化学气相沉积的研究综述

化学气相沉积的研究综述
化学气相沉积的研究综述

化学气相沉积的研究综述

齐鲁工业大学机械与汽车工程学院机械11-1济南,250300

摘要:论述了化学气相沉积的由来、发展历程和最近国内外研究的现状,主要举例说明金刚石膜的研究进程和现状。讲了几种主要的化学气相沉积的关键技术应用,包括金属有机化合物化学气相沉积技术、等离子化学气相沉积、激光化学气相沉积、超声波化学气相沉积。还介绍了化学气相沉积的研究应用方向,主要包括保护涂层、微电子技术、超导技术、太阳能利用等方面。

关键字:化学气相沉积金刚石膜等离子超导技术

1 概述

化学气相沉积(简称CVD)是利用气态或蒸汽态的物质在气相或气固界面反应生成固态沉积物的技术。这一名称是在20 世纪60 年代初期由美国John M Blucher Jr 等人[1]首先提出来的,后来又有人称它为蒸气镀Vapor Plating,而Vapor Deposition 一词后来被广泛的接受。人们又利用引导气体深入到多孔材料内部沉积以达到使材料致密化的目的。法国最先利用制备致密化材料的CVI 技术,即化学气相渗透CVI[2]。

化学气相沉积是一种材料表面改性技术。它可以利用气相间的反应, 在不改变基体材料的成分和不削弱基体材料的强度条件下, 赋予材料表面一些特殊的性能。目前, 由化学气相沉积技术制备的材料,不仅应用于刀具材料、耐磨耐热耐腐蚀材料、宇航工业上的特殊复合材料、原子反应堆材料及生物医用材料等领域, 而且被广泛应用于制备与合成各种粉体材料、块体材料、新晶体材料、陶瓷纤维及金刚石薄膜等。在作为大规模集成电路技术的铁电材料、绝缘材料、磁性材料、光电子材料的薄膜制备技术方面, 更是不可或缺。[3]

CVD 沉积物的形成涉及到各种化学平衡及化学动力学过程,这些化学过程又受反应器设计、工艺参数、气体性能和基体性能等诸多因素的影响[4],要考虑所有的因素来描述完整的CVD 工艺模型几乎是不可能的,因此必须做出某些简化和假设。而其中最为典型的是浓度边界层理论模型[5]。CVD 工艺中的主要现象——成核和生长的过程:a 反应气体从气相主体被强迫引人边界层;b 反应气体由气相主体扩散和流动(粘滞流动)穿过边界层;c 气体在基体表面上的吸附;d 吸附物之间的或者吸附物与气态物质之间的化学反应过程;e 吸附物从基体解吸,f 生成气体从边界层到整体气体的扩散和流动;g 气体从边界层引出到气相主体。

如今,有很多CVD 技术的理论模型和“CVD相图”理论被提出。我国在金刚石生长[6]技术取得很大的进展,在这个领域的研究过程中对金刚石生长热力学及其非平衡热力学理论及理论模型也进行了很多的探讨。

从1986~ 1996年, CVD 金刚石膜的沉积速率提高了将近1000倍, 与此相应, 其制备成本也下降到原来的千分之一。金刚石膜大型工业化沉积设备也应运而生, 为CVD金刚石膜的实际应用奠定了基础。目前金刚石膜最大沉积面积已达0.5m2 (采用热丝法沉积, 用于污水处理的BDD 电极), 金刚石自支撑膜的厚度超过3 mm。光学级( Optical Grade)金刚石膜除力学性能(断裂强度)外, 所有物理化学性质都可以和最高质量的天然IIa 型金刚石单晶比美。而电子级(器件级)

( Electronic Grade( Device Grade) )金刚石膜质量远远超过天然IIa 型金刚石单晶, 杂质水平低至ppb量级( 10-9 ) , 几乎不含任何杂质。[7]纳米金刚石膜(NCD )的研究始于20世纪90年代, 而超纳米金刚石膜(UNCD )则是最近的研究热点之一。目前, 采用热丝, 微波和DC Arc Plasma Jet都可以获得NCD 和UNCD金刚石膜。研究的热点主要在于它们在摩擦磨损、电子学、电化学、MEM s (微机电系统) , 以及生物医学等诸多领域的应用。CVD 金刚石膜的同质外延生长研究可以追溯至20世纪80年代, 而CVD金刚石大单晶的生长则是最近几年的研究进展。目前最大的CVD单晶已超过10克拉。

CVD金刚石膜工具在加工各种难加工材料, 如各种有色金属及其合金(如在

汽车工业中应用日益广泛的高硅铝合金和航空工业应用的铝合金)、复合材料( 包括金属基复合材料和碳纤维增强复合材料)、高分子材料和无机非金属材料(陶瓷、石墨、玻璃、甚至硬质合金)等方面与传统工具材料相比具有十分明显的优势, 在某些方面(如加工金属基复合材料和碳纤维增强复合材料) 甚至具有不可替代性。因此市场前景极佳。但除非采取特殊的冷却条件,CVD金刚石膜工具

不能加工通常的钢铁材料, 这是因为金刚石是碳的一种结构形式, 在加工钢铁

是刀尖会因局部的压力和温度环境造成金刚石中的碳原子向被加工钢铁零件中

迅速扩散而加剧磨损。CVD 金刚石膜工具在加工大多数难加工材料时, 不仅刀具切削寿命与未涂层硬质合金相比可提高十几倍甚至上百倍, 而且表面加工质量

也远远优于传统工具。CVD金刚石膜工具的另一优点是可进行干切削, 不需要冷却液, 不仅可大大节省加工成本, 还避免了对环境的污染。

2 技术关键

金属有机化合物化学气相沉积技术(MOCVD)是一种利用低温下易分解和挥发的金属有机化合物作为物质源进行化学气相沉积的方法, 主要用于化合物半导

体气相生长方面。与传统的CVD 相比, MOCVD 的沉积温度相对较低, 能沉积超

薄层甚至原子层的特殊结构表面,可在不同的基底表面沉积不同的薄膜。因此, 对于那些不能承受常规CVD 高温, 而要求采用中低温度的基体( 如钢一类的基

体) 有很高的应用价值。此外, 用MOCVD 技术生长的多晶SiO

2

是良好的透明导

电材料, 用MOCVD 得到的TiO

2

结晶膜也用于了太阳能电池的抗反射层、水的光电解及光催化等方面。MOCVD 技术最有吸引力的新应用是制备新型高温超导氧化物陶瓷薄膜。

等离子化学气相沉积(PCVD)又称为等离子体增强化学气相沉积, 它是借助气体辉光放电产生的低温等离子体来增强反应物质的化学活性, 促进气体间的化学反应, 从而在较低温度下沉积出优质镀层的过程。PCVD 按等离子体能量源方式划分, 有直流辉光放电( DC- PCVD) 、射频放电( RF- PCVD) 和微波等离子体放电( MW- PCVD) 等。随着频率的增加, 等离子体增强CVD 过程的作用越明显, 形成化合物的温度越低。这3种PCVD 中, 使用最广泛的是射频辉光放电装置, 因为在放电过程中, 无电极放电, 故电极不发生腐蚀, 无杂质污染。而微波放电的ECR 法由于能够产生长寿命自由基和高密度等离子体已引起人们的广泛兴趣, 但尚处于积极研究阶段。

PCVD 最早是利用有机硅化合物在半导体基材上沉积SiO2, 后来在半导体

工业上获得了广泛的应用, 如沉积Si

3N

4

、Si、SiC、磷硅玻璃等。近年来这项技

术显得尤为重要, 因为在常规CVD 技术中需要用外加热使初始气体分解, 而在PCVD技术中是利用等离子体中电子的动能去激发气相化学反应。所以, 它不仅有效地降低了化学反应温度( 一般低于约600℃) , 还拓宽了基底和沉积薄膜的种类。目前, PCVD 主要用于金属、陶瓷、玻璃等基材上, 做保护膜、强化膜、修饰膜和功能膜。其应用的重要新进展是类金刚石膜的沉积, 它一般是用射频等离子体碳氢化合物气体分解以及离子束沉积相结合制备, 这类陶瓷薄膜在用作切削刀具的耐磨涂层以及激光反射镜、光导纤维薄膜等领域中具有独特的应用前景。

