解读生态系统的数学模型

解读生态系统的数学模型
解读生态系统的数学模型

解读生态系统的数学模型

江苏省沭阳高级中学(223600)陈卫东

本文刊登在《考试报》2012年12月刊

所谓数学模型,就是将客观的物理学的或生物学的现象和概念翻译成一套数学关系,用数学的符号和方程式来表示这些现象和概念,并将由此得到的数学系统进行运算和操作,以作出预言。这个数学系统,就称之为数学模型。高中生物新教材种生态系统相关内容中,有几个涉及数学模型的内容,现予以归纳:

1.植物种群密度样方调查:

背景问题:在要调查的生物群落中,确定一个或数个范围相对较大的区域作为样地,在样地中随机选取若干个样方,计数各样方中某种生物的全部个体数量;最后,计算全部样方单位面积某种生物个体数量的平均数,通过数理统计,对种群密度进行估计。

数学模型:N=(N1+N2+N3+……+Nn)/(n·S)

模型中各参数意义:N1、N2、……Nn表示各个样方的调查实际数量,n表示所取的总样方数,S表示每个样方的面积,N表示调查对象的种群密度。

【例题】某小组学生观察到某大麦田中长有许多狗尾草,还有食草昆虫、青蛙、食虫鸟和蛇类等动物活动,决定调查农田中大麦与狗尾草的种群密度,并探究各生物之间的关系。调查种群密度时,所取样方为长和宽各1m的正方形,各样方的统计株数如下表:

根据上表数据,可计算出该农田生态系统中大麦的种群密度估计值为株/m;狗尾草的种群密度估计值为株/m2。

【解答】利用上述数学模型不难计算出该农田中大麦密度估计值为147株/m2;狗尾草密度估计值为6.5株/m2。

2.动物标志重捕:

背景问题:标志重捕法是一个有比较明确界限的区域内,捕捉一定量生物个体进行标记,然后放回,经过一个适当时期(标记个体与未标记个体重新充分混和分布后),再进行重捕。根据重捕样本中标记者的比例,估计该区域的种群总数。

数学模型:N:M=n:m ?N=Mn/m

模型中各参数意义:N为该区域某种群总数;M为第一次捕获后标记总数,n为第二次捕获总数,m为第二次捕获个体中已经被标记过的个体数。

【例题】“标志(记)重捕法”是动物种群密度调查中的一种常用取样调查法:在被调查种群的生存环境中,捕获一部分个体(M)全部进行标记后释放,经过一段时间后进行重捕,根据重捕中标记个体数(m)占总捕获数(n)的比例,估计该种群的数量(N)。某研究机构对我国北方草原一种主要害鼠——布氏田鼠进行了调查。调查样方总面积为2hm2。(1hm2=10000m2),随机布设100个鼠笼,放置l夜后,统计所捕获的鼠数量、性别等,进行标记后放归;3日后进行重捕与调查。所得到的调查数据如下表。

⑴假定重捕取样中标记比例与样方总数中标记比例相等,写出样方中种群总数(N)的计算公式。

⑵该草地布氏田鼠的平均种群密度为只/hm2。事实上田鼠在被捕捉过一次后更难捕捉,上述计算所得的平均种群密度与实际种群密度相比可能会偏。

【解答】⑴N=Mn/m;⑵144 高

3.种群“J”型增长的:

背景问题::在食物和空间条件充裕,气候适宜,没有敌害等条件下,种群的数量每年以一定的倍数增长,第二年(代)的数量是第一年(代)的λ倍。

数学模型:N t=N0λt

模型中各参数意义:N0为该种群的起始数量,t为时间(代),N t表示t年(代)后该种群的数量,λ表示该种群数量是前一年(代)种群数量的倍数。

【例题】在营养和生存空间等没有限制的理想条件下,某细菌每20min就分裂繁殖一代。现将该细菌种群(m个个体)接种到培养基上(资源、空间无限),Th后,该种群的个体总数是_________。

【解答】此题中N0=m,由于细菌为二分裂,即一个产生两个,因此λ为2,Th后共繁殖了T×60/20=3T代,该种群个体总数N t=m?23T。

4.能量流动:

背景问题:能量在各个营养级之间流动时,是逐级递减,单向不循环的。能量在各个营养级之间能量传递是按照一定比例进行的。

数学模型:Q n+1=λQ n

模型中各参数意义:Q n+1表示n+1营养级同化的能量;λ表示从n营养级到n+1营养级的能量传递效率;Q n表示n营养级同化的能量。

【例题】有5个营养级的一条食物链,若第五营养级的生物体重增加1kg,理论上至少要消耗第一营养级的生物()

A.25kg B.125kg C.625kg D.3125kg 【解答】所谓至少消耗,即是按照最高的效率(20%)传递。设需消耗第一营养级生物x kg,则有(20%)4x=1,不难选出正确答案为C项。

数学模型在生物学中的应用

数学模型在生物学中的应用 摘要 数学模型是研究生命发展规律,发现和分析生命现状的工具。建立可靠的本文从生物数学的发展、分支了解生物数学的历史,紧接着又在数学模型在生物数学的地位中了解数学模型的地位,最后在数学模型的应用中知道了微分方程模型、差分方程模型以及稳定性模型.这将有助于在生物数学的研究中,依据数学模型的基础,建立符合规律的数学模型,在生命进程中验证新的规律、新的发现,使在研究生物学时更清晰、更明了. 关键词:数学模型;生物学;应用

