电感计算方法

电感计算方法
电感计算方法

电感在电路中的选择

(注:只有充分理解电感在DC/DC电路中发挥的作用,才能更优的设计DC/DC电路。本文还包括对同步DC/DC及异步DC/DC概念的解释。)

简介

在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必要的信息。

理解电感的功能

电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。

在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出电压。另一端通过开关频率切换连接到输入电压或GND。

在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。

现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。

我们利用电感上电压计算公式:

V=L(dI/dt)

因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为

负时(状态2),电感上的电流就会减小。通过电感的电流如图2所示:

通过上图我们可以看到,流过电感的最大电流为DC电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流:

其中,ton是状态1的时间,T是开关周期(开关频率的倒数),DC为状态1的占空比。

警告:上面的计算是假设各元器件(MOSFET上的导通压降,电感的导通压降或异步电路中肖特基二极管的正向压降)上的压降对比输入和输出电压是可以忽略的。

如果,器件的下降不可忽略,就要用下列公式作精确计算:

同步转换电路:

异步转换电路:

其中,Rs为感应电阻阻抗加电感绕线电阻的阻。Vf 是肖特基二极管的正向压降。R是Rs 加MOSFET导通电阻,R=Rs+Rm。

电感磁芯的饱和度

通过已经计算的电感峰值电流,我们可以发现电感上产生了什么。很容易会知道,随着通过电感的电流增加,它的电感量会减小。这是由于磁芯材料的物理特性决定的。电感量会减少多少就很重要了:如果电感量减小很多,转换器就不会正常工作了。当通过电感的电流大到电感实效的程度,此时的电流称为“饱和电流”。这也是电感的基本参数。

实际上,转换电路中的开关功率电感总会有一个“软”饱和度。要了解这个概念可以观察实际测量的电感Vs DC电流的曲线:

DCDC电容电感计算

BOOST电路的电感、电容计算 升压电路的电感、电容计算 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f 其他参数: 电感:L 占空比:D 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd ***************************************************** 1:占空比 稳定工作时,每个开关周期导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*D/(f*L)=(Vo+Vd-Vi)*(1-D)/(f*L),整理后有 D=(Vo+Vd-Vi)/(Vo+Vd),参数带入,D=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量,其值为Vi*(1-D)/(f*2*Io),参数带入,Lx=38.5uH, deltaI=Vi*D/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显,

当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面 影响取L=60uH, deltaI=Vi*D/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-D)-(1/2)*deltaI, I2= Io/(1-D)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A 3:输出电容: 此例中输出电容选择位陶瓷电容,故ESR可以忽略 C=Io*D/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径

电感计算公式

电感计算公式(转载) 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Microl对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l 其中 μ0 为真空磁导率=4π*10(-7)。(10的负七次方) μs 为线圈内部磁芯的相对磁导率,空心线圈时μs=1

电感计算方法

电感计算方法,磁场基本性质 默认分类2010-05-22 08:36:06 阅读442 评论0 字号:大中小订阅 电感 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一。 一、自感与互感 (一)自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源元件理想电源的端电压),这就是自感。 (二)互感 两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合 的程度。 电感的计算公式: 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式:

PFC电感及匝数计算

(1) 升压电感的设计 升压电感的值决定转换器开关频率的大小,它主要由最小开关频率和输出功率决定。设开关管在一个周期里的导通时间为on t ,关断时间为off t ,则: VAC I L V I L t Lpk inpk Lpk on ??=???=2)sin()sin(θθ (2.32) ) sin(2)sin(θθ??-??=VAC V I L t out Lpk off (2.33) 式中,θ为交流输入电压的瞬时相位。 由式(2.33)可知,在交流输入电压的一个周期内,开关管的导通时间与电压的瞬时相位无关。由on t 和off t ,可得开关周期: [] )sin(22) sin(22)sin(2)sin(2122θθθθ??-????=??-????=?? ??????-+???=+=VAC V VAC P V L VAC V VAC V I L VAC V VAC I L t t T out in out out out Lpk out Lpk off on s (2.34) 故变换器的开关频率为: [] in out out sw sw P V L VAC V VAC T f ?????-?==2)sin(212θ (2.35) 所以,当1)sin(=θ时,开关频率最小;当0)sin(=θ时,开关频率最大。 故升压电感大小为: [] in out sw out P V f VAC V VAC L ????-?=min 222 (2.36) 由式(2.35)可知,最小开关频率出现在交流输入电压最大或最小时,分别计算它们对应的电感值: uH H VAC L 35.336400 220300002)2652400(265)(2max =????-?= (2.37) uH H VAC L 89.382400 220300002)852400(85)(2min =????-?= (2.38) 比较两个值,取uH L 310=。当V a c V in 85=时,由式(2.36)可得 k H z k H z f sw 207.33min >=,从而可以避免音频噪声。 根据近似的面积乘积(AP )法来估算升压电感磁芯尺寸的大小,其中面积

