax f a dx b ax f ++= +

分部积分法教案

分部积分法 教学目的:使学生理解分部积分法,掌握分部积分法的一般步骤及其应用。 重点:分部积分法及其应用 难点:在分部积分法中,要恰当的选取U和v 教学方法:讲练法 0回顾 上几节课我们学习了不定积分的求法,要求我们①熟记基本初等函数积分公式表②熟练、一换元积分法(凑微法)③熟练、灵活的运用第二换元积分法。 凑微法:实质是在被积函数中凑出中间变量的微分; f(x)dx f [ (x)] '(x)dx f[ (x)]d[ (x)] 令u (x) f (u)du F(u) C F[ (x)] C 第二换元积分法:关键是通过适当的变量替换x (t),使得难求的积分易求 f (x)dx 令x (t) f[ (t)]'⑴dt f[ (t)]d (t) F[ (t)] C F(x) C 1引入 用我们已经掌握的方法求不定积分x cosxdx 分析:①被积函数为两函数的乘积不是基本的积分公式。 ②凑微法失效。x cosx ③第 — 1类换兀积分法 解:不妨设cosx t则x arccost 原方程t arccost 1-dt 更为复杂 -1 t 所以凑微法和第二换元积分法都失效。 反之考虑,两函数乘积的积分不会,但两函数乘积的求导我们会,比如:(假设u、已知: (u v)' u'v uv' 灵活的运用第v为两个函数)

对上式两边积分得:uv u'vdx uv'dx 观察上式发现被积函数也是两函数乘积的形式,注意:uv'dx中v'为导数形式。 故,我们可以尝试来解一下上面的积分。 x cosxdx 先要化的和要求积分的形式一样 x(sin x)'dx xsi nx x'si nxdx xsinx cosx C 真是:山重水复疑无路,柳暗花明又一村。通过上面的方法,我们顺利的解决两函数乘积的积分。其实上面的公式正是这一节课要讲述的“分部积分法”。 2公式 2.1定理设函数u u(x)和v v(x)及都具有连续的导数,则有分部积分公式: uv'dx uv u'vdx (或udv uv vdu) 说明:①两函数的积分等于将其中一个放在d里后,里外相乘减去换位的积分。 ②内外积减去换位“积”。 ③步骤:a放d中,b、套公式。 2.2例1求不定积分x sinxdx 解:x sin xdx x sin xdx xd(cos x)①放d中 xcosx cos xdx②套公式 xcosx sin x C 3 U、V的选取问题 例2求不定积分e x xdx 解:e x xdx x 1 2、 e d(-x ) 2 1 2 x 1 2. x x e x de 2 2 1 2 x 1 x 2 , x e e x dx 2 2 移项得: uv'dx uv u'vdx

定积分的基本公式

第三讲 定积分的基本公式 【教学内容】 1.变上限积分函数 2.牛顿-莱布尼兹公式 【教学目标】 1.掌握变上限积分函数 2.掌握牛顿-莱布尼兹公式 【教学重点与难点】 牛顿-莱布尼兹公式 【教学过程】 一、引例 一物体作变速直线运动时,其速度)(t v v =,则它从时刻a t =到时刻b t =所经过的路程S : dt t v S b a ? = )( 另一方面,如果物体运动时的路程函数)(t S S =,则它从时刻a t =到时刻b t =所经过的路程 S 等于函数)(t S S =在],[b a 上的增量 )()(a S b S - 同一物理量(路程)的两种不同数学表达式应该是相等的, ∴ dt t v S b a ? = )()()(a S b S -= ∵ )()(/ t v t S = ∴ ? ? = = b a b a dt t S dt t v S )()(/)()(a S b S -= 二、变上限积分函数 1.定义:如果函数)(x f 在区间],[b a 上连续,那么对于区间],[b a 上的任一点x 来说,)(x f 在区间],[x a 上仍连续,所以函数)(x f 在],[x a 上的定积分 ? x a dx x f )( 存在。也就是说,对于每一个确定的x 值,这个积分将有一个确定的值与之对应,因此它是积分上限x 的函数,此函数定义在区间],[b a 上,把它叫做变上限积分函数,记为)(x Φ。即 )()()()(b x a dt t f dx x f x x a x a ≤≤==Φ?? 2.定理1 如果函数)(x f y =在区间],[b a 上连续,则变上限积分函数 )()()(b x a dt t f x x a ≤≤=Φ? 是函数)(x f y =的原函数,即