Application of mathematical model in Biology Abstract: Mathematical models in biology such as a microscope can be found in biological mysteries, biological research through with the establishment of the mathematical rules of the law of development of life, which launched a new discovery, new rules and in biology established reliable model of the biological status of classified analysis and forecasting. The from the history of mathematical biology development, the branch of the understanding of mathematical biology, followed by another in the mathematical model in Mathematical Biology status in understanding the status of mathematical model. Finally, in the application of mathematical model know differential equation model, the differential equation model and the stability of the model. This will help in mathematical biology research, on the basis of the mathematical model, established in accordance with the law of the mathematical model, in the process of life to verify new rules, new found in biological research clearer, more clear. Keywords: mathematical mode;biology;application

控制数学模型

第二章 控制系统的数学模型 2—1 数字模型 在控制系统的分析和设计中,首先要建立系统的数学模型。 自动控制系统: 相同的数学模型进行描述,研究自动控制系统 其内在共性运动规律。 系统的数学模型,是描述系统内部各物理量之间动态关系的数学表达式。 常用的数学模型有: 数学模型 的建立方法 一般应尽可能采用线性定常数学模型描述控制系统。 如果描述系统的数学模型是线性微分方程,则称该系统为线性系统,若方程中的系数是常数,则称其为线性定常系统。线性系统的最重要特性是可以应用叠加原理,在动态研究中,如果系统在多个输入作用下的输出等于各输入单独作用下的输出和(可加性),而且当输入增大倍数时,输出相应增大同样倍数(均匀性),就满足叠加原理,因而系统可以看成线性系统。如果描述系统的数学模型是非线性微分方程,则相应系统称为非线性系统,其特性是不能应用叠加原理。 建立系统数学模型的主要目的,是为了分析系统的性能。由数学模型求取系统性能指标的主要途径如图2—1所示。由图可见,傅里叶变换和拉普拉斯变换是分析和设计线性定常连续控制系统的主要数学工具。 电气的、 机械的、 液压的 气动的等 微(差)分方程 传递函数(脉冲传递函数研究线性离散系统的数学模型) 经典控制理论 频率特性(在频域中研究线性控制系统的数学模型) 状态空间表达式(现代控制理论研究多输入—多输出控制系统) 结构图和信号流图,数学表达式的数学模型图示型式 解析法:依据系统及元件各变量之间所遵循的物理、化学定律, 列写出各变量之间的数学关系式 实验法:对系统施加典型信号(脉冲、阶跃或正弦),记录系统的时间响应 曲线或频率响应曲线,从而获得系统的传递函数或频率特性。 图2-1 求取性能指标的主要途径

数学建模作业温室中的绿色生态臭氧病虫害防治

摘要“温室中的绿色生态臭氧病虫害防治”是通过建立数学模型的方式来分析出害虫密度与水稻产量的关系.对于问题一,在自然条件下,忽略以中华稻蝗和稻纵卷叶螟之间的竞争关系,以这两种病虫为例,分析其对水稻影响的综合作用并进行模型求解和分析。对于问题二,我们用matllab建立时间与植株中残留量的关系图,观察图像,发现图像近似二次函数,用拟合方法拟合、最小二乘法求出相应的所设方程未知数。对于第三题建立臭氧对温室植物与病虫害作用的数学模型,通过制作图像,观察图像在用各种拟合方法拟合图像后发现用二次指数函数拟合后的误差最小,同样运用matlab拟合函数,求出相应的未知数即可,再次运用同样的方法建立出臭氧分解速率与温度的函数,其同样近似于指数函数。最后结合图表给出的数据以及结合前面得出的两个函数,得出效率评价函数,更好地评估到臭氧在某个温度T时刻的杀虫效率。对于问题四,通过对温度与臭氧的扩散速率关系式,作出一个温室的模型,模拟风向,再结合假设,得出一个合理的分布图。对于第五题可以参考以求出的臭氧分解速率与温度的关系,病虫的残余量和浓度的关系等来综合考虑。 关键字:竞争曲线拟合效用评价函数分布图 1.问题的提出 1.1背景资料 2009年12月,哥本哈根国际气候大会在丹麦举行之后,温室效应再次成为国际社会的热点。如何有效地利用温室效应来造福人类,减少其对人类的负面影响成为全社会的聚焦点。 臭氧对植物生长具有保护与破坏双重影响,其中臭氧浓度与作用时间是关键因素,臭氧在温室中的利用属于摸索探究阶段。 假设农药锐劲特的价格为10万元/吨,锐劲特使用量10mg/kg-1水稻;肥料100元/亩;水稻种子的购买价格为5.60元/公斤,每亩土地需要水稻种子为2公斤;水稻自然产量为800公斤/亩,水稻生长自然周期为5个月;水稻出售价格为2.28元/公斤。 1.2 问题重述 (1)在自然条件下,建立病虫害与生长作物之间相互影响的数学模型;以中华稻蝗和稻纵卷叶螟两种病虫为例,分析其对水稻影响的综合作用并进行模型求解和分析。 (2)在杀虫剂作用下,建立生长作物、病虫害和杀虫剂之间作用的数学模型;以水稻为例,给出分别以水稻的产量和水稻利润为目标的模型和农药锐劲特使用方案。

