煤层瓦斯压力分布规律

煤层瓦斯压力分布规律
煤层瓦斯压力分布规律

煤层瓦斯压力分布规律

1.煤层瓦斯压力

煤层瓦斯压力是指赋存在煤层孔隙中的游离瓦斯游离瓦斯作用于孔隙壁的气体压力。它是决定煤层瓦斯含量一个主要因素,当煤的孔隙率相同时,游离瓦斯量与瓦斯压力成正比;当煤的吸附瓦斯能力相同时,煤层瓦斯压力越高,煤的吸附瓦斯量越大。煤层瓦斯压力也是间接法预测煤层瓦斯含量的必备参数。在瓦斯喷出、煤与瓦斯突出的发生、发展过程中,瓦斯压力也起着重大作用,瓦斯压力是预测突出的主要指标之一。

2.煤层瓦斯压力分布规律

研究表明,在同一深度下,不同矿区煤层的瓦斯压力值有很大的差别,但同一矿区中煤层瓦斯压力随深度的增加而增大,这一特点反映了煤层瓦斯由地层深处向地表流动的总规律,也揭示了煤层瓦斯压力分布规律。

煤层瓦斯压力的大小,取决于煤生成后煤层瓦斯的排放条件。在漫长的地质年代中,煤层瓦斯排放条件是一个极其复杂的问题,它除与覆盖层厚度、透气性能、地质构造条件有关外,还与覆盖层的含水性密切相关。当覆盖层充满水时,煤层瓦斯压力最大,这时瓦斯压力等于同水平的静水压力;当煤层瓦斯压力大于同水平静水压力时,在漫长的地质年代中,瓦斯将冲破水的阻力向地面逸散;当覆盖层未充满水时,煤层瓦斯压力小于同水平的静水压力,煤层瓦斯以一定压力得以保存。图1-16是实测的我国部分局、矿煤层瓦斯压力随距地表深度变化图,从中可以看出,绝大多数煤层的瓦斯压力小于或等于同水平静水压力。

图1也反映出有少部分煤层的瓦斯压力实测值大于同水平的静水压力,这种异常现象可能与受采动影响产生的局部集中应力有关,也可能有裂隙与深部高压瓦斯相连通,造成实测的煤层瓦斯压力值偏高。

在煤层赋存条件和地质构造条件变化不大时,同一深度各煤层或同一煤层在同一深度的各个地点,煤层瓦斯压力是相近的。随着煤层埋藏深度的增加,煤层瓦斯压力成正比例增加。

图1煤层瓦斯压力随距地表深度的变化

1—重庆各局;2—北票局;3—湖南各局;4—其它局

在地质条件不变的情况下,煤层瓦斯压力随深度变化的规律,通常用下式描述:

()00H H m P P —+= (1-7)

式中: P ——在深度H 处的瓦斯压力,MPa ;

P0——瓦斯风化带H0深度的瓦斯压力,MPa ,一般取0.15~0.2,预测瓦斯压力时

可取0.196;

H0——瓦斯风化带的深度,m ; H ——煤层距地表的垂直深度,m ;

m ——瓦斯压力梯度,MPa/m 。由下式计算:

010

1H H P P m ——=

(1-8)

式中: P1——实测瓦斯压力,MPa ;

H1——测瓦斯压力P1地点的垂深,m 。

根据我国各煤矿瓦斯压力随深度变化的实测数据,瓦斯压力梯度m 一般在0.007~0.012 MPa/m ,而瓦斯风化带的深度则在几米至几百米之间。表1-7是我国部分矿井的煤层瓦斯压力和瓦斯压力梯度实测值。

表1-7 我国部分矿井的煤层瓦斯压力和瓦斯压力梯度实测值

对于一个生产矿井,应该注意积累和充分利用已有的实测数据,总结出适合本矿的基本规律,为深水平的瓦斯压力预测和开采服务。

例1-1 某矿井地面标高100m ,瓦斯风化带深度为250m ,测得-400m 水平的煤层瓦斯压力为0.784 MPa ,试预测-460m 水平煤层的瓦斯压力。

解 H0=250m ,取P0=0.196 MPa ,瓦斯梯度为:

0101=

H H P P m ——

250500196.0784.0=

——

= 0.00235 MPa/m

预测—460m 水平煤层的瓦斯压力为:

()00+=H H m P P —

=0.196+0.00235×(560—250) =0.925 MPa

答:-460m 水平的煤层瓦斯压力为0.925 MPa 。

煤层瓦斯赋存

江安县煤矿有限公司 瓦斯赋存及特征 编制单位:生产技术科 编制时间:2014年1月

江安县煤矿有限公司 煤层瓦斯赋存规律及特征 一、矿井概况 1、交通位置及隶属关系 江安县煤矿有限公司江安县煤矿矿区位于宜宾市江安、兴文县交界处,江安县富安井田129~123号勘探线浅部,即江安县城160°方向直线距离约40km,距兴文县城(古宋)310°方向直线距离约15km。行政区划隶属江安县五矿镇。 地理坐标:东经:105°05′44″~105°07′26″, 北纬:28°23′16″~28°24′39″。 矿区中心点坐标:105°06′18″,28°23′53″。 矿山紧邻古(宋)~巡(场)主干公路(800m平距),东行18km达兴文县县城(古宋),西至珙县金沙湾火车站约57km,至宜宾市约120km,东至泸州市约240km,交通十分便捷,详见交通位置图1。

2、井型、开拓方式及生产能力 江安县煤矿有限公司由原江安煤矿与芋禾湾煤矿整合而成。2008年8月22日,四川省国土资源厅以“川采矿区审字(2008)第409号”批准整合后的江安煤矿煤矿划定的矿区范围由1~31号拐点坐标圈闭,面积为2.523km2,开采K2煤层,开采深度+370m至+50m。 矿井为斜井暗斜井开拓,根据煤层赋存情况、矿区范围和开拓布置,划分两个水平,即:矿井南翼为+215m水平,北翼为+285m水平。同时根据井田煤层赋存状况和开采技术条件,煤层开采方式、机械化程度、年推进度、产量均衡等因素,沿煤层走向每800m左右划分一个采区,将全井田划分南北两翼,南翼为4个采区,北翼2个采区,全矿6个采区。目前技改验收采区为二采区,也是矿井生产的主采区,技改验收结束后逐步布置三采区、四采区、五采区、六采区。矿井设计生产能力为15万吨/年。 二、瓦斯 根据宜宾市经济委员会《关于全市煤矿瓦斯等级鉴定结果的批复》(宜市经煤[2012]4号文),经鉴定,江安县煤矿2012年矿井CH4绝对涌出量

