随机微分方程在金融中的若干应用

随机微分方程在金融中的若干应用
随机微分方程在金融中的若干应用

随机微分方程在金融中的若干应用

【摘要】:近些年,随着金融数学的迅速发展,随机微分方程在金融中有了越来越多的应用。作为重要的金融工具,期权和股票受到广泛的关注。在本文中,我们在几类随机微分方程模型框架下考虑期权的定价风险和对冲误差,以及股票市场技术分析的可行性,并对现有股票价格模型的合理性进行检验。具体内容如下:第一章首先介绍了金融数学的起源和发展,然后介绍了期权和对冲的概念,以及期权的分类,给出需要的基本预备知识。第二章考虑了带分红的股票期权,在标的资产服从几何布朗运动的情况下,根据Girsanov定理得到风险中性测度,用可料二次协变差过程,得到了用方差最优法度量风险时的最优对冲策略,给出在实际操作中可直接计算的显式表达式。第三章模拟了对冲误差占期权价格的比例,根据Ito公式等计算了在最优对冲策略下的对冲误差的上下界,并举例说明了传统期权定价的风险。第四章研究了时滞随机微分方程模型下的期权定价和对冲策略。已有许多学者指出,当前的股票价格总是受过去的股价影响,我们首先在时滞Black-Scholes模型下得到了最优对冲策略的表达式;其次,给出了时滞模型下的期权定价。最后,考虑了一类随机时滞模型下的期权定价和对冲。第五章首先介绍了股票市场常用的几种技术分析指标,例女(?)BOLL、ROC、RSI。实证分析表明,股票收益率具有长期相依性。而现有的被广泛讨论的指数Levy模型不具有长期相依性,在这一章我们考虑指数分数布朗运动模型。由于分数布朗运动不象Levy过程那

样具有独立增量,也不具有马氏性,我们寻找新的方法,用随机分析和矩阵论的相关知识进行推导。我们证明了关于几种常见技术分析指标的统计量的平稳性;接着,由Birkhoff遍历定理给出其相关指标的收敛性,得到了股价落出其正常范围的频率的大数定理,并给出收敛速度;最后,我们用美国股市的日数据和中国股市的高频数据对股票价格变动的独立性进行检验。【关键词】:期权对冲几何布朗运动时滞Black-scholes模型长期相依技术分析

【学位授予单位】:华东师范大学

【学位级别】:博士

【学位授予年份】:2011

【分类号】:F224;F830

【目录】:摘要6-7Abstract7-13主要符号对照表13-14第一章绪论14-24§1.1金融数学的发展及随机微分方程在其中的贡献14-18§1.2基本概念和介绍18-21§1.3期权定价和对冲的模型21-22§1.4本文的主要工作22-24第二章标的资产支付红利时的最优对冲策略24-36§2.1连续支付红利时的方差最优对冲策略24-31§2.2离散支付红利时的方差最优对冲策略31-32§2.3分红的预测32§2.4波动率随时间变化的方差最优对冲策略32-36第三章对冲误差和期权定价的风险36-48§3.1引言36§3.2对冲误差的模拟结果36-39§3.3对冲误差的上下界

39-45§3.4Black-Scholes期权定价的风险45-48第四章时滞随机微分方程在期权定价和对冲中的应用48-60§4.1时滞Black-Scholes模型的最优对冲策略48-53§4.2一类时滞模型下的期权定价53-56§4.3随机时滞的模型下的期权定价和对冲56-60第五章基于长期相依过程的股票市场技术分析60-86§5.1研究背景和技术分析指标的介绍60-66§5.2关于技术指标的统计结果66-67§5.3一类长期相依过程——分数布朗运动67-70§5.4基于几何分数布朗运动模型的统计分析70-77§5.5收敛速度77-82§5.6股票价格变动率独立性的假设检验82-86第六章结论以及未来的工作86-88参考文献88-96后记96-97博士期间的研究成果及发表的论文97 本论文购买请联系页眉网站。