激光化学气相沉积(LCVD)是一种在化学气相沉积过程中利用激光束的光子能量激发和促进化学反应的薄膜沉积方法。激光作为一种强度高、单色性好和方向性好的光源, 在CVD 中发挥着热作用和光作用。前者利用激光能量对衬底加热, 可以促进衬底表面的化学反应, 从而达到化学气相沉积的目的; 后者利用高能量光子可以直接促进反应物气体分子的分解。利用激光的上述效应可以实现在衬底表面的选择性沉积, 即只在需要沉积的地方才用激光光束照射, 就可以获得所需的沉积图形。另外, 利用激光辅助CVD 沉积技术, 可以获得快速非平衡的薄膜, 膜层成分灵活, 并能有效地降低CVD 过程的衬底温度。如利用激光, 在衬底温度为50 ℃时也可以实现二氧化硅薄膜的沉积。目前, LCVD 技术广泛用于激光光刻、大规模集成电路掩膜的修正、激光蒸发- 沉积以及金属化。LCVD 法氮化硅膜已达到工业应用的水平, 其平均硬度可达2200HK; TiN、TiC 及SiC

膜正处于研发阶段。目前对LCVD 法制金刚石、类金刚石膜的研究正在进行探索, 并在低温沉积金刚石方面取得了进展。

超声波化学气相沉积(UWCVD)是在找寻起动CVD 的不同于电磁波的辐射形

式的高能量能源要求形势下出现的。超声波能够提高CVD 的沉积速度, 形成传

统CVD 无法获得的平滑均匀的沉积膜。据有关报道, 适当调节超声波的频率和

功率, 可以使CVD 沉积膜晶粒细化, 强韧性提高, 增强沉积膜与基材的结合力, 沉积膜具有强的方向性等。目前, UWCVD 法在国际上已有了一定的研究, 然而国内有关这方面的报道甚少。由于UWCVD 具有在某些其它CVD 方法无法获得的优点, 如沉积膜组织细小、致密, 沉积膜与基材结合牢固, 沉积膜有良好的强韧性等, 故对此种新工艺的探讨研究是很有必要的,同时将其有效地应用到工业生产中也是很有可能的。

3 未来研究应用方向

保护涂层。在许多特殊环境中使用的材料往往需要有涂层保护,以使其具

有耐磨、耐腐蚀、耐高温氧化和耐射线辐射等功能。用CVD 法制备的TiN、TiC、Ti( C, N) 等薄膜具有很高的硬度和耐磨性, 在刀具切削面上仅覆1~3 μm 的TiN 膜就可以使其使用寿命提高3 倍以上。而其它一些金属氧化物、碳化物、

氮化物、硅化物、磷化物、立方氮化硼和类金刚石等膜, 以及各种复合膜也表现出优异的耐磨性。另外, 通过沉积获得的Al2O3、TiN 等薄膜耐蚀性很好, 含有铬的非晶态的耐蚀性则更高。SiC、Si3N4 、MoSi2 等硅系化合物是很重要的高温耐氧化涂层, 这些涂层在表面上生成致密的SiO2 薄膜, 在1400~1600 ℃下能耐氧化。Mo 和W 的CVD 涂层也具有优异的

高温耐腐蚀性能, 可以应用于涡轮叶片、火箭发动机喷嘴等设备零件上。目前部分离子镀Al、Cu、Ti 等薄膜已代替电镀制品用于航空工业的零件上。用真空镀膜制备的抗热腐蚀和合金镀层及进而发展的热障镀层已有多种系列用于生产中。

微电子技术。在半导体器件和集成电路的基本制作流程中有关半导体膜的外延、p-n 结扩散元的形成、介质隔离、扩散掩膜和金

属膜的沉积等是工艺核心步骤。化学气相沉积在制备这些材料层的过程中逐渐取代了如硅的高温氧化和高温扩散等旧工艺, 在现代微电子技术中占主导地位。在超大规模集成电路制作中, 化学气相沉积可以用来沉积多晶硅膜、钨膜、铝膜、金属硅化物、氧化硅膜以及氮化硅膜等, 这些薄膜材料可以用作栅电极、多层布线的层间绝缘膜、金属布线、电阻以及散热材料等。

超导技术。CVD 制备超导材料是美国无线电公司( RCA) 在20 世纪60 年代发明的, 用化学气相沉积生产的Nb3Sn 低温超导带材涂层致密, 厚度较易控制, 力学性能好, 是目前烧制高场强小型磁体的最优良材料。为提高Nb3Sn 的超导

性能, 很多国家在掺杂、基带材料、脱氢、热处理以及镀铜( 银或铝) 稳定等方

面做了大量的研究工作, 使CVD 法成为商品Nb3Sn 超导带的主要生产方法之

一。现已用化学气相沉积法生产出来的其它金属间化合物超导材料还有Nb3Ge、

V3Ga、Nb3Ga 等。[8]

太阳能利用。太阳能是取之不尽的能源, 利用无机材料的光电转换功能制成

太阳能电池是利用太阳能的一个重要途径。目前制备

多晶硅薄膜电池多采用CVD 技术, 包括LPCVD 和PCVD 工艺。现已试制成功的

硅、砷化镓同质结电池以及利用Ⅱ~Ⅴ族、Ⅰ~Ⅵ族等半导体制成的多种异质

结太阳能电池, 如SiO2/Si、GaAs/GaAlAs、CdTe/CdS 等, 几乎全制成薄膜形式,

气相沉积是它们最主要的制备技术。[9]

随着工业生产要求的不断提高, CVD 的工艺及设备得到不断改进, 现已获

得了更多新的膜层, 并大大提高了膜层的性能和质量。与此同时交叉、综合地使

用复合的方法, 不仅启用了各种新型的加热源,还充分运用了各种化学反应、高

频电磁( 脉冲、射频、微波等) 及离子体等效应来激活沉积离子, 成为技术创新

的重要途径[10]。CVD 技术由于采用等离子体、激光、电子束等辅助方法降低了反

应温度, 使其应用的范围更加广阔, 下一步应该朝着减少有害生成物, 提高工

业化生产规模的方向发展。

参考文献

[1]Blucher JM:Vapor-Deposited Materials,Chapter1 In Vapor Deposition,1961

[2]Fizzer E .The future of carbon-carbon composites .Carbon,1987, 25(2):163

[3]唐新峰, 袁润章. 化学气相沉积技术的研究及在无机材料制备中的应用进 [J] .

武汉工业大学学报.1994, 16(2) : 135- 139 及1995, 17(2) : 119- 121.

[4]Sudarshan T S 著,范玉殿等译.表面改性技术工程师指南.清华大学出版社,1992

[5]Spear K E. The Electrochemical Society,Inc,Pennington,N j,1984:81—97

[6]于三,金曾孙.用热解化学气相沉积法选择性生长金刚石薄膜的研究.科学通报,1991,36

(6):417 - 419

[7]Goodw in D G, Butler JE. In H and Book of Indus trial Diamonds and Diamond Films

[M].New York: Mar er Dekker, 1998: 527

[8]张迎光, 白雪峰. 化学气相沉积技术的发展[J] . 科技论坛,2005, 12: 82- 84.

[9]谭昌瑶, 王钧石.实用表面工程技术[M] .北京: 新时代出版社,1998.

[10]徐滨士. 神奇的表面工程[M] .北京: 清华大学出版社, 2000.