分部积分法word版

4.3 分部积分法 前面介绍的基本积分法和换元积分法的共同特点是经过适当的变形或变换,将不易计算的不定积分转化为易于计算的另一种不定积分,达到化难为易,化未知为已知的目的. 现在我们介绍另一种求不定积分的方法——分部积分法,用于求两种不同类型函数乘积的不定积分,这是与两个函数乘积的导数法则对应的积分方法. 设函数)(x u u =,)(x v v =具有连续导数,因为两个函数乘积的导数公式为 v u v u uv '+'=')( 或 v u uv v u '-'=')( 于是,对上式两边求不定积分,得 ???'-'='vdx u dx uv dx v u )( 即 ??'-='vdx u uv dx v u (4.3.1) 或 ??-=vdu uv udv (4.3.2) 上述公式叫做分部积分公式. 例如: C e xe dx e xe de x dx xe x x x x x x +-=-==??? 【注】:(1)分部积分法主要用于解决被积函数是两类不同类型函数的乘积的不定积分。如 dx xe x ?,dx x x ?sin ,dx x x ?ln ,dx x e x ?sin 等等。 (2)关键是选择合适的u 和dv ,选取原则: (a )v 要容易求出。(b ) du v ?比dv u ?容易求出。 例如: x x x x de x e x x d e dx xe ??? -=??? ??=222212 1 21 不合适。 (3)步骤:运用分部积分公式求不定积分?dx x f )(的主要步骤是把被积函数)(x f 分解为两部分因式相乘的形式,其中一部分因式看作u,另一部分因式看作v ',而后套用公式,这样就把求不定积分?'dx v u 的问题转化为求不定积分?'vdx u 的问题. ()dx x f ? ()()dx x v x u ?'= 确定()x u 和() x v '

曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳 一、曲线积分与曲面积分的计算方法 1.曲线积分与曲面积分的计算方法归纳如下: (1) 利用性质计算曲线积分和曲面积分. (2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则 1 (,)2(,)L L f x f x y ds f x y ds f x ??=? ??? ?对为奇函数对为偶函数 10 (,)2(,)L L P x P x y dx P x y dy P x ??=?????对为奇函数 对为偶函数 1 0 (,)2(,)L L Q x Q x y dy Q x y dy Q x ??=?????对为偶函数 对为奇函数 其中1L 是L 在右半平面部分. 若积分曲线L 关于x 轴对称,则 1 (,)2(,)L L f y f x y ds f x y ds f y ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P y P x y dx P x y dy P y ??=?????对为偶函数 对为奇函数 1 0 (,)2(,)L L Q y Q x y dy Q x y dy Q y ??=?????对为奇函数 对为偶函数 其中1L 是L 在上半平面部分. (2)若空间积分曲线L 关于平面=y x 对称,则 ()()=? ?L L f x ds f y ds .

定积分基本公式

定积分基本公式 定积分是高等数学中一个重要的基本概念,在几何、物理、经济学等各个领域中都有广泛的应用.本章将由典型实例引入定积分概念,讨论定积分性质和计算方法,举例说明定积分在实际问题中的具体运用等. 第二节 微积分基本公式 一、变上限的定积分 设函数()f x 在[[,]a b ] 上连续,x ∈[,]a b ,于是积分()d x a f x x ?是一个定数, 这种写法有一个不方便之处,就是 x 既表示积分上限,又表示积分变量.为避免 t ,于是这个积分就写成了 ()d x a f t t ? . x 值,积分()d x a f t t ?就有一个确定的的一个函数,记作 ()Φx =()d x a f t t ? ( a ≤x ≤ b )通常称函数 ()Φx 为变上限积分函数或变上限积分,其几何意义如图所示. 定理1 如果函数()f x 在区间[,]a b 上连续,则变上限积分 ()Φx =()d x a f t t ?在[,]a b 上可导,且其导数是 d ()()d ()d x a Φx f t t f x x '= =?( a ≤x ≤ b ). 推论 连续函数的原函数一定存在. 且函数()Φx =()d x a f t t ?即为其原函数.

