八年级数学平行四边形的重点、难点典型例题 2

八年级数学平行四边形的重点、难点典型例题 2
八年级数学平行四边形的重点、难点典型例题 2

八年级数学下册特殊平行四边形的重点、难点、疑点

一、梯形有关性质

知识点一:梯形、等腰梯形的性质

知识点二:等腰梯形的判定

知识点三:梯形中位线定理

知识点四:梯形的面积

知识点测试题

一、选择题

1.能判定四边形ABCD为平行四边形的题设是().

(A)AB∥CD,AD=BC; (B)∠A=∠B,∠C=∠D;

(C)AB=CD,AD=BC; (D)AB=AD,CB=CD

2.正方形具有而菱形不一定具有的性质是()

(A)对角线互相平分; (B)对角线相等;

(C)对角线平分一组对角; (D)对角线互相垂直

3.下列说法不正确的是()

(A)对角线相等且互相平分的四边形是矩形;

(B)对角线互相垂直平分的四边形是菱形;

(C)一组对边平行且不等的四边形是梯形;

(D)一边上的两角相等的梯形是等腰梯形

4.不能判定四边形ABCD为平行四边形的题设是()

(A)AB=CD,AD=BC (B)AB//CD

(C)AB=CD,AD∥BC (D)AB∥CD,AD∥BC

5.下列说法不正确的是()

(A)只有一组对边平行的四边形是梯形;

(B)只有一组对边相等的梯形是等腰梯形;

(C)等腰梯形的对角线相等且互相平分;

(D)在直角梯形中有且只有两个角是直角

(6)

二、填空题

6.如上图:矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm,则其对角线长为______;该矩形的面积为________.

7.一个菱形的两条对角线长分别为6cm,8cm,这个菱形的边长为_______,?面积S=______.

8.如果一个四边形的四个角的比是3:5:5:7,则这个四边形是_____形.

9.如下图,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是________.

综合提高题

一、填空题(5道题)

1.在平行四边形ABCD中,已知对角线AC和BD相交于点O,△ABO的周长为17,AB=6,那么对角线AC+BD=

2.以正方形ABCD的边BC 为边做等边△BCE,则∠AED的度数为 .

3.延长正方形ABCD的边AB到E,使BE=AC,则∠E=°

4.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2那么AP的长为.

5.在平面直角坐标系中,点A、B、C的坐标分别是A(-2,5),

B(-3,-1),C(1,-1),在第一象限内找一点D,使四边形

ABCD是平行四边形,那么点D的坐标是.

二、选择题(10道题)

6.如图4在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连结EF,则∠E+∠F=( ) A.110° B.30° C.50°D.70°

7.菱形具有而矩形不具有的性质是 ( )

A.对角相等 B.四边相等

C .对角线互相平分

D .四角相等

8.平行四边形ABCD 中,对角线AC 、BD 交于点O ,

点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )

A .3 cm

B .6 cm

C .9 cm

D .

12 cm

9.已知:如图,在矩形ABCD 中,E 、F 、G 、H 分别为边

AB 、BC 、CD 、DA 的中点.若AB =2,AD =4,

则图中阴影部分的面积为 ( )

A .8

B .6

C .4

D .3

10.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩

形③正方形④等边三角形⑤等腰直角三角形 ( )

A .①③⑤ B.②③⑤ C.①②③ D .①③④⑤

11.如图是一块电脑主板的示意图,每一转角处都是

直角,数据如图所示(单位:mm),则该主板的周长

是 ( )

A .88 mm

B .96 mm

C .80 mm

D .

84 mm

12、如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=,则AEF ∠=( )

A .110°

B .115°

C .120°

D .130°

13、某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形。若只选购其中一种地砖镶

嵌地面,可供选择的地砖共有( ).

(A )4种 (B )3种 (C )2种 (D )1种

14、四边形ABCD ,仅从下列条件中任取两个加以组合,使得ABCD 是平行四边形,一共有多少种不同的组合?( )

AB∥CD BC∥AD AB=CD BC=AD

A.2组

B.3组

C.4组

D.6组

15、下列说法错误的是( )

(6) E A F D C B H G

A.一组对边平行且一组对角相等的四边形是平行四边形.

B.每组邻边都相等的四边形是菱形.

C. 对角线互相垂直的平行四边形是正方形.

D.四个角都相等的四边形是矩形.

三、解答题(4道题)

16、如图9,四边形ABCD 是菱形,对角线AC =8 cm ,

BD =6 cm, DH⊥AB 于H ,求:DH 的长

17、已知:如图10,菱形ABCD 的周长为16 cm , ∠ABC=60°,对角线AC 和BD 相交于点O ,

求AC 和BD 的长.

18、如图11,在正方形ABCD 中,P 为对角线BD 上一点,

PE⊥BC,垂足为E , PF⊥CD,垂足为F , 求证:EF =AP

19、在△ABC 中,AB=AC,D 是BC 的中点,DE⊥AB,

DF⊥AC,垂足分别是E,F.