§8-5--微分方程应用举例

§8-5 微分方程应用举例 在前面几节,已经举了一些力学、运动学方面应用微分方程的实例,本节将再集中学习几个在其他方面的应用实例,说明微分方程在许多实际领域中都有着广泛的应用. 应用微分方程解决实际问题通常按下列步骤进行: (1)建立模型:分析实际问题,建立微分方程,确定初始条件; (2)求解方程:求出所列微分方程的通解,并根据初始条件确定出符合实际情况的特解; (3)解释问题:从微分方程的解,解释、分析实际问题,预计变化趋势. 例1 有一个30?30?12(m 3 )的车间,空气中CO 2的容积浓度为0.12%.为降低CO 2的含量,用一台风量为1500(m 3 /min )的进风鼓风机通入CO 2浓度为0.04%的新鲜空气,假定通入的新鲜空气与车间内原有空气能很快混合均匀,用另一台风量为1500(m 3 /min )的排风鼓风机排出,问两台鼓风机同时开动10min 后,车间中CO 2的容积浓度为多少? 解 车间体积为10800m 3 .设鼓风机开动t (min )后,车间空气中CO 2的含量为x =x (t ),那么容积浓度为 10800 x . 记在t 到t +dt 这段时间内,车间CO 2含量的改变量为dx ,则 dx =该时间段内CO 2通入量-该时间段内CO 2排出量 =单位时间进风量?进风CO 2的浓度?时间-单位时间排风量?排风CO 2浓度?时间 =1500?0.04%?dt -1500? 10800 x ?dt , 于是有 dt dx =1500?0.04% -1500?10800x 即 dt dx =36 5 (4.32-x ) 初始条件x (0)=10800?0.12%=12.96. 方程为可分离变量的方程,其通解为 x (t )=4.32+C t e 36 5-. 将初始条件代入上式,得C =8.64.于是在t 时刻车间内空气中CO 2的含量为 x (t )=4.32(1+2t e 36 5-). 所以鼓风机打开10min 后,车间中CO 2浓度为 10800 47 .610800)10(= x =0.06%. 例2 (马尔萨斯人口方程)英国人口学家马尔萨斯在1798年提出了人口指数增长模型:人口的增长率与当时的人口总数成正比.若已知t =t 0时人口总数为x 0,试根据马尔萨斯模型,确定时间t 与人口总数x (t )之间的函数关系.据我国有关人口统计的资料数据,1990年我国人口总数为11.6亿,在以后的8年中,年人口平均增长率为14.8‰,假定年增长率一直

常微分方程在数学建模中的应用(免费版)

常微分方程在数学建模中的应用 这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型 由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型. 例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型. 解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ?+时间段内,人口的增长量为 t t rN t N t t N ?=-?+)()()(, 并设0t t =时刻的人口为0N ,于是 ?????==. , 00)(d d N t N rN t N 这就是马尔萨斯人口模型,用分离变量法易求出其解为 )(00e )(t t r N t N -=, 此式表明人口以指数规律随时间无限增长. 模型检验:据估计1961年地球上的人口总数为9 1006.3?,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3?=N ,02.0=r ,于是 ) 1961(02.09 e 1006.3)(-?=t t N . 这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人 口大约每35年翻一番,而上式断定34.6年增加一倍(请读者证明这一点). 但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改. 例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢?这主要是地

常微分方程的实际应用

常微分方程的实际应用 于萍 摘要:常微分方程在当代数学中是极为重要的一个分支,它的实用价值很高,应用也很广泛,本文主要介绍常微分方程在几何、机械运动、电磁振荡方面的应用,并举例说明,体会常微分方程对解决实际问题的作用,在解决实际问题过程中通常是建立起实际问题的数学模型,也就是建立反映这个实际问题的微分方程,求解这个微分方程,用所得的数学结果解释实际问题,从而预测到某些物理过程的特定性质,以便达到能动地改造世界,解决实际问题的目的。 关键字:常微分方程,几何,机械运动,电磁振荡,应用