新安煤矿瓦斯压力测试方案

新安煤矿瓦斯压力测试方案 一、测试地点 13轨道下山(2个)、15轨道下山(3个)、15皮带下山(2个)三个地点共布置测压钻场7个,每个钻场布置3个测压孔,共布孔21个(见CAD附图所示)。 二、测压地点钻孔布置参数 由石门或其他围岩巷道向煤层打测压钻孔。钻孔与煤层交角应尽量接近900,钻孔要打穿煤层全厚,孔径在75mm以上。

三.测压方法 采用钻孔瓦斯压力自然恢复的方法测定煤层原始瓦斯压力。首先在距测压煤层一定距离(>20m)的岩巷打孔,孔径一般取直径∮75mm 以上的穿层钻孔,钻孔最好垂直煤层布置,成孔后,在孔内安设测压管,然后对钻孔进行封孔(>10m);封孔后,安设压力表开始测压。前两个小时每30分钟记一次压力指示值,测压的头三天,需要每天记录二至三次压力表的指示值;以后每一天记录一次压力表的指示值。当压力表的压力指示值连续三天没有变化时,其压力即为煤层原始瓦斯压力,压力测定结束。 封孔及测压操作程序如下: 1)当钻孔即将见煤时应停止钻进,通知测压人员,待其到达现场后,恢复钻进,穿透煤层,并清洗钻孔。排除孔中的积水和岩屑。 2)测压人员要及时组装测压器,尽快封闭测压孔。封孔器的安装长度视钻孔深度而定,一般应尽可能靠近煤层。前端胶圈距煤层1-1.5m为宜。装配时在所有胶圈处的内管外壁上抹上黄油,以减少胶圈移动时磨擦力,为了保证内外管不漏气,在其接口处要缠上适量的生料带。 3)当封孔器的封孔段送到预定位置时,转动加压手轮,使两组胶圈受压膨胀,当感到胶圈膨胀与孔壁接触紧密后停止加压。 4)在孔口打上防滑楔,以策安全。 5)安装压力表。安装时要仔细检查压力表密封垫圈是否合格,为可靠起见,最好也缠绕适量的生料带。

煤层瓦斯测定、煤样采取和现场瓦斯解析(一)

煤层瓦斯测定、煤样采取和现场瓦斯解析(一) 五采区+700m轨道石门即将揭煤,为做好揭煤前的准备,提供煤层瓦斯参数,更好完成煤样采取和现场瓦斯解析工作,结合现场实际,特制定如下安全技术措施。 一、钻孔布置及机具 钻床安装在东进风+700m轨道石门现停掘碛头退出1m左右位置,设计施工钻孔5个,各个钻孔方位角倾角各个钻孔眼距,详见《钻孔布置平面、剖面图》。 本次施工钻孔采用ZDY-750型液压钻机、每节钻杆长度为0.8m,钻孔直径为0.75mm;取芯管直径0.65mm。 二、安全技术措施 1、通风部落实专人负责本项工作,在施工前组织施工人员学习安全技术措施、钻机操作规程和煤层瓦斯测定、采取煤样、现场解析的操作规程。施工班组在进班前认真组织每班作业人员召开班前安全会; 2、通风部每班必须指派一名技术人员现场跟班,跟班人员必须与当班钻孔施工作业人员同进同出,并加强煤样采取现场的安全监督检查,如发现异常情况立即停止作业,及时向调度室和相关领导汇报。 3、每班作业人员入井前必须随身携带1台压缩氧自救器,探钻班组长必须随身携带一台便携式瓦斯报警仪和高浓度光学瓦检仪。 4、保证施工作业地点的通风正常。

5、取芯孔施工作业点必须配备一名专职瓦斯检查员,加强作业前和作业过程中的瓦斯、二氧化碳等有毒有害气体的检查,如发现异常情况立即停止作业,及时向调度室和有关领导汇报,严禁超限作业。 6、钻场作业地点按规定安装瓦斯监测探头和断电仪,钻机的电气设备开关必须按要求安装瓦电闭锁。 7、施工人员作业前必须认真检查钻机各部件是否完好、灵敏可靠,只有确认钻机各部件正常的情况下方可作业,在钻孔作业过程中作业人员精力必须高度集中,随时观察钻孔及作业地点的安全状况,如有异常,必须立即停止作业,汇报现场跟班领导,切断钻机电源、撤出人员至安全地点,同时汇报调度室并按规定采取相应措施进行处理,待排除隐患后方可继续作业。 8、加强钻机施工作业点危岩清刁工作、刁尽危岩,保证钻孔施工安全。 9、在揭露到煤层之后,现场专职瓦斯检查员对孔口瓦斯含量进行监测并做记录。 10、施工中现场跟班技术人员应加强地质资料的收集及钻进记录,当施工至各煤层层位时必须控制钻进压力和钻进速度,同时加强瓦斯检查,当发现有顶钻、卡钻、喷孔、动力异常或瓦斯压力增大瓦斯涌出异常时,必须立即停止施钻,切断施钻设备电源,且严禁拔出钻杆,保持局扇通风;同时撤出人员,迅速报告调度室指定措施后方可处理。 11、钻孔施工至C25煤层底板时,立即停止施钻,退出钻杆,取下钻头,换上取芯管,上好取芯钻头,取芯钻头达到煤层取样位置时,先

煤层瓦斯压力测定套件

JD-WCY-1型煤层瓦斯压力测定套件 煤层瓦斯压力测定套件煤层瓦斯压力是重要的瓦斯参数之一,瓦斯压力越大,煤层的瓦斯含量越大,煤与瓦斯突出危险性越大。煤层瓦斯压力测定时煤矿瓦斯治理的重要工作之一。准确测定煤层瓦斯压力,对保证矿井安全生产具有重要意义,对有效制定矿井瓦斯防治方案与措施,准确预测预报煤与瓦斯的突出危险性具有重要意义。 目前采取水泥封孔测压是测定煤层瓦斯压力最常用的方法,根据现有瓦斯压力测定的方法的步骤、工序,经过长期的实践和摸索,研发了适合封孔测压发的主动式测压套件,使得瓦斯压力测定过程更加规范,也更加简单,进而确保了瓦斯压力测定结果的准确性。 产品构成: 根据测压钻孔的倾角,JD-WCY-1型煤层瓦斯压力测定套件可分为仰角封孔测压套件和俯角封孔测压套件。仰角封孔测压套件主要由1/4钢管、高压回浆管、三通、球阀、高压胶管、压力控制专用组合、耐震压力表等组成。俯角封孔测压套件主要有1/4钢管、花管、高压胶管、三通、球阀、高压胶管、压力控制专用组合、耐震压力表等组成。 性能特点: 1.设备轻便,方便井下携带运输。 2.操作简单并且成本较低。 3.配合本公司研发的速凝膨胀封孔剂,大大提高了测定瓦斯压力的准确性。 4.能够实现主动性测压,测压周期明显缩短。 使用方法: 根据钻孔角度分为仰角连接和俯角连接法。 仰角连接方法: 钻孔钻毕数小时后,用压风清理钻孔。根据钻孔深度确定测压管、回浆管的长度,连接回浆管同时将侧压管用12号铁丝每隔2米绑定在回浆上并使测压管顶端稍高于回浆管0.5米,然后送入钻孔,回浆管距最顶端2-4米处用三通(回浆用)连接,其余回浆管连接处用直通连接,并在连接均匀涂抹专用胶水,保证连接可靠,将注浆管从孔口处放入,用较稠速速凝膨胀封孔剂封堵孔口0.5-0.7米,固定好孔口,并保证三个管外露藏毒不小于0.3米。回浆管最低端接PVC球阀,注浆管底端接不锈钢球阀,开始俩球阀均处于开启状态。待速凝膨胀封孔剂凝固,固定好孔口后,用注浆泵注入配置好的速凝膨胀封孔剂浆液进行封孔,待PVC 球阀流出浑浊浆液时后10s左右停止注浆并关闭不锈钢球阀,待回流量明显变小后再关闭PVC球阀。待速凝膨胀封孔剂凝固后(一般8h),按照安装方法装配