有关多种群的数学模型

自然界的多种群模型分析 摘要:在我们生活的大自然中,有着太多太多的秩序和规则。种群之间的你争我斗,弱肉强食也是非常激烈。种群,顾名思义就是指同一种生物的一个集合。不同种群之间的关系大致分为四种:捕食与被捕食关系,互利共生关系,相互竞争关系和寄生与寄主关系。我们这次的建模就是围绕着种群之间的关系来展开的,下面我将从这几个方面来进行分类讨论,由于寄生与寄主的关系不是很常见,关系也比较简单,在此便不再赘述。 捕食与被捕食关系:这种关系很简单,大家也能很容易地理解,通俗地解释,就是指一种生物以另一种生物为食,举个例子大家也许会更容易地理解。比如说狼和羊的关系,狼是捕食者,羊是被捕食者,狼以羊为食,是羊的天敌。 互利共生关系:指两种生物共同生活在一个区域有助于提高另一种生物的种群密度,假如其中一种生物的数量减少,也会影响另一种生物的数量,使其数量减少。比如草地和森林优势植物的根多与真菌共生形成菌根,多数有花植物依赖昆虫传粉,大部分动物的消化道也包含着微生物群落,最典型的就是大豆与根瘤菌。大豆给根瘤菌提供养分,根瘤菌给大豆提供氮元素。 相互竞争关系:有种内和种间两种竞争方式。这里是指两种共居一起,为争夺有限的营养、空间和其他共同需要而发生斗争的种间关系。竞争的结果,或对竞争双方都有抑制作用,大多数的情况是对一方有利,另一方被淘汰,一方替代另一方。举个例子,牛和羊生活在共同的一片草地上,因为这两种生物都以草为食,它们之间不存在其他关系,所以它们之间是竞争关系。 以上就是三种种群之间的关系,下面我们就从这三个方面对物种种群密度的变化进行分析。在以下的讨论中我们将建立微分方程的数学模型,对生物多种群之间各种关系进行 关键词:生物种群,数量,关系,互相作用,竞争 问题重述: 生物学的研究对维持地球生态平衡有着不可替代的作用,是可持续发展的重要组成部分!地球上的物种一直只在减少,现在也有很多物种濒临灭绝,因此对

高中生物学中的数学模型

高中生物学中的数学模型 山东省嘉祥县第一中学孙国防 高中生物学中的数学模型是对高中生物知识的高度概括,也是培养学生分析推理能力的重要载体,本文通过归纳高中生物学中的数学模型以提高学生的分析推理能力。 1. 细胞的增殖 【经典模型】 间期表示 有丝分裂中各时期DNA、染色体和染色单体变化 减数分裂中各时期DNA、染色体和染色单体变化 【考查考点】细胞增殖考点主要考察有丝分裂、减数分裂过程中DNA、染色体、染色单体的数量变化以及同源染色体的行为,并以此为载体解释遗传的分离定律和自由组合定律。2. 生物膜系统 【经典模型】 【考查考点】 3物质跨膜运输 【经典模型】 【考查考点】 自由扩散、协助扩散和主动运输的影响因素和特点。 4. 影响酶活性的因素 【经典模型】 【考查考点】 影响酶活性的因素,主要原因在于对酶空间结构的影响。酶促反应是对酶催化的更高层次的分析。 5. 影响细胞呼吸及光合作用的因素 【经典模型1】 【考查考点】 真正光合速率= 净光合速率+呼吸速率 光合作用实际产O2量=实测O2释放量+呼吸作用耗O2 光合作用实际CO2消耗量=实测CO2消耗量+呼吸作用CO2释放 光合作用葡萄糖生产量=光合作用葡萄糖积累量+呼吸作用葡萄糖消耗量 【经典模型2】

【考查考点】氧气浓度对有氧呼吸和无氧呼吸的影响,以及在种子和蔬菜储存中的原因。 6 基因的分离和自由组合定律 【典型例题】男性并指、女性正常的一对夫妇,生了一个先天性聋哑的儿子,这对夫妇以后所生子女,(并指是常染色体显性遗传病,两种病均与性别无关) 正常的概率: _________同时患两种病的概率: _________患病的概率: _________ 只患聋哑的概率:_________只患并指的概率:_________只患一种病的概率:_________ 7. 中心法则 【经典模型】 DNA分子的多样性:4N DNA的结构:A=T,G=C,A+G=T+C,(A1%+A2%)/2=A%, A1%+T1%=A2%+T2%=A%+T% DNA的复制:某DNA分子复制N次所需要的游离的鸟嘌呤脱氧核苷酸:(2N-1)G 15N标记的DNA分子在14N的原料中复制n次,含15N的DNA分子占总数的比例:2/2n DNA中的碱基数和其控制的蛋白质中的氨基酸数的比例关系:6:1 【考查考点】DNA的结构,碱基组成,半保留复制和基因的表达。 8. 现代生物进化理论 【典型例题】某人群中某常染色体显性遗传病的发病率为19%,一对夫妇中妻子患病,丈夫正常,他们所生的子女患该病的概率是 A.10/19 B.9/ 19 C.1/19 D.1/2 答案:A 【经典模型】 设A的基因频率为P,a的基因频率为q,因P+q=l,故(P+q)2 =I,将此二项式展开得:p2+2pq+q2=1,基因型AA的频率=P2,基因型aa的频率=q2,基因型Aa的频率=2pq。 【考查考点】遗传的平衡定律 9. 种群的数量特征和数量变化规律 【典型例题】右图表示出生率、死亡率和种群密度的关系,据此分析得出的正确表述是 A.在K/2时控制有害动物最有效 B.图示规律可作为控制人口增长的依据 C.该图可用于实践中估算种群最大净补冲量 D.在K/2时捕捞鱼类最易得到最大日捕获量答案:C 【经典模型】