例1 计算()Φx =2 0sin d x t t ?在x =0 ,处的导数. 解 因为2 d sin d d x t t x ?=2sin x ,故 2 (0)sin 00Φ'==; πsin 242Φ'==. 例2 求下列函数的导数: (1) e ln ()d (0)x a t Φx t a t =>? ; 解 这里()Φx 是x 的复合函数,其中中间变量e x u =,所以按复合函数求导 法则,有 d d ln d(e )ln e (d )e d d d e x x u x x a Φt t x x u t x ===?. (2) 2 1()(0) x Φx x θ=>? . 解 21d d d d x Φx x θ=-?2 2()x x ='=2sin 2sin 2x x x x x =- ?=-. 二、牛顿-莱布尼茨(Newton-Leibniz )公式 定理2 设函数()f x 在闭区间[,]a b 上连续,又 ()F x 是()f x 的任一个原函数,则有()d ()() b a f x x F b F a =-? . 证 由定理1知,变上限积分 ()()d x a Φx f t t =?也是()f x 的一个原函数,于 是知0()()Φx F x C -=, 0C 为一常数, 即 0 ()d ()x a f t t F x C =+?.

定积分常用公式

定积分常用公式 二、基本积分表(188页1—15,205页16—24) (1) (k是常数) kdxkxC,,, ,,1x,(2) xdxC,,,(1)u,,,,,1 1(3) dxxC,,ln||,x dx(4) ,,arlxCtan2,1,x dx(5) ,,arcsinxC,21,x (6)cossinxdxxC,, , (7)sincosxdxxC,,, , 1(8) dxxC,,tan2,cosx 1(9) dxxC,,,cot2,sinx sectansecxxdxxC,,(10) , csccotcscxxdxxC,,,(11) , xxedxeC,,(12) , xax(13), (0,1)aa,,且adxC,,,lna shxdxchxC,,(14) , chxdxshxC,,(15) , 11x(16) dxarcC,,tan22,axaa, 1 11xa,(17) dxC,,ln||22,xaaxa,,2 1x(18) dxarcC,,sin,22aax, 122(19) dxxaxC,,,,ln(),22ax, dx22(20) ,,,,ln||xxaC,22xa,

(21)tanln|cos|xdxxC,,, , (22)cotln|sin|xdxxC,, , )secln|sectan|xdxxxC,,, (23, cscln|csccot|xdxxxC,,,(24) , 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把换成仍成立,是以为自变量的函数。 xuux 3、复习三角函数公式: 1cos2,x22222, sincos1,tan1sec,sin22sincos,xxxxxxx,,,,,cosx,2 1cos2,x2。 sinx,2 fxxdxfxdx[()]'()[()](),,,,,注:由,此步为凑微分过程,所以第一,, 类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。 2 小结: 1常用凑微分公式 积分类型换元公式11.f(ax,b)dx,f(ax,b)d(ax,b)(a,0)u,ax,b,,a u,x11,2.f(x)xdx,f(x)d(x)(,0),,,,,,,,,1u,lnx3.f(lnx),dx,f(lnx)d(lnx), ,x 4..f(e),edx,f(e)dexxxxu,ex,,第 1一5.f(a),adx,f(a)daxxxx,,lnau,ax换 6.f(sinx),cosxdx,f(sinx)dsinxu,sinx元,, u,cosx积7.f(cosx),sinxdx,,f(cosx)dcosx,,分 28.f(tanx)secxdx,f(tanx)dtanxu,tanx,,法 u,cotx29.f(cotx)cscxdx,,f(cotx)dcotx,,

定积分公式

二、基本积分表(188页1—15,205页16—24) (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+=++? (1)u ≠- (3)1ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+? (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+? (8)2 1 tan cos dx x C x =+? (9)2 1 cot sin dx x C x =-+? (10)sec tan sec x xdx x C =+? (11)csc cot csc x xdx x C =-+? (12)x x e dx e C =+? (13)ln x x a a dx C a = +?,(0,1)a a >≠且 (14)shxdx chx C =+? (15)chxdx shx C =+? (16)2 2 11tan x dx arc C a x a a = ++?