⑴试说明:DE=DF

⑵只添加一个条件,使四边形EDFA 是正方形.

请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明

20.(8分)已知:如图,在△ABC 中,中线BE ,CD 交于点O ,F ,G 分别是OB ,OC 的中点.求证:四边形DFGE 是平行四边形. F

E D C B

A A

B D C

E P

F (9) (10) (11)

(12)

21.(10分)小明为测量池塘的宽度,在池塘的两侧A ,B 引两条直线AC ,BC 相交于点C ,在BC 上取点E ,G ,使BE=CG ,再分别过点E ,G 作EF ∥AB ,GH ∥AB ,交AC 于点F ,H .测出EF=10m ,GH=4m (如图).小明就得出了结论:池塘的宽AB 为14m .你认为小明的结论正确吗?请说明你的理由.

22.(10分)李大伯家有一口如图所示的四边形的池塘,在它的四个角上均有一棵大柳树.李大伯准备开挖池塘,使池塘面积扩大一倍,又想保持柳树不动.如果要求新池塘成平行四边形的形状.请问李大伯的愿望能否实现?若能,请画出你的设计;若不能,请说明理由.

23、已知在梯形ABCD 中,AD ∥BC ,AB =DC ,∠D =120o ,对角线CA 平分∠BCD ,且梯形的周长20,求AC 。

参考答案

一、填空题

1、22

2、150°或15°

3、22.5°

4、4

5、(2 ,5)

二 、选择题

6 7 8 9 10 11 12 13 14 15

D B B C A B B B C C

16.略

17、AC =4 cm , BD =4

18、 证明:连结PC

A D

B C

∵四边形ABCD 为平行四边形

∴AB=AC ,∠ABD=∠DPC ∠BCD=90°

∵BP=BP

∴△ABP≌△CBP

∴AP = CP

∵PE⊥BC,PF⊥DC

∴四边形PECF 为矩形

∴EF=PC

∴EF=AP

19、证明:⑴连结AD

∵AB=AC ,D 为BC 的中点

∴AD 为∠BAC 的平分线

∵DE⊥AB , DF⊥AC

∴DE=DF

⑵∠BAC=90° DE⊥DF

20.提示:只要证明DE 是△ABE 的中位线,FG 是△OBC 的中位线,得DE //12BC //FG .? 故四边形DFGE 是平行四边形

21.正确.理由:过点E 作ED ∥AC ,交AB 于点D .只要证明四边形ADEF 是平行四边形,△BDE ≌△GHC 即可

22.如图所示:

D

C B A

23、已知在梯形ABCD 中,AD ∥BC ,AB =DC ,∠D =120o ,对角线CA 平分∠BCD ,且梯形的周长20,求AC 。

25、⑴△BCE ≌△DCF (1分) 理由:因为四边形ABCD 是正方形∴BC =CD ,∠BCD =90o

∴∠BCE =∠DCF 又CE =CF ∴△BCE ≌△DCF (4分)

⑵∵CE =CF ∴∠CEF =∠CFE ∵∠FCE =90o ∴∠CFE =

1(18090)452o o o -= 又∵△BCE ≌△DCF ∴∠CFD =∠BEC =60o (6分)

∴∠EFD =∠CFD -∠CFE =60o -45o =15o

(8分)

A D

B C

平行四边形典型例题精编版

平行四边形典型例题 1 如图,□ABCD的对角线AC、BD 相交于点O,则图中全等三角形有() A .2 对 B .3对 C .4 对 D .5对 17如图,□ABCD中,∠ B、∠ C的平分线交于点O ,BO 和CD 的延长线交于求证:BO=OE. 例3】如图,在ABCD中,AE⊥ BC于E ,AF⊥DC 于F ,∠ ADC=60°,BE=2,CF=1, 求△ DEC 的面积. 解】在中,,、 在Rt △ABE 中,, 在△ 中,

例 4】已知:如图, D 是等腰△ ABC 的底边 BC 上一点, DE//AC , DF//AB 求证: DE+DF=A .B , ,从而可以利用平行四边形的定义和性质,等腰 三角 形的判定和性质来证. 解】∵ , ∴四边形 是平行四边形. ∴. ∵ ,∴ . ∵ ,∴ 说明:证明一条线段等于另外两条线段的和常采用的方法是: 分为两段,证明这两段分别等于另两条线段. 于 ,求证: 分析】 分析】由于 把三条线段中较长的线段 例 5】如图, 已知: 中, 相交于 点, 于 ,

解】因为四边形是平行四边形,所以,又因为、交于点, 所以. 又因为, 所以 从而例6】已知:如图,AB//DC ,AC、BD交于O,且 AC=BD。 求证:OD=OC. 证明:过B 作交DC延长线于E,则 于是△≌△ ∵ ,, E