煤层压力

图4一13突出孔洞的形成过程(a)及震动波实测曲线图(b) 了较硬的煤体或地应力与瓦斯压力降低不足以破坏煤体;二是突出孔道被堵塞,其孔壁由突出物支撑建立起新的拱平衡或孔洞瓦斯压力因其被堵塞而升高,地应力与瓦斯压力梯 度不足以剥离与破碎煤体。但是,这时突出虽然停止了,而突出孔周围的卸压区与突出的煤涌出瓦斯的过程并没有停止,异常的瓦斯涌出还要持续相当长时间。 2)地应力与瓦斯压力在突出过程中的作用 地应力、瓦斯压力和含量在突出过程的各个阶段所起的作用可以是不同的。在通常 情况下,突出的激发阶段,破碎煤体的主导力是地应力(包括重力应力、地质构造应力、采动引起的集中应力以及煤吸附瓦斯引起的附加应力等),因为地应力的大小,通常比瓦斯 压力高几倍,而在突出的发展阶段,剥离煤体靠地应力与瓦斯压力的联合作用,运送与粉碎煤炭是靠瓦斯内能。根据对若干典型突出实例的统计数据进行计算,在突出过程中瓦 斯提供的能量比地应力弹性能高3~6倍以上[80]。压出和倾出时煤体的最初破碎的主导 力也是地应力。在极少数突出实例中也可以看到瓦斯压力为主导力发动突出的现象,这 时需要很大的瓦斯压力梯度与非常低的煤强度。突出煤的重要力学特征是强度低和具有 揉皱破碎结构,即所谓“构造煤”。这种煤处于约束状态时可以储存较高的能量,透气性锐减形成危险的瓦斯压力梯度;而当处于表面状态时,它极易破坏粉碎,放散瓦斯的初速度高、释放能量的功率大,因此当应力状态突然改变或者从约束状态突然变为表面状态时容易激发突出。 地应力在突出过程中的主要作用有三:一是激发突出I二是在发展阶段中与瓦斯压力梯度联合作用对煤体进行剥离、破碎;三是影响煤体内部裂隙系统的闭合程度和生成新的裂隙、控制着瓦斯的流动、卸压瓦斯流和瓦斯解吸过程,当煤体突然破坏时,伴随着卸压过程、新旧裂隙系统连通起来并处于开放状态,顿时显现卸压流动效应,形成可以携带破碎煤的有压头的膨胀瓦斯风暴。 。瓦斯在突出过程中的主要作用有三:一是在某些场合,当能形成高瓦斯压力梯度(例 如2 MPa/cm)时,瓦斯可独立激发突出,在自然条件下,由于有地应力配合,可以不需要这样高的瓦斯压力梯度就可以激发突出;二是发展与实现突出的主要因素。在突出的发 展阶段中,瓦斯压力与地应力配合连续地剥离破碎煤体使突出向深部传播;三是膨胀着的具有压头的瓦斯风暴不断地把破碎的煤运走、加以粉碎,并使新暴露的突出孔壁附近保持着较高的地应力梯度与瓦斯压力梯度,为连续剥离煤体准备好必要条件。就这个意义上说,突出的发展或终止将取决于破碎煤炭被运出突出孔的程度,及时而流畅的运走突出物会促进突,出的发展,反之突出孔被堵塞时,突出孔壁的瓦斯压力梯度骤降,可以阻止突出的发展,以致使突出停止下来。

煤矿瓦斯抽采基本指标

AQ1026-2006煤矿瓦斯抽采基本指标 前言 1 范围 2 规范性引用文件 3 必须进行瓦斯抽采的矿井 4 瓦斯抽采应达到的指标 5 指标的测定及计算方法 6 其他 前言 本标准全部内容为强制性条文。 本标准由国家煤矿安全监察局提出。 本标准由全国安全生产标准化技术委员会煤矿安全分技术委员会归口。 本标准起草单位:煤炭科学研究总院重庆分院、中国矿业大学、煤炭科学研究总院抚顺分院、阳泉矿业(集团)有限责任公司、淮南矿业(集团)有限责任公司、芙蓉(集团)实业有限责任公司。 本标准主要起草人:胡千庭、文光才、俞合香、王魁军、李宝玉、周德昶、高正强、龙伍见。 1 范围 本标准规定了煤矿瓦斯抽采应达到的指标及其测算方法。 本标准适用于井工煤矿。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 MT/T638 煤矿井下煤层瓦斯压力的直接测定法 MT/T77 煤层气测定方法(解吸法) AQ1025 煤井瓦斯等级鉴定规范 3 必须进行瓦斯抽采的矿井 有下列情况之一的矿井,必须建立地面永久抽采瓦斯系统或井下临时抽采瓦斯系统: a) 一个采煤工作面的瓦斯涌出量大于5m3/min或一个掘进工作面瓦斯涌出量大于m3/min,用通风方法解决瓦斯问题不合理时; b) 矿井绝对涌出量达到以下条件的: ——大于或等于40m3/min; ——年产量1.0~1.5Mt的矿井,大于30m3/min; ——年产量0.6~1.0Mt的矿井,大于25m3/min; ——年产量0.4~0.6Mt的矿井,大于20m3/min; ——年产量等于或小于0.4Mt的矿井,大于15m3/min; c) 开采有煤与瓦斯突出危险煤层。 4 瓦斯抽采应达到的指标 4.1 突出煤层工作面采掘作业前必须将控制范围内煤层的瓦斯含量降 到煤层始突深度的瓦斯含量以下或将瓦斯压力降到煤层始突深度的煤层瓦斯压

