探地雷达回波信号的特征提取和分类

探地雷达回波信号的特征提取和分类
探地雷达回波信号的特征提取和分类

雷达试题

多普勒天气雷达集训考试题答案 一、 填空题(共30题,每空0.5分,总分40分) 1、新一代天气雷达主要由 雷达数据采集系统 RDA 、 雷达产品生成系统RPG 、 主用户终端子系统PUP 三部分组成。 2、多普勒天气雷达测量的三种基数据是基本反射率因子 、平均径向速度、谱宽 。 3、大气中折射的种类有 标准大气折射 、超折射 、 负折射 、 无折射 、 临界折射 。 4、雷达探测到的任意目标的空间位置可根据 仰角、方位角、斜距三个基本要素求得。 5、多普勒雷达除了具有探测云和降水的 位置 和 强度 的功能以外,它以 多普勒效应 为基础,根据返回信号的 频率 漂移,还可以获得目标物相对于雷达运动的径向速度 。 6、达气象方程为=t p ∑单位体积i r h PtG σπθ?λ2 222)2(ln 1024,其中G 表示天线增益 ,h 表示脉冲长度 ,σ表 示粒子的后向散射截面 。 7、反射率因子定义为单位体积中所有粒子直径的6次方之和。它的大小反映了气象目标内部降水粒子的 尺度 和 数密度 ,常用来表示气象目标的强度。 8、触发对流的抬升条件大多由中尺度系统提供,如锋面、干线、对流风暴的外流边界(阵风锋)、海(陆)风锋、重力波等, 9、雷达波束在降水中传播时能量的衰减是由降水粒子对雷达电磁波的散射 和 吸收 造成的。 10、当发生距离折叠时,雷达所显示的回波位置的 方位(或位置) 是正确的,但 距离 是错误的。 11、在雷达径向速度图上,暖平流时零值等风速线呈S 型,冷平流时呈 反S 型。 12、新一代雷达速度埸中,辐合或 辐散 在径向风场图像中表现为一个最大和最小的径向速度对,两个极值中心连线和雷达射线 一致 。 13、多普勒天气雷达与常规天气雷达的主要区别在于前者可以测量目标物沿雷达径向的速度 当目标物位于最大不模糊距离以外时,雷达错误地把它当作同一方向的最大不模糊距离以内的某个位置,称之为 距离折叠 。37 14、当45~55dBZ 的回波强度达到 -20 度层的高度时,最有可能产生冰雹。 15、降水回波的反射率因子一般在 15dBZ 以上。层状云降水回波的强度很少超过

雷达信号检测

科研报告 课程名称:信号检测与估值 题目:匹配滤波器在雷达信号中的应用院(系):信息与控制工程学院 专业方向:信号与信息处理 姓名:许娟 学号:1508210675 任课教师:毛力 2015 年1月14日

匹配滤波器在雷达信号中的应用 摘要 本文介绍了雷达系统及有关匹配滤波器的主要内容,着重介绍与分析了雷达系统信号处理的脉冲压缩(匹配滤波)现代雷达技术,雷达系统通过脉冲压缩解决解决雷达作用距离和距离分辨力之间的矛盾,最后实现对雷达目标的检测。关键词:雷达系统脉冲压缩

Abstract This paper introduces the radar system and the main content of the matched filter, this paper introduces and analyses emphatically the signal processing of the pulse compression radar system (matched filtering) of modern radar technology, by pulse compression radar system to solve the contradiction between the radar range and distance resolution,finally the realization of the radar target detection. Keywords:pulse compression radar system