(17)2 2 11ln | |2x a dx C x a a x a -= +-+? (18) sin x arc C a =+? (19) ln(x C =++? (20) ln |x C =++? (21)tan ln |cos |xdx x C =-+? (22)cot ln |sin |xdx x C =+? (23)sec ln |sec tan |xdx x x C =++? (24)csc ln |csc cot |xdx x x C =-+? 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。 3、复习三角函数公式: 2 2 2 2 sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==2 1cos 2cos 2 x x += , 2 1cos 2sin 2 x x -= 。 注:由[()]'()[()]() f x x dx f x d x ????= ?? ,此步为凑微分过程,所以第一 类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。

曲线积分和格林公式学习总结

高 数 作 业 姓名:徐艳涛 班级:电子商务1133 学号:201161102348

曲线积分和格林公式学习总结 §1对弧长的曲线积分 1.1由例子引入对弧长的曲线积分的定义给出性质,然后介绍将对弧长的曲线积分 化为定积分的计算方法。 1、引例:求曲线形构件的质量 最后举例巩固计算方法的掌握。 2、s z y x f d ),,(? Γ 为第一类曲线积分,其中Γ为曲线,被积函数 ) ,,(z y x f 中的点) ,,(z y x 位于曲线Γ上,即),,(z y x 必须满足Γ对应的方程,222dz dy dx ds ++=是弧微分、弧长元素。 若Γ是封闭曲线,则第一类曲线积分记为s z y x f d ),,(?Γ 3、第一类曲线积分的应用: 1)、曲线Γ的长s=s d ?Γ 2)、若空间曲线形物体的线密度为),,(z y x f ,Γ∈),,(z y x ,则其质量M ds z y x f ),,(?Γ = ; 质心坐标为),,(z y x ,其中M ds z y x zf z M ds z y x yf y M ds z y x xf x ),,(,),,(,),,(???Γ Γ Γ = = = ; 对x 轴的转动惯量ds z y x f z y Ix ),,()(2 2 += ?Γ 4、第一类曲线积分的计算方法: 若空间曲线Γ参数方程为:?? ? ??===)() () (t z z t y y t x x ,β α ≤≤t ,则dt t z t y t x ds 222)]('[)]('[)]('[++=, s z y x f d ),,(?Γ =? β α )) (),(),((t z t y t x f t t z t y t x d )]('[)]('[)]('[2 2 2 ++。 例1 计算? Γ ds z y x )(2 2 2 ++,其中Γ:t x cos =,t y sin =,t z =,π 20≤≤t 解 因为222z y x ++=222sin cos t t t ++=21t +,dt dt t t ds 21)(cos )sin (22=++-=, 所以? Γ ds z y x )(2 22++) 3 82(22)1(3 2 20 πππ + = += ?dt t 例2 ?Γds y ||,其中Γ为球面2 2 2 2 =++z y x 与平面y x =的交线; 解 Γ的参数方程为t z t y x sin 2,cos = ==,π 20≤≤t ,dt dt z y x ds 2'''222=++=, 根据对称性得到? L ds y ||=2 4d cos 24 2 =?t t π 例3 计算?Γ ds z y x )(2 2 2 ++,其中:Γ???? ?==+1 222z a y x )0(>a 解 Γ:?? ? ??===1sin cos z t a y t a x ,π20≤≤t ,dt t z t y t x ds 222)]('[)]('[)]('[++=adt dt t t a =+=)cos (sin 222 ∴ ?Γ ds z y x )(2 22++) 1(2)1(2 2 20 +=+= ?a a adt a ππ

曲线积分和格林公式

什么是曲线积分?? 1. 设L为xOy平面上的一条光滑的简单曲线弧,f(x,y)在L上有界, 在L上任意插入一点列M1,M2,M3…,Mn 把L 分成n个小弧段ΔLi的长度为ds,又Mi(x,y)是L上的任一点,作乘积f(x,y)i*ds,并求和即Σ f(x,y)i*ds,记λ=max(ds) ,若Σ f(x,y)i*ds的极限在当λ→0的时候存在,且极限值与L的分法及Mi在L的取法无关,则称极限值为f(x,y)在L上对弧长的曲线积分,记为:∫f(x,y)*ds ; 其中f(x,y)叫做被积函数,L叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。 2.曲线积分的类别: 曲线积分分为:对弧长的曲线积分(第一类曲线积分)对坐标轴的曲线积分(第二类曲线积分) 两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx 或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号33。 3.两种曲线积分的联系: 对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式ds=√[1+(dy/dx)^2]*dx;