煤层原始瓦斯压力测定方案

织金县化起龙金煤矿M6煤层煤与瓦斯突出危险性鉴定 项目原始瓦斯压力测定方案 1、测定地点的选择 现场实测M6煤层瓦斯压力,在需要鉴定的区域选择具有代表性地点,布置M6煤层穿层测压钻孔。 测定煤原始瓦斯压力地点,初步选择在主斜井井底车场处、回风斜井井底车场处和1063回风巷掘进头处钻场共3个地点施工6个穿层测压钻孔。测定地点尽量避裂隙带、破碎带、淋水带,不受采动影响,钻孔周围煤层处于原始状态。钻孔参数见表一、钻孔布置如图一。 1063回风巷掘进头处钻场需施工测压钻场,即先施工一段上山巷道至M6煤层顶板5m处后落平,再施工一段平巷钻场(平巷钻场尺寸以4*3*2m为宜),在钻场内施工穿层钻孔。钻场形式见图二。 图二测压钻孔钻场布置示意图 2、测定钻孔施工 ①钻孔孔径φ75mm。 ②钻孔施工应保证钻孔平直、孔型完整,钻孔穿过M6煤层全厚并进入煤层顶(底)板 0.5m。 ③钻孔施工好后,应立即用压风或清水清洗钻孔,清除钻屑,保证钻孔畅通。 ④在钻孔施工中应准确记录钻孔方位、倾角、长度、钻孔开始见煤长度及钻孔在煤层中长度,钻孔开钻时间及钻毕时间。(记录格式见瓦斯压力观测表)。

⑤钻孔施工前应制定详细的技术及安全措施。 ⑥钻孔倾角应不小于6°。 3、测定钻孔封孔 要求: ①钻孔施工完成后应在24小时内完成钻孔封孔工作。 ②封孔深度:不小于20m。 ③封孔方法:采用水泥、水泥膨胀剂加水搅拌成的混合浆液,通过注浆泵注入测压孔封孔。仰角孔封孔: 测压管用几节4分无缝钢管连接,最里一节1m处以里打上花眼,作为进气孔。测压钢管每节长度2m,为保证其气密性,管接头部分采用生料带缠绕,测压尾管端头用细铜纱网包裹,以防煤屑及杂物进入堵塞管路。 注浆管为两节4分无缝铁管(长度2m),管端头采用高压胶管与注浆泵相连。 将测压管和注浆管送入钻孔内后,用聚氨酯将其在孔口处固定,以防止注浆时浆液流出。待聚氨酯反应凝固后即可注浆,当测压管见注浆液溢出时立即停泵,同时关闭设置在注浆管孔口的球阀。封孔工艺如图三所示。 俯角孔封孔: 封孔前应用胶管接通压风,将孔内积水排出。测压管用几节4分无缝钢管连接,最里一节测压尾管需要根据钻孔孔径加工挡盘,以防止注浆时浆液流入测压气室内。测压钢管每节长度2m,为保证其气密性,管接头部分采用生料带缠绕,测压尾管端头用细铜纱网包裹,以防煤屑及杂物进入堵塞管路。 注浆管为一节4分无缝铁管(长度2m),管端头采用高压胶管与注浆泵相连。 固定好测压管后,应尽快向测压孔内注浆,待孔口有浆液体流出后,即可停泵,注浆工作结束。封孔工艺如图四所示。 4.测压所需材料与加工(以下列出的是一个钻孔所需的封孔材料): (1)量程1.6MPa压力表1块; (2)测压管:4分无缝铁管共20m,单管长度1.5m,两端有丝扣(根据钻孔情况测管长度作出调整); (3)4分球阀2个,4分管接头(管箍)14个; (4)注浆管:4分无缝铁管3m,单管长度1.5m,两端套丝扣;(根据钻孔情况注浆管长度作出调整)。

煤层瓦斯压力测定方法

附录A煤层瓦斯压力测定方法 A.0.1煤层瓦斯压力的测定方法按测压方式,即:测压时是否向测压孔内注入补偿气体,可分为主动测压法和被动测压法;按测压钻孔封孔的材料不同可分为胶囊(胶圏)—密封粘液封孔测压法和注浆封孔测压法。 A.0.2打设测压孔应遵守下列规定: 1 在距测压煤层不少于5m(垂距)的开挖工作面钻孔,孔径一般宜为65~95mm,钻孔长度应保证测压所需的封孔深度。 2 钻孔宜垂直煤层布置。 3 从钻孔进入煤层开始,应不停钻直至贯穿煤层。然后清除孔内积水和煤(岩)屑,放入一根钢性导气管,立即进行封孔。 4 在钻孔施工中应准确记录钻孔方位、倾角、长度、钻孔开始见煤长度及钻孔在 煤层中长度、钻孔开钻时间、见煤时间及钻毕时间。 A.0.3测压钻孔施工完后应在24h内完成钻孔的封孔工作,应在完成封孔工作24h 后进行测定工作。 A.0.4采用主动测压时,只在第一次测定时向测压钻孔充入补偿气体,补偿气体的充气压力宜为预计的煤层瓦斯压力的1.5倍;采用被动测压法时,不进行气体补偿。 A.0.5采用环形胶圈、黏液或水泥砂浆等封孔测压时,可按下列步骤进行: 1 在钻孔内插入带有压力表接头的紫铜管,管径为6~20mm,长度不小于7 m。岩石硬而无裂隙时封孔长度不宜小于5m,岩石松软或裂隙发育时应增加。 2 将经炮泥机挤压成型的特制柱状炮泥送入孔内,柱状翻土末端距紫铜管末端 0.2~0.5m,每次送入0.3~0.5m,用堵棍捣实。 3 每堵lm黏土柱打入1个木塞,木塞直径小于钻孔直径10~15mm。打入木塞时应

保护好紫铜管,防止折断。 A.0.6观测与测定结果的确定应符合下列规定: 1 采用主动测压法时应每天观测一次测定压力表,采用被动测压法应至少3d观测一次测定压力表。 2 将观测结果绘制在以时间(d)为横坐标、瓦斯压力(MPa)为纵坐标的坐标图上,当观测时间达到规定时,如压力变化在3d内小于0.015MPa,测压工作即可结束;否则,应延长测压时间。 3 在结束测压工作、撤卸表头时(应制定相应的安全措施),应测量从钻孔中放出的水量,如果钻孔与含水层、溶洞导通,则此测压钻孔作废并按有关规定进行封堵;如果测压钻孔没有与含水层、溶洞导通,则需对钻孔水对测定结果的影响进行修正,修正方法可根据测量从钻孔中放出的水量、钻孔参数、封孔参数等进行。 4 测定结果按式A.0.6-1确定: P= P0+ P’ (A.0.6-1)式中: P——测定的煤层瓦斯压力值(MPa); P0——测定地点的大气压力值(MPa);大气压力的测定应采用空盒气压计进行测定,空盒气压计应遵循标准QX/T 26的相关规定; P’——测压孔内的煤层瓦斯压力(修正)值(MPa)。 5 同一测压地点以最髙瓦斯压力测定值作为测定结果。 条文说明:本附录主要参照《煤矿井下煤层瓦斯压力的直接测定方法》(AQT 1047)。