地球与环境-中国科学院地球化学研究所

地球与环境 2010年第38卷第4期(总第282期) 目次 研究成果 巢湖富营养化的沉积记录:结合态脂肪酸及其单体碳同位素特征 …………………………………………………………王丽芳,熊永强,吴丰昌,等(393)乌江干支流河水中U元素的地球化学特征………………………………………杨曦,王中良(402)长江口溶解无机碳循环的地球化学研究……………………Sivaji Patra,刘丛强,李思亮,等(409)西江上游河水悬浮物中稀土元素的地球化学特征……………………谢雯,徐志方,刘丛强(414)城市功能对贵阳市城区土壤重金属分布的影响………………李晓燕,曹益金,齐乐,等(421)基于模糊聚类的地质灾害损失程度评价数学模型研究………薛凯喜,刘东燕,袁传鹏,等(428)辽宁省境内老哈河流域产沙特征及泥沙供给模式研究………姚玉增,巩恩普,姚志宏,等(434)土壤焙烧过程中碘的释放及其环境意义………………………………刘丽贞,吴代赦,李萍(439)准噶尔盆地红87井区克上组沉积相特征…………………………………………………凌翔(444)苏州澄湖湖底硬粘土地球化学特征及其成因意义………………梁丽,师育新,戴雪荣,等(449)河水 ̄地下水交互带内砷及金属的自然衰减过程…………………冯丹,滕彦国,张琢,等(456)地质地球化学特性对四川名优茶品质的影响……………………罗杰,韩吟文,方楚凝,等(462) 应用研究 红枫湖入库河流沉积物中重金属污染状况分析……………………曾艳,张维,陈敬安,等(470)花溪区土地利用变化研究………………………………………张玉彪,李阳兵,安裕伦,等(476)沱江流域水系沉积物重金属的潜在生态风险评价………………李佳宣,施泽明,郑林,等(481)离线式的热化学降解技术研究Pahokee泥炭腐殖酸……………杨扬,贾望鲁,彭平安,等(488)广西河池铅锑矿冶炼区土壤中锑等重金属的分布特征及影响因素分析 ……………………………………………………………项萌,张国平,李玲,等(495)中国能源消费导致的CO2排放量的时空演变分析…………………………陈春桥,汤小华(501)沈阳卫工河水中多环芳烃的分布、来源及生态风险初步评价…郑冬梅,刘志彦,孙丽娜,等(507)东川因民矿区地下水-选厂水水化学特征及资源化影响因素……杜玉龙,方维萱,柳玉龙,等(512) 专题综述 氰化物测定研究进展………………………………………………王明国,李社红,肖唐付,等(519)[期刊基本参数]:CN 521139/P﹡1973﹡Q﹡16﹡142﹡zh﹡P﹡25.00﹡850﹡21﹡201012 本期责任编辑:付绍洪英文译校:徐仲伦何芝兰排版:李明凤

附表一地球化学专业研究方向及主要研究内容介绍

地球化学专业博士研究生培养方案 一、培养目标 1.掌握马克思列宁主义、毛泽东思想和中国特色社会主义理论体系,热爱祖国,遵纪守法,品行端正,诚实守信,实事求是,具有较强的事业心和良好的学风,追求新知、勇于创新,积极为国家现代化建设服务。 2.掌握本学科坚实的基础理论和系统的专门知识;具有独立从事科学研究和教学工作、组织解决重大实际问题的能力,并在科学研究或专门技术上做出创造性的成果。 3.至少掌握一门外国语,能熟练阅读外文资料,具备用外文撰写学术论文和进行国际学术交流的能力。 二、研究方向 地球化学专业是地质学一级学科(学科代码:0709)下设的二级学科(学科代码:070902),设以下4个研究方向。 1.化学地球动力学 综合地质、地球化学方法,研究不同地质时期岩石的地质、地球化学特征,阐明岩石形成与板块构造和岩石圈构造演化的关系。 2.岩石地球化学 采用地球化学和实验地球化学方法,研究元素和同位素在岩浆作用、变质作用、沉积作用和表生作用中的存在相态和元素分配理论,示踪地质作用的发生发展过程,阐明岩石成因及其形成环境。 3.资源环境地球化学 研究元素在地球各圈层中的时空分布规律和迁移与沉淀、分散与富集的物理化学条件,揭示区域成矿规律,探索元素地球化学过程与自然环境质量和生态效应关系。 4.行星岩石与地球化学 通过陨石和航天器对类地行星直接或间接分析获得的数据资料进行研究,研究类地行星——月球、火星等星球的岩石以及元素、同位素等物质组成,揭示类地行星的形成与演化。 三、学习年限 1.全日制脱产博士生的基础学制为3年。 2.在职博士生的基础学制为4年。 3.对于提前达到培养目标、完成学业并做出创造性成果的博士研究生,经本人申请,导师同意,学院审批后报研究生院批准,允许提前答辩并申请学位;由于客观原因不能按时完成学业者,由博士研究生本人提出申请,导师同意,学院审批,报研究生院批准,可延长学习年限,但延长时间一般不得超过2年。未提出延长报告或申请延长期满仍未完成博士论文答辩者,均按结业处理。具体事宜详见“吉林大学关于研究生提前或延期进行学位论文答辩的暂行规定”。 四、课程设置(附表)

化学气相沉积技术的应用与发展

化学气相沉积技术的应用与进展 一、化学气相沉积技术的发展现状 精细化工是当今化学工业中最具活力的新兴领域之一,是新材料的重要组成部分,现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯度材料中有意地掺人某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。 化学气相沉积技术(Chemical vapor deposition,简称CVD)是近几十年发展起来的制备无机材料的新技术。化学气相沉积法已经广泛用于提纯物质、研制新晶体、沉积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化物、硫化物、氮化物、碳化物,也可以是二元或多元的元素间化合物,而且它们的物理功能可以通过气相掺杂的沉积过程精确控制。目前,用CVD技术所制备的材料不仅应用于宇航工业上的特殊复合材料、原子反应堆材料、刀具材料、耐热耐磨耐腐蚀及生物医用材料等领域,而且还被应用于制备与合成各种粉体料、新晶体材料、陶瓷纤维及金刚石薄膜等。 二、化学气相沉积技术的工作原理 化学气相沉积是指利用气体原料在气相中通过化学反应形成基本粒 子并经过成核、生长两个阶段合成薄膜、粒子、晶须或晶体等个主要

阶段:反应气体向材料表面5固体材料的工艺过程。它包括 扩散;反应气体吸附于材料的表面;在材料表面发生化学反应;生成物从材料的表面脱附;(5)产物脱离材料表面。 目前CVD技术的工业应用有两种不同的沉积反应类型即热分解反应和化学合成反应。它们的共同点是:基体温度应高于气体混合物;在工件达到处理温度之前气体混合物不能被加热到分解温度以防止在 气相中进行反应。 三、化学气相沉积技术的特点 化学气相沉积法之所以得以迅速发展,是和它本身的特点分不开的,与其他沉积方法相比,CVD技术除了具有设备简单、操作维护方便、灵活性强的优点外,还具有以下优势: (1)沉积物众多,它可以沉积金属、碳化物、氮化物、氧化物和硼化物等,这是其他方法无法做到的; (2)能均匀涂覆几何形状复杂的零件,这是因为化学气相沉积过程有高度的分散性; (3)涂层和基体结合牢固; (4)镀层的化学成分可以改变, 从而获得梯度沉积物或者得到混合镀层; (5)可以控制镀层的密度和纯度; (6)设备简单,操作方便。 随着工业生产要求的不断提高,CVD的工艺及设备得到不断改进,但是在实际生产过程中CVD技术也还存在一些缺陷:

论述物理气相沉积和化学气相沉积地优缺点

论述物理气相沉积和化学气相沉积的优缺点 物理气相沉积技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD法中使用最早的技术。 溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。 离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。 物理气相沉积技术基本原理可分三个工艺步骤: (1)镀料的气化:即使镀料蒸发,异华或被溅射,也就是通过镀料的气化源。 (2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。 (3)镀料原子、分子或离子在基体上沉积。 物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐饰、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层。 随着高科技及新兴工业发展,物理气相沉积技术出现了不少新的先进的亮点,如多弧离子镀与磁控溅射兼容技术,大型矩形长弧靶和溅射靶,非平衡磁控溅射靶,孪生靶技术,带状泡沫多弧沉积卷绕镀层技术,条状纤维织物卷绕镀层技术等,使用的镀层成套设备,向计算机全自动,大型化工业规模方向发展。 化学气相沉积是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯材料中有意地掺人某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。 化学气相沉积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化物、硫化物、氮化物、碳化物,也可以是III-V、II-IV、IV-VI族中的二元或多元的元素间化合物,而且它们的物理功能可以通过气相掺杂的淀积过程精确控制。目前,化学气相