雷达介绍资料汇总

概述 介绍 Rockwell Collions WXR-2100型多扫描气象雷达在气象信息的处理和提炼方法上有革命性的突破,多扫描气象雷达是一种全自动雷达,它可以在不需要飞行员输入扫描角度和进行增益设置的情况下,不管在什么时候,不管飞机的姿态如何,对所有范围内重要的气象信息进行无杂波的显示。当多扫描气象雷达工作在自动模式的时候,每个飞行员将会获得一般只有有经验的雷达操作员才能获得的气象信息,而飞行员只需进行简单的规范化航空公司飞行员培训。多扫描气象雷达有效的减少了飞行员的工作负担,并增强了天气的探测能力,增加了机组及旅客的安全性。 多扫描雷达工作的关键在于雷达对雷雨底部反射部分的探测,然后通过先进的数字信号处理技术对地面杂波进行抑制。为了对短、中、长距离范围内的气象进行更好的探测,多扫描气象雷达也集成了多雷达扫描功能,对扫描角度进行预设。因此,在不同的飞行阶段,不同的探测距离,它的气象探测结果都十分出色。真320海里探测和Qverflight Protection功能是多扫描气象雷达众多新特征中的两个。多扫描气象雷达因为使用先进的运算法则来消除地面杂波,这使它能够跨越雷达视野的限制,为飞行员提供真正意义上的320海里气象资料。Overflight Protection功能使机组人员能够躲开雷雨顶部渗透,这是如今导致飞机颠簸的主要原因之一。Overflight Protection功能将那些对飞机造成威胁的任何雷雨信息保持在雷达显示屏上,直到它不在对飞机造成威胁为止。 系统描述 重要的运行特点 全自动工作:多扫描气象雷达设计工作在全自动模式,飞行员只需输入探测范围,而不需要输入扫描角度和进行增益设置。 理想的无杂波显示:Rockwell Collions第三代地面杂波抑制算法能减少约98%的地面杂波,这使它能理想的无杂波显示有威胁的气象信息。 在不同探测范围和飞行高度情况下良好的气象探测能力:多扫描气象雷达将从不同扫描角度获得的气象数据储存在存储器中,当飞行员选择了所要求的显示范围,不同角度的扫描信息将会从存储器中取出并一起显示。通过多角度的扫描,可以获得近距离和远距离的气象信息,这使得不管飞机的姿态如何,不管何种探测范围,显示屏上所呈现的都是一幅最优化的气象图。 决策气象:多扫描气象雷达能够提供真正意义上的320海里决策气象信息。 Gain Plus:Gain Plus包括以下功能: 传统的加减增益控制:多扫描气象雷达允许机组人员在人工或自动工作模式的时候进行增加或减小增益。 基于温度的增益控制:在高海拔的巡航高度,由于低的雷雨雷达反射率,将会基于温度对雷雨增益进行补偿。 路径衰减补偿和警报(PAC Alert):对距飞机80海里范围内的干扰性气象造成的衰减进行补偿,当补偿超过限制,一个黄色的PAC Alert杆将显示以提醒飞行员注意雷达阴影区。Overflight Protection:Overflight Protection功能减少了在高海拔巡航高度时疏漏雷雨顶部渗漏的可能性。多扫描气象雷达向下扫描波束的信息和它的信息存储能力将发挥作用,可以防止在飞机完全穿越有威胁的雷雨区之前,雷雨区图象在显示屏上消失。 海洋气候反射率补偿:多扫描气象雷达能对海洋雷雨反射率的减小进行增益补偿,以便在

雷达原理复习总结

雷达原理复习要点第一章(重点) 1、雷达的基本概念 雷达概念(Radar): radar的音译,Radio Detection and Ranging 的缩写。无线电探测和测距,无线电定位。 雷达的任务: 利用目标对电磁波的反射来发现目标并对目标进行定位,是一种电磁波的传感器、探测工具,能主动、实时、远距离、全天候、全天时获取目标信息。 从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息? 斜距R : 雷达到目标的直线距离OP 方位α: 目标斜距R在水平面上的投影OB与某一起始方向(正北、正南或其它参考方向)在水平面上的夹角。 仰角β:斜距R与它在水平面上的投影OB在铅垂面上的夹角,有时也称为倾角或高低角。 2、目标距离的测量 测量原理 式中,R为目标到雷达的单程距离,为电磁波往返于目标与雷达之间的时间间隔,c为电磁波的传播速率(=3×108米/秒) 距离测量分辨率 两个目标在距离方向上的最小可区分距离 最大不模糊距离 3、目标角度的测量 方位分辨率取决于哪些因素 4、雷达的基本组成 雷达由哪几个主要部分,各部分的功能是什么 同步设备:雷达整机工作的频率和时间标准。 发射机:产生大功率射频脉冲。 收发转换开关: 收发共用一副天线必需,完成天线与发射机和接收机连通之间的切换。 天线:将发射信号向空间定向辐射,并接收目标回波。接收机:把回波信号放大,检波后用于目标检测、显示或其它雷达信号处理。 显示器:显示目标回波,指示目标位置。 天线控制(伺服)装置:控制天线波束在空间扫描。 电源第二章 1、雷达发射机的任务 为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去 2、雷达发射机的主要质量指标 工作频率或波段、输出功率、总效率、信号形式、信号稳定度 3、雷达发射机的分类 单级振荡式、主振放大式 4、单级振荡式和主振放大式发射机产生信号的原理,以及各自的优缺点 单级振荡式: 脉冲调制器:在触发脉冲信号激励下产生脉宽为τ的脉冲信号。 优点:简单、廉价、高效; 缺点:难以产生复杂调制,频率稳定性差,脉冲间不相干;主振放大式: 固体微波源:是高稳定度的连续波振荡器。 优点:复杂波形,稳定度高,相干处理 缺点:系统复杂、昂贵 第三章(重点) 1、接收机的基本概念 接收机的任务 通过适当的滤波将天线接收到的微弱高频信号从伴随的噪声和干扰中选择出来,并经过放大和检波后,送至显示器、信号处理器或由计算机控制的雷达终端设备中。 超外差接收机概念 将接收信号与本机振荡电路的振荡频率,经混频后得到一个中频信号,这称为外差式接收。得到的中频信号再经中频放大器放大的,称为超外差式。中频信号经检波后得到视频信号。 接收机主要组成部分 接收机主要质量指标 灵敏度S i min、接收机的工作频带宽度、动态范围、中频的选择和滤波特性、工作稳定度和频率稳定度、抗干扰能力、微电子化和模块化结构 2、接收机的噪声系数(重点) 噪声系数、噪声温度的定义 噪声系数:接收机输入端信号噪声比和输出端信号噪声比的比值。实际接收机输出的额定噪声功率与“理想接收机”输出的额定噪声功率之比。 噪声温度:温度Te称为“等效噪声温度”或简称“噪声温度”, 此时接收机就变成没有内部噪声的“理想接收机”级联电路的噪声系数