Abstract: Nomal differential equation is an important part of math at it has a high practical value. This thesis shows the use in geometry, mechaics and electrothermal and makes some examples. Also, it summarizes the normal move of dealing with practical problems by the normal differential equation. Normal, we set up the maths matic model of the problem, solute the normal differentical equation make the use of the result to explain practical problems and make a forecast of some special character of physical process. Key: Normal differetial equation geometry mechanics electrothermal use

微分方程应用问题案例

第四章微分方程 一、微分方程的概念 案例1 [曲线方程]已知曲线过点(1.2).且曲线上任一点处切线的斜率是该点横坐标的倒数. 求此曲线方程. 解:设曲线方程为 .于是曲线在点处切线的斜率为.根据题意有 (4.1.1) 又曲线过点(1.2).故有 (4.1.2) 对式(4.1.1)两边积分.得 将式(4.1.2)代入上式.得.即. 故所求曲线方程为. 案例2 [自由落体运动] 一质量为的质点,在重力作用下自由下落, 求其运动方程. 解:

建立坐标系如图(1)所示.坐标原点取在质点开始下落点, 轴铅直向下.设在时刻 质点的位 置为 , 由于质点只受重力 作用,且力的方向与 轴正向相同.故由牛顿第二定律.得质点满足的方程 为 . 即 . 方程两边同时积分.得 上式两边再同时积分.得 其中 是两个独立变化的任意常数. 案例3[列车制动] 列车在直线轨道上以20米/秒的速度行驶.制动列车获得负加速度 -0.4 2 米秒.问开始制动后要 经过多少他长时间才能把列车刹住?在这段时间内列车行驶了多少路程? 解: 记列车制动的时刻为t=0.设制动后t 秒列车行驶了s 米.由题意知.制动后列车行驶的加速度 220.4d s dt =-. (4.1.3) 初始条件为当0t =时.0s =. 20ds v dt = =. 将方程(4.1.3)两端同时对t 积分.得 1()0.4ds v t t C dt = =-+. (4.1.4)

式(4.1.4)两端对t 再积分一次.得 212 0.2C C s t t =-++ . (4.1.5) 其中1C .2C 都是任意常数.把条件当t=0时. 20ds dt =代入(4.1.4)式.得1C 20=, 把t=0时.s=0代入式(4.1.5).得2C =0.于是.列车制动后的运动方程为 20.220s t t =-+ . (4.1.6) 速度方程为 0.420ds v t dt = =-+ . (4.1.7) 因为列车刹住时速度为零.在式(4.1.7)中.令 0ds v dt = =,得0=-0.4t+20.解 出得列车从 开始制动到完全刹住的时间为 20 50()0.4t s = = 再把t=50代入式(4.1.6).得列车在制动后所行驶的路程为 2 0.22050500() 50s m =-?+?= 二、可分离变量的微分方程 案例1 [国民生产总值] 1999年我国的国民生产总值(GDP )为80,423亿元.如果我国能保持 每年8%的相对增长率. 问到2010年我国的GDP 是多少? 解: (1)建立微分方程 记0t =代表1999年.并设第t 年我国的GDP 为()P t .由题意知. 从1999年起.()P t 的相对增长率为8%. 即 () 8% ()dP t dt P t =.