环境地球化学知识点

概念题 绪论(1/6) 环境问题由于人类活动或自然活动作用于人们周围的环境所引起的环境质量变化,以及这种变化反过来对人类生产、生活和健康产生的影响。 环境容量人类生存和自然环境在不致受害的前提下,环境可能容纳污染物质的最大负荷量。 环境要素构成人类环境整体的各个独立的、性质不同的而又服从整体演化规律的基本因素。 环境背景值在未受人类活动干扰的情况下,各环境要素(大气、水、土壤、生物、光、热等)的物质组成或能量分布的正常值。 环境质量在一具体环境内,环境的某些要素或总体对人类或社会经济发展的适宜程度。 环境质量评价按照一定的评价标准和评价方法对一定区域范围内的环境质量进行说明、评定和预测。 第一章岩石圈环境地球化学(0/0) 第二章土壤环境地球化学(1/9) 土壤覆盖在地球陆地表面和浅水水域底部,具有肥力,能够生长植物的疏松物质表层。 土壤圈覆盖于地球陆地表面和浅水域底部土壤所构成的一种连续体或覆盖层及其相关的生态环境系统。 成土过程地壳表面的岩石风化体及其搬运的沉积体,受其所处环境因素的作用,形成具有一定剖面形态和肥力特征的土壤的历程。 土壤酸度土壤酸性表现的强弱程度,以pH表示。 植物营养植物体从外界环境中吸取其生长发育所需的养分,用以维持其生命活动。 土壤污染进入土壤的污染物积累到一定程度,引起土壤质量下降、性质恶化的现象。 土壤净化污染物在土壤中,通过挥发、扩散、吸附、分解等作用,使土壤污染物浓度逐渐降低,毒性减少的过程。 土壤质量评价单一环境要素的环境现状评价,是根据一定目的和原则,按照一定的方法和标准,对土壤是否污染及污染程度进行调查、评估的工作。

土壤中微量元素动植物体内含量很少、需要量很少的必需元素。 第三章水圈环境地球化学(2/11) 水圈地球表面或接近地球表面各类水体的总称。 水资源世界上一切水体,包括海洋、河流、湖泊、沼泽、冰川、土壤水、地下水及大气中的水分,都是人类宝贵的财富,即水资源。(广义)在一定时期内,能被人类直接或间接开发利用的那一部分动态水体。(狭义) 水矿化度天然水中各种元素的离子、分子与化合物(不包括游离状态的气体)的总量。 水硬度水中钙和镁含量。 化学需氧量(COD)水样在一定条件下,氧化1L水样中还原性物质所消耗的氧化剂的量,以氧的mg/L表示。 高锰酸钾指数法(COD Mn)在一定条件下,以高锰酸钾为氧化剂,氧化水样中的还原性物质,所消耗的量以氧的mg/L来表示。 重铬酸钾指数法(COD Cr)在一定条件下,以重铬酸钾为氧化剂,氧化水样中的还原性物质,所消耗的量以氧的mg/L来表示。 生化需氧量(BOD)在有溶解氧的条件下,好氧微生物在分解水中有机物的生物化学氧化过程中所消耗的溶解氧量。 水体污染进入水体中的污染物含量超过了水体的自净能力,就会导致水体的物理、化学及生物特性的改变和水质的恶化,从而影响水的有效利用,危害人类健康的现象。 水体自净污染物质进入天然水体后,通过一系列物理、化学和生物因素的共同作用,使水中污染物质的浓度降低的现象。 水环境质量评价按照评价目标,选择相应的水质参数、水质标准和评价方法,对水体的质量利用价值及水的处理要求作出评定。 第四章大气圈环境地球化学(1/11) 大气圈包围在地球最外面的圈层,是由气体和气溶胶颗粒物组成的复杂的流体系统。 同温层从对流层顶以上到25km以下气温不变或微有上升的圈层。 逆温层从25km以上到50-55km,温度随高度升高而升高的圈层。 臭氧层地球上空10-50km臭氧比较集中的大气层, 其最高浓度在20-25km处。

缺氧沉积环境的地球化学标志

甘肃地质学报 2003 2003 第12卷 第2期 ACTA GEOLO GICA G ANSU Vol.12 No12 文章编号:100424116(2003)022********* ① 缺氧沉积环境的地球化学标志 王争鸣 (甘肃省地矿局培训中心,甘肃兰州 730000) 摘 要:缺氧沉积环境是一种能够提供多种类型矿化定位的特殊沉积环境。缺氧环境判识指 标包括岩石、古生物和地球化学三方面。在缺氧环境的研究中,地球化学指标如矿物、微量元素、同位素和有机地球化学指标最为重要。因受地质历史中诸多因素的影响,地球化学指标具有一定 的多解性和局限性,故只有多项参数综合应用才可更为准确地进行环境分析。 关键词:缺氧沉积环境;地球化学标志 中图分类号:P595 文献标识码:B 缺氧环境指水体中溶氧量小于1ml/L的环境,一般形成于水体分层、循环有限的区域(如海湾、泻湖、海洋和湖泊深层水)或大陆边缘的上升流区。它是油气源岩发育的主要控制因素之一,是一种能提供多种类型矿化定位的沉积环境。现在大多数学者都把原先认为是同生沉积的矿床用有机质成矿理论或氧化还原沉积模式解释。尤其金、铀矿床的发现以及矿化与有机质关系研究的新成果使人们对缺氧环境中的矿床成因倍加关注。许多金属、非金属矿床的形成是与缺氧环境有关的成矿作用及区域和全球背景综合的结果,两者相互作用并长期偕同和持续发展控制了矿床的规模。 1 缺氧环境的基本特征 缺氧沉积环境,其特征主要表现在沉积岩石、古生物学及地球化学上,笔者综合国内外研究成果,对缺氧环境和富氧环境的基本特征及其相关判识指标进行了对比分析,建立了对应关系总表(表1)。 2 地球化学判识指标 近年来,在缺氧环境研究中标型矿物、元素、稳定同位素和有机地球化学发挥着越来越重要的作用。应用微体化石的微量元素和同位素组成、生物标志物及其同位素组成来探讨缺氧环境特征,取得了显著成果。 ①收稿日期:2003207202