雷达--地物回波系统分

衰落速率的计算 计算多普勒频率是求衰减落速率(Fading rate )最容易的方法。为了在一个特定的多普勒频移范围内计算回波信号的幅度,必须将所有具有这些频移的信号相加。这就需要了解散射面上的多普勒频移等值线(等值多普勒频移)。对于每一种特殊形状的几何体都必须建立起这种多普勒频移等值线。下面用一个沿地球表面水平运动的简单例子来说明。它是普通巡航飞行飞机的一个典型实例。 假定飞机沿y 方向飞行,z 代表垂直方向,高度(固定)z = h 。于是有 v =1v v h y x z y x 111R -+= 式中,1x ,1y ,1z 为单位矢量。因而 h y x vy R v r 222++==?R v 式中,v r 是相对速度。等相对速度曲线也就是等多普勒频移曲线。该曲线的方程为 0222222=+--h v v v y x r r 这是双曲线方程。零相对速度的极限曲线是一条垂直于速度矢量的直线。图12.7示出这样一组等多普勒频移曲线。 只要把雷达式(12.1)略加整理就可用来计算衰落回波的频谱。这样,如果W r (f d )是频率f d 和f d +d f d 之间接收到的功率,则雷达方程变为 ? π=积分区R A A G P f f W r t t d d r 402d )4(1d )(σ ????? ??-π=d r t t d f A R A G P f d d )4(d 402σ (12.12) 图12.7 在地球平面做水平运动时的多普勒频移等值线图12.8 计算复数衰落的几何关系图 (引自Ulaby,Moore 和Fung [21]) 上式的积分区是频率f d 和f d +d f d 间被雷达照射到的区域。在此积分式中,f d 和f d +d f d 之间的面