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

偏微分方程的应用

偏微分方程在生物学上的应用 刘富冲pb06007143 1偏微分方程的发展 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,物理学中的许多基本方程本身就是偏微分方程。早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。逐渐地,以物理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。 在国外,对偏微分方程的应用发展是相当重视的。很多大学和研究单位都有应用偏微分方程的研究集体,并得到国家工业、科学部门及军方、航空航天等方面的大力资助。比如在国际上有重大影响的美国的Courant研究所、法国的信息与自动化国立研究所等都集中了相当多的偏微分方程的研究人员,并把数学模型、数学方法、应用软件及实际应用融为一体,在解决实际课题、推动学科发展及加速培养人才等方面都起了很大的作用。 2偏微分方程的应用 在科技和经济发展中,很多重要的实际课题都需要求解偏微分方程,为相应的工程设计提供必要的数据,保证工程安全可靠且高效地完成任务。 在很多的实际课题中,有不少课题(特别是国防课题)是不能或很难用工程试验的方法来进行研究的(一方面是危险系数大,另一方面是耗费大),因此就需要尽可能地减少试验的次数或在试验前给出比较准确的预计。 随着电子计算机的出现及计算技术的发展,电子计算机成为解决这些实际课题的重要工具。但是有效地利用电子计算机,必须具备如下先决条件: 针对所考虑的实际问题建立合理的数学模型,而这些能精确描述问题的模型大都是通过偏微分方程给出的。 对相应的偏微分方程模型进行定性的研究。 根据所进行的定性研究,寻求或选择有效的求解方法。 编制高效率的程序或建立相应的应用软件,利用电子计算机对实际问题进行模拟。 因此,总体上来说,上述这些先决条件都属于偏微分方程应用的研究范围,这些问题解决的好坏直接影响到使用电子计算机所得结果的精确性及耗费的大小。如果解决得好,就会对整个问题的解决起到事半功倍的效果。 到目前为止,偏微分方程已经在解决有关人口问题、传染病动力学、高速飞行、石油开发及城市交通等方面的实际课题中做出了重大的贡献。 下面主要讲一下大家比较熟悉的人口问题及传染病动力学问题,详细阐述偏微分方程在解决实际问题中的应用。

常微分方程在高中物理中的应用

微分方程在高中物理中的应用 高中阶段,我们经常会遇到一些需要定性分析的物理问题,其实如果我们应用高等数学 的知识,可以把其中一些问题进行定量的分析。 例如,质量为m 的物体从高度H 自由下落,所受阻力f 与速度v 成正比,g 为重力加速 度这是我们平时常见的一类问题。但我们只知道速度V 最终会趋近于某一数值v0。下面我 进行一下定量分析。 根据题目所给信息,可列出动力学方程 mg-kv=ma ① a=dv/dt ② 结合①式可得mg-kv=mdv/dt 这里移项可得dt=mdv/(mg-kv)③ 两边同时积分便可的到 V=mg(ce*(-kt/m)+1)/k 又∵自由下落,可得t=0时v=.0 ∴v=mg(1-e*(-kt/m))/k ④ 由④式知,当t 趋近于正无穷时,e*(-kt/m)=0, 此时v=mg/k ⑤ 若按照正常思路,当物体受力平衡时,mg=kv,此时也能得到⑤式的结论。 而在高考中,更为常见的是在电磁场中的同类问题,我们不妨看一下下面这一道例题 (2012·山东理综)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹 角为θ,上端接有定值电阻,匀强磁场垂直于导轨平面,磁感应强度为B 。将质量为m 的导 体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的 拉力,并保持拉力的功率为P ,导体棒最终以2v 的速度匀速运动。导体棒始终与导轨垂直 且接触良好,不计导轨和导体棒的电阻,重力加速度为g ,下列选项正 确的是 A .P =2mg sin θ B .P =3mg sin θ C .当导体棒速度达到v /2时加速度为12 g sin θ D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力 所做的功 我们根据题目也可以列出动力学方程 Mgsin θ-B*2L*2V/R=ma ① a=dv/dt ② 同样可以解得v=(mgR sin θ/B*2L*2)(1-e*(-B*2L*2t/mR))③ 从③式可以看出当t 趋近于正无穷时,v=mgR sin θ/B*2L*2即B*2L*2v/R=mg sin θ转化而来。 所以题目中所说当速度到达V 时开始匀速运动存在明显错误。应改为近似于做匀速直线运 动。

数学建模——微分方程的应用

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则 dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( U 238)的半衰期约为50亿年;通常的镭( Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.