煤层瓦斯含量井下直接测定方法

煤层瓦斯含量井下直接测定方法 1、范围 本标准规定了井下直接测定煤层瓦斯含量的采样方法、解吸瓦斯量测定方法、损失瓦斯量补偿方法、残存瓦斯量测定方法及煤层瓦斯含量的计算方法。 本标准适用于煤矿井下利用解吸法直接测定煤层瓦斯含量。 本标准不适用于严重漏水钻孔、瓦斯喷出钻孔及岩芯瓦斯含量测定。 2、仪器设备 a)煤样罐:罐内径大于60mm,容积足够装煤样400g 以上,在1.5MPa 气压下保持气密性; b)瓦斯解吸速度测定仪(简称解吸仪,如图1 所示):量管有效体积不小于800cm3,最小刻度2 cm3; c)空盒气压计:(80~106)Kpa,分度值0.1kPa; d)秒表; e)穿刺针头或阀门; f)温度计:(-30~50)℃; g)真空脱气装置或常压自然解吸测定装置; h)球磨机或粉碎机; i)气相色谱仪:符合GB/T 13610 要求; j)天秤:秤量不小于1000g,感量不大于1g; k)超级恒温器,最高工作温度(95~100)℃。 3、采样 1)采样前准备 (1)所有用于取样的煤样罐在使用前必须进行气密性检测;气密性检测可通过向煤样罐内注空气至 表压1.5MPa 以上,关闭后搁置12h,压力不降方可使用。禁止在丝扣及胶垫上涂润滑油。(2)解吸仪在使用之前,将量管内灌满水,关闭底塞并倒置过来(见图1),放置10min 量管内水 面不动为合格。

2)煤样采集 (1)采样钻孔布置 同一地点至少应布置两个取样钻孔,间距不小于5m。 (2)采样方式 在未经过瓦斯抽采的石门、岩石巷道或新暴露的采掘工作面向煤层打钻,用煤芯采取器(简称煤芯 管)采集煤芯或定点取样采集煤屑,采集煤芯时一次取芯长度应不小于0.4m。 (3)采样深度 采样深度应超过钻孔施工地点巷道的影响范围,并满足以下要求:在采掘工作面取样时,采样深度 应根据采掘工作面的暴露时间来确定,但不得小于12m;在石门或岩石巷道采样时,距煤层的垂直距离 应视岩性而定,但不得小于5m。测定残余瓦斯含量时,取样不受此限制。 (4)采样时间 采样时间是指用于瓦斯含量测定的煤样从割芯(或钻屑)到被装入煤样罐密封所用的实际时间。采 样时间越短越好,但不得超过30min。 (5)取出煤芯后,对于柱状煤芯,采取中间含矸石少的完整的部分;对于粉状及块状煤芯,要剔除 矸石、泥石及研磨烧焦部分。不得用水清洗煤样,保持自然状态装入密封罐中,不可压实,罐口保留约 10mm 空隙。 (6)煤样罐密封前,先将穿刺针头插入罐盖上部的密封胶垫,以避免造成煤样罐憋气现象,然后再 用扳手拧紧罐盖,再将排气管与穿刺针头连接来测定瓦斯解吸速度。 (7)参数记录 采样时,应同时收集以下有关参数记录在附录A: a) 地质参数:取样地点、煤层名称、埋深(地面标高、煤层底板标高)、采样深度、钻孔方位、 钻孔倾角;

煤层瓦斯参数测定设计

山东新河矿业有限公司3煤层瓦斯参数测定现场施工技术方案 山东鼎安检测技术有限公司 二〇一五年一月

山东新河矿业有限公司3煤层瓦斯参数测定现场施工技术方案 编写: 审核: 批准: 山东鼎安检测技术有限公司 二0一五年四月

煤层瓦斯基础参数测定项目一览表

一、概况 新河矿业自2000年9月开工建设,2003年建成开始联合试运转,2005年7月正式生产。原设计生产能力a, 2008年后,在对井底车场、主要水平大巷及主提升、通风等矿井主要生产系统进行了扩容与改造的同时,对新河、唐口矿井井田边界进行了优化调整,经山东省国土资源厅批准,将相邻的唐口矿井630采区划归新河矿井开采,目前-400m生产水平处于收尾阶段,-980m水平正在进行开拓准备。 唐口矿井630采区划归新河矿井后,结合现场开采情况,将采区分为530采区、630采区和730采区,为确定新增加采区煤层的瓦斯参数,在530胶带集中巷及轨道集中巷施工瓦斯钻孔对煤层的瓦斯参数进行测定。 二、地质及水文地质条件 (一)地层产状 工作面穿越永东闸向斜两翼,西部处在永东闸西向斜的西翼,受两向斜构造影响,地层产状变化较大,走向SE~NE~SE,倾向SW~SE~SW,倾角5~29°,平均10°左右。 (二)褶曲 根据矿井延深区三维地震勘探资料,延深区发育有两个褶曲,分别为永东闸向斜、永东闸西向斜,受其影响地层产状变化较大。其特征如下: 1、永东闸西向斜:位于延深区中部,永东闸以西。轴向NW,延展长度约,幅度约40m。该向斜两翼不对称,西翼倾角较陡可达30°,东翼相对较缓为11°。 2、永东闸向斜:位于延深区东部,永东闸北侧,T21-1孔以西。轴向不明显,北部为NNE、南部转为NW,延展长度约,幅度约30m,西翼倾角较缓,在5°左右。 (三)断层