成矿流体活动的地球化学示踪研究综述

第14卷第4期1999年8月 地球科学进展 ADVAN CE I N EA R TH SC IEN CES V o l.14 N o.4 A ug.,1999 成矿流体活动的地球化学示踪研究综述Ξ 倪师军,滕彦国,张成江,吴香尧 (成都理工学院,四川 成都 610059) 摘 要:成矿流体活动的地球化学示踪是近年来流体地球化学研究的一个新趋势。通过流体来源示踪、运移示踪和定位示踪可以追溯流体活动的全过程,对恢复流体活动历史、演化历程具有积极意义。对成矿流体活动的地球化学示踪方法进行了一定的总结,对人们常用的地球化学示踪方法——同位素地球化学示踪、元素地球化学示踪、包裹体地球化学示踪及气体地球化学示踪的研究现状进行了综述。 关 键 词:成矿流体;流体地球化学;地球化学示踪 中图分类号:P595 文献标识码:A 文章编号:100128166(1999)0420346207 地球化学示踪研究是查明元素、矿物等在地质地球化学作用过程中的来源、演化及其最终发展状态,是揭示地球化学作用机理和过程的重要途径和有效手段。成矿流体地球化学是当前国际地学界研究的前沿和热点之一,成矿流体活动的地球化学示踪研究已成为一个新的趋势,通过流体来源示踪、运移示踪和定位可以追溯流体活动的全过程,对恢复流体活动的历史、演化历程具有积极意义。 1 同位素地球化学示踪 由于同一元素不同同位素的原子质量不同,其热力学性质有微小的差异。正是这种差异导致同位素组成在物理、化学作用过程中发生变化,引起同位素分馏,包括热力学平衡分馏和动力学分馏2种类型〔1〕。 经过长期的分异、分馏、衰变演化,地球不同层圈、不同地质单元具有明显不同的同位素组成特征。因此可以根据同位素具有基本相同的化学性质示踪成岩、成矿物质的来源、推断源区的地球化学特征。另外还可以根据同位素分馏规律和矿物的同位素组成,示踪矿物形成时的物化条件和演化过程〔1〕。用稳定同位素数据来定量地说明成矿介质水和其他物质的来源,开始于60年代初期〔2〕,作为独特的示踪剂和形成条件的指标,稳定同位素组成已广泛地应用于陨石、月岩、地球火成岩、沉积岩、变质岩、大气、生物、海洋、河流、湖泊、地下水、地热水及各种矿床的研究,成为解决许多重大地质地球化学问题的强大武器〔3〕。在应用稳定同位素研究成矿流体的演化过程(源、运、储)的同时,人们也不断地应用放射性同位素来定量、半定量地研究地质地球化学作用过程,即应用放射性同位素研究地球化学示踪和地球化学作用发生的年代问题。同位素分析新方法新技术的不断发展,如R e2O s、L u2H f、L a2B a2Ce等方法的建立〔4〕,使同位素示踪技术也得到了丰富和发展。111 氢、氧同位素示踪 利用氢、氧同位素示踪成矿溶液的来源,是同位素示踪技术在地质研究中取得的最重要成果之一〔1〕。由于不同来源的流体具有不同特征的氢氧同位素组成,因此成矿流体的氢氧同位素组成成为判断成矿流体来源的重要依据,如卢武长①、魏菊英〔5〕 Ξ国家自然科学基金项目“成矿流体定位的地球化学界面及地学核技术追踪方法研究”(编号:49873020)、国家科技攻关项目“矿床(体)快速追踪的地球化学新方法、新技术”(编号:962914203202)和国土资源部百名跨世纪优秀人才培养计划基金资助。 第一作者简介:倪师军,男,1957年4月出生,教授,主要从事地球化学的教学与研究。 收稿日期:1998208210;修改稿:1999204213。 ①卢武长1稳定同位素地球化学1成都地质学院内部出版,19861116~1451

环境地球化学

长江三角洲第一硬黏土与古环境 摘要:硬黏土形成在沿海和陆架相互作用的地带,受陆海交互作用的影响, 对气候及海平面变化尤为敏感,包含了复杂的古环境信息。本文从土壤形态和土壤剖面两个方面对硬黏土进行了描述,并进一步说明硬黏土是一种古土壤,同时以长江三角洲第一硬黏土为例,说明了它所蕴含的古气候信息及其与海平面的关系。 关键词:硬黏土古环境 硬黏土形成在沿海和陆架相互作用的地带,受陆海交互作用的影响, 对气候及海平面变化尤为敏感,包含了复杂的古环境信息。长江三角洲晚第四纪地层中普遍发育若干层厚度不等的暗绿色、黄绿色或黄褐色的硬质黏土层,在工程地质上俗称“硬质黏土”或“老黏土”。按其年代由新到老依次为第一、第二、第三……硬质黏土层。目前对第一硬黏土层研究较详。第一硬黏土是古土壤。 1硬黏土概述 1.1土壤形态 从颜色上看,硬黏土大致可以分为两类,一类是分上、下两层的暗绿色硬黏土层和黄褐色硬质黏土层;另一类为单一的黄褐色硬质黏土层。这跟海水的影响程度有关;硬黏土质地以细粉砂为主,其次是粗粉砂和黏土;呈块状构造;土壤中含有新生体。 1.2土壤剖面 第一硬黏土层分布在长江三角洲南北两翼,埋深3-25m,西部浅,东部深,总体上具有自西向东的自然坡度。西部硬黏土层的厚度最大,平均7.2 m,向东变薄,至上海市区平均为2.9 m。——这可能和暴露时间长短有关系。 上部含较多植物根屑, 具团粒结构, 中、下部淀积层内黏粒胶膜及铁锰质结核发育, 底部逐渐过渡到保留有原生沉积构造的母质层。 硬黏土与上下地层的关系:三角洲前缘古土壤层上覆滨浅海泥质沉积, 后缘上覆湖沼相泥质沉积,与上覆层呈突变接触关系。下伏黄色滨海、河流相粉细砂或黏土质粉砂, 呈渐变接触关系。 1.3硬黏土是古土壤 古土壤指过去气候与地貌环境相对稳定环境下形成的土壤,其发育或由于形成土壤的气候或地形环境的变化而中断,或在后来的地质过程中被其他沉积物掩埋。探讨并证明硬黏土是古土壤主要看硬黏土是否是经历了明显的成土改造。古土壤特征比较明显的层位在硬土层的上部:

地球化学

1.生物圈:生命活动的范围包括水圈,大气圈,浅层岩石圈。 有机圈:生物及其产生的有机质分布空间。它不仅包括生物圈,而且包括沉积岩石圈。 2.地球化学界面:是指Eh值或pH值的某种特定值或某种特定界限,特定的矿物或沉积物只在界限的一边存在,不在界限的另一边存在。 3.有机物界面:指位于Eh值为0的界面(界限),有机物在下方为还原环境,有机物能够保存,在上方为氧化环境,有机物不能保存。 4.沥青A:使用有机溶剂直接从沉积物或岩石中直接提取的可溶有机物。 沥青B:从已抽取沥青A的沉积物或岩石的残积物,经过高温热解再用有机溶剂提取的有机物。 沥青C:从已抽取沥青A的沉积物或岩石的残余物,经过酸(HCL)的处理后,再用有机溶剂提取的有机物。 5.氯仿沥青A组分:(1)油质:即溶于石油醚而不被硅胶吸附的沥青部分。(2)胶质:用苯和乙醇—苯从硅胶中解析的产物。(3)沥青质:溶于氯仿而不溶于石油醚的沥青部分。 6.干酪根:泛指一切不溶于常用有机溶剂的沉积岩中的有机质。 7.有机显微组分:能在显微镜下辨认出来的有机组分。 8.稳定碳同位素δ13C值:是指稳定13C与12C相对原子丰度比值。 9.干酪根的类型:一,据生物来源分类可以分为腐泥型和腐植型。二、根据显微组分、如果干酪根主要由某一显微组分组成,即称它为这种

干酪根。三、根据干酪根元素分类法:可将干酪根划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ型。 10.腐泥型干酪根:主要由产烃能力高的腐泥质(类脂化合物,蛋白质)组成的干酪根。 腐殖型干酪根:主要由产烃能力低的腐殖质(高等植物组分,木质素,丹宁,纤维素)组成的干酪根。 11.有机质的成熟度:是指有机质的热演化水平,是沉积有机质在低温升高的条件下有机质化学性质和物理性质的总和。 12.生烃演化模式:是指有机质在生烃演化过程中所表现的基本规律的总和。 13.生油门限:是指沉积盆地中干酪根开始热降解生烃作用的起始成熟度或深度。跨越这一成熟度或深度后,干酪根便开始有效的生烃作用。 液态窗:油气大量生成的温度范围65.6—149. 14.未熟—低熟油:是指所有非干酪根晚期热降解成因的各种低温早熟的非常规油气,包括在生物甲烷气生烃高峰之后,在埋藏升温达到干酪根晚期热降解大量生油之前,经由不同生烃机制的地温生物化学反应生成并释放出来的液态和气态烃。 15.生物标志化合物:是指油气中和沉积有机质中源于生物具有的特征,稳定的碳骨架,在油气生成过程中没有或很少发生变化,能追溯和识别其原始先质的碳骨架化合物。 16.质谱图:化合物在电子的轰击后,会根据化合物结构属性离解成