微分方程建模案例

第五章微分方程建模案例 微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学内涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比较广,涉及到生活中的诸多行业,其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。本章主要介绍几个简单的用微分方程建立的模型,让读者一窥方程的应用。下面简要介绍利用方程知识建立数学模型的几种方法: 1.利用题目本身给出的或隐含的等量关系建立微分方程模型 这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模型。 例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的。 2.从一些已知的基本定律或基本公式出发建立微分方程模型 我们要熟悉一些常用的基本定律、基本公式。例如从几何观点看,曲线y=上某点的切线斜率即函数) y y=在该点的导数;力学中的牛顿第二运 (x ) (x y 动定律:ma F=,其中加速度a就是位移对时间的二阶导数,也是速度对时间的一阶导数等等。从这些知识出发我们可以建立相应的微分方程模型。 例如在动力学中,如何保证高空跳伞者的安全问题。对于高空下落的物体,我们可以利用牛顿第二运动定律建立其微分方程模型,设物体质量为m,空气阻 209

微分方程在经济学中的应用

第四节 微分方程在经济学中的应用 微分方程在经济学中有着广泛的应用,有关经济量的变化、变化率问题常转化为微分方程的定解问题.一般应先根据某个经济法则或某种经济假说建立一个数学模型,即以所研究的经济量为未知函数,时间t 为自变量的微分方程模型,然后求解微分方程,通过求得的解来解释相应的经济量的意义或规律,最后作出预测或决策,下面介绍微分方程在经济学中的几个简单应用. 一、 供需均衡的价格调整模型 在完全竞争的市场条件下,商品的价格由市场的供求关系决定,或者说,某商品的供给量S 及需求量D 与该商品的价格有关,为简单起见,假设供给函数与需求函数分别为 S =a 1+b 1P , D =a -bP , 其中a 1,b 1,a ,b 均为常数,且b 1>0,b >0;P 为实际价格. 供需均衡的静态模型为 ?? ???=+=-=).()(,,11P S P D P b a S bP a D 显然,静态模型的均衡价格为 P e =1 1b b a a +-. 对产量不能轻易扩大,其生产周期相对较长的情况下的商品,瓦尔拉(Walras )假设:超额需求[D (P )-S (P )]为正时,未被满足的买方愿出高价,供不应求的卖方将提价,因而价格上涨;反之,价格下跌,因此,t 时刻价格的变化率与超额需求D -S 成正比,即 t P d d =k (D -S ),于是瓦尔拉假设下的动态模型为 ??? ????-=+=-=)].()([), (),(11P S P D k t P t P b a S t bP a D d d 整理上述模型得 t P d d =λ(P e -P ), 其中λ=k (b +b 1)>0,这个方程的通解为 P (t )=P e +C e -λt . 假设初始价格为P (0)=P 0,代入上式得,C =P 0-P e ,于是动态价格调整模型的解为 P (t )=P e +(P 0-P e )·e -λt , 由于λ>0,故 lim ()t P t →+∞=P e . 这表明,随着时间的不断延续,实际价格P (t )将逐渐趋于均衡价格P e . 二、 索洛(Solow)新古典经济增长模型