∵, ∴∴ 说明:本题条件中有“夹在两条平行线之间的相等且相交的线 段 时用不上,为此通过作平行线,由“夹在两条平行线间的平行线B BE ,得到等腰△ BDE ,使问题得解. 例 7】如图, □ABCD 的对角线 AC 的垂直平分线与边 AD 、BC 分别交于 E 、F , 例 8】如图所示, □ABCD 中,各内角的平分线分别相交于点 E 、 F 、 G 、 H , 证明:四边形 EFGH 是矩形。 例 9】如图所示,已知矩形 ABCD 的对角线 AC 、BD 交于点 O ,过顶点 C ,作 BD 的垂线与∠ BAD 的平分线相交于点 E ,交 BD 于 G ,证明: AC=CE 。 求证:四边形 AFCE 是菱形. 解:略。 置交错而 A 由 AC 平移到 E

平行四边形综合性质及经典例题

一对一个性化辅导教案

平行四边形的性质与判定 平行四边形及其性质(一) 一、 教学目标: 1. 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质. 2. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 3. 培养学生发现问题、解决问题的能力及逻辑推理能力. 二、 重点、难点 1. 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 2. 难点:运用平行四边形的性质进行有关的论证和计算. 三、 课堂引入 1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象 平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗 你能总结出平行四边形的定义吗 (1)定义:两组对边分别平行的四边形是平行四边形. (2)表示:平行四边形用符号“ ”来表示. 如图,在四边形ABCD 中,AB∥DC,AD∥BC,那么四边形ABCD 是平行四边形.平行四边形ABCD 记作“ ABCD”,读作“平行四边形ABCD”. ①∵AB ?50?360?360?180行 四边形的面积计算 六、随堂练习 1.在平行四边形中,周长等于48, ① 已知一边长12,求各边的长 ② 已知AB=2BC ,求各边的长 ③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长 2.如图,ABCD 中,AE⊥BD,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .

3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm . 七、课后练习 1.判断对错 (1)在ABCD 中,AC 交BD 于O ,则AO=OB=OC=OD . ( ) (2)平行四边形两条对角线的交点到一组对边的距离相等. ( ) (3)平行四边形的两组对边分别平行且相等. ( ) (4)平行四边形是轴对称图形. ( ) 2.在 ABCD 中,AC =6、BD =4,则AB 的范围是_ ____ __. 3.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 . 4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB =15cm ,AD =12cm ,AC ⊥BC ,求小路BC ,CD ,OC 的长,并算出绿地的面积. (一) 平行四边形的判定 一、教学目标: 1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题. 3.培养用类比、逆向联想及运动的思维方法来研究问题. 二、重点、难点 重点:平行四边形的判定方法及应用. 难点:平行四边形的判定定理与性质定理的灵活应用. 四、课堂引入 1.欣赏图片、提出问题. 展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形你是怎样判断的 2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗

【人教版】八年级下数学期末考试卷(含答案)

下学期八年级数学期末检测试题 姓名:_______ 总分:_______ 一、选择题(每小题3分,共30分) 1.要使式子 有意义,则x 的取值范围是( ) A.x>0 B.x ≥-2 C.x ≥2 D.x ≤2 2.矩形具有而菱形不具有的性质是( ) A.两组对边分别平行 B.对角线相等 C.对角线互相平分 D.两组对角分别相等 3.下列计算正确的是( ) A.×=4 B. + = C. ÷=2 D. =-15 4.根据表中一次函数的自变量x 与函数y 的 对应值,可得p 的值为( ) A.1 B.-1 C.3 D.-3 5.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( ) 4 A.2400元、2400元 B.2400元、2300元 C.2200元、 2200元 D.2200元、2300元 6.四边形ABCD 中,对角线AC,BD 相交于点O,下列条件不能判定这个四边形

是平行四边形的是( ) A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC 7.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4, 则菱形ABCD的周长是( ) A.24 B.16 C.4 D.2 8.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线 上,连接BD,则BD长( ) A. B.2 C.3 D.4 9.正比例函数y=kx(k≠0)的函数值y随x的增大 而增大,则一次函数y=x+k的图象大致是( ) 10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3), 则不等式2x D.x>3 二、填空题(每小题3分,共24分) 11.计算:-= . 12.函数y=的自变量x的取值范围是.