目标识别技术

目标识别技术 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高

利用雷达回波资料作临近预报应注意的几个问题

文章编号:167328411(2008)增刊 20062202 利用雷达回波资料作临近预报应注意的几个问题 钟常鸣 (广西北海市气象局,北海 536000) 摘 要:利用雷达回波资料作临近预报应该注意以下几个问题:新一代雷达存在静锥区,静锥区内没有雷达探测数据,要通过调用邻近雷达站的低仰角资料来弥补;正确理解平面位置显示(PP I)是准确地进行回波分析的基础;地球曲率会影响天气雷达的探测,雷达波束在前进方向上随着距离增加距地面高度逐渐增加;地物杂波对雷达低仰角的产品会造成影响;使用线性外推作临近预报只有在一定的短时间内才可获得最好的效果。 关键词:雷达回波;临近预报;问题 1 利用雷达回波资料作临近预报要注意的问题 111 分析雷达资料前注意的问题 分析雷达资料前要查看图象文字区的各种参数,如站名、图象产品名称、时间、显示色标与单位、仰角或方位角、脉冲重复频率、显示距离等,还要检查回波强度(或速度)和范围分布的可靠性,如回波强度值、有否虚假回波、最大不模糊速度与脉冲重复频率是否一致、同时次的径向速度(V)图象与回波强度(Z)图象的范围等。 112 雷达静锥区问题 我国的新一代天气雷达(C I N RAD2SA)以体扫模式进行工作,雷达操作员不能手动调节天线仰角,天线仰角只能通过改变雷达的扫描方式、体扫模式及工作模式而设定。新一代天气雷达C I N RAD2SA 的最高扫描仰角为1915°,仰角超过1915°的任何位置上都没有雷达探测数据,1915°仰角以上的区域称为静锥区。要解决雷达静锥区资料空白的问题,必须通过调用邻近雷达站的低仰角资料来弥补。 113 正确理解平面位置显示(PP I) 所谓平面位置显示产品PP I,是指当雷达以固定仰角,天线以全方位扫描的探测方式而获取的数据,通过以雷达为中心的极坐标形式,采用不同的彩色色标来表示数据的大小和方向而产生的图象产品。平面位置显示PP I包括回波强度、径向风场、速度谱宽三种,此类产品一般还可配上当地的地形、河流、行政区划等地理信息,方便用户使用。PP I产品图象中标明时间、仰角、色标等,径向速度PP I图象产品中还应表明雷达测站所在的位置。 正确理解平面位置显示(PP I)是准确地进行回波分析的基础,严格来说PP I显示的面并不是平面而是一个圆锥面,在每个仰角上,以雷达为中心,沿着雷达波束向外,距地面的高度随径向距离的增加而增加。 114 地球曲率对天气雷达探测的影响 由于大气中的温、压、湿随高度而变化,同时地球本身是一个近似的球体,就是当雷达天线处于0°仰角发射电磁波时,电磁波在前进过程中距地面的高度也在改变。在标准大气折射的情况下,由于地球曲率的原因,雷达波束在前进方向上随着径向距离增加逐渐远离地球,云雨只有进入雷达波束内才能被雷达观测到1距雷达较近的地方雷达波束高度较低,近处的云雨高度由于容易达到雷达波束的高度因而被雷达观测到,而距雷达较远的地方雷达波束高度较高,远处的云雨如达不到雷达波束高度进入不了雷达波束内就不能被雷达观测到。 也就是说,平面位置显示产品PP I上远处的地方即使没有回波显示,也不能判断那里实际上有没有云雨存在,有可能该处的云雨高度够不着雷达波束没有被雷达观测到。要判断远处是否存在云雨应调用邻近雷达站的低仰角资料来进行分析。 115 地物杂波的影响 地物杂波包括普通地物杂波和异常地物杂波。 普通地物杂波是指由高大建筑、山脉、丘陵、海岸线、岛屿等地形地物在雷达波束正常传播情况下造成的杂波,一般发生在距雷达较近的地方;而由特殊气象条件下雷达波束的超折射造成的地物回波 第29卷 增刊 气 象 研 究 与 应 用 V o l129 增刊 2008年10月JOU RNAL O F M ET EOROLO G I CAL R ESEA RCH AND A PPL I CA T I ON O ct12008

飚线的回波特征

广元“6.1”飑线的雷达回波特征 2008-06-29 15:58:37| 分类:科技论文| 标签:飑线多普勒雷达回波垂直风切变中气旋|字号大中 小订阅 李志华李璐张沛纯 (四川广元市气象台,广元,628017) 摘要 2008年6月1日发生在广元市的飑线系统是出现在高空槽后、低空暖区和地面冷锋前部的一次典型个例。本文从高空环流形势、海平面气压场、水气能量条件等角度分析了该过程出现的天气学和动力学原理。利用广元市新一代天气雷达回波的监测图像,从反射率因子、径向速度、垂直累积液态水含量等方面分析了飑线系统发生、发展、消亡等阶段的回波特征。通过对雷达回波的分析,找出了一些内陆强对流天气发生发展的规律,对于广元及其周边地区监测和预报中小尺度强对流天气积累了宝贵经验。 关键词:飑线多普勒雷达回波垂直风切变中气旋 Guangyuan “6.1” squall line radar echo characteristic Li zhihua ,Li lu,Zhang peichun (GuangYuan Meteorological observatory,GuangYuan,628017) Abstract: On June 1, 2008 occurs in Guangyuan's squall line system is appears after the upper-level trough, the low altitude warm sector and a ground cold front front part model example.This article from angles and so on upper air circulation situation, sea level field of pressure, moisture energy condition has analyzed the synoptic meteorology and the principle of dynamics which this process appears. Using the Guangyuan new generation of weather radar echo monitor image, from aspects and so on index of reflection factor, radial velocity, vertical accumulation liquid water content has analyzed stage and so on squall line phylogeny, development, withering away echo characteristics. Through to the radar echo analysis, discovered some interior strong convection weather to have the development rule, the small criterion strong convection weather accumulated the valuable experience regarding Guangyuan and in the peripheral locality monitor and the forecast. Key Words:Squall line,Doppler radar echo, Vertical wind shear, Cyclone 引言 飑线是排列成带状的雷暴群,其范围较小、生命史较短。是气压和风的不连续线,当飑线过境时风向突变、气压陡升、气温急降,伴随有大风、冰雹、雷电等天气现象,给所经之地带来严重的灾害[2]。广元地处南北交汇地带,是北方冷空气入侵四川的门户,南方暖湿气流也多从此处向北输送,冷暖气流在此 交汇,使广元地区夏季多强对流天气。 出现在2008年6月1日的飑线系统给广元市的抗灾自救带来了一定的影响,并造成了新的经济损失。广元新一代天气雷达在本次飑线过程的监测、预报中发挥了重要作用,及时准确发布了强对流天气预