生态学的研究方法

生态学的研究方法 摘要:本文就生态学研究的方法论进行了浅括。任何科学研究都包括两个层面,即如何思考和如何做。生态学研究需要先对自然界或实验室中的生态现象进行观察记载、测计度量和实验,再对资料数据进行分析综合,然后用数学模型找出生态学规律。最后本文就当前生态学研究的发展趋势进行了展望。 关键词:生态学,研究方法,展望 ABSTRACT In this paper, we summary the methods of research on ecology. Any researches include two factors that are how to think and how to do. When studying ecology, we need to observe and record ecological phenomena, then analysis the data .Finally, use mathematical models to find the law of ecology. At the end of this paper. We prospect the trend of ecological research . Key words: Ecology, Methodology , Prospect 生态学是研究有机体及其周围环境相互关系的科学。任何科学研究都包括四个环节,首先根据已有理论,提出科学问题。然和通过观察记载、测计度量和实验收集数据,通过归纳法予以系统分析。再根据研究结果,演绎新的推论,最后通过实验验证,判断这一过程成功与否。从50年代开始,生态学研究方法一方面趋向专门化,针对不同对象和问题,设计了各种专用的方法技术;另一方面是强调系统化,表现是为各类生物系统制定出生态综合方法程序。生态学研究的专门化与系统化同时并进,彼此汇合,是学科方法体系日趋成熟的标志。下面就生态学研究的方法论进行阐述。 一生态学研究的方法论 1 基本逻辑:归纳与演绎 前提与结论之间存在或然关系(即非确定性的相互关系)的推论过程。亚里斯多德最早提到归纳法,但英国唯物主义哲学家Francis Bacon是归纳逻辑的奠基人的《新工具论》(1620)。他提倡通过归纳事实,产生低级的理论,再由低级的理论上升到高级的理论,最后形成公理,从而遵循从特殊到一般的过程。他的逻辑方法是对中世纪欧洲神学欺人自欺的演绎逻辑的反动,并且是近代实验科学的方法论。归纳法在现代数学中的代表是概率统计。归纳推理所得到的结论是超

实验一 控制系统的数学模型

实验一 控制系统的数学模型 一 实验目的 1、学习用MATLAB 创建各种控制系统模型。 2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。 二 相关理论 1传递函数描述 (1)连续系统的传递函数模型 连续系统的传递函数如下: ? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中 可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s 的降幂进行排列的。 tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2]; G=tf(num, den) (2)零极点增益模型 ? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递 函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。 K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即: z=[z1,z2,…,zm] p=[p1,p2,...,pn] K=[k] zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k) (3)部分分式展开 ? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控 制单元的和的形式。 ? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微 分单元的形式。 ? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r , 极点返回到列向量p ,常数项返回到k 。 ? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。 11 211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G

自动控制系统的数学模型

第二章自动控制系统的数学模型 教学目的: (1)建立动态模拟的概念,能编写系统的微分方程。 (2)掌握传递函数的概念及求法。 (3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。 (4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。 (5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。 (6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力 教学要求: (1)正确理解数学模型的特点; (2)了解动态微分方程建立的一般步骤和方法; (3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数; (4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入 下的闭环传递函数、误差传递函数,能够熟练的掌握; (5)掌握运用梅逊公式求闭环传递函数的方法; (6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函 数的方法。 教学重点: 有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。 教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式 的余子式 。 k 教学方法:讲授 本章学时:10学时 主要内容: 2.0 引言 2.1 动态微分方程的建立 2.2 线性系统的传递函数 2.3 典型环节及其传递函数 2.4系统的结构图 2.5 信号流图及梅逊公式

高中生物数学模型问题分析

高中生物数学模型问题分析 生命科学是自然科学中的一个重要的分支。在高中生物课程中,它要求学生具备理科的思维方式。因此在教学中,教师应注重理科思维的培养,树立理科意识,渗透数学建模思想。本文在此谈谈,在生物教学中的几个数学建模问题。 1 高中生物教学中的数学建模 数学是一门工具学科,在高中的物理与化学学科中广泛的应用。由于高中生物学科以描述性的语言为主,学生不善于运用数学工具来解决生物学上的一些问题。这些需要教师在平时的课堂教学中给予提炼总结,并进行数学建模。所谓数学建模(Mathematical Modelling),就是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模。在生物学科教学中,构建数学模型,对理科思维培养也起到一定的作用。 2 数学建模思想在生物学中的应用 2.1 数形结合思想的应用 生物图形与数学曲线相结合的试题是比较常见的一种题型。它能考查学生的分析、推理与综合能力。这类试题从数形结合的角度,考查学生用数学图形来表述生物学知识,体现理科思维的逻辑性。 例1:下图1表示某种生物细胞分裂的不同时期与每条染色体DNA含量变化的关系;图2表示处于细胞分裂不同时期的细胞图像。以下说法正确的是() A、图2中甲细胞处于图1中的BC段,图2中丙细胞处于图1中的DE段 B、图1中CD段变化发生在减数Ⅱ后期或有丝分裂后期 C、就图2中的甲分析可知,该细胞含有2个染色体组,秋水仙素能阻止其进一步分裂 D、图2中的三个细胞不可能在同一种组织中出现 解析:这是一道比较典型的数形结合题型:从图2上的染色体形态不难辨别甲为有丝分裂后期、乙为减Ⅱ后期和丙为减Ⅱ中期;而图1中的AB段表示的是间期中的(S期)正在进

控制系统的数学模型[]