初二数学练习题.经典题型

八 年 级 数 学 试 题 姓名: 一、选择题:本大题共12 个小题.每小题4分;共48分. 1.下列方程中是二元一次方程的是 ( ) A. 32=+ y x B. 2 23y x =+ C. 022=-y x D.31-=+y x 2.和数轴上的点一一对应的数是……………………… ( ) A.整数 B.有理数 C.无理数 D.实数 3. 下列各组数中不能作为直角三角形的三边长的是………………………… ( ) A. 6,8,10 B. 9,12,15 C. 1,2,3 D. 7,24,25 4.如图,所示是直线y kx b =+的图象,那么有( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b <0 D .k <0,b >0 5.多边形的每个外角都是36°,则它的边数是( ). A .15 B .13 C .10 D .7 y 6.抽查初三年级8名学生一周做数学作业用的时间分别为(单位:小时)5,4,6,7,6,6,7,8.这组数据中,中位数为 ( ) A.6 B.6.5 C.7 D.7.5 7.如图所示,△ABC 沿射线AC 的方向平移5厘米后成为△A 'B 'C ' ,则BB ' 的长度是( ) A.10cm B.2.5cm C.5cm D.不能确定 8. 菱形的对角线的长分别为6和8,则它的周长为 ( ) A.5 B.10 C.20 D.40 9.一次函数y kx k =+,不论k 取何非零实数,函数图象一定会过点 ( ) A .(1,1-) B .(-1,0) C .(1,0) D .(1-,1) 10.如图,AOB △中, 30B =o ∠.将AOB △绕点O 顺时针旋转52o 得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( ) A .22o B .52o C .60o D .82o 11.甲、乙两名学生运动的一次函数图象如图所示,图中s 和t 分 别表示与出发地的距离和时间,根据图象可知,快者的速度比慢 者的速度每秒快( ) A .2.5米 B .1.5米 C .2米 D .1米 12.如图,四边形ABCD 是正方形,BF ∥AC ,四边形AEFC 是菱形, 则∠ACF 与∠F 的度 数比是 ( )A .3 B.4 C.5 D.不是整数 A A ' B C O B ' 64 t/秒 12 s/米 O 8

八年级下册数学期末考试题

八年级数学单元试题(时间120分钟) 一、选择题 1、方程(x-1)(x+2)=0的根是() A、x1=1 x2=-2 B、x1=-1 x2=2 C、x1=-1 x2=-2 D、x1=1 x2=2 2、下列两个三角形中,一定全等的是() A、有一个角是40°,腰相等的两个等腰三角形 B、两个等边三角形 C、有一个角是100°,底相等的两个等腰三角形 D、有一条边相等,有一个内角相等的两个等腰三角形 3、方程x2-x+2=0根的情况是() A. 只有一个实数根 B. 有两个相等的实数根 C. 有两个不相等的实数根 D. 没有实数根 4、方程x2+6x-5=0的左边配成完全平方后所得方程为() A、(x+3) 2=14 B、(x-3) 2=14 C、(x+6) 2=1 2 D、以上答案都不对 5、如图,D在AB上,E在AC上,且AB=AC,那么 补充下列一个条件后,仍无法判定△ABE≌△ACD的条 件是() A、AD=AE B、∠AEB=∠ADC C、BE=CD D、BD=CE 6、如图,△ABC中,AB=BD=AC,AD=CD,则∠BAC 的度数是() A、100° B、108° C、120° D、150° 7、在联欢晚会上,有A、B、C三名同学站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置在△ABC的() A、三边中线的交点 B、三条角平分线的交点 C、三边上高的交点 D、三边垂直平分线的交点 8、如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是() A、x2+4x+3=0 B、x2-4x+3=0 C、x2+4x-3=0 D、x2-4x-3=0 9、如图所示的图形中,所有的四边形都是正方形, 所有的三角形都是直角三角形,其中最大的正方形 的边长为7cm,则阴影部分正方形A、B、C、D的 面积的和是()2 cm。 A、28 B、49 C、98 D、147 10、关于x的方程2x2+mx-1=0的两根互为相反数,则m的值为( ) A、0 B、2 C、1 D、-2 11、角平分线的尺规作图,其根据是构造两个全等三角形,由作图可知:判断所构造的两个三角形全等的依据是() A、HL B、ASA C、SAS D、SSS 12、若关于x的一元二次方程kx2-6x+9=0有两个不相等的实数根,则k的取值范围() A、k<1 B、k≠0 C、k<1且k≠0 D、k>1 二、填空题 13、直角三角形三边是3,4,x,那么x= 14、关于x的二次三项式4x2+mx+1是完全平方式,则m= 15、三角形两边的长分别是8cm和6cm,第三边的长是方程x2-12x+20=0的一个实数根,则三角形的面积是。 16、方程(m+1)x|m|+(m-3)x-1=0是关于x的一元二次方程,则m= 17、关于x的一元二次方程2230 kx x -+=有实根,则k得取值范围是 18、如图,在Rt△ABC中,∠B=90°,∠A=40°, AC的垂直平分线MN与AB相交于D点,则 B C A

平行四边形 经典例题

平行四边形 一、 基础知识平行四边形 二、1、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三遍的一半。 2、由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。 三、例题 例1、如图1,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F. 求证:∠BAE =∠DCF. 例2、如图2,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F. 求证:BE = CF. 例3、已知:如图3,在梯形ABCD 中,AD ∥BC ,AB = DC ,点E 、F 分别在AB 、CD 上,且BE = 2EA , CF = 2FD. 求证:∠BEC =∠CFB. (图1) B O A B C D E F (图2)