各种电感计算公式

导线线径与电流规格表 绝缘导线(铝芯/铜芯)载流量的估算方法 以下是绝缘导 线(铝芯/铜芯)载流量的估算 方法,这是电工基础,今天把这些知识教给大家,以便计算车上的导线允许通过的电流.(偶原在省供电局从事电能计量工作) 铝芯绝缘导线载流量与截面的倍数关系 导线截面(平方毫米) 1 1.5 2.5 4 6 10 16 25 35 50 70 95 120 载流量(A 安培) 9 14 23 32 48 60 90 100 123 150 210 238 300 载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5 估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。(看不懂没关系,多数情况只要查上表就行了)。条件有变加折算,高温九折铜升级。穿管根数二三四,八七六折满载流。 说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l ,即4×8、6×7、10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。 表格为导线在不同温度下的线径与电流规格表。 (请注意:线材规格请依下列表格,方能正常使用)

电感线圈匝数的计算公式

电感线圈匝数的计算公式 计算公式:N=0.4(l/d)开次方。N一匝数,L一绝对单位,luH=10立方。d-线圈平均直径(Cm) 。 例如,绕制L=0.04uH的电感线圈,取平均直径d= 0.8cm,则匝数N=3匝。在计算取值时匝数N取略大一些。这样制作后的电感能在一定范围内调节。 制作方法:采用并排密绕,选用直径0.5-1.5mm的漆包线,线圈直径根据实际要求取值,最后脱胎而成。 第一批加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入:zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定

电感的计算方法和BOOST升压电路的电感、电容计算

电感计算方法 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此: 电感量(mH) = 阻抗 (ohm) ?(2*3.14159) ?F (工作频率) = 360 ?(2*3.14159) ?7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ?圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ?2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈)

电感量计算公式

加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷ 圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力 I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Microl对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后)

电感阻抗的计算公式

电感阻抗的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此:电感量(mH) = 阻抗(ohm) ÷(2*3.14159) ÷ F (工作频率) = 360 ÷(2*3.14159) ÷7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入:zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH

BOOST升压电路的电感、电容计算

【转】 BOOST升压电路的电感、电容计算 2011-05-06 23:54 转载自分享 最终编辑kxw102 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f ***************************************************************** ******* 1:占空比 稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有 don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量 其值为Vi*(1-don)/(f*2*Io),参数带入,Lx=38.5uH, deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显, 当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取 L=60uH, deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A

3:输出电容: 此例中输出电容选择位陶瓷电容,故 ESR可以忽略 C=Io*don/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径 其他参数: 电感:L 占空比:don 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd

电感参数计算

磁环外径 D 36.0mm 磁环内径 d 22.5mm 磁环高度 h 11.0mm 磁环导磁截面积 A 74.3mm^274.3mm^2磁环有效磁路长 l 90.2mm 90.2mm 磁环芯材磁导率 u 125125相对磁导率线圈匝数 N 88.0匝88.0匝↓↓环状线圈电感值 L 1000.92uH 1001uH 磁环电感饱 和磁通计算 ↓电感电流 I 10.00A 15319高斯1.532特斯拉 磁场强度H 9.75A/m 线径Φ1mm 股数n 1每匝线圈长度MLT 42.6mm 电阻mohm 108.59mohm 铜线总长度C 4.69m 蓝色字体为输入参数粉色字体为计算值磁环电感及饱和磁通计算 相对磁导率μr:26,40,60,75,90,125 750.6897966 磁通密度B l s N L μ2=)ln()(d D d D l -=πl iN B 0μμ=l iN H =