第二章控制系统的数学模型 2-1 什么是系统的数学模型?大致可以分为哪些类型? 答定量地表达系统各变量之间关系的表达式,称工矿企业数学模型。从不同的角度,可以对数学模型进行大致的分类,例如:用来描述各变量间动态关系的数学模型为动态模型,用来描述各变量间稳态关系有数学模型为静态模型;数学模型中各变量与几何位置无关的称为集中参数模型,反之与几何位置有关的称为分布参数模型;变量间关系表现为线性的称为线性模型,反之非线性模型;模型参数与时间有关的称为时变模型,与时间无关的称为时不变或定常模型;以系统的输入、输出变量这种外部特征来描述系统特性的数学模型称为输入输出模型,而以系统部状态变量描述的数学模型称为状态空间模型;等等。 2-2 系统数学模型的获取有哪几种方法? 答获取系统数学模型的方法主要有机理分析法和实验测试法。 机理分析法是通过对系统部机理的分析,根据一些基本的物理或化学变化的规律而导出支配系统运动规律的数学模型,这样得到的模型称为机理模型。 实验测试法是通过对实际系统的实验测试,然后根据测试数据,经过一定的数据处理而获得系统的数学模型,这样得到的模型可称为实测模型或经验模型。 如果将上述两种方法结合起来,即通过机理分析的方法预先得到数学模型的结构或函数形式,然后对其中的某些参数用实验辨识的方法来确定,这样得到的数学模型可称为混合模型。这是介于上述两种方法之间的一种比较切合实际的应用较为普遍的方法。 2-3 通过机理分析法建立对象微分方程数学模型的主要步骤有哪些? 答主要步骤有: ⑴根据系统的控制方案和对象的特性,确定对象的输入变量和输出变量。一般来说,对象的输出变量为系统的被控变量,输入变量为作用于对象的操纵变量或干扰变量。 ⑵根据对象的工艺机理,进行合理的假设和简化,突出主要因素,忽略次要因素。 ⑶根据对象的工艺机理,从基本的物理、化学等定律出了,列写描述对象运动规律的原始微分方程式(或方程式组)。 ⑷消去中间变量,推导出描述对象输入变量与输出变量之间关系的方程式。 ⑸根据要求,对上述方程式进行增量化、线性化和无因次化的处理,最后得出无因次的、能够描述对象输入变量与输出变量的增量之间关系的线性微分方程式(对于严重非线性的对象,可进行分段线性化处理或直接导出非线性微分方程式)。 2-4 试述传递函数的定义。如何由描述对象动态特性的微分方程式得到相应的传递函数?并写出传递函数的一般形式。 答对于线性定常系统、对象或环节的传递函数的定义可以表述为:当初始条件为零时,系统、对象或环节输出变量的拉氏变换式与输入变量的拉氏变换式之比。 如果已知系统、对象或环节的动态数学模型用下述线性常系数微分方程式来描述: 式中y 为输出变量, x为输入变量,表示y(t) 的n 阶导数,表示x(t) 的 m阶导数。对于一般实际的物理系统,。 假定初始条件为零,对上式的等号两边进行拉氏变换,得 式中Y(s)是y(t) 的拉氏变换, X(s)是x(t) 的拉氏变换,于是可得传递函数:

数学建模国一论文

数学建模比赛预选赛 B题温室中的绿色生态臭氧病虫害防治2009年12月,哥本哈根国际气候大会在丹麦举行之后,温室效应再次成为国际社会的热点。如何有效地利用温室效应来造福人类,减少其对人类的负面影响成为全社会的聚焦点。 臭氧对植物生长具有保护与破坏双重影响,其中臭氧浓度与作用时间是关键因素,臭氧在温室中的利用属于摸索探究阶段。 假设农药锐劲特的价格为10万元/吨,锐劲特使用量10mg/kg-1水稻;肥料100元/亩;水稻种子的购买价格为5.60元/公斤,每亩土地需要水稻种子为2公斤;水稻自然产量为800公斤/亩,水稻生长自然周期为5个月;水稻出售价格为2.28元/公斤。 根据背景材料和数据,回答以下问题: (1)在自然条件下,建立病虫害与生长作物之间相互影响的数学模型;以中华稻蝗和稻纵卷叶螟两种病虫为例,分析其对水稻影响的综合作用并进行模型求解和分析。 (2)在杀虫剂作用下,建立生长作物、病虫害和杀虫剂之间作用的数学模型;以水稻为例,给出分别以水稻的产量和水稻利润为目标的模型和农药锐劲特使用方案。 (3)受绿色食品与生态种植理念的影响,在温室中引入O 3 型杀虫剂。建立 O 3对温室植物与病虫害作用的数学模型,并建立效用评价函数。需要考虑O 3 浓度、 合适的使用时间与频率。 (4)通过分析臭氧在温室里扩散速度与扩散规律,设计O 3 在温室中的扩散方案。可以考虑利用压力风扇、管道等辅助设备。假设温室长50 m、宽11 m、高3.5 m,通过数值模拟给出臭氧的动态分布图,建立评价模型说明扩散方案的优劣。 (5)请分别给出在农业生产特别是水稻中杀虫剂使用策略、在温室中臭氧应用于病虫害防治的可行性分析报告,字数800-1000字。

高中生物数学模型问题有什么

高中生物数学模型问题有什么 生命科学是自然科学中的一个重要的分支。在高中生物课程中,它要求学生具备理科的思维方式。因此在教学中,教师应注重理科思维的培养,树立理科意识,渗透数学建模思想。本文在此谈谈,在生物教学中的几个数学建模问题。 1高中生物教学中的数学建模数学是一门工具学科,在高中的物理与化学 学科中广泛的应用。由于高中生物学科以描述性的语言为主,学生不善于运用数学工具来解决生物学上的一些问题。这些需要教师在平时的课堂教学中给予提炼总结,并进行数学建模。所谓数学建模(mathematicalmodelling),就是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模。在生物学科教学中,构建数学模型,对理科思维培养也起到一定的作用。2数学建模思想在生物学中的应用2.1数形结合思想的应用生物图形与数学曲线相结合的试题是比较常见的一种题型。它能考查学生的分析、推理与综合能力。这类试题从数形结合的角度,考查学生用数学图形来表述生物学知识,体现理科思维的逻辑性。例1:下图1 表示某种生物细胞分裂的不同时期与每条染色体dna含量变化的关系;图2表示处于细胞分裂不同时期的细胞图像。以下说法正确的是()a、图2中甲细胞处于图1中的bc段,图2中丙细胞处于图1中的de段b、图1中cd段变化发生在减数Ⅱ后期或有丝分裂后期c、就图2中的甲分析可知,该细胞含有 2个染色体组,秋水仙素能阻止其进一步分裂d、图2中的三个细胞不可能在同一种组织中出现解析:这是一道比较典型的数形结合题型:从图2上的染色体形态不难辨别甲为有丝分裂后期、乙为减Ⅱ后期和丙为减Ⅱ中期;而图1