例4、如图6,E 、F 分别是 ABCD 的AD 、BC 边上的点,且AE = CF. (1 △ ABE ≌△CDF ; (2)若 、N 分别是BE 、DF 的中点,连结MF 、EN ,试判断四边形MFNE 是怎样的四 边形,并证明你的结论. 例5、如图7 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F.,求证:四边形AFCE 是菱形. 例6、如图8,四边形ABCD 是平行四边形,O 是它的中心,E 、F 是对角线AC 上的点. (1)如果 ,则△DEC ≌△BFA (请你填上一个能使结论成立的一个条件); (2)证明你的结论. 例7、如图9,已知在梯形ABCD 中,AD ∥BC ,AB = DC ,对角线AC 和BD 相交于点O ,E 是BC 边上一个动点(点E 不与B 、C 两点重合),EF ∥BD 交AC 于点F ,EG ∥AC 交BD 于点C. (1)求证:四边形EFOG 的周长等于2OB ; (2)请你将上述题目的条件“梯形ABCD 中,AD ∥BC ,AB = DC”改为另一种四边形,其他条件不变,使得结论,“四边形EFOG 的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明. 例8、有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图13(1)、(2)上),并给予合理的解释. A D B C E F (图6) M N 备用图(1) 备用图(2) B C B

平行四边形典型例题

平行四边形典型例题 【例1】如图,□ABCD的对角线AC、BD相交于点O,则图中全等三角形有() A.2对 B.3对 C.4对 D.5对 【分析】由平行四边形的对边平行、对角线互相平分,可得全等三角形有:△ABD和△CDE, △ADC和△CBA ,△AOD 和△BOC 、△AOB 和△COD . 【答案】C 【例2】如图,□ABCD中,∠B、∠C的平分线交于点O ,BO 和CD 的延长线交于E ,求证:BO=OE . 【分析】证线段相等,可证线段所在三角形全等.可证△COE ≌△COB .已知OC 为公共边,∠OCE=∠OCB,又易证∠E=∠EBC.问题得证. 【证明】在□ABCD中,∵AB//CD, ∴, 又∵(角平分线定义). ∴, 又∵, ∴△≌△ ∴. 说明:证线段相等通常有两种方法:(1)在同一三角形中证三角形等腰;(2)不在同一三角形则证两三角形全等.本题也可根据等腰三角形“三线合一”性质证明结论.

【例3】如图,在ABCD中,AE⊥BC于E ,AF⊥DC 于F ,∠ADC=60°,BE=2,CF=1,求△DEC 的面积. 【解】在中,,、. 在Rt △ABE 中,,. ∴,. ∴. 在△中,. ∴. 故. 【例4】已知:如图,D 是等腰△ABC 的底边BC 上一点,DE//AC ,DF//AB .求证:DE+DF=AB. 【分析】由于,,从而可以利用平行四边形的定义和性质,等腰三角形的判定和性质来证. 【解】∵, ∴四边形是平行四边形. ∴. ∵,∴.

∵,∴. ∴. ∴. 说明:证明一条线段等于另外两条线段的和常采用的方法是:把三条线段中较长的线段分为两段,证明这两段分别等于另两条线段. 【例5】如图,已知:中,、相交于点,于, 于,求证:. 【分析】 【解】因为四边形是平行四边形, 所以,. 又因为、交于点, 所以. 又因为,, 所以.

人教版八年级下册数学期末考试

人教版八年级下册数学期末考试

————————————————————————————————作者:————————————————————————————————日期:

人教版八年级下册数学期末试卷 【】多做练习题和试卷,可以使学生了解各种类型的题目,使学生在练习中做到举一反三。在此查字典数学网为您提供人教版八年级下册数学期末试卷,希望给您学习带来帮助,使您学习更上一层楼! 人教版八年级下册数学期末试卷 一、选择题(共10小题,每小题3分,共30分) 1.下列各式 , , , , , ,中,分式有( ). A. 2个 B. 3个 C. 4个 D. 5个 2、下列函数中,是反比例函数的是( ). (A) (B (C) (D) 3、分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3; ④9,40,41;⑤3 ,4 ,5 .其中能构成直角三角形的有( )组 A.2 B.3 C.4 D.5 4、分式的值为0,则a的值为( ) A.3 B.-3 C.3 D.a-2 5、下列各式中,正确的是 ( ) A. B. C. D. 6、有一块直角三角形纸片,两直角边分别为:AC=6cm,

BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB 上,且与AE重合,则CD等于( ) A.2cm B.3cm C.4cm D.5cm 7、已知k10 8、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ). (A)450a元 (B)225a元 (C)150a元 (D)300a元 9、已知点(-1, ),(2, ),(3, )在反比例函数的图像上. 下列结论中正确的是 A. B. C. D. 2.某 10、如图,双曲线 (k0)经过矩形OABC的边BC的中点E,交AB于点D。若梯形ODBC的面积为3,则双曲线的解析式为( ). (A) (B) (C) (D) 二、填空题(本大题共8小题, 每题3分, 共24分) 11、把0.00000000120用科学计数法表示为_______ . 12、如图6是我国古代著名的赵爽弦图的示意图,它是由四个全等的直角三角形围成的.若,,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的数学风车,则这个风车的外围周长是 .