微分方程在物理中的应用

微分方程在大学物理中的应用 一.质点运动学和牛顿运定律中的运用 1.质点运动:a=dV/dt “dV/dt”是“速度随时间的变化率”-----就是加速度。(微分、又称“速度V的导数”) 写成表达式:a=dV/dt---------(1) X表示位移,“dX/dt”就是“位移随时间的变化率”-----就是速度。 写成表达式:V=dX/dt---------(2) 把(1)代入(2)得:a=(d^2 X)/(dt^2)-------这就是“位移对时间”的“二阶导数”。 实际上,(d^2 v)/(dt^2)就是“dv/dt (加速度)”对时间再次“求导”的结果。 d(dV/dt)/dt 就是把“dV/dt”再次对时间求导。-------也可以说成是“速度V对时间t的二阶导数”。 典型运用:圆周运动向心加速度公式推导(微分思想) 2.牛顿第二定律:F=d p/dt=d(m v)/dt=md v/dt=ma 动量为p的物体,在合外力F的作用下,其动量随时间的变化率应当等于物体的合外力。 典型运用:自由落体运动公式的推导 f=d(mv)/dt,得mg=mdv/dt,得g=dv/dt=ds^2/d^2t,求s t关系用右边的,把下面的分母乘过去,积分两次,就得到0.5gt^2=s; 例题:一物体悬挂在弹簧上做竖直振动,其加速度a=-ky,式中k为常量,y是以平衡位置为原点所测得的坐标。假设振动的物体在坐标y0处的速度为v0,试求速度v与坐标y的函数关系式。 3.简谐运动(单摆复摆问题):弹簧振子的运动为例,

回复力:F= -kx 加速度:a=F/m=-kx/m 对于给定的弹簧振子有w^2=k/m 则有a=dv/dt=d^2 v/dt^2= -w^2x 其解为x=Acos(wt+h) 然后v=dx/dt,a=dv/dt推导出相应公式。(物理书上原文) 下面我们求一下a=dv/dt=d^2 v/dt^2= -w^2x的解。 还有在动量守恒定律、能量守恒定律以及刚体转动中等各个反面的运用。

微分方程在几类实际问题中的应用

毕业设计(论文) 题目名称:微分方程在几类实际问题中的应用院系名称:理学院 班级:数学102 学号:201000134223 学生姓名:陈博先 指导教师:宋长明 2014年 6 月

论文编号:201000134223 微分方程在几类实际问题中的应用Application of Differential Equation in Several Practical Problems 院系名称:理学院 班级:数学102 学号:201000134223 学生姓名:陈博先 指导教师:宋长明 2014年6 月

摘要 在数学上,物质运动和其变化规律是用函数关系进行描述的,但是实际问题中常常不能直接写出反应相应规律的函数,却比较容易建立起这些变量与它们的导数之间的关系式,即微分方程.只有一个自变量的微分方程即为常微分方程,简称为微分方程. 本文讨论的是微分方程在实际问题中的应用.微分方程在各个学科领域都可以发挥出其数学优势,将微分方程理论和实际问题结合起来,便可建立实际问题的模型.本文在介绍微分方程应用背景的基础上,结合微分方程的概念性质,利用归纳总结的方法探讨了常微分方程在物理问题、生物问题、军事问题、经济问题和医学问题等“现实生活”中问题的应用,同时结合相应实例进行分析.从这些应用问题中,我们可以看出:微分方程,它确实是数学联系实际的一个活跃分支. 关键词:微分方程;实际问题;应用;数学模型

Abstract In mathematics, the motion of matter and its change rule are described by the relationship of function. But for practical problems , compared with writing the reaction of the corresponding rules directly, establishing the relationship between these variables and their derivatives named differential equation becomes relatively easy. Only a variable of differential equation is called ordinary differential equation, for short differential equation. In this paper, we discuss the application about differential equations in the actual problems. Differential equation can perform its mathematical advantage in various https://www.360docs.net/doc/e29025881.html,bining differential equation theory and practical problems, we can establish the model of the actual problems.Based on the application background of differential equation and combined with the concept and nature of differential equation,this paper discussed the application of ordinary differential equation in the field of physics,biology,military,economic and medicine,and so on,with the method of summarizing. From these applications,we can see that differential equation is really a active branch of connetting math and practical problems. Keywords: differential equations;the actual problem;application;mathematical model

二阶常微分方程的解法及其应用.