煤层瓦斯压力测定新技术

煤层瓦斯压力测定新技术 我国煤矿绝大多数是瓦斯矿井,瓦斯事故为煤矿生产中最严重的自然灾害之一。准确测定煤层瓦斯压力对矿井瓦斯综合治理具有重要意义。煤层瓦斯压力的测定有直接测定法和间接测定法,直接测定方法是在煤层中直接打钻测定瓦斯压力,间接测定法是通过测定煤层中的瓦斯含量,通过计算来确定煤层瓦斯压力。 标签:瓦斯压力;测定;新技术 1 直接法测定煤层瓦斯压力 煤层瓦斯压力直接测定法是采用从岩巷或煤巷向煤层打钻孔,通过往钻孔内下测压管来测定煤层瓦斯压力,封孔材料可以根据测压的需要和封孔段岩石的破碎程度和致密程度采用黄泥、水泥浆、胶圈或采用胶囊-压力黏液。当封孔段岩层坚硬致密时一般采用水泥沙浆加入膨胀剂封孔,当封孔段岩性为泥岩或者有煤 线或者直接在煤层中打测压钻孔时一般采用胶囊-压力黏液封孔。 水泥浆的稀稠、是否存在颗粒对封闭是否严密有着直接影响,水泥浆过稀将导致凝固后存在较大的空间,测量室增大。钻孔倾角变化将影响测量室长度的变化,测量室过长则封孔段长度将减小,在钻孔壁破碎的情况下必然封孔不严密,钻孔内的瓦斯在压力梯度的影响下将沿着裂隙向巷道涌出,在这种情况下,所测 定出来的瓦斯压力小于实际瓦斯压力值。 测定出来的压力是否为煤层实际瓦斯压力将取决于泡沫封孔段的长度与黏液段的长度和黏液的压力,当钻孔深度较长时,可以多设置几段黏液段,中间用泡沫封孔段隔开。测定煤层瓦斯压力之前估计一个煤层瓦斯压力P1,黏液的压力P2可以通过连接在黏液管外面的注液泵来调节,在测定过程中始终保持P2>P1,压力表稳定时所测得的压力即煤层的瓦斯压力。这种封孔方法可以在岩层破碎段或煤线段通过注黏液来封堵钻孔内的裂隙,较采用水泥浆封孔所测得的瓦斯压力更接近煤层的实际瓦斯压力。缺点在于当钻孔内破碎段较多或者煤线较多时,封孔工艺复杂并且黏液管始终连接着注液泵,设备浪费较大。 2 间接法测定煤层瓦斯压力 众所周知,瓦斯在煤体中呈现出两种状态,在渗透空间内的瓦斯主要呈自由状态,称为自由瓦斯或游离瓦斯,由于瓦斯分子的自由热运动,显示出相应的瓦斯压力,这种状态的瓦斯服从气体状态方程。另一种在微孔内主要呈吸附状态存

煤层瓦斯测定、煤样采取和现场瓦斯解析(标准版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 煤层瓦斯测定、煤样采取和现场 瓦斯解析(标准版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

煤层瓦斯测定、煤样采取和现场瓦斯解析 (标准版) 五采区+700m轨道石门即将揭煤,为做好揭煤前的准备,提供煤层瓦斯参数,更好完成煤样采取和现场瓦斯解析工作,结合现场实际,特制定如下安全技术措施。 一、钻孔布置及机具 钻床安装在东进风+700m轨道石门现停掘碛头退出1m左右位置,设计施工钻孔5个,各个钻孔方位角倾角各个钻孔眼距,详见《钻孔布置平面、剖面图》。 本次施工钻孔采用ZDY-750型液压钻机、每节钻杆长度为0.8m,钻孔直径为0.75mm;取芯管直径0.65mm。 二、安全技术措施 1、通风部落实专人负责本项工作,在施工前组织施工人员学习

安全技术措施、钻机操作规程和煤层瓦斯测定、采取煤样、现场解析的操作规程。施工班组在进班前认真组织每班作业人员召开班前安全会; 2、通风部每班必须指派一名技术人员现场跟班,跟班人员必须与当班钻孔施工作业人员同进同出,并加强煤样采取现场的安全监督检查,如发现异常情况立即停止作业,及时向调度室和相关领导汇报。 3、每班作业人员入井前必须随身携带1台压缩氧自救器,探钻班组长必须随身携带一台便携式瓦斯报警仪和高浓度光学瓦检仪。 4、保证施工作业地点的通风正常。 5、取芯孔施工作业点必须配备一名专职瓦斯检查员,加强作业前和作业过程中的瓦斯、二氧化碳等有毒有害气体的检查,如发现异常情况立即停止作业,及时向调度室和有关领导汇报,严禁超限作业。 6、钻场作业地点按规定安装瓦斯监测探头和断电仪,钻机的电气设备开关必须按要求安装瓦电闭锁。

煤层瓦斯压力的测定方法

煤层瓦斯压力的测定方法 《煤矿安全规程》要求,为了预防石门揭穿煤层时发生突出事故,必须在揭穿突出煤层前,通过钻孔测定煤层的瓦斯压力,它是突出危险性预测的主要指标之一,又是选择石门局部防突措施的主要依据。同时,用间接法测定煤层瓦斯含量,也必须知道煤层原始的瓦斯压力。因此,测定煤层瓦斯压力是煤矿瓦斯管理和科研需要经常进行的一项工作。 测定煤层瓦斯压力时,通常是从石门或围岩钻场向煤层打孔径为50~75mm的钻孔,孔中放置测压管,将钻孔封闭后,用压力表直接进行测定。为了测定煤层的原始瓦斯压力,测压地点的煤层应为未受采动影响的原始煤体。石门揭穿突出煤层前测定煤层瓦斯压力时,在工作面距煤层法线距离5m以外,至少打2个穿透煤层全厚或见煤深度不少于10m的钻孔。 测压的封孔方法分填料法和封孔器法两类。根据封孔器的结构特点,封孔器分为胶圈、胶囊和胶圈—黏液等几种类型。 1.填料封孔法 填料封孔法是应用最广泛的一种测压封孔方法。采用该法时,在打完钻孔后,先用水清洗钻孔,再向孔内放置带有压力表接头的测压管,管径约为6~8mm,长度不小于6m,最后用充填材料封孔。图1-17为填料法封孔结构示意图。 图1-17 填料法封孔结构 1—前端筛管;2—挡料圆盘;3—充填材料;4—木楔; 5—测压管;6—压力表;7—钻孔 为了防止测压管被堵塞,应在测压管前端焊接一段直径稍大于测压管的筛管或直接在测压管前端管壁打筛孔。为了防止充填材料堵塞测压管的筛管,在测压管前端后部套焊一挡料圆盘。测压管为紫铜管或细钢管,充填材料一般用水泥和砂子或粘土。填料可用人工或压风送入钻孔。为使钻孔密封可靠,每充填1m,送入一段木楔,用堵棒捣固。人工封孔时,封孔深度一般不超过5m;用压气封孔时,借助喷射罐将水泥砂浆由孔底向孔口逐渐充满,其封孔深度可达10m以上。为了提高填料的密封效果,可使用膨胀水泥。 填料法封孔的优点是不需要特殊装置,密封长度大,密封质量可靠,简便易行;缺点是人工封孔长度短,费时费力,且封孔后需等水泥基本凝固后,才能上压力表。 2.封孔器封孔法 ⑴胶圈封孔器法 胶圈封孔器法是一种简便的封孔方法,它适用于岩柱完整致密的条件。图1-18为胶圈封孔器封孔的结构示意图。