)在推广之后都是以曲线积分的形式出现()。曲线积分在物理学中是很重要的工具,例如计算电场或重力场中的做功,或量子力学中计算粒子出 4.格林公式 【定理】设闭区域由分段光滑的曲线围成,函数及在上具有一阶连续偏导数,则有 (1) ∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy 其中是的取正向的边界曲线. 公式(1)叫做格林(green)公式. 【证明】先证

常用求导积分公式及不定积分基本方法

常用求导积分公式及不定积分基本方法 Document number:PBGCG-0857-BTDO-0089-PTT1998

一、基本求导公式 1. ()1x x μμμ-'= ()ln 1x x '= 2. (sin )cos x x '= (cos )sin x x '=- 3. 2(tan )sec x x '= 2(cot )csc x x '=- 4. (sec )tan sec x x x '= (csc )cot csc x x x '=- 5. ()ln x x a a a '=,()x x e e '= 6. () 2arctan 11x x '+= ()arcsin x '= () 2arccot 11x x '+=- ()arccos x '=二、基本积分公式 1. 1d (111)x x x C μμμμ+= + =-/ +?, 1ln ||+dx x C x =? 2. d ln x x a a x C a =+?,d x x e x e C =+? 3. sin d cos x x x C =-+?, cos d sin x x x C =+? 4. 2sec d tan x x x C =+? 2csc d cot x x x C =-+? 5. tan d ln |cos |x x x C =-+? cot d ln |sin |x x x C =+? 6. sec d ln |sec tan |x x x x C =++? csc d ln |csc cot |x x x x C =-+? 7. 21d arctan 1x x C x =++? arcsin x x C =+ 2211d arctan x x C a x a a =++? arcsin x x C a =+ 8. ln x x C =+

曲线积分与格林公式学习总结

曲线积分与 格林公式学习总结 王德才 201121102340 电子商务1133班

一、 曲线积分 1定义:设L 为xOy 平面上的一条光滑的简单曲线弧,f(x,y)在L 上有界,在L 上任意插入一点列M1,M2,M3…,Mn 把L 分成 n 个小弧段ΔLi 的长度为ds ,又Mi(x,y)是L 上的任一点,作乘积f(x,y)i*ds,并求和即Σ f(x,y)i*ds ,记λ=max(ds) ,若Σ f(x,y)i*ds 的极限在当λ→0的时候存在,且极限值与L 的分法及Mi 在L 的取法无关,则称极限值为f(x,y)在L 上对弧长的曲线积分,记为:∫f(x,y)*ds ;其中f(x,y)叫做被积函数,L 叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。 2、对弧长的曲线积分:s z y x f d ),,(?Γ 为第一类曲线积分,其中Γ为曲线,被积函数) ,,(z y x f 中的点),,(z y x 位于曲线Γ上,即),,(z y x 必须满足Γ对应的方程,222dz dy dx ds ++=是弧微分、弧长元素。 若Γ是封闭曲线,则第一类曲线积分记为s z y x f d ),,(?Γ (1)第一类曲线积分的应用: 1)、曲线Γ的长s=s d ?Γ 2)、若空间曲线形物体的线密度为),,(z y x f ,Γ∈),,(z y x ,则其质量M ds z y x f ),,(?Γ =; 质心坐标为),,(z y x ,其中M ds z y x zf z M ds z y x yf y M ds z y x xf x ),,(,),,(,),,(???Γ Γ Γ ===; 对x 轴的转动惯量ds z y x f z y Ix ),,()(22+=?Γ (2)第一类曲线积分的计算方法: 若空间曲线Γ参数方程为:?? ? ??===)()() (t z z t y y t x x ,βα≤≤t ,则dt t z t y t x ds 222)]('[)]('[)]('[++=, s z y x f d ),,(?Γ=?β α))(),(),((t z t y t x f t t z t y t x d )]('[)]('[)]('[222++。 例1 计算? Γ ds z y x )(222++,其中Γ:t x cos =,t y sin =,t z =,π20≤≤t 解 因为222z y x ++=222sin cos t t t ++=21t +,dt dt t t ds 21)(cos )sin (22=++-=, 所以? Γ ds z y x )(2 22++)3 82(22)1(3 2 20 πππ +=+= ?dt t 3第一类曲线积分 (1 )公式:= 应用前提: 1)曲线L 光滑,方程可以写成为:

常用的求导和定积分公式

一.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2 csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则

若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数) (x f y =在对应区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1 = 复合函数求导法则 设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或()()y f u x ?'''= 二、基本积分表 (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+= ++? (1)u ≠- (3)1 ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+?