生态学的10个规律

高中生物竞赛辅导 《生态学与动物行为学》 日照实验高中崔宝刚 一、生态学的十个规律 1.生态学是科学:生态学是关于动、植物投资的一门科学。生物的行为都是一种投资行为,与经济学密切相关。 生态农业、生态旅游、生态党和生态平衡等 A.大面积森林砍伐、滥施开垦干草原、破坏沼泽、围湖造田、环境污染---生态不平衡; B.生态平衡像“收支平衡”一样,是指生态系统的物质和能量的输入和输出相平衡,从而形成相对稳定的状态;这种平衡是好还是坏? C.生态平衡不存在(发展观),常用生态系统稳定性描述。 生态学的研究成果并不直接产生或指挥伦理和政治的运动。 2.生态学只有按照进化论才能被理解 (1)离开了进化论,生物学就没有了意义。 (2)形态学、生理学和行为学等的巨大多样性都是亿万年进化的结果。 例:为什么鸸鹋(澳洲鸵鸟)、几维鸟(新西兰唯一保存下来的无翼鸟; 新西兰人把从我们中国引种去的猕猴桃,称为几维果)和美洲鸵鸟等都是无翼的?——进化的结果。 (3)从更广的水平而言,进化的趋势是使有机体的适合度(fitness)最优 (4)由于环境是对于有机体的基本约束,所以生态学在一定程度上可以忽视进化和遗传?---错 3.“对物种有利”现象并不存在 自然选择将有利于那些传给大多数后裔的基因 假如兵蚁或工蜂在防御性攻击后自取灭亡(工蜂遇敌时,不得已而使用螫针,螫针会连同一部分内脏拉出,这是一种自杀性的行为,但它保卫了蜂巢内同胞的安全)或雌章鱼在生产后就即可死去只是对物种其它个体有好处,但是对携带基因的个体是不利的,那么进化将有利于别的基因取代它,这种死亡的意义并不在于利它。 由于同样的理由,认为种群大小通过出生率降低而受到限制是“为了对物种有好处”的论点同样是不可靠的。基因是自私的,只对自己有利。自然界中并不存在某种个体含有利它基因现象。 无论是利他行为还是种群调解,用进化作用于个体的观点都是很容易被理解的。 4.基因和环境都很重要 先天定型行为与学习行为 动物的行为也像消化道内的酶一样,同样是被基因控制的。目前有许多基因控制行为特征的实例。 学习行为也是重要的,很多鸟类出生时就和同种鸟类分开,成体后并不会本种鸟叫。 正确评价这两方面因素的基本性质及其相互作用的事实,对于正确理解生态学是很重要的。 5、理解复杂性需要模型 首先要确定小的特定问题:如“雄性乌鸫为什么形成领域?” 然后要“提出特定假设”:有领域的乌鸫能得到更多的交配机会。 再次要检验特定的假说

数学建模优秀论文(附有解题程序)

09级数模试题 1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地, 放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。试作合理的假 设并建立数学模型说明这个现象。(15分) 解:对于此题,如果不用任何假设很难证明, 因此对这个问题我们假设 : (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。以长方 桌的中心为坐标原点作直角坐标系如图所示,方桌 的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D 的初始 位置在与x 轴平行,再假设有一条在x 轴上的线ab, 则ab 也与A 、B ,C 、D 平行。当方桌绕中心0旋转 时,对角线 ab 与x 轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地 面的距离是不确定的。为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距 离之和,它们的值由θ唯一确定。由假设(1),()f θ,()g θ均为θ的连续函数。 又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(?θ)。不妨设 (0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转), 于是问题归结为: 已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有 00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。 证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。作()()()h f g θθθ=-, 显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->, 由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。 又由于00()()0f g θθ=,故必有00()()0f g θθ==,证毕。 2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿 舍。学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。 (15分) 解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A 宿舍的委员数为

生态学相关地数学模型

标准实用 文案大全生态学相关的模型及模式图题型训练 一、坐标曲线类 1.图示种群在理想环境中呈“J”型增长,在有环境阻力条件下,呈“S”型增长,下 列关于种群在某环境中数量增长曲线的叙述,正确的是( ) A.当种群数量到达e点后,种群数量增长率为0 B.种群增长过程中出现环境阻力是在d点之后 C.图中阴影部分表示克服环境阻力生存下来的个体数量 D.若该种群在c点时数量为100,则该种群的K值为400 解析:“J”型曲线出现的前提是条件理想,“S”型曲线是在自然环境中出现的种群数量随时间的变化规律曲线,两条曲线在c点分开,说明种群增长过程中出现环境阻力是在c点。图中阴影部分表示环境阻力淘汰的个体数量。若该种群在c(K/2)点时数量为100,则该种群的K值为200。当种群数量达到e点(最大值)时,种群数量保持稳定,种群增长率为0。 答案:A 2.向某天然牧场引入良种肉牛100头,任其自然放养,自然繁殖。下图表示种群数量 增长率随时间变化的曲线,下列叙述正确的是( ) A.在t0~t2时间内,种群数量呈“J”型增长 B.若在t2时种群的数量为N,则在t1时种群的数量约为N/2 C.捕杀肉牛的最佳时期为t2时 D.在t1~t2时,该肉牛的种群数量呈下降趋势 解析:在t0~t2时间内,种群增长率不断发生着变化,其数量呈“S”型增长;t1时,种群增长率最大,应使捕杀后肉牛的增长率处于t1时;在t1~t2时,该肉牛的种群增长率仍为正值,即出生率大于死亡率,种群数量仍然在不断增加。 答案:B 3.某捕食者与其猎物种群大小随时间变化的关系如图所示。如果以捕食者数量为X轴、猎物数量为Y轴作图,则图形正确的是( ) 标准实用