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

〈常微分方程》应用题及答案

应 用 题(每题10分) 1、设()f x 在(,)-∞∞上有定义且不恒为零,又()f x '存在并对任意,x y 恒有()()()f x y f x f y +=,求()f x 。 2、设()()()F x f x g x =,其中函数(),()f x g x 在(,)-∞∞内满足以下条件 ()(),()(),(0)0,()()2x f x g x g x f x f f x g x e ''===+= (1)求()F x 所满足的一阶微分方程; (2)求出()F x 的表达式。 3、已知连续函数()f x 满足条件320 ()3x x t f x f dt e ??=+ ??? ?,求()f x 。 ; 4、已知函数()f x 在(0,)+∞内可导,()0,lim ()1x f x f x →+∞ >=,且满足 1 1 0()lim ()h x h f x hx e f x →? ?+ ?= ? ?? ? ,求()f x 。 5、设函数()f x 在(0,)+∞内连续,5 (1)2 f = ,且对所有,(0,)x t ∈+∞,满足条件 1 1 1 ()()()xt x t f u du t f u du x f u du =+? ??,求()f x 。 6、求连续函数()f x ,使它满足10 ()()sin f tx dt f x x x =+?? 。 7、已知可微函数()f t 满足 31() ()1()x f t dt f x t f t t =-+?,试求()f x 。 8、设有微分方程 '2()y y x ?-=, 其中21 ()01 x x x ??。试求在(,)-∞∞内的连续函 数()y y x =使之在(,1)-∞和()1,+∞内部满足所给方程,且满足条件(0)0y =。 9、设位于第一象限的曲线()y f x = 过点122?? ? ? ?? ,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分。 (1)求曲线()y f x =的方程; (2)已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示曲线()y f x =的弧长s 。 ' 10、求微分方程(2)0xdy x y dx +-=的一个解()y y x =,使得由曲线()y y x =与直线 1,2x x ==以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小。 11、设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记

最新常微分方程及其应用

常微分方程及其应用

第5章常微分方程及其应用 习题5.2 1.求下列各微分方程的通解: (1)?Skip Record If...?;(2)?Skip Record If...?; (3)?Skip Record If...?;(4)?Skip Record If...?; (5)?Skip Record If...?;(6)?Skip Record If...?. 2.求下列各微分方程满足所给初始条件的特解: (1)?Skip Record If...?,?Skip Record If...?;(2)?Skip Record If...?,?Skip Record If...?; (3)?Skip Record If...?,?Skip Record If...?;(4)?Skip Record If...?,?Skip Record If...?; (5)?Skip Record If...?,?Skip Record If...?;(6)?Skip Record If...?,?Skip Record If...?. 5.3 可降阶微分方程及二阶常系数线性微分方程 案例引入求微分方程?Skip Record If...?的通解. 解两边积分,得?Skip Record If...? 两边再积分,得?Skip Record If...? 所以,原方程的通解为?Skip Record If...?,其中?Skip Record If...?为任意常数. 5.3.1 可降阶微分方程 仅供学习与交流,如有侵权请联系网站删除谢谢20

1. 形如?Skip Record If...?的微分方程 特点:方程右端为已知函数?Skip Record If...?. 解法:对?Skip Record If...?连续积分?Skip Record If...?次,即可得含有 ?Skip Record If...?个任意常数的通解. 2. 形如?Skip Record If...?的微分方程 特点:方程右端不显含未知函数?Skip Record If...?. 解法:令?Skip Record If...?,则?Skip Record If...?.于是,原方程可化为?Skip Record If...?.这是关于?Skip Record If...?的一阶微分方程.设其通解为?Skip Record If...?,即?Skip Record If...?.两边积分,即可得原方程通解?Skip Record If...?,其中?Skip Record If...?为任意常数. 3. 形如?Skip Record If...?的微分方程 特点:方程右端不显含自变量?Skip Record If...?. 解法:令?Skip Record If...?,则?Skip Record If...?.于是,原方程可化为?Skip Record If...?.这是关于?Skip Record If...?的一阶微分方程.设其通解为?Skip Record If...?,即 ?Skip Record If...?.分离变量,得?Skip Record If...?.然后两边积分,即可得原方程通解 ?Skip Record If...?,其中?Skip Record If...?为任意常数.例5-7求微分方程?Skip Record If...?的通解. 解两边积分,得?Skip Record If...? 仅供学习与交流,如有侵权请联系网站删除谢谢20