积分基本公式

2.基本积分公式表 (1)∫0d x=C (2)=ln|x|+C (3)(m≠-1,x>0) (4)(a>0,a≠1) (5) (6)∫cos x d x=sin x+C (7)∫sin x d x=-cos x+C (8)∫sec2x d x=tan x+C (9)∫csc2x d x=-cot x+C (10)∫sec x tan x d x=sec x+C (11)∫csc x cot x d x=-csc x+C (12)=arcsin x+C (13)=arctan x+C 注.(1)不是在m=-1的特例. (2)=ln|x|+C,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x. 事实上,对x>0,(ln|x|)' =1/x;若x<0,则 (ln|x|)' =(ln(-x))' =. (3)要特别注意与的区别:前者是幂函数的积分,后者是指数函数的积分. 下面我们要学习不定积分的计算方法,首先是四则运算.

6. 复合函数的导数与微分 大量初等函数含有复合函数的成分,它们的导数与微分计算法则具有特别重要的意义. 定理.(链锁法则)设z=f(y),y=?(x)分别在点y0=?(x0)与x0可导,则复合函数z=f[?(x)]在x0可导,且 或(f o?)' (x0)=f '(y0)??'(x0). 证.对应于自变量x0处的改变量?x,有中间变量y在y0=?(x0)处的改变量?y及因变量z在z0=f(y0)处的改变量?z,(注意?y可能为0).现 ?z=f'(y0)??y+v,?y='?(x0)?x+u, 且令,则v=?αy,(注意,当?y=0时,v=?αy仍成立).y在x 0可导又蕴含y在x0连续,即?y=0.于是 =f '(y0)?? '(x0)+0??'(x0)=f'(y0)??'(x0) 为理解与记忆链锁法则,我们作几点说明: (1) 略去法则中的x=x0与y=y0,法则成为公式 , 其右端似乎约去d y后即得左端,事实上,由前面定理的证明可知,这里并不是一个简单的约分过程. (2) 计算复合函数的过程:x→?y →?z 复合函数求导的过程:z→?y →?x :各导数相乘 例2.3.15求y=sin5x的导数. 解.令u=5x,则y=sin u.于是

求积分的几种常规方法

合肥学院论文 求积分的若干方法 姓名:陈涛 学号:1506011005 学院:合肥学院 专业:机械设计制造及其自动化老师:左功武 完成时间: 2015年12月29日

求积分的几种常规方法 陈涛 摘要:数学分析中,不定积分是求导问题的逆运算,而且是联系微分学和积分学的一条纽带。为灵活运用积分方法求不定积分,本文介绍了求积分的几种重要方法和常用技巧,讨论和分析了求积分的几种方法:直接积分法,换元积分法,分部积分法以及有理函数积分的待定系数法,对于快速求不定积分有重要意义,适当的运用积分方法求不定积分,才可以简捷,准确。 关键词:定积分、不定积分、换元积分法、分部积分法、待定系数法 引言 数学分析是师范大学数学专业必修专业课,微分和积分都是数学分析的重点,而不定积分是积分学的基础,更是关键,直接关系到学习数学的重点。其任务是掌握逻辑思维方法和提高使用数学手段解决问题的能力。一般地,求不定积分要比求导数难很多,运用积分法则和积分公式只能解决一些简单的积分,更多的不定积分要因函数的不同形式和不同类型选用不同的方法,巧妙运用恰当的方法,可以化难为易,从而简单、快捷、准确的求出不定积分。本文为解决求积分的困难问题给出了相应的解决方法,帮助理解不定积分。 1 积分的概念 设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分(indefinite integral)。 记作∫f(x)dx。其中∫叫做积分号(integral sign),f(x)叫做 被积函数(integrand),x叫做积分变量,f(x)dx叫做被积式, C叫做积分常数,求已知函数的不定积分的过程叫做对这 个函数进行积分。 1.1 不定积分