(完整)人教版八年级数学上册知识整理与经典例题

第十一章全等三角形 一、全等形 能够完全重合的两个图形叫做全等形。 二、全等三角形 注意:(1)两个三角形全等,互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角。 (2)“能够完全重合”是指在一定的叠放下,能够完全重合。 △ABC与△A′B′C′全等记作△ABC≌△A′B′C′,“≌”读作“全等于”。 注意:(1)两个三角形全等时,通常把对应顶点的字母写在对应的位置上,这样对应的两个字母为端点的线段是对应边;对应的三个字母表示的角是对应角(若用一个字母表示一个角亦是如此)。 (2)对应角夹的边是对应边,对应边的夹角是对应角。 (3)对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系,对边是与角相对的边,对角是与边相对的角。 全等三角形的对应边相等,对应角相等。 (1)三边对应相等的两个三角形全等,简写成“边边边”和“SSS”。 (2)两边和他们的夹角对应相等的两个三角形全等,简写成“边角边”和“SAS”。 (3)两角和他们的夹边对应相等的两个三角形全等,简写成“角边角”和“ASA”。 (4)两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”和“AAS”。 (5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”和“HL”。 注意:SSA、AAA不能识别两个三角形全等,识别两个三角形全等时,必须有边的参与,如果有两边和一角对应相等时,角必须是两边的夹角。 找夹角——SAS (1)已知两边都是直角三角形——HL 找另一边——SSS 找边的对角——AAS (2)已知一边一角找夹角的另一边——SAS 找夹边的另一角——ASA (3)已知两角找夹边——ASA 找其他任意一边——AAS 一个图形与另一个图形的形状一样,大小相等,只是位置不同,我们称这个图形是另一个图形的全等变换,三种基本全等变换:(1)旋转;(2)翻折;(3)平移。 三、角平分线的性质定理及逆定理 1、性质定理:角平分线上的点到角的两边距离相等。 注意:(1)定理作用:a.证明线段相等;b.为证明三角形全等准备条件。 (2)点到直线的距离,即点到直线的垂线段的长度。 2、逆定理:在角的内部,到角的两边距离相等的点在角平分线上。 3、三角形的内心 利用角的平分线的性质定理可以导出:三角形的三个内角的角平分线交于一点,此点叫做三角形的内心,它到三边的距离相等。

(完整版)平行四边形经典练习题

挑战自我: 1、 (2010年眉山市).如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ ABC 的度数为( ) A .90° B .60° C .45° D .30° 2、(2010福建龙岩中考)下列图形中,单独选用一种图形不能进行平面镶嵌的图形是( ) A. 正三角形 B. 正方形 C. 正五边形 D. 正六边形 3.(2010年北京顺义)若一个正多边形的一个内角是120°,则这个正多边形的边数是( ) A .9 B .8 C .6 D .4 4、(2010年福建福州中考)如图4,在□ABCD 中,对角线AC 、BD 相交于点O ,若AC=14,BD=8,AB=10,则△OAB 的周长为 。 5、(2010年宁德市)如图,在□ABCD 中,AE =EB ,AF =2,则FC 等于_____. 6题 6、 (2010年滨州)如图,平行四边形ABCD 中, ∠ABC=60°,E 、F 分别在CD 、BC 的延长线上,AE ∥BD,EF ⊥BC,DF=2,则EF 的长为 7、 (2010年福建晋江)如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形是平行四边形,并予以证明.(写出一种即可)关系:①∥,②,③,④. 已知:在四边形中, , ;求证:四边形是平行四边形. 8、(2010年宁波市)如图1,有一张菱形纸片ABCD ,8=AC ,6=BD 。 (1)请沿着AC 剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四 边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD 剪开, F E D C B A ABCD AD BC CD AB =C A ∠=∠?=∠+∠180C B ABCD ABCD D A B C A B C D 第5题图 F A E B C D

平行四边形知识点与经典例题

第十八章平行四边形 18.1.1 平行四边形的性质 第一课时平行四边形的边、角特征 知识点梳理 1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。 2、平行四边形的对边相等,对角相等,邻角互补。 3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。知识点训练 1.(3分)如图,两对边平行的纸条,随意交叉叠放在一起,转动其中一,重合的部分构成一个四边形,这个四边形是________. 2.(3分)如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( ) A.6个B.7个C.8个D.9个 3.(3分)在□ABCD中,AB=6 cm,BC=8 cm,则□ABCD的周长为cm. 4.(3分)用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,则较长的边的长度为cm. 5.(4分)在□ABCD中,若∠A∶∠B=1∶5,则∠D=;若∠A+∠C=140°,则∠D=. 6.(4分)(2014·)如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是. 7.(4分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为( ) A.53°B.37°C.47°D.123°