数学模型在生态系统的应用研究

数学模型在生态系统的应用研究 蔡卫 中国矿业大学,江苏徐州(221008) E-mail :caiwei3594967@https://www.360docs.net/doc/e29334102.html, 摘 要: 本文研究的是种群在一定的生态系统中数量消长的问题,考虑到种群的增长只受环 境承载能力的影响;受种群间相互竞争、相互依存、竞争合作以及捕食等方面的制约。因此,本文建立了种群间互动关系的Logistic 模型、相互竞争模型、共生模型、竞争合作模型和捕 食模型, 并且对这些模型进行初步的生态学分析。 关键词:种群,数学模型,生态环境,竞争合作 中图分类号:Q148 1. 引言 随着我国经济的发展,环境受到人类的破坏越来越严重,人们逐渐意识到环境的重要性。 野生动物的生长受到环境的制约,特别人们生活对环境的干预加大。近年来,许多生态学专 家研究一些野生动物的生长规律,取得了很好的成就,为人类对野生动物的保护打下了坚实 的理论基础。本文利用生态学知识,将自然界种群间的关系定义为:相互竞争、相互依存、竞争合作以及捕食等关系,然后建立数学模型,量化生物种群增长受环境制约的关系,为研 究种群长期的生存和发展提供了理论依据。 2. 种群数学模型的构建和分析 2.1 种群增长的Logistic 模型 假设种群的生长只受环境承载能力的影响,与其他因素无关;种群是在有限的环境中生 长的;种群该地区的空间范围是封闭的,即在所研究的时间范围内不存在迁移的现象。用 ()t N 代表种群在时间t 的数量,则假设种群()t N 只是时间t 的函数,且()t N 是连续和充分光滑的。那么它的导数dt dN (?N )给出了这个种群的增长率。而N N ? 则给出了种群个体的平均增长率。记()N r 为个体的平均增长率,K 为种群在此环境中总的饱和水平,r 为种群个 体的内禀增长率[1],则()N r 应该是种群大小的一个减函数,为了简单起见,假设()N r 为N 的线性减函数,则()N r =?? ???? ?K N r 1,并且存在一个饱和水平0>K ,使()0=K r 。 于是可以得到如下种群增长的模型: N K N r dt dN )1(?= (1)利用分离变量法和分项分式,得到方程(1)的解析解为: rt ce K t N ?+=1)(,00N N K c ?= 其中c —— 0 0N N K c ?=,0N ——(0=t )时种群的个体数量 Logistic [1]模型种群数量随时间增长曲线如图所示:

数学建模优秀论文

温室中的绿色生态臭氧病虫害防治 摘要:“温室中的绿色生态臭氧病虫害防治”数学模型是通过臭氧来探讨如何有效地利用温室效应造福人类,减少其对人类的负面影响。由于臭氧对植物生长具有保护与破坏双重影响,利用数学知识联系实际问题,作出相应的解答和处理。问题一:根据所掌握的人口模型,将生长作物与虫害的关系类似于人口模型的指数函数,对题目给定的表1和表2通过数据拟合,在自然条件下,建立病虫害与生长作物之间相互影响的数学模型。因为在数据拟合前,假设病虫害密度与水稻产量成线性关系,然而,我们知道,当病虫害密度趋于无穷大时,水稻产量不可能为负值,所以该假设不成立。从人口模型中,受到启发,也许病虫害密度与水稻产量的关系可能为指数函数,当拟合完毕后,惊奇地发现,数据非常接近,而且比较符合实际。接下来,关于模型求解问题,顺理成章。问题二,在杀虫剂作用下,要建立生长作物、病虫害和杀虫剂之间作用的数学模型,必须在问题一的条件下作出合理假设,同时运用数学软件得出该模型,最后结合已知数据可算出每亩地的水稻利润。对于农药锐劲特使用方案,必须考虑到锐劲特的使用量和使用频率,结合表3,农药锐劲特在水稻中的残留量随时间的变化,可确定使用频率,又由于锐劲特的浓度密切关系水稻等作物的生长情况,利用农业原理找出最适合的浓度。问题三,在温室中引入O3型杀虫剂,和问题二相似,不同的是,问题三加入了O3的作用时间,当O3的作用时间大于某一值时才会起作用,而又必须小于某一值时,才不会对作物造成伤害,建O3对温室植物与病虫害作用的数学模型,也需用到数学建模相关知识。问题四,和实际联系最大,因为只有在了解O3的温室动态分布图的基础上,才能更好地利用O3。而该题的关键是,建立稳定性模型,利用微分方程稳定性理论,研究系统平衡状态的稳定性,以及系统在相关因素增加或减少后的动态变化,最后。通过数值模拟给出臭氧的动态分布图。问题五,作出农业生产特别是水稻中杀虫剂使用策略、在温室中臭氧应用于病虫害防治的可行性分析。 关键词:绿色生态生长作物杀虫剂臭氧