雷达目标识别

目标识别技术 2009-11-27 20:56:41| 分类:我的学习笔记| 标签:|字号大中小订阅 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络 模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标 识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反 映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减 速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别 提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高我国的军事实力,适应未来反导弹、反卫、空间攻防、国土防空与对海军事斗争的需要,急需加大雷达目标识别技术研究的力度雷达目标识别策略主要基于中段、再入段过程中弹道导弹目标群的不同特性。从结构特性看,飞行中段

多普勒天气雷达回波识别和分析之降水回波

多普勒天气雷达回波识别和分析之降水回波 1.层状云降水雷达回波特征——片状回波 层状云是水平尺度远远大于垂直尺度云团,由这种云团所产生的降水称之为稳定性层状云降水。降水区具有水平范围较大、持续时间较长、强度比较均匀和持续时间较长等特点。 ⑴回波强度特征:①在PPI上,层状云降水回波表现出范围比较大、呈片状、边缘零散不 规则、强度不大但分布均匀、无明显的强中心等特点。回波强度一般在20-30dBz,最强的为45dBz。②在RHI上,层状云降水回波顶部比较平整,没有明显的对流单体突起,底部及地,强度分布比较均匀,因此色彩差异比较小。一个明显的特征是经常可以看到在其内部有一条与地面大致平行的相对强的回波带。进一步的观测还发现这条亮带位于大气温度层结0度层以下几百米处。由于使用早起的模拟天气雷达探测时,回波较强则显示越亮,因此称之为零度层亮带。回波高度一般在8公里以下,当然会随着纬度,季节的不同有所变化。 ⑵回波径向速度特征:由于层状云降水范围较大,强度与气流相对比较均匀,因此相应其 径向速度分布范围也较大,径向速度等值线分布比较稀疏,切向梯度不大。在零径向速度型两侧常分布着范围不大的正、负径向速度中心,另外还常存在着流场辐合或辐散区。 ⑶零度层亮带:如前所述,在PPI仰角较高或者RHI扫面时,总能在零度层以下几百米处 看到一圈亮环或者亮带回波,亮带内的回波比上下两个层面都强。由于亮带回波总是伴随层状云降水出现,因此是层状云降水的一个重要特征。(零度层亮带形成的原因:冰晶、雪花下落的过程中,通过零度层时,表明开始融化,一方面介电常数增大,另一方面出现碰并聚合作用,使粒子尺寸增大,散射能力增强,所以回波强度增大。当冰晶雪花完全融化后,迅速变成球形雨滴,受雨滴破裂和降落速度的影响,回波强度减小。这样就存在一个强回波带,说明层状云降水中存在明显的冰水转换区,也表明层状云降水中气流稳定,无明显的对流活动。) 2.对流云降水雷达回波特征——块状回波 对流云往往对应着阵雨、雷雨、冰雹、大风、暴雨等天气。 ⑴回波强度特征:①在PPI上,对流云阵性降水回波通常由许多分散的回波单体所组成。 这些回波单体随着不同的天气过程排列成带状、条状、离散状或其它形状。回波单体结构

雷达原理大作业

雷达目标识别技术综述 1引言 目标识别是现代雷达技术发展的一个重要组成部分。对雷达目标识别的研究,在国内外已经形成热点,但由于问题本身的复杂性,以及多干扰信号,特别是多噪声干扰源存在的复杂电磁环境,雷达目标识别问题至今还没有满意的答案,尚无成熟的技术和方法。因此,对雷达目标识别技术的研究具有极其重要的军事应用价值。 本文将对雷达自动目标识别技术进行简要回顾,讨论目前理论研究和应用比较成功的几类目标识别方法,以及应用于雷达目标识别中的模式识别技术,分析和讨论问题的可能解决思路。 2雷达目标识别模型 雷达目标识别需要从目标的雷达回波中提取目标的有关信息标志和稳定特征并判明其属性。它根据目标的后向电磁散射来鉴别目标,是电磁散射的逆问题。利用目标在雷达远区所产生的散射场的特征,可以获得用于目标识别的信息,回波信号的幅值、相位、频率和极化等均可被利用。对获取的目标信息进行计算机处理,与已知目标的特性进行比较,从而达到自动识别目标的目的。识别过程分成三个步骤:目标的数据获取、特征提取和分类判决。相应模型如图"所示。 整个识别过程可以分为两个阶段:训练(或设计)阶段和识别阶段。前者用一定数量的训练样本进行分类器的设计或训练,后者用所设计或训练的分类器对待识别的样本进行分类决策。 训练数据获取是对各已知目标进行测量,取得目标的训练数据。测试数据获取是获得未知种类目标的测量数据;测量数据的获得可采用目标的靶场动态测量、外场静态测量、微波暗室缩比模型等。特征提取模块从目标回波数据中提取出对分类识别有用的目标特征信息。特征空间压缩与变换模块对特征信息进行特征空间维数压缩与变换,得到具有高同类聚合性的训练样本进行分类器的设计。类间可分离性的特征。分类器设计模块根据已知类别目标分类模块完成对未知目标的分类判决。 3雷达目标识别技术回顾 雷达目标识别的研究始于"#世纪$#年代。早期雷达目标特征信号的研究工作主要是研究雷达