计算值 MPP铁镍钼合金,主要用于大电流功率电感, 抗偏流特性好,频率特性也比较好. Sendust合金(铁硅铝磁芯),是一种低损耗和相对高饱和度1.05T的材料,所 以非常适用于功率因数校正电路,以及单向驱动器应用,由于接近零磁 致伸缩,铁硅铝是消除在线噪音滤波器和电感器中的可听频率噪声的最 佳选择。 适当的成本,较低的损耗,高饱和度,接近零的磁致伸缩,无热老化 现象,软饱和,铁硅铝应用包括功率因数校正扼流圈,升压/降压稳压器,直流 输出电感器和回扫变压器.

铁镍(hi-flux),高磁通粉末磁芯是分布式气隙环形磁芯,有50%的镍和50%的铁合金粉末制成,其偏置性能在 所有粉末磁芯材料中最高 .高磁通磁芯所具备的优点,非常适用于高功率,高直流偏置以及高电源频率下的高交流偏差等的应用.与7,500高斯的标准钼坡莫合金MPP磁芯或4.500高斯的铁氧体相比,高磁通磁芯具有15,000高斯的饱和磁通密度.高磁通粉末磁芯的磁芯损耗显著低于铁粉磁芯的磁芯损耗.在大多数应用中,高磁通磁芯的尺寸可能都比铁粉芯的还要小. 高磁通磁粉芯主要应用在如开关调节电感器,在线噪音滤波器,回扫变压器,功率因数校正和脉冲变压器等。

各种电感计算公式

导线线径与电流规格表 绝缘导线(铝芯/铜芯)载流量的估算方法 以下是绝缘导 线(铝芯/铜芯)载流量的估算 方法,这是电工基础,今天把这些知识教给大家,以便计算车上的导线允许通过的电流.(偶原在福建省南平供电局从事电能计量工作) 铝芯绝缘导线载流量与截面的倍数关系 导线截面(平方 毫米) 1 1.5 2.5 4 6 10 16 25 35 50 70 95 120 载流量(A 安培) 9 14 23 32 48 60 90 100 123 150 210 238 300 载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5 表格为导线在不同温度下的线径与电流规格表。 (请注意:线材规格请依下列表格,方能正常使用)

估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。(看不懂没关系,多数情况只要查上表就行了)。条件有变加折算,高温九折铜升级。穿管根数二三四,八七六折满载流。说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。“条件有变加折算,高温九折铜升级”。上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可; 铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。如16mm’铜线的载流量,可按25mm2铝线计算。

DC-DC电感选择

电感 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注与解释:电感上的DC 电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC 滤波电路中的L(C 是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。在降压转换中(Fairchild 典型的开关控制器),电感的一端是连接到DC 输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1 过程中,电感会通过(高边“high-side”)MOSFET 连接到输入电压。在状态2 过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET 接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态 1 过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2 过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2 所示: 通过上图我们可以看到,流过电感的最大电流为DC 电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流: 其中,ton 是状态1 的时间,T 是开关周期(开关频率的倒数),DC 为状态1 的占空比。 警告:上面的计算是假设各元器件(MOSFET 上的导通压降,电感的导通压降或异步电路中肖特基二极管的正向压降)上的压降对比输入和输出电压是可以忽略的。 如果,器件的下降不可忽略,就要用下列公式作精确计算: 同步转换电路: 异步转换电路:

电感线圈电感量计算公式

电感线圈电感量计算公式 电感量按下式计算:线圈公式 阻抗(ohm)=2*3.14159*F(工作频率)*电感量(mH),设定需用360ohm阻抗,因此:电感量(mH)=阻抗(ohm)÷(2*3.14159)÷F(工作频率)=360÷(2*3.14159)÷7.06=8.116mH 据此可以算出绕线圈数: 圈数=[电感量*{(18*圈直径(吋))+(40*圈长(吋))}]÷圈直径(吋) 圈数=[8.116*{(18*2.047)+(40*3.74)}]÷2.047=19圈 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位:微亨 线圈直径D单位:cm 线圈匝数N单位:匝 线圈长度L单位:cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率:f0单位:MHZ本题f0=125KHZ=0.125 谐振电容:c单位:PF本题建义c=500...1000pf可自行先决定,或由Q 值决定 谐振电感:l单位:微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用:(IRON) L=N2.ALL=电感值(H) H-DC=0.4πNI/lN=线圈匝数(圈) AL=感应系数 H-DC=直流磁化力I=通过电流(A)

l=磁路长度(cm) l及AL值大小,可参照Microl对照表。例如:以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI/l=0.4×3.14×5.5×10/3.74=18.47(查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l 其中 μ0为真空磁导率=4π*10(-7)。(10的负七次方) μs为线圈内部磁芯的相对磁导率,空心线圈时μs=1 N2为线圈圈数的平方 S线圈的截面积,单位为平方米 l线圈的长度,单位为米 k系数,取决于线圈的半径(R)与长度(l)的比值。 计算出的电感量的单位为亨利。

BOOST升压电路的电感、电容计算

BOOST升压电路的电感、电容计算 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f 1:占空比 稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即 Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有 don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量 其值为Vi*(1-don)/(f*2*Io) ,参数带入,Lx=38.5uH, deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显, 当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小, 由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取L=60uH, deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A 3:输出电容:

此例中输出电容选择位陶瓷电容,故 ESR可以忽略 C=Io*don/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径 其他参数: 电感:L 占空比:don 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd

电感和电容的计算

当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。我们把这种电流与线圈的相互作用关系称其为电的感抗,也就是电感。电容(或电容量,Capacitance)指的是在给定电位差下的电荷储藏量。 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 电容功率计算公式: P=1/2 * C * V2 * F 电感功率计算公式: P=1/2 * L * I2 * F 电容上携带的能量(焦耳),是二分之一乘以电容量(法拉)再乘以电容电压(伏特)的平方。 硅芯片功率的计算存在一个公式:功率=C(寄生电容)*F(频率)*V2(工作电压的平方)。对于同一种核心而言,C(寄生电容)是一个常数,所以硅芯片功率跟频率成正比,跟工作电压的平方也成正比 1法拉5V的电容携带的能量为12.5焦耳。1焦耳=1瓦每秒 全新1.2伏1.8A时的镍氢充电电池充满后携带的能量为1.2*1.8*3600=7776焦耳。在现在的商业环境条件下,镍氢充电电池和法拉电容的体积能量比为250:1,价格比为1:2。另外电容放电需要特殊的恒压输出调整电路。

各种电感计算公式

导线线径与电流规格表 表格为导线在不同温度下的线径与电流规格表 注意:线材规格请依下列表格,方能正常使用) 载流量 (A 安培 ) 9 14 23 32 48 60 90 100 123 150 210 238 300 估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。 (看 不懂没关系 ,多数情况只要查上表就行了 )。条件有变加折算,高温九折铜升级。穿管根数二 三四,八七六折满载流。 说明: (1) 本节口诀对各种绝缘线 (橡皮和塑料绝缘线 )的载流量 (安 全电流 )不是直接指出,而是 “截面乘上一定的倍数”来表示,通过心算而得。由表 5 3 可以 看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是 2. 5mm ' 及以下的各种截面铝芯绝缘线 ,其载流量约为截面数的 9倍。如 2.5mm '导线,载流量为 2. 5×9=22.5(A ) 。从 4mm '及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍 数逐次减 l ,即 4×8、6×7、 10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说 的是 35mm ” 的导线载流量为截面数的 3.5 倍,即 35×3.5=122.5(A ) 。从 50mm '及以上 的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减 0. 5。 即 50、70mm '导线的载流量为截面数的 3 倍;95、120mm ” 导线载流量是其截面积数的 2.5 倍, 2.5 4 6 10 16 25 35 50 70 95 120 的估算方法 以 下是绝缘导 线 (铝芯/铜芯) 载流量的估算 方法 ,这是电工 基础 ,今天把这 些知识教给大 家,以便计算车 上的导线允许 通过的电 流.(偶原在省 供电局从事电 能 计量工作 ) 铝 芯绝缘导线 载 流量与截面 的倍数关系 导线截面 (平方 毫米) 1 1.5 请 绝缘导线 ( 铝芯 /铜芯 )载流量 载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5