煤层瓦斯含量直接测定方法

2 煤层瓦斯含量直接测定方法 2、1 国内外概况 直接测定煤层瓦斯含量方法最初就是由法国贝尔塔等人在1970年提出,主要用来估算井下水平钻孔煤芯的含气量。1973年美国矿业局将贝尔塔方法进行了改进,用于地面垂直钻井取芯的瓦斯含量测定,并规范采样操作过程。因此,该方法又称为美国矿业局直接法,并得到推广应用。 国内直接法测定煤层瓦斯含量技术方法沿用了美国矿业局直接法,采用了真空残余脱气方法(沈阳分院),但带来不可控的漏气误差。重庆分院研发人员在实验室内进行了1000多组不同粒径与吸附平衡压力的煤样瓦斯解吸规律实验,得到了煤样破坏类型与解吸特征,开发了DGC型瓦斯含量直接测定装置,见图1。但对含水煤样的瓦斯解吸规律缺乏深入的实验研究。 图1 重庆分院DGC型瓦斯含量直接测定装置

2010~2012年中国矿业大学在做淮南矿区瓦斯项目时,通过大量现场解吸实验,得到原始煤层水分条件下的钻孔煤屑瓦斯解吸2小时以内的规律,创立了全钻孔全煤芯取样解吸瓦斯实验技术,用于直接测定煤层瓦斯含量与瓦斯压力,见图2。 图2 中国矿业大学瓦斯含量直接测定装置与在线分析气体成分分析系统2、2测定方法 煤层瓦斯含量直接测定法依据国家标准GB/T 23250-2009 煤层瓦斯含量井下直接测定方法。直接、准确测定煤层瓦斯含量,用于矿井采掘部署、开拓延伸设计、煤层瓦斯赋存规律、瓦斯涌出量预测、瓦斯抽采效果评价、煤层气资源评价、突出危险性区域预测及区域验证等方面。 煤层瓦斯含量直接测定法中瓦斯含量由5部分组成:煤样损失瓦斯量X 、井 下解吸瓦斯量X 1、煤样粉碎前解吸瓦斯量X 2 、煤样粉碎后解吸瓦斯量X 3 、大气压 下不可解吸瓦斯量X 4 。 煤样损失瓦斯量为煤体暴露至装入煤样罐损失的解吸瓦斯量。 不可解吸瓦斯量为大气压下煤样粉碎后仍残存在煤体中的瓦斯量,常压下不可解,对突出没有贡献,也无法抽采利用。

煤矿井下煤层瓦斯压力的直接测定方法

煤矿井下煤层瓦斯压力的直接测定方法 1 范围 本标准规定了煤矿井下直接测定煤层瓦斯压力的原理、设备材料、仪表以及打钻、封孔、测压等工艺的要求。 本标准适用于煤矿井下直接测定煤层瓦斯压力(简称瓦斯压力测定)。 2 引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 JJG 52—71 工业用单圈管弹簧式压力表、真空表和真空压力表检定规程国家技术监督局 防治煤与瓦斯突出细则1995—05—01 煤炭工业部 气瓶安全监察规程1989—12—22 劳动部 3 测定原理 通过钻孔揭露煤层,安设测定仪表并密封钻孔,利用煤层中瓦斯的自然渗透原理测定在钻孔揭露处达到平衡的瓦斯压力。 4 方法分类 4.1 按测压方式分 4.1.1 主动测压法 钻孔封完孔后,通过钻孔向被测煤层充入补偿气体达到瓦斯压力平衡而测定煤层瓦斯压力的测压方法。补偿气体可选用高压氮气

(N2),高压二氧化碳气体(CO2)或其他惰性气体。补偿气体的充气压力应略高于预计煤层瓦斯压力。 4.1.2 被动测压法 钻孔封完孔后,通过被测煤层瓦斯的自然渗透,达到瓦斯压力平衡而测定其瓦斯压力的测压方法。 4.2 按封孔材料分 4.2.1 黄泥、水泥封孔测压法 封孔材料为黄泥,水泥或黄泥水泥混合物,封孔方式为手工操作,主要适用于石门揭煤的瓦斯压力测定。 4.2.2 胶囊—密封粘液封孔测压法 封孔材料为胶囊、密封粘液,封孔方式为手工操作。适用于松软岩层或煤巷瓦斯压力测定。 4.2.3 注浆封孔测压法 封孔材料为膨胀不收缩水泥浆加粘液,封孔方式为压气注浆器或泥浆泵注浆封孔。适用于井下各种条件下的瓦斯压力测定,特别适用于近距离煤层群分煤层的瓦斯压力测定。 5 设备材料、仪表及工具 5.1 钻孔设备: 打钻孔用的钻机可根据实际情况选用,其能力必须应满足测压钻孔长度的要求,钻头直径选用φ650~90mm。 5.2 材料: 木楔,压力表联接头,密封垫,密封带以及真空密封膏。

煤层瓦斯含量井下直接测定方法

煤层瓦斯含量井下直接测定方法1、范围 本标准规定了井下直接测定煤层瓦斯含量的采样方法、解吸瓦斯量测定方法、损失瓦斯量补偿方法、残存瓦斯量测定方法及煤层瓦斯含量的计算方法。 本标准适用于煤矿井下利用解吸法直接测定煤层瓦斯含量。 本标准不适用于严重漏水钻孔、瓦斯喷出钻孔及岩芯瓦斯含量测定。 2、仪器设备 a)煤样罐:罐内径大于60mm,容积足够装煤样400g以上,在1.5MPa气压下保持气密性; b)瓦斯解吸速度测定仪(简称解吸仪,如图1所示):量管有效体积不小于800cm3,最小刻度2cm3; c)空盒气压计:(80~106)Kpa,分度值0.1kPa; d)秒表; e)穿刺针头或阀门; f)温度计:(-30~50)℃; g)真空脱气装置或常压自然解吸测定装置; h)球磨机或粉碎机; i)气相色谱仪:符合GB/T13610要求; j)天秤:秤量不小于1000g,感量不大于1g; k)超级恒温器,最高工作温度(95~100)℃。 3、采样

1)采样前准备 (1)所有用于取样的煤样罐在使用前必须进行气密性检测;气密性检测可通过向煤样罐内注空气至 表压1.5MPa以上,关闭后搁置12h,压力不降方可使用。禁止在丝扣及胶垫上涂润滑油。 (2)解吸仪在使用之前,将量管内灌满水,关闭底塞并倒置过来(见图1),放置10min量管内水 面不动为合格。 2)煤样采集 (1)采样钻孔布置 同一地点至少应布置两个取样钻孔,间距不小于5m。 (2)采样方式 在未经过瓦斯抽采的石门、岩石巷道或新暴露的采掘工作面向煤层打钻,用煤芯采取器(简称煤芯 管)采集煤芯或定点取样采集煤屑,采集煤芯时一次取芯长度应不小于0.4m。 (3)采样深度 采样深度应超过钻孔施工地点巷道的影响范围,并满足以下要求:在采掘工作面取样时,采样深度 应根据采掘工作面的暴露时间来确定,但不得小于12m;在石门或岩石巷道采样时,距煤层的垂直距离 应视岩性而定,但不得小于5m。测定残余瓦斯含量时,取样不受此限制。 (4)采样时间 采样时间是指用于瓦斯含量测定的煤样从割芯(或钻屑)到被装入煤样罐密封所用的实际时间。采