雷达目标识别技术

雷达目标识别技术述评 孙文峰 (空军雷达学院重点实验室,湖北武汉430010) 摘要:首先对雷达目标识别研究领域已经取得的成果和存在的问题进行简单的回顾,然后结合对空警戒雷达,阐明低分辨雷达目标识别研究的具体思路。 关键词:雷达目标识别;低分辨雷达 Review on Radar Target Recognition SUN Wen-feng (Key laboratory, Wuhan Radar Academy, Wuhan 430010, China)Abstract: The acquired productions and existent problems of radar target recognition are reviewed simply, then the specific considerations of target recognition with low resolution radar are illustrated connect integrating with air defense warning radar in active service. Key words: radar target recognition; low resolution radar 1.引言 雷达目标识别(RTR—Radar Target Recognition)是指利用雷达对单个目标或目标群进行探测,对所获取的信息进行分析,从而确定目标的种类、型号等属性的技术。1958年,D.K.Barton(美国)通过精密跟踪雷达回波信号分析出前苏联人造卫星的外形和简单结构,如果将它作为RTR研究的起点,RTR至今已走过了四十多年的历程。目前,经过国内外同行的不懈努力,应该说RTR已经在目标特征信号的分析和测量、雷达目标成像与特征抽取、特征空间变换、目标模式分类、目标识别算法的实现技术等众多领域都取得了不同程度的突破,这些成果的取得使人们有理由相信RTR是未来新体制雷达的一项必备功能。目前,RTR技术已成功应用于星载或机载合成孔径雷达(SAR—Synthetic Aperture Radar)地面侦察、毫米波雷达精确制导等方面。但是,RTR还远未形成完整的理论体系,现有的R TR 系统在功能上都存在一定的局限性,其主要原因是由于目标类型和雷达体制的多样化以及所处环境的极端复杂性。本文首先对RTR研究领域已经取得的成果和存在的问题进行简单的回顾,最后结合对空警戒雷达,阐明了低分辨雷达目标识别研究的具体思路。 2.雷达目标识别技术的回顾与展望 雷达目标识别研究的主体有三个,即雷达、目标及其所处的电磁环境。其中任何一个主体发生改变都会影响RTR系统的性能,甚至可能使系统完全失效,即RTR研究实际上是要找到一种无穷维空间与有限类目标属性之间的映射。一个成功的RTR系统必定是考虑到了目标、雷达及其所处电磁环境的主要可变因素。就目标而言主要有目标的物理结构、目标相对于雷达的姿态及运动参数、目标内部的运动(如螺旋桨等)、目标的编队形式、战术使用特点等等;就雷达而言主要有工作频率、带宽、脉冲重复频率(PRF)、天线方向图、天线的扫描周期等等;环境因素主要有各种噪声(如内部噪声和环境噪声)、杂波(如地杂波、海杂波和气象杂波)和人为干扰等。在研制RTR系统时必须综合考虑这些因素,抽取与目标属性有关的特征,努力消除与目标属性无关的各种不确定因素的影响。

雷达回波信号产生

雷达回波信号产生 1.线性调频信号: 线性调频信号是指频率随时间而线性改变(增加或减少)的信号,是通过非线性相位调制或线性频率调制获得大时宽带宽积的典型例子。通常把线性调频信号称为Chirp信号,它是研究最早而且应用最广泛的一种脉冲压缩信号。 线性调频信号的主要优点是所用的匹配滤波器对回波的多普勒频移不敏感,即使回波信号有较大的多普勒频移,仍能用同一个匹配滤波器完成脉冲压缩; 主要缺点是存在距离和多普勒频移的耦合。此外,线性调频信号的匹配滤波器的输出旁瓣电平较高。 单个线性调频脉冲信号的时域表达式为: 其中A为脉冲幅度,f0为中心频率,μ为调频斜率。 Matlab实现: 参数设置 :

信号产生:u=cos(2*pi*(f0*t+K*t.^2/2)); 仿真结果: 2.多普勒频移 “多普勒效应”是由奥地利物理学家Chrjstian?Doppler 首先发现并加以研究而得名的,其内容为:由于波源和接收者之间存在着相互运动而造成接收者接收到的频率与波源发出的频率之间发生变化。 多普勒频移(Doppler Shift)是多普勒效应在无线电领域的一种体现。其定义为:由于发射机和接收机间的相对运动,接收机接收到的信号频率将与发射机发出的信号频率之间产生一个差值,该差值就是Doppler Shift。 设发射机发出的信号频率为(f 发),接收机接收到的信号频率为(f 收),发射机与接收机之间的相对运动速度为V,C 为电磁波在自由空间的传播速度:3×10(8次方)米/秒则有如下公式:f 收=(c±v)/λ=f 发±v/λ=f 发±f 移;(f 移)即为多普勒频移,(f 移)的大小取决于信号波长λ及相对运动速度V。对某发射机,