升压电感的计算方法

基于L6562的高功率因数boost电路的设计 0 引言 Boost是一种升压电路,这种电路的优点是可以使输入电流连续,并且在整个输入电压的正弦周期都可以调制,因此可获得很高的功率因数;该电路的电感电流即为输入电流,因而容易调节;同时开关管门极驱动信号地与输出共地,故驱动简单;此外,由于输入电流连续,开关管的电流峰值较小,因此,对输入电压变化适应性强。 储能电感在Boost电路起着关键的作用。一般而言,其感量较大,匝数较多,阻抗较大,容易引起电感饱和,发热量增加,严重威胁产品的性能和寿命。因此,对于储能电感的设计,是Boost电路的重点和难点之一。本文基于ST公司的L6562设计了一种Boost电路,并详细分析了磁性元器件的设计方法。 1 Boost电路的基本原理 Boost电路拓扑如图1所示。图中,当开关管T导通时,电流,IL流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容Cout 放电为负载提供能量;而当开关管T关断时,由于线圈中的磁能将改变线圈L两端的电压VL卡及性,以保持其电流IL不突变。这样,线圈L转化的电压VL与电源Vin串联,并以高于输出的电压向电容和负载供电,如图2所示是其电压和电流的关系图。图中,Vcont 为功率开关MOSFET的控制信号,VI为MOFET两端的电压,ID为流过二极管D的电流。以电流,IL作为区分,Boost电路的工作模式可分为连续模式、断续模式和临界模式三种。 分析图2,可得: 式(2)即为Boost电路工作于连续模式和临界模式下的基本公式。

式(2)即为Boost电路工作于连续模式和临界模式下的基本公式。 2 临界状态下的Boost-APFC电路设计 基于L6562的临界工作模式下的Boost-APFC电路的典型拓扑结构如图3所示,图4所示是其APFC工作原理波形图。 利用Boost电路实现高功率因数的原理是使输入电流跟随输入电压,并获得期望的输出电压。因此,控制电路所需的参量包括即时输入电压、输入电流及输出电压。乘法器连接输入电流控制部分和输出电压控制部分,输出正弦信号。当输出电压偏离期望值,如输出电压跌落时,电压控制环节的输出电压增加,使乘法器的输出也相应增加,从而使输入电流有效值也相应增加,以提供足够的能量。在此类控制模型中,输入电流的有效值由输出电压控制环节实现调制,而输入电流控制环节使输入电流保持正弦规律变化,从而跟踪输入电压。本文在基于此类控制模型下,采用ST公司的L6562作为控制芯片,给出了Boost-APFC电路的设计方法。 L6562的引脚功能如下: INV:该引脚为电压误差放大器的反相输入端和输出电压过压保护输入端; COMP:该引脚同时为电压误差放大器的输出端和芯片内部乘法器的一个输人端。反馈补偿网络接在该引脚与引脚INV之间; MULT:该引脚为芯片内部乘法器的另一输入端; CS:该脚为芯片内部PWM比较器的反相输入端,可通过电阻R6来检测MOS管电流; ZCD:该脚为电感电流过零检测端,可通过一限流电阻接于Boost电感的副边绕组。R7的选取应保证流入ZCD引脚的电流不超过3 mA;