常微分方程在实际生活中的应用

目录 序言 (2) 一、鉴别名画的真伪 (2) 二、测定考古发掘物的年龄 (6) 三、在军事上的应用 (8) 四、在社会经济中的应用 (13) 五、应用于刑事侦察中死亡时间的鉴定 (16) 六、在人口增减规律中的应用 (17) 结束语 (18) 参考文献 (19)

常微分方程在实际生活中的应用 曹天岩 (渤海大学数学系辽宁锦州 121000 中国) 摘要:现代的科学、技术、工程中的大量数学模型都可以用常微分方程来描述,很多近代自然科学的基本方程本身就是微分方程,从微积分理论形成以来,人们一直用微分方程来描述、解释或预见各种自然现象,不断地取得了显著的成效。 常微分方程来自人类的社会实践,又是解决实际问题的一个最强有力的数学方法,在现实生活中,能用常微分方程研究的实际问题非常多,几乎在人类社会的每一个角落它都展示了无穷的威力,尤其是在工程技术、军事、经济、医学、生物、生态等领域它都发挥着极其重要的作用。所以研究常微分方程对人类社会生活有非常重要的意义和很实用的价值。本文介绍了利用常微分方程的知识和放射性物质可以衰变的特性来鉴别名画的真伪。利用放射现象测定考古发掘物的年龄,利用常微分方程了解深水炸弹在水下的运动,也就是其在军事上的应用,利用常微分方程对社会经济进行分析研究,利用牛顿冷却定律和常微分方程的知识对刑事侦察中死亡时间的鉴定,以及常微分方程在人口增减规律中的应用等几部分内容。 关键词:常微分方程应用解. Application of ordinary differential equation in actual life Cao Tianyan (Department of Mathsmatic Bohai University Liaoning Jinzhou 121000 China) Abstract:A great deal of mathematics models in science,technique,engineering of the summary modern all can use a differential calculus a square distance to often describe, the basic and square distance of a lot of modern natural sciences is a differential calculus square distance, from the calculus theories formation, people had been use a square distance of differential calculus to describe,explain or foresee various natural phenomena, obtaining to show the result of the constantly. Often differential calculus the square distance come from the mankind's social fulfillment, is the most powerful mathematics method that resolves an actual problem again, can use a differential calculus a square distance to often study in the realistic life of the actual problem is quite a few, almost at mankind each corner of the society display endless of power is in the realms, such as engineering technique,military,economy,medical science,living creature and ecosystem...etc. particularly it develops a very and important function.So research often differential calculus the square distance have count for much meaning to mankind's social activities with the very practical value.This text introduced to make use of differential calculus often the knowledge and the radio material of the square distance can be change with of characteristic to discriminate a painting of true false.Make use of emanation the phenomenon measurement to study of ancient relics age of discover the thing, make use of a differential calculus a square distance understanding often deeply the water bomb at underwater of sport be also it to apply militarily, make use of often differential calculus the square distance is to the social economy carry on analysis research, make use of Newton to cool off laws and often differential calculus the pertaining to crime for the knowledge of the square distance is on the scout to die time of authenticate, and often differential calculus the square distance is in the population increase or decrease the application in the regulation to wait several parts of contentses. Key Words: Ordinary differential equation application solution

相关文档
最新文档