8.(8分)(2013·)如图所示,已知在平行四边形ABCD中,BE=DF. 求证:AE=CF. 9.(4分)如图,点E,F分别是□ABCD中AD,AB边上的任意一点,若△EBC的面积为10 cm2,则△DCF的面积为。 10.(4分)如图,梯形ABCD中,AD∥BC,记△ABO的面积为S1,△COD的面积为S2,则S1,S2的大小关系是( ) A.S1>S2 B.S1=S2 C.S1<S2 D.无法比较 11.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可能是( ) A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.2∶1∶2∶1 12.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM,下列说确的是( ) A.①②都对B.①②都错C.①对②错D.①错② 13.如图,在□ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF =60°,则□ABCD的周长为__.

[人教版]八年级下册数学《期末考试试卷》(附答案)

2019-2020学年度第二学期期末测试 人教版八年级数学试题 学校________ 班级________ 姓名________ 成绩________ 一、选择题 1.若关于x 的方程 ()2 m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A. m 1≠. B. m 1=. C. m 1≥ D. m 0≠. 2.下列各曲线中,不表示...y 是 x 的函数是( ). A. B. C. D. 3.下列各组数中能作为直角三角形的三边长是( ) A. 7,24,25 B. 3,2,5 C. 2,5,6 D. 13,14,15 4.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A. m≥1 B. m≤1 C. m >1 D. m <1 5.《九章算术》是我国古代最重要的 数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC 中,∠ACB =90°,AC+AB =10,BC =3,求AC 的长.在这个问题中,AC 的长为( ) A. 4尺 B. 92 尺 C. 9120 尺 D. 5尺 6.一次函数42y x =--的图象经过( ) A. 第一、二、三象限 B. 第一、二、四象限 C 第一、三、四象限 D. 第二、三、四象限 7.下列命题正确的是( )

A. 一组对边平行,另一组对边相等 的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 一组邻边相等的矩形是正方形8.一个三角形的两边长分别为2和6,第三边长是方程28150x x-+=的根,则这个三角形的周长为() A. 11 B. 12 C. 13 D. 11或13 9.如图,菱形ABCD的对角线AC,BD相交于点O,点E为CD的中点,连接OE,若4 AB=,60 BAD ∠=?,则OCE △的面积是() A. 4 B. 23 C. 2 D. 3 10.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.其中说法正确的是() A. 甲的速度是60米/分钟 B. 乙的速度是80米/分钟 C. 点A的坐标为(38,1400) D. 线段AB所表示的函数表达式为 40(4060) y t t =剟 二、填空题 11.在函数 2 1 x y x - = - 中,自变量x的取值范围是________. 12.在Rt△ABC中,已知∠C=90°,∠A=30°,BC=1,则边AC的长为_____. 13.若函数y kx b =+的图象如图所示,则关于x的不等式0 kx b +<的解集为_____________.

(完整版)八年级数学几何经典题【含答案】

F 八年级数学几何经典题【含答案】 1、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长 线交MN 于E 、F . 求证:∠DEN =∠F . 2、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG , 点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 3、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF . . 4、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF . B

5、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF . 6、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE =CF .求证:∠DPA =∠DPC . 7如图,△ABC 中,∠C 为直角,∠A=30°,分别以AB 、AC 为边在△ABC 的外侧作正△ABE 与正△ACD ,DE 与AB 交于F 。 求证:EF=FD 。 8如图,正方形ABCD 中,E 、F 分别为AB 、BC 的中点,EC 和DF 相交于G ,连接AG ,求证:AG=AD 。 9、已知在三角形ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE=AC,延长BE 交AC 与F,求证AF=EF D F E P C B A F P D E C B A

平行四边形知识点及典型例题

一、知识点讲解: 1.平行四边形的性质: 四边形ABCD 是平行四边形?????? ????. 54321)邻角互补()对角线互相平分;()两组对角分别相等; ()两组对边分别相等;()两组对边分别平行;( 2.平行四边形的判定: . 3. 矩形的性质: 因为四边形ABCD 是矩形??? ? ??.3; 2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( (4)是轴对称图形,它有两条对称轴. 4矩形的判定: (1)有一个角是直角的平行四边形; (2)有三个角是直角的四边形; (3)对角线相等的平行四边形; (4)对角线相等且互相平分的四边形. ?四边形ABCD 是矩形. 两对角线相交成60°时得等边三角形。 5. 菱形的性质: 因为ABCD 是菱形??? ? ??.321角)对角线垂直且平分对()四个边都相等; (有通性;)具有平行四边形的所( 6. 菱形的判定: ?? ? ?? +边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321?四边形ABCD 是菱形. 菱形中有一个角等于60°时,较短对角线等于边长; 菱形中,若较短对角线等于边长,则有等边三角形; 菱形中,两对角线把菱形分成4个全等的直角三角形,每个直角三角形的斜边是菱形的边,两直角边分别是两对角线的一半。 菱形的面积等于两对角线长积的一半。 A B D O C A B D O C A D B C A D B C O C D B A O C D B A O