生态学相关的数学模型

生态学相关的数学 模型及模式图题型训练 一、坐标曲线类 1.图示种群在理想环境中呈“J”型增长,在有环境阻力条件下,呈“S”型增长,下列关于种群在某环境中数量增长曲线的叙述,正确的是() A.当种群数量到达e点后,种群数量增长率为0 B.种群增长过程中出现环境阻力是在d点之后 C.图中阴影部分表示克服环境阻力生存下来的个体数量 D.若该种群在c点时数量为100,则该种群的K值为400 解析:“J”型曲线出现的前提是条件理想,“S”型曲线是在自然环境中出现的种群数量随时间的变化规律曲线,两条曲线在c点分开,说明种群增长过程中出现环境阻力是在c点。图中阴影部分表示环境阻力淘汰的个体数量。若该种群在c(K/2)点时数量为100,则该种群的K值为200。当种群数量达到e点(最大值)时,种群数量保持稳定,种群增长率为0。 答案:A 2.向某天然牧场引入良种肉牛100头,任其自然放养,自然繁殖。下图表示种群数量增长率随时间变化的曲线,下列叙述正确的是() A.在t0~t2时间内,种群数量呈“J”型增长 B.若在t2时种群的数量为N,则在t1时种群的数量约为N/2 C.捕杀肉牛的最佳时期为t2时 D.在t1~t2时,该肉牛的种群数量呈下降趋势 解析:在t0~t2时间内,种群增长率不断发生着变化,其数量呈“S”型增长;t1时,种群增长率最大,应使捕杀后肉牛的增长率处于t1时;在t1~t2时,该肉牛的种群增长率仍为正值,即出生率大于死亡率,种群数量仍然在不断增加。 答案:B

3.某捕食者与其猎物种群大小随时间变化的关系如图所示。如果以捕食者数量为X轴、猎物数量为Y轴作图,则图形正确的是() 解析:由图可以看到捕食者和被捕食者(猎物)符合捕食关系的种群波动:猎物增加→捕食者增加→猎物减少→捕食者减少。只有图D所示满足这种波动。 答案:D 4.下图表示从光裸的岩地上最终演替出森林的相关曲线,其中Ⅰ和Ⅱ曲线的描述全都正确的是() A.Ⅰ为土壤中的有机物量,Ⅱ为生态系统物种的多样性程度 B.Ⅰ为土壤中的微生物数量,Ⅱ为生态系统的结构稳定性 C.Ⅰ为生态系统恢复力稳定性,Ⅱ为群落垂直结构的层次性 D.Ⅰ为群落呼吸消耗有机物量,Ⅱ为生态系统抵抗力稳定性 解析:从光裸的岩地上最终演替出森林的过程中,土壤中有机物量是增多的,生态系统物种的多样性程度增多,土壤中的微生物数量增多,生态系统的结构稳定性增大,生态系统恢复力稳定性降低,群落垂直结构的层次性明显,群落呼吸消耗有机物量增大,生态系统抵抗力稳定性增大。由上述分析可知,正确的描述应是C项。 答案:C 5.下列曲线表示四个不同的自然生态系统在受到同等程度的外来干扰后,初级消费者数量的变化情况,其中抵抗力稳定性最高的生态系统是() 解析:当受到外来干扰后生物的数量基本保持不变的生态系统的抵抗力稳定性高。 答案:C 6.(新题快递)下面是反映人与环境关系的三种模式图,请分析判断下列说法错误的是()

多种群的数学模型

自然界的多种群模型分析 小组成员:杨宏志 09053055 曾云霖 09053057 赵恒宇 09053060 目录 摘要第3页 关键词第3页 问题重述第3页 符号说明第4页 基本假设第4页 问题分析第4页 正文第5页 总结与思考第12页 参考文献第13页 (注:正文中包括对模型的建立,模型的具体检验,模型的改进,改进模型的检验以及问题的扩展深化。) 自然界的多种群模型分析

摘要:在我们生活的大自然中,有着太多太多的秩序和规则。种群之间的你争我斗,弱肉强食也是非常激烈。种群,顾名思义就是指同一种生物的一个集合。不同种群之间的关系大致分为四种:捕食与被捕食关系,互利共生关系,相互竞争关系和寄生与寄主关系。我们这次的建模就是围绕着种群之间的关系来展开的,下面我将从这几个方面来进行分类讨论,由于寄生与寄主的关系不是很常见,关系也比较简单,在此便不再赘述。 捕食与被捕食关系:这种关系很简单,大家也能很容易地理解,通俗地解释,就是指一种生物以另一种生物为食,举个例子大家也许会更容易地理解。比如说狼和羊的关系,狼是捕食者,羊是被捕食者,狼以羊为食,是羊的天敌。 互利共生关系:指两种生物共同生活在一个区域有助于提高另一种生物的种群密度,假如其中一种生物的数量减少,也会影响另一种生物的数量,使其数量减少。比如草地和森林优势植物的根多与真菌共生形成菌根,多数有花植物依赖昆虫传粉,大部分动物的消化道也包含着微生物群落,最典型的就是大豆与根瘤菌。大豆给根瘤菌提供养分,根瘤菌给大豆提供氮元素。 相互竞争关系:有种内和种间两种竞争方式。这里是指两种共居一起,为争夺有限的营养、空间和其他共同需要而发生斗争的种间关系。竞争的结果,或对竞争双方都有抑制作用,大多数的情况是对一方有利,另一方被淘汰,一方替代另一方。举个例子,牛和羊生活在共同的一片草地上,因为这两种生物都以草为食,它们之间不存在其他关系,所以它们之间是竞争关系。 以上就是三种种群之间的关系,下面我们就从这三个方面对物种种群密度的变化进行分析。在以下的讨论中我们将建立微分方程的数学模型,对生物多种群之间各种关系进行 关键词:生物种群,数量,关系,互相作用,竞争

相关文档
最新文档