油气地球化学(正构烷烃)调查研究方法综述

油气地球化学(正构烷烃)调查研究方法综述 摘要:正构烷烃是生油岩和原油的一种主要化学组分,具有多种成因和来源,其组成和碳数分布能反映有机质类型、沉积环境性质和热演化程度[]1。本文在参考大量国内外文献的基础上,对正构烷烃在原油中的分布特征及其地球化学意义进行了综合分析及浅显的阐述。 关键词:生物标志化合物、正构烷烃、分布特征、地球化学意义 1正构烷烃在原油中的分布特征 在没有遭受生物降解作用改造的情况下,正构烷烷烃系列无疑是原油中的主要组成部分[]9,其含量一般占原油的15~20%。高者:如我国华北地区高蜡原油正烷烃含量可高达38~40%(占饱和烃含量的87~91%)。低者:如华北地区、南海中均发现有正烷烃含量占饱和烃的1~4%的原油。 一般的沉积地层中正构烷烃多为奇碳数优势分布[]13 12-,我国大部分陆相生油岩及原油具有这样的地球化学特征。而咸水湖相及碳酸岩沉积环境有机质中正构烷烃碳数分布独特,常在C22~C30范围呈偶碳数优势[]14,我国的江汉盆地[]15和柴达木盆地[]16第三系咸水湖相生油岩及其所生原油正构烷烃中也见有这种分布模式。这类正构烷烃的偶碳数优势成因,一般被认为是由偶碳数正构脂肪酸和醇类的还原作用[]17。 据唐立杰对冀东油田部分区块原油正构烷烃的分析,冀东油田原油的正构烷烃相对质量百分含量分布趋势基本相同,但其碳数分布仍可分为3类:(1)原油正构烷烃分布主要表现为单峰分布,其主峰碳在C15附近,各原油样品的相同碳数的正构烷烃的相对质量百分含量相差不大,C15以后的正构烷烃相对质量百分含量随着碳数的增加成降低趋势;(2)主峰碳在C15附近,次主峰碳在C25附近,C15以后的正构烷烃相对质量百分含量随着碳数的增加成降低趋势;(3)M27—29和NPll一X116井的原油表现为生物降解原油特性,各碳数的正构烷烃相对质量百分含量较低且相差不大。

地球化学复习重点

绪论: 1.地球化学:地球化学是研究地球及其子系统(含部分宇宙)的化学组成、化学作用和化学演化的科学. 2.地球化学研究的基本问题: ①元素(同位素)在地球及各子系统中的组成 ②元素的共生组合和存在形式 ③研究元素的迁移 ④研究元素(同位素)的行为 ⑤元素的地球化学演化 3.地球化学的研究思路: “见微而知著”。通过观察原子、研究元素(同位素),以求认识地球和地质作用地球化学现象。 4.简述地球化学的研究方法: A.野外工作方法: ①宏观地质调研 ②运用地球化学思维观察、认识地质现象 ③在地质地球化学观察的基础上,根据目标任务采集各种地球化学样品 B.室内研究方法: ④量的测定,应用精密灵敏的分析测试方法,以取得元素在各种地质体中的含量值 ⑤质的研究,也就是元素结合形态和赋存状态的研究 ⑥动的研究,地球化学作用过程物理化学条件的测定和计算。包括测定和计算两大类。 ⑦模拟地球化学过程,进行模拟实验。 ⑧测试数据的多元统计处理和计算。 第一章:基本概念 1.地球化学体系:我们把所要研究的对象看作是一个地球化学体系,每个地球化学体系都有一定的时间连续,具有一定的空间,都处于特定的物理化学状态(T、P等) 2.丰度:一般指的是元素在这个体系中的相对含量(平均含量)。 3.分布:元素的分布指的是元素在一个化学体系中(太阳、陨石、地球、地壳、某地区)整体的总的含量特征。

4.分配:元素的分配指的是元素在各地球化学体系内各个区域、各个区段中的含量。 5.研究元素丰度的意义: ①元素丰度是每一个地球化学体系的基本数据 以在同一体系中或不同体系中用元素的含量值来进行比较,通过纵向(时间)、横向(空间)上的比较,了解元素基本特征和动态情况,从而建立起元素集中、分散、迁移等系列的地球化学概念。是研究地球、研究矿产的重要手段之一。 ②研究元素丰度是研究地球化学基础理论问题的重要素材之一。 宇宙天体是怎样起源的?地球又是如何形成的?地壳中主要元素为什么与地幔中的主要元素不一样?生命是怎么产生和演化的?这些研究都离不开地球化学体系中元素丰度分布特征和分布规律。 6.获得太阳元素丰度的主要途径: 光谱分析;直接分析;利用宇宙飞行器分析测定;研究宇宙射线 7.陨石研究的意义: ①它是认识宇宙天体、行星的成分、性质及其演化的最易获取、数量最大的地外物质; ②也是认识地球的组成、内部构造和起源的主要资料来源; ③陨石中的60多种有机化合物是非生物合成的“前生物物质”,对探索生命前期的化学演化开拓了新的途径; ④可作为某些元素和同位素的标准样品(稀土元素,铅、硫同位素)。 8.陨石的类型: 陨石主要是由镍-铁合金、结晶硅酸盐或两者的混合物所组成,按成份分为三大类 铁陨石 石陨石 石铁陨石 9.太阳系元素的丰度特征: ①H和He是丰度最高的两种元素。这两种元素的原子几乎占了太阳中全部原子数目的98%。 ②Li、Be和B具有很低的丰度,属于强亏损的元素(核子结合能低,形成后易分解),而O和Fe呈现明显的峰,它们是过剩元素(核子结合能最高,核子稳定) ③原子序数较低时,元素丰度随原子序数增大呈指数递减,而在原子序数较大的范围内(Z>45)各元素丰度值很相近。

环境地球化学答案

1、名词解释 Pm10:是指大气中直径小于或等于10微米的颗粒物称为PM10,又称为可吸入颗粒物或飘尘。 Pm2.5:PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。 大气颗粒粒径:指大气颗粒的直径,粒径小于10微米的颗粒可以长期飘浮在空中,称为飘尘,其中10~0.25微米的又称为云尘,小于0.1微米的称为浮尘。而粒径大于10微米的颗粒,则能较快地沉降,因此称为降尘。 环境容量:环境容量(environment capacity)是在人类生存和自然生态系统不致受害的前提下,某一环境所能容纳的污染物的最大负荷量。或一个生态系统在维持生命机体的再生能力、适应能力和更新能力的前提下,承受有机体数量的最大限度。 生物吸附系数:是某元素在有机体(通常是植物)灰分中的含量与该元素在生长这种植物的土壤中的含量比例,它定量的反映了生物对环境中元素的吸收强度。 CO2温室效应:大气中的CO2浓度增加,允许太阳辐射能量穿透地球大气层,使地球表面变暖,当地球表面进行二次能量辐射时,温室气体CO2又将这些能量重新发射回地面,使地球发生可感觉到的温度升高,这就是CO2温室效应。 2、环境地球化学的特点及主要研究内容: 环境地球化学的重要任务之一就在于及时地研究现代环境化学变化的过程和趋势,在原来地球化学的基础上,更加深入地研究组成人类环境的各个系统的地球化学性质。人为散发的污染物在环境中不断发生空间位置的移动和存在形态的转化。这种迁移转化的结果,可以向着有利的方向发展,如污染物被稀释、扩散、分解,甚至消失;也可以向着不利的方向发展,如污染物在某些条件下积累起来,转变成为持久的次生污染物。污染物在环境中的存在形态可以通过各种化学作用不断发生变化,如溶解、沉淀、水解、络合与整合、氧化、还原、化学分解、光化学分解和生物化学分解等。