电子科大毕设——有关雷达信号设计(第四章)

第4章仿真软件设计方案 4.1总体设计方案 警戒雷达接收机仿真平台总体方案的思路是不设计硬件电路,只利用计算机软件仿真雷达所有的工作过程。该平台主要用于验证建立的信号模型、回波模型、噪声模型、雷达信号的发生和接收过程、数据处理算法等的正确性,不追求实时性,为便于开发与维护,采用MATLAB语言编程,利用MATLAB丰富的数字信号处理函数迅速建立起系统模型,在设计的任何阶段都能够很方便的对其进行修改。仿真平台外部环境模拟、雷达信号处理与数据处理进程尽可能与实际雷达的工作环境相匹配,接收机仿真平台工作流程,见图4.1。 图4.1接收机仿真流程图 当用户输入仿真参数后,雷达接收机仿真平台开始启动,各模块间可以实现数据、信息的传递及共享,其功能与雷达接收机各系统分机完成功能基本相同,同时仿真平台能够模拟外部环境参数,信号处理与数据处理进程尽可能与实际雷达的工作环境相匹配。 接收机系统的软件设计需要充分考虑系统的可维护性和可移植性,基于模块化方法,建立仿真平台的软件设计规范和约定,把仿真平台要完成的功能分解细化,变成相对独立的子程序模块的开发,降低系统的复杂性,使得系统容易修改,为后期继续研究提供良好的实验平台。 4.2各模块设计方案 4.2.1回波信号产生模块 在雷达信号模拟中,一项很重要的工作就是为雷达目标和雷达工作环境建立

数学模型。模拟回波与实际雷达回波的相似程度主要取决于目标和环境模型的选择。由于一种模型一般只适用于某些特定情况,因此对不同体制的雷达,应具体研究目标和环境模型的设置方法。根据仿真系统功能要求和总体方案,回波信号产生模块需要具备的功能模块有回波信号发生器、杂波发生器、噪声发生器。 回波信号产生模块连接关系,如图4.2所示。 图4.2回杂波模块关系图 雷达回波模型主要包括目标模型、噪声模型、杂波模型。 雷达回波的目标模型包括信号类型,目标距离、回波幅度、幅度起伏、多普勒频率。信号类型主要包括线性调频信号和相位编码信号。目标距离的模拟要根据目标运动的速度和方向以及雷达工作时间的变化计算产生。回波幅度的模拟要根据距离方程和目标散射截面的变化计算产生。幅度起伏通常采用斯威林的4种模型,与目标RCS起伏的统计分布和相关特性紧密相关,以及雷达系统参数有关[3]。 雷达系统的噪声通常是高斯分布的白噪声,因此可以采用蒙特卡洛方法模拟产生。但为了更广泛的适用于各种场合,本文同样也建立了其他噪声模型。 雷达系统的杂波变化复杂,一般来说,描述杂波变化规律的参数是概率密度函数和功率谱。雷达系统的杂波概率密度函数还与雷达系统的体制、参数有关,因此普通分辨率雷达和高分辨率雷达的杂波模型也不相同。杂波的功率谱取决于雷达与杂波的相对运动和雷达系统的参数。 回波信号模块模型汇总,如表4.1所示。

Matlab雷达回波数据模拟

clear, hold off format compact J = sqrt(-1); close all% Get root file name for saving resultsfile=input('Enter root file name for data and listing files: ','s'); % form radar chirp pulseT = 10e-6; % pulse length, seconds W = 10e6; % chirp bandwidth, Hz fs = 12e6; % chirp sampling rate, Hz; oversample by a littlefprintf('\nPulse length = %g microseconds\n',T/1e-6) fprintf('Chirp bandwidth = %g Mhz\n',W/1e6) fprintf('Sampling rate = %g Msamples/sec\n',fs/1e6) s = git_chirp(T,W,fs/W); % 120-by-1 array plot((1e6/fs)*(0:length(s)-1),[real(s) imag(s)]) title('Real and Imaginary Parts of Chirp Pulse') xlabel('time (usec)') ylabel('amplitude') gridNp = 20; % 20 pulses jkl = 0:(Np-1); % pulse index array, 慢时间采样的序列,注意第一个PRI标记为0是为了慢时间起始时刻从零开始 PRF = 10.0e3; % PRF in Hz PRI = (1/PRF); % PRI in sec