第二节 第二类曲线积分与格林公式

第二节第二类曲线积分与格林公式 一、单项选择题 ()()() ()()()()() 2()A.2 B.1 C. 1 1.L 1A 1,0B 0,1L 12A D.2 2.2 A. 1 B.e 1 1,0B 1,2 L y y L x y x y x y dx dy e x dx xe y dy e y +-=--++-=-+=-=+??设为直线上从点到的直线段,则设为抛物线-上从点到的一段弧,则()()2223222 C.e 5 .5 sin 3.A(2,0)B(0,0)31cos 1sin 3 A. e (12)1 B. 2e (12)1 C. 3e (12)1 D. 4x L D e x t t L x y xe dx y t x y y dy πππππππ-+=-?+?=-? ??+ ??-? ??----?? ??--???从点到点如果是摆线的一段弧,则的值为( )()()()()() 22223e (12)14..d d .d d .d d .d d 5.0,01,1d (sin )d 7 A. cos1 B. 4L L L L L A x y x y B x x xy y C x xy y D y x x y L y x x y x x y y ππ??--?? +++++=--+=-?????积分值与路径无关的是设是上从点到点之间的有向弧,则()()()()()()()() 26.L 1,0,0,00,1L 7.0,0077 7cos1 C. D. 4444 (3)d (2)d A. 0 B. 1 C. 2 D ,11,1. 1 A. L L x y x x y y x dy ydx L π----+-=-+=-?? 设为三个顶点分别为和的三角区域的边界,的方向为顺时针的方向,则为从点经点到点的折线,则1 B. 2 C. 0 D. 1 -

常用求导积分公式及不定积分基本方法

常用求导积分公式及不定 积分基本方法 Prepared on 22 November 2020

一、基本求导公式 1. ()1x x μμμ-'= ()ln 1x x '= 2. (sin )cos x x '= (cos )sin x x '=- 3. 2(tan )sec x x '= 2(cot )csc x x '=- 4. (sec )tan sec x x x '= (csc )cot csc x x x '=- 5. ()ln x x a a a '=,()x x e e '= 6. () 2arctan 11x x '+= ()arcsin x '= () 2arccot 11x x '+=- ()arccos x '=二、基本积分公式 1. 1d (111)x x x C μμμμ+= + =-/ +?, 1ln ||+dx x C x =? 2. d ln x x a a x C a =+?,d x x e x e C =+? 3. sin d cos x x x C =-+?, cos d sin x x x C =+? 4. 2sec d tan x x x C =+? 2csc d cot x x x C =-+? 5. tan d ln |cos |x x x C =-+? cot d ln |sin |x x x C =+? 6. sec d ln |sec tan |x x x x C =++? csc d ln |csc cot |x x x x C =-+? 7. 21d arctan 1x x C x =++? arcsin x x C =+ 2211d arctan x x C a x a a =++? arcsin x x C a =+ 8. ln x x C =+

换元积分法与分部积分法

8.2 换元积分法与分部积分法(4时) 【教学目的】熟练掌握换元积分法和分步积分法。 【教学重点】换元积分法和分步积分法。 【教学难点】灵活运用换元积分法和分步积分法。 【教学过程】 一 换元积分法 由复合函数求导法,可以导出换元积分法. 定理8.4(换元积分法) 设g(u )在[]βα,上有定义,)(x u ?=在[]b a ,上可导,且 []b a x x ,,)(∈≤≤β?α,并记 [].,),())(()(b a x x x g x f ∈'=?? (i)若)(u g 在[]βα,上存在原函数)(u G ,则)(x f 在[]b a ,上也存在原函数 C x G x F x F +=))(()(),(?,即 ???='=du u g dx x x g dx x f )()())(()(?? .))(()(C x G C u G +=+? (ii) 又若[],,,0)(b a x x ∈≠'?则上述命题(i)可逆,即当)(x f 在[]b a ,上存在原函数F(x )时,g(u )在[βα,]上也存在原函数G(u ),且G(u )=C u F +-))((1 ?,即 ???='=dx x f dx x x g du u g )()())(()(??. .))(()(1 C u F C x F +=+=-? 证 (i ) 用复合函数求导法进行验证: )())(())((x x G x G dx d ???''= ).()())((x f x x g ='?? 所以)(x f 以))((x G ?为其原函数,(1)式成立. ( ii ) 在0)(≠'x ?的条件下,)(x u ?=存在反函数)(1 u x -=?,且 .) (1) (1u x x du dx -='= ?? 于是又能验证(2)式成立: ) (1)()(1)())((1x x f x x F u F du d ???'?='?'=-

相关文档
最新文档