DC-DC升压和降压电路电感参数选择详解

DC-DC 升压和降压电路电感参数选择 注:只有充分理解电感在DC-DC 电路中发挥的作用,才能更优的设计DC-DC 电路。本文 还包括对同步DC-DC 及异步DC-DC 概念的解释。 DC-DC 电路电感的选择简介 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还 要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC 电流 效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC 滤波电路中的L ( C 是具中的输出电容1虽然这 样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。在降压转换中 (Fairchild 典型的开关控制器),电感的一端是连接到DC 输出电压。另一端通过开关频率 切换连接到输入电压或GND 。 Figure 1. Basic Switching Action of a Converter 在状态1过程中,电感会通过(高边"high-side" ) MOSFET 连接到输入电压。在状态2 过程中,电感连接到GND 。由于使用了这类的控制器,可以采用两种方式实现电感接地: 通过二极管接地或通过(低边"low-side" ) MOSFET 接地。如果是后一种方式,转换器 就称为" 同步 ▼ State 2

(synchronus )"方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的 F连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须1:匕输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2所示: Figure 2. Inductor Current 通过上图我们可以看到,流过电感的最大电流为DC电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流:

线圈电感量的计算(二)

5、矩型线圈的电感 矩形线圈如图2-36所示,其电感为: 6、螺旋线圈的电感

其中: L:螺旋线圈的电感[H] l :螺旋线圈的长度[m] N:线圈的匝数 S:螺旋线圈的截面积[m2] μ:螺旋线圈内部磁芯的导磁率[H/m] k:长冈系数(由2R/l 决定,表2-1) 【说明】上式用来计算空心线圈的电感,μ=μ0 ,计算结果比较准确。当线圈内部有磁芯时,磁芯的导磁率最好选用相对导磁率μr ,μr=μ/μ0 ,μ为磁芯的导磁率,即:有磁芯线圈的电感是空心线圈电感的μr 倍,μr可通过实际测量来决定,只需把有磁芯的线圈和空心线圈分别进行对比测试,即可求得μr 。但由于磁芯的导磁率会随电流变化而变化,所以很难决定其准确值。这个公式是从单层线圈推导出来的,但对多层线圈也可以近似地适 用。 7、多层绕组线圈的电感

其中: L:多层绕组线圈的电感[H] R:线圈的平均半径[m] l :线圈的总长度[m] N:线圈的总匝数 t:线圈的厚度[m] k:长冈系数(由2R/l 决定,见表2-1) c:由l/t 决定的系数(见表2-2) 【说明】上式是用来计算多层线圈绕组、截面为圆形的空心线圈的电感计算公式。长冈系数k可查阅表2-1,系数c可查阅表2-2。当线圈内部有磁芯时,有磁芯线圈的电感是空心线圈电感的μr 倍,μr是磁芯的相对导磁率。相对导磁率的测试方法很简单,只需把有磁芯的线圈和空心线圈分别进行测试,通过对比即可求出相对导磁率的大小。

8、变压器线圈的电感 变压器线圈如图2-39所示,其电感为: L=μN*NS/l (2-108) 其中: L:变压器线圈的电感[H] l :变压器铁芯磁回路的平均长度[m] N:线圈的匝数 S:变压器铁芯磁回路的截面积[m2] μ:变压器铁芯的导磁率[H/m] 【说明】上式是用来计算变压器线圈电感的计算公式。由于变压器铁芯的磁回路基本是封闭的,变压器铁芯的平均导磁率相对来说比较大。铁芯的导磁率一般在产品技术手册中都会给出,但由于大多数开关电源变压器的铁芯都留有气隙,留有气隙的磁回路会出现磁场强度以及磁感应强度分布不均匀,因此,(2-108)式中的导磁率只能使用平均导磁率,技术手册中的数据不能直接使用。 在这种情况下,最好的方法是先制作一个简单样品,例如,在某个选好的变压器铁芯的骨架上绕一个简单线圈(比如匝数为10),然后对线圈的电感量进行测试,或者找一个已知线圈匝数与电感量的样品作为参考。知道了线圈样品的电感量后,只需把已知参数代入(2-108)或(2-94)式,即可求出其它未知参数,然后把所有已知参数定义为一个常数k;最后电感的计算公司就可以简化为:L = kN2 ,这样,电感量的计算就变得非常简单。 9、两个线圈的互感 两线圈的连接方法如图2-40所示。其中图2-40-a和图2-40-b分别为正、反向串联;图2-40-c

相关文档
最新文档