雷达原理复习总结

雷达原理复习总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

雷达原理复习要点 第一章(重点) 1、雷达的基本概念 雷达概念(Radar): radar的音译,Radio Detection and Ranging 的缩写。无线电探测和测距,无线电定位。 雷达的任务: 利用目标对电磁波的反射来发现目标并对目标进行定位,是一种电磁波的传感器、探测工具,能主动、实时、远距离、全天候、全天时获取目标信息。 从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息? 斜距R : 雷达到目标的直线距离OP 方位α: 目标斜距R在水平面上的投影OB与某一起始方向(正北、正南或其它参考方向)在水平面上的夹角。 仰角β:斜距R与它在水平面上的投影OB在铅垂面上的夹角,有时也称为倾角或高低角。 2、目标距离的测量 测量原理 式中,R 为目标到雷达的单程距离, 为电磁波往返于目标与雷达之间的时间间隔,c 为电磁波的传播速率(=3×108米/秒) 距离测量分辨率 两个目标在距离方向上的最小可区分距离 最大不模糊距离 3、目标角度的测量方位分辨率取决于哪些因素 4、雷达的基本组成 雷达由哪几个主要部分,各部分的功能是什么 同步设备:雷达整机工作的频率和时间标准。 发射机:产生大功率射频脉冲。 收发转换开关: 收发共用一副天线必需,完成天线与发射机和接收机连通之间的切换。 天线:将发射信号向空间定向辐射,并接收目标回波。 接收机:把回波信号放大,检波后用于目标检测、显示或其它雷达信号处理。 显示器:显示目标回波,指示目标位置。 天线控制(伺服)装置:控制天线波束在空间扫描。 电源 第二章 1、雷达发射机的任务 为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去 2、雷达发射机的主要质量指标 工作频率或波段、输出功率、总效率、信号形式、信号稳定度 3、雷达发射机的分类 单级振荡式、主振放大式 4、单级振荡式和主振放大式发射机产生信号的原理,以及各自的优缺点 单级振荡式:

激光雷达回波信号仿真模拟

激光雷达回波信号仿真模拟研究 摘要 关键字 第一章绪论 第一节引言 激光雷达(Lidar:Li ght D etection A nd R anging),是一种用激光器作为辐射源的雷达,是激光技术与雷达技术完美结合的产物。激光雷达的最基本的工作原理与我们常见的普通雷达基本一致,即由发射系统发射一个信号,信号到达作用目标后会产生一个回波信号,我们将回波信号经过收集处理后,就可以获得所需要的信息。与普通雷达不同的是,激光雷达的发射信号是激光而普通雷达发射的信号是无线电波,两者在波长上相比,激光信号要短的多。由于激光的高频单色光的特性,激光雷达具有了许多普通雷达无法比拟的特点,比如分辨率高,测量、追踪精度高,抗电子干扰能力强,能够获得目标的多种图像,等等。因此,利用激光雷达对大气进行监测,收集、分析数据,建立一个大气环境预测理论模型,这将会成为研究气候变化和寻求解决对策的一项重要武器。 第二节本文的选题意义 由于投入巨大,在研制激光雷达实物之前,我们需要进行模拟与仿真研究,预测即将研制的激光雷达的各性能指标,评价总体方案的可行性。激光雷达回拨信号仿真模拟就是利用现代仿真技术,逼真的复现雷达回波信号的动态过程,它是现代计算机技术、数字模拟技术和激光雷达技术相结合的产物。仿真模拟的对象是激光雷达的探测没标以及它所处的环境,模拟的手段是利用计算机和相关设备以及相关程序,模拟的方式是复现包含着激光雷达目标和目标环境信息的雷达信号。通过激光雷达回波信号的仿真模拟,进而产生回波信号,我们可以在实际雷达系统前端不具备条件的情况下,对激光雷达系统的后级设备进行调试。 第三节本文的研究思路和结构安排 本文主要研究面向气象服务应用的大气激光雷达。笔者在熟悉激光雷达的基本工作原理的前提下,学习和熟悉各种参数对大气回波能量的影响,进而学习和掌握matlab编程语言,并且根据给定的激光雷达系统参数、大气参数和光学参数,以激光雷达方程为基础,通过仿真模拟得到理想状态下的大气回波信号。但是,在实际测量工作中,由于大气中的各种干扰,我们获得的回波信号并不和理想状态下的大气回波信号一致,因此,在本文的后期工作中,笔者根据已有的大量激光雷达实测信号与模拟信号对比,既能验证仿真模拟结果的准确性,又能应用于激光雷达的性能指标等方面的分析上,具有比较高的实际应用价值。 第二章激光雷达的原理 第一节激光雷达系统 一个标准的激光雷达系统应该包含以下部件:激光器、发射系统、接收系统、光学系统、信号处理系统以及显示系统。它的工作原理图我们可以用下图表示:

相关文档
最新文档