地球化学考试题

名词解释 1.浓度克拉克值:概念系指某元素在某一地质体(矿床、岩体或矿物等)中的平均含量与克拉克值的比值,表示某种元素在一定的矿床、岩体或矿物内浓集的程度。当浓度克拉克值大于1时,说明该元素在地质体中比在地壳中相对集中;小于1时,则意味着分散 2.亲氧性元素:倾向于与氧形成高度离子键的元素称亲氧元素。特征是:离子半径较小,有惰性气体的电子层结构,电负性较小。如K、Na、Ca、Mg、Nb、Ta、Zr、Hf、REE等;易形成惰性气体型离子; 3.元素的地球化学迁移:即元素从一种赋存状态转变为另一种赋存状态,并经常伴随着元素组合和分布上的变化及空间上的位移 4.普通铅(或正常铅):普通铅(或正常铅):指产于U/Pb、Th/Pb比值低的矿物和岩石中任何形式的铅(如方铅矿、黄铁矿、钾长石等),在矿物形成以前,Pb 以正常的比例与U、Th共生,接受U、Th衰变产物Pb的不断叠加并均匀化。 5.不相容元素:趋向于在液相中富集的微量元素。由于其浓度低,不能形成独立矿物相,并且因离子半径、电荷、晶场等性质与构成结晶矿物的主元素相差很大,而使其不能进入矿物相。它们的固相/液相分配系数近于零。 6.同位素分馏系数:达到同位素交换平衡时共存相同位素相对丰度比值为常数,称分馏系数α,或者指两种物质(或物相)之间同位素比值之(α),即αA-B=RA / RB,式中A,B表示两种物质(或物相),R表示重同位素与轻同位素比值,如34S/32S,18O/16O。α表示同位素的分馏程度,α值偏离1愈大,说明两相物质之间同位素分馏程度愈大;α=1时物质间没有同位素分馏 7.K(不稳定常数):金属离子与配位体生成络合物的逆反应是络合物的解离反应,达成平衡时的常数,称为不稳定常数。它与稳定常数互为倒数。不稳定常数越大,络合物越不稳定。 8.δEu:反映Eu异常的强。. 9.稀土元素(REE):原子序数57-71的镧系元素以及与镧系相关密切的钪和钇共17种元素,包括:La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sc,Y 10.高场强元素 (HFSE):指离子半径小、电荷高,难溶于水,地球化学性质稳

地球化学专业

地球化学专业 硕士研究生培养方案 一、培养目标 培养的硕士研究生应在德、智、体等方面全面发展,具有创业精神和创新能力,能进行科学研究、工程技术及管理的高级专门人才,以适应社会主义现代化建设的需要。具体要求如下: 1、努力学习马列主义、毛泽东思想和邓小平理论,拥护中国共产党,拥护社会主义,具有较高综合素质,遵纪守法,品行端正,作风正派,服从组织分配,愿为社会主义经济建设服务。 2、在地球化学学科内掌握坚实的基础理论、系统的专门知识、必要的实验技能和较熟练运用计算机的能力;了解地球化学、应用化学专业发展现状和动向;掌握一门外国语,能熟练地进行专业阅读并能撰写论文摘要;具有从事本学科领域内科研、大学教学或独立担负专门技术工作的能力,具有较强的综合能力、语言表达能力及写作能力,具有实事求是、严谨的科学作风。 3、坚持体育锻炼,具有健康的体魄。 二、学习年限 硕士研究生的学习年限为3年。 硕士生应在规定的学习期限内完成培养计划要求的课程学习和论文工作。 三、研究方向 本专业设置以下研究方向: 1、油气地球化学 2、生物与环境地球化学 3、油藏描述及油藏地球化学 4、油气藏形成与分布 四、课程设置 课程设置包括学位课、非学位课和实践环节,课程总学分为34或以上。学位课为必修课,含公共课、专业基础课,学分为20分;非学位课学分为12分;实践环节为必修课,含学术活动、专业实践、社会实践和教学实践,学分为2学分。

(一)学位课7门(共20学分) (二)非学位课6门(12学分) 非学位课中的选修课由导师和硕士生根据专业培养方案的要求和研究方向的需要,以及研究生原有的基础和特长、爱好共同确定,给研究生留有充分的选修灵活性,鼓励研究生跨学科、跨专业选修课程,以拓宽研究生知识面,培养他们的适应能力。 导师应布置60篇以上的中、外文文献资料让研究生阅读,且外文资料比例应占三分之一以上,并做到有检查,有考核。 (三)补修本科生课程 这类课程设置主要是以同等学力或跨学科、专业录取的硕士生,除完成培养方案规定的学位课、非学位课外,还应补修该专业本科阶段的主干课2~3门,如不修完规定的本科课程,不能进入硕士论文撰写及答辩。 (四)实践环节 硕士生应参加一定数量的学术活动,考核合格者记1学分。其中,必须在院(系)及以上级别学术会议上至少做一次学术报告,每次0.5学分,参加院(系)及以上级别学术会议,每次0.1学分。另外,还应从其它实践环节中至少选1个实践环节, 考核合格后取得学分。研究生实践环节由导师和系主任负责安排、指导、检查与考核,研究生学院审核确认。 (五) 野外地质调查 本专业硕士生应当十分重视野外地质调查、野外样品采集及第一性地质资料的收集,这不仅是论文工作所必需,也是培养和提高硕士生野外实际工作能力的重要环节。野外地质调查主要结合自己的硕士论文,参加有野外地质和油田现场资料收集的科研项目,要求全面掌握野外地质调查与综合分析方法。硕士生的野外地质调查由指导教师负责安排、指导和检查。 本专业课程设置见附表。 五、培养方式 1、导师应根据培养方案的要求和因材施教的原则,从每个硕士生的具体情况出发,在硕士生入学后三个月内制订出研究生的培养计划。 2、对硕士生的培养采取课程学习和论文工作相结合的方式。既要使硕士生深入掌握基础理论和专门知识,又要使研究生掌握科学研究的基本方法和技能,具有从事科学研究的能力。整个培养过程应贯彻理论联系实际的方针。 3、硕士生指导采取导师负责制或指导小组集体培养的方式。 4、硕士生的课程学习强调学位课以听课为主,统一考试;选修课可以采取考试、写读

从第32届国际地质大会看地球化学的现状与未来

收稿日期:2004-10-08;改回日期:2004-10-28;责任编辑:楼亚儿。 基金项目:国家自然科学基金项目(40173007,40234052);教育部重点科研项目(重点03032)。 作者简介:陈岳龙,男,教授,博士生导师,1962年出生,地球化学专业,从事同位素地质年代学、地球化学与环境地球化学 的研究工作。 从第32届国际地质大会看地球化学的现状与未来 陈岳龙1,唐金荣2,侯青叶3 (11中国地质大学地球科学与资源学院,北京 100083;21中国地质调查局发展研究中心,北京 100037; 31中国地质大学地球科学学院,湖北武汉 430074) 摘要:对2004年8月在意大利弗罗伦萨召开的第32届国际地质大会有关生命起源、地质灾 害监测、壳幔相互作用、人类采矿与生产活动、水2岩相互作用、地表过程、古气候与古环 境等方面的地球化学研究及稳定同位素、地球化学动力学、有机地球化学、地球化学分析技 术等方面的内容进行了较为系统的总结,并对地球化学的未来发展进行了展望。 关键词:第32届国际地质大会;地球化学;进展;发展趋势 中图分类号:P59 文献标识码:A 文章编号:1000-8527(2004)04-0463-24 0 引 言 第32届国际地质大会于2004年8月20日至8月28日在意大利弗罗伦萨召开,会议的主题是:从地中海地区走向全球地质复兴———地质学、自 然灾害和文化遗产。每天中午12点到12∶45安排的大会讲演主要围绕本次大会的主题,从第一天的有关地球内部呼吸———地幔挥发分、板块构造与气候至随后的比萨斜塔、火星与地球的生命、水与地质历史、与火山灾害一起生活、海洋油气、地质学对文化遗产的影响、全球温暖是否将欧洲带入冰冷期。分会报告分为专门讨论会(S pecific symposia )、主题讨论会(Topical symposia )与一般讨论会(G eneral symposia )。在专门讨论会中一共设了14个专题,也主要是围绕本次大会的主题,包括:地质学中的大科学、意大利深部地震探测(CROP )、文化遗产———国际途径与展望、深地质库(以废物地质处理为主)、审稿评价道德与地球科学的质量评估(主要是杂志编辑、审稿人、读者、管理者对地球科学成果的评价)、地中海地区的古地球演化与地质解剖、地质灾害———国际途径与展望、地中海地区从历史视角到新发展在沉积地质学中的主要发现、全球构造中的新概念、国际地质科学计划的进展、地质时代表———最新发展与全球对比、地中海、铀矿床———勘探、地质与环境问题、地下工程建筑与设计中工程地质与岩土工程间的沟通。 主题讨论会分为38个主题,由于各主题有不同的方向,因此共计有近140个讨论会,内容涉及到:增生楔与混杂岩,北极地质学,碳酸盐台地,地质历史上的灾变事件,变化———碳、水与全球环境系统,地球早期演化,造山带的抬升,地球物理勘查,能源与资源的未来,地理信息系统(GIS ),地质灾害———评估与减灾,世界地质图,地质与葡萄酒,大陆增长的地质学,文化遗产的地球科学,地质公园、地质旅游、地质遗址,地圈2生物圈相互作用,地质技术,地球科学历史,环境变化中的人类演化,地球科学信息的管理与应用,地质医学,矿物生长动力学与诱发应力,地质科学应用的新地球物理技术,大洋钻探计划(ODP ),蛇绿岩与海洋岩石圈,过去与现在的全球变化,古气候与古海洋学,泥炭与湖泊,前寒武纪与古生代造山,遥感,岩石蚀变,海平面变化,层序地层,超高压变质作用———从纳米尺度到板块尺度,城市地质,水管理。其中以地球化学作为主题的有:地球早期演化中的生命成因的第18卷 第4期 2004年12月现 代 地 质GEOSCIENCE Vol 118 No 14 Dec.2004