煤层瓦斯含量直接测定方法

2 煤层瓦斯含量直接测定方法 2.1 国外概况 直接测定煤层瓦斯含量方法最初是由法国贝尔塔等人在1970年提出,主要用来估算井下水平钻孔煤芯的含气量。1973年美国矿业局将贝尔塔方法进行了改进,用于地面垂直钻井取芯的瓦斯含量测定,并规采样操作过程。因此,该方法又称为美国矿业局直接法,并得到推广应用。 国直接法测定煤层瓦斯含量技术方法沿用了美国矿业局直接法,采用了真空残余脱气方法(分院),但带来不可控的漏气误差。分院研发人员在实验室进行了1000多组不同粒径与吸附平衡压力的煤样瓦斯解吸规律实验,得到了煤样破坏类型与解吸特征,开发了DGC型瓦斯含量直接测定装置,见图1。但对含水煤样的瓦斯解吸规律缺乏深入的实验研究。

图1 分院DGC型瓦斯含量直接测定装置 2010~2012年中国矿业大学在做矿区瓦斯项目时,通过大量现场解吸实验,得到原始煤层水分条件下的钻孔煤屑瓦斯解吸2小时以的规律,创立了全钻孔全煤芯取样解吸瓦斯实验技术,用于直接测定煤层瓦斯含量和瓦斯压力,见图2。

图2 中国矿业大学瓦斯含量直接测定装置与在线分析气体成分分析系统2.2测定方法 煤层瓦斯含量直接测定法依据国家标准GB/T 23250-2009 煤层瓦斯含量井下直接测定方法。直接、准确测定煤层瓦斯含量,用于矿井采掘部署、开拓延伸设计、煤层瓦斯赋存规律、瓦斯涌出量预测、瓦斯抽采效果评价、煤层气资源评价、突出危险性区域预测及区域验证等方面。 煤层瓦斯含量直接测定法中瓦斯含量由5部分组成:煤样损失瓦斯量X0、井下解吸瓦斯量X1、煤样粉碎前解吸瓦斯量X2、煤样粉碎后解吸瓦斯量X3、大气压下不可解吸瓦斯量X4。 煤样损失瓦斯量为煤体暴露至装入煤样罐损失的解吸瓦斯量。 不可解吸瓦斯量为大气压下煤样粉碎后仍残存在煤体中的瓦斯量,常压下不可解,对突出没有贡献,也无法抽采利用。

煤层瓦斯赋存及流动规律

煤层瓦斯赋存及流动规律 摘要:煤矿井下的瓦斯主要来自煤层和煤系地层,还与煤的成因息息相关。瓦斯在煤层中的赋存状态一般有两种,即吸附状态和游离状态。而煤层瓦斯含量实际上是指吸附瓦斯量和游离瓦斯量之和,其值的大小往往是评价煤层瓦斯储量和是否具有抽放价值的重要指标。煤层瓦斯含量的多少主要取决于保存瓦斯的条件,而不是生成瓦斯量的多少,也就是说,不仅取决于煤质质量,而更重要的是取决于储存瓦斯的地质条件。根据目前的研究成果认为,影响煤层瓦斯含量的主要因素有:煤层储气条件、区域地质构造和采矿工作。另一方面,煤层是孔隙、裂隙结构组成的物质,瓦斯在孔隙中的流动主要是扩散,在煤层裂隙系统的流动属于渗透。本文将对煤层瓦斯赋存及流动规律进行阐述,并作简单的分析。 关键词:煤层瓦斯赋存流动规律 Coal seam gas occurrence and flow pattern Abstract: the coal gas mainly comes from coal and coal measure strata, itis closely related to the causes of coal. Gas in the coal seam occurrence state is generally has two kinds, namely the adsorption state and freestate. And coal seam gas content actually refers to the amount of gas and free gas quantity, the sum of its value tends to be the size of the evaluation of coal seam gas reserves and is an important index of drainage value. Coal seam gas content depends mainly on save gas conditions, it is not how much the amount of generated gas, that is to say, not only depends on the quality of coal, but more importantly depends on the geological conditions of gas storage. According to current research argues that the main factors affecting gas content of coal seam are: coal gas storage conditions, regional geological structure and mining work. On the other hand, the coal seam is material composed of pore and fracture structure. Gas flow in the pore is mainly spread in the flow of the fissure system of coal seam belongs to penetration. This article will explain coal seam gas occurrence and flow pattern, and make a simple analysis. Keywords: coal seam gas ,occurrence,flow ,pattern

瓦斯压力测定标准

[1]AQ 1047-2007—2007 煤矿井下煤层瓦斯压力的直接测定方法[S]. 煤层的瓦斯压力是矿井瓦斯基本参数之一,它对于确定煤层瓦斯含量,进行矿井瓦斯涌出治理,瓦斯抽放以及煤与瓦斯突出的防治等工作均具有十分重要的意义。在治理矿井瓦斯的长期实践中,已探索出了许多井下煤层瓦斯压力的直接测定方法,在这些测定方法中,多数准确度高、易操作,但也有不少的测定方法其准确度低、可靠性差。因此,有必要对煤层瓦斯压力的测定方法进行规范,并在此基础上制定煤矿井下煤层瓦斯压力直接测定的行业标准。 本标准的制定以测定方法的可靠性为主,兼顾其可操作性及已使用的程度,同时考虑瓦斯压力测定的最新科研成果。 本标准遵循煤炭工业部颁布的《煤矿安全规程》和《防治煤与瓦斯突出细则》等文件的有关规定。 本标准由煤炭工业部科技教育司提出。 本标准由煤矿安全标准化技术委员会归口。 本标准起草单位:煤炭科学研究总院重庆分院。 本标准主要起草人:许英威、杜子健。 本标准委托煤矿安全标准化技术委员会煤矿瓦斯防治及设备分会负责解释。 1 范围

本标准规定了煤矿井下直接测定煤层瓦斯压力的原理、设备材料、仪表以及打钻、封孔、测压等工艺的要求。 本标准适用于煤矿井下直接测定煤层瓦斯压力(简称瓦斯压力测定)。 2 引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 JJG 52—71 工业用单圈管弹簧式压力表、真空表和真空压力表检定规程国家技术监督局 防治煤与瓦斯突出细则 1995—05—01 煤炭工业部 气瓶安全监察规程 1989—12—22 劳动部 3 测定原理 通过钻孔揭露煤层,安设测定仪表并密封钻孔,利用煤层中瓦斯的自然渗透原理测定在钻孔揭露处达到平衡的瓦斯压力。 4 方法分类 4.1 按测压方式分 4.1.1 主动测压法 钻孔封完孔后,通过钻孔向被测煤层充入补偿气体达到瓦斯压力平衡而测定煤层瓦斯压力的测压方法。补偿气体可

相关文档
最新文档