地球化学在物源及沉积背景分析中的应用

地球化学在物源及沉积背景分析中的应用 发表时间:2014-12-16T14:30:17.047Z 来源:《科学与技术》2014年第10期下供稿作者:范秋菊 [导读] 科学合理的选择地球化学技术是掌握地球化学资料,保证矿产资源勘查的关键,同时还能开创了我国资源勘查与环境调查的新局面范秋菊 重庆热展建筑工程咨询服务中心重庆 400012 【摘要】物源分析是盆地和造山带研究中的重要内容,对分析盆地与造山带的关系及相互作用等具有重要意义。本文对地球化学在物源及沉积背景分析中的应用进行了详细分析。 【关键词】物源分析;构造背景;常量元素;地球化学 一、前言 沉积物的地球化学特征在物源及沉积背景分析中具有非常重要的作用,前人利用地球化学在该领域取得了很多研究成果。除了气候、地形、搬运距离和成岩作用,一般认为碎屑岩组分主要受物源区母岩性质和构造背景影响,因此,利用碎屑岩的化学成分可以判断母岩特征,并分析研究盆地沉积环境、大地构造背景和构造演化等。 二、物源分析原理 物源分析方法较多,目前应用较多的有重矿物法、碎屑岩类分析法、沉积法、裂变径迹法、地球化学法、同位素法等,其依据为不同物源在沉积物的搬运和沉积过程中呈现不同的岩性、岩相和地球化学特征响应,可以实现对岩石、矿物成分及组合特征,地层发育状况(接触关系、沉积界面等),岩相侧向变化、纵向迭置、地球化学特征及组合变化等的研究。本次工作以薄片鉴定、碎屑岩类法、沉积学法及碎屑骨架三角图法为主,考虑构造等因素的影响,对准噶尔盆地南缘中新生代沉积物源进行了分析。 三、源区物质组成 不同岩类克拉克值有一定的丰度特征,盆地沉积物元素丰度及其比值反映了剥蚀区的母岩性质。 REE在源区岩石中的丰度以及源区的风化条件是控制沉积物中REE的主要因素,在搬运、沉积和成岩过程中对沉积物中REE含量的改变甚微,因此源区岩石REE特征能够被可靠保存在沉积物中,砂岩的REE被广泛用作判别源区岩石的主要标志。 四、地球化学在物源分析中需注意问题 与其他物源分析方法相比,地球化学具有自己独特的优势,可以解决一些其他方法无法解决的难题。但由于影响岩石化学成分的因素较多,特别是对于沉积岩,很容易受外生营力的影响,所以在分析中要结合具体地质情况进行合理解释。 碎屑沉积岩的物源属性判别和成岩构造背景识别都是基于碎屑沉积岩的化学组成特征。然而,沉积岩形成过程中的化学风化、搬运方式和介质、迁移距离、分选作用、沉积古地理、沉积物蚀变或再循环等沉积成岩后生作用,加上沉积物物源的非单一性及不同物源区贡献差异等因素都会影响碎屑沉积岩的化学组成,为利用碎屑沉积物的地球化学特征进行物源分析及成岩构造背景判别带来多解性与复杂性。充分认识这些因素对判别参数的影响,获取更为合理、有效的判别参数,同时应注意将多种方法相结合,扬长补短,才能使地球化学方法在物源分析及构造背景判别中的应用得到更为可靠的结果 五、沉积地球化学的运用 1.元素地球化学的应用 元素地球化学包括常量元素、微量元素、稀有元素和分散元素的地球化学。对沉积岩无机地球化学的研究主要集中在元素和微量元素地球化学方面,利用岩石微量元素特征研究沉积岩形成的古地理环境和成岩作用环境,已成为沉积地球化学的一个重要方面,鉴于沉积区的大地构造背景、古气候、源区母岩性质、沉积盆地地形、沉积环境和沉积介质物化性质对元素分异作用的影响,长期以来,沉积学家一直在探讨并研究古地理环境对元素分散与聚集的控制,以期了解不同构造单元、不同地区、不同沉积类型及不同沉积环境的元素分布规律。目前,元素地球化学在划分海陆相地层、分析物源区岩石成分、恢复沉积的古气候条件,利用微量元素对不含生物化石的“哑地层’进行地层对比,特别是确定沉积水介质地球化学环境、划分地球化学相上取得了较满意的效果。目前已广泛使用某些元素、元素含量及比值如Fe、Mn、Sr、Ba、B、Ga、Rb、Co、Ni、V及Sr/Ba、Fe/Mn、V/Ni、Fe3+/Fe2+等判别海相与陆相、氧化与还原、水盆深度、盐度及离岸距离等沉积条件。 2.同位素地球化学的应用 20世纪50年代以来,同位素地球化学已成为地球化学中一门独立的分支。在沉积学领域中,同位素地质学已成为追索物源、探讨沉积一成岩环境的重要方法。同位素地球化学在古坏境分析中的应用尚处于初始阶段。目前应用较多的是利用氧、硫、锶、碳的稳定同位素的分馏特点研究沉积物来源、古水温与古盐度、氧化还原条件、沉积旋回性质、确定海岸线位置和海平面升降、利用硫同位素分馏特点分析与沉积环境关系密切的开放与封闭系统等。 3.有机地球化学的应用 石油勘探发展的需要使以沉积岩,特别是碳酸盐岩和泥岩中有机质为主要研究对象的有机地球化学取得了巨大进展。特别是从20世纪60年代起发展至今,有机地球化学已成为地球化学中又一门重要的分支学科。有机地球化学研究主要着眼于生油岩的生烃能力分析,以进行油气资源的远景评价。在这一研究过程中,基于沉积岩有机质的丰度与演化不仅与埋藏史、地热演化史有关,而且受沉各环境制约的认识,一些地球化学家和沉积学家根据气候、环境、水介质条件与原始生油母质的关系,探讨了不同沉积环境的有机质特征并提供了与原始沉积环境有关的某些有机地化指标,特别是气相色谱-质谱联用仪的发明,使人们识别、鉴定出许多新的生物标记化合物,这些有机化合物不仅可以作为油源对比的“化石’,而且由于某些化合物的埋藏演化中的相对稳定性,还可以根据它们与现代生物有机组成的关于推断有机质原始堆积条件。近些年来,有机地球化学工作者提出并运用“有机相”的概念研究有机质类型、有机质来源与沉积环境的关系,有关某些有机地球化学参数的环境意义的论证基础及使用价值也正在进一步探讨中。 4.现代沉积地球化学环境的研究 与沉积相和沉积环境研究一样,沉积学家和地球化学家在运用地球化学资料进行古地理分析时,也同样使用了“将今论古”这一沉积学研

相关文档
最新文档