C D A B A B C D O 7.正方形的性质: 四边形ABCD 是正方形??? ? ??.321分对角)对角线相等垂直且平(角都是直角; )四个边都相等,四个(有通性;)具有平行四边形的所( 8. 正方形的判定: ???? ? ? ? ?? ++++++对角线互相垂直矩形)(一组邻边等 矩形)(对角线相等)菱形(一个直角)菱形(一个直角一组邻边等)平行四边形(54321?四边形ABCD 是正方形. 9. 1.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三 遍的一半。 2.由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。 二、例题 例1:如图1,平行四边形ABCD 中,AE⊥BD,CF⊥BD,垂足分别为E 、F. 求证:∠BAE =∠DCF. 例2如图2,矩形ABCD 中,AC 与BD 交于O 点,BE⊥AC 于E ,CF⊥BD 于F. 求证:BE = CF. 例3.已知:如图,在△ABC 中,中线BE ,CD 交于点O ,F ,G 分别是OB ,OC 的中点.求证:四边形DFGE 是平行四边形. 例4如图7 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F. 求证:四边形AFCE 是菱形. (图1) O A B C D E F (图2) B

八年级下册数学期末考试题

八年级数学单元试题(时间 120分钟) 一、选择题 1、方程(x-1)(x+2)=0的根是( ) A 、x 1=1 x 2=-2 B 、x 1=-1 x 2=2 C 、x 1=-1 x 2=-2 D 、x 1=1 x 2=2 2、下列两个三角形中,一定全等的是( ) A 、有一个角是40°,腰相等的两个等腰三角形 B 、两个等边三角形 C 、有一个角是100°,底相等的两个等腰三角形 D 、有一条边相等,有一个内角相等的两个等腰三角形 3、方程x 2-x +2=0根的情况是( ) A. 只有一个实数根 B. 有两个相等的实数根 C. 有两个不相等的实数根 D. 没有实数根 4、方程x 2+6x-5=0的左边配成完全平方后所得方程为( ) A 、(x+3) 2=14 B 、 (x-3) 2=14 C 、(x+6) 2=1 2 D 、 以上答案都不对 5、如图,D 在AB 上,E 在AC 上,且AB =AC ,那么 补充下列一个条件后,仍无法判定△ABE ≌△ACD 的条 件是( ) A 、 AD =AE B 、 ∠AEB =∠AD C C 、 BE =CD D 、 BD=CE 6、如图,△ABC 中,AB=BD=AC ,AD=CD ,则∠BAC 的度数是( ) A 、100° B 、108° C 、120° D 、150° 7、在联欢晚会上,有A 、B 、C 三名同学站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置在△ABC 的( ) A 、三边中线的交点 B 、三条角平分线的交点 C 、三边上高的交点 D 、三边垂直平分线的交点 8、如果关于x 的一元二次方程x 2+px+q=0的两根分别为x 1=3, x 2=1,那么这个一元二 次方程是( ) A 、 x 2+4x+3=0 B 、 x 2-4x+3=0 C 、 x 2+4x-3=0 D 、 x 2-4x-3=0 9、如图所示的图形中,所有的四边形都是正方形, 所有的三角形都是直角三角形,其中最大的正方形 的边长为7cm ,则阴影部分正方形A 、B 、C 、D 的 面积的和是( )2 cm 。 A 、28 B 、49 C 、98 D 、147 10、 关于x 的方程2x 2+mx -1=0的两根互为相反数,则m 的值为( ) A 、 0 B 、 2 C 、 1 D 、 -2 11、角平分线的尺规作图,其根据是构造两个全等三角形,由作图可知:判断所构造的两个三角形全等的依据是( ) A 、 HL B 、ASA C 、 SAS D 、 SSS 12、若关于x 的一元二次方程kx 2-6x+9=0有两个不相等的实数根,则k 的取值范围( ) A 、 k <1 B 、 k ≠0 C 、 k <1且k ≠0 D 、 k >1 二、填空题 13、直角三角形三边是3,4,x ,那么x = 14、关于x 的二次三项式4x 2+mx+1是完全平方式,则m = 15、三角形两边的长分别是8cm 和6cm ,第三边的长是方程x 2-12x +20=0的一个实数根,则三角形的面积是 。 16、方程(m+1)x |m|+(m-3)x-1=0是关于x 的一元二次方程,则m= 17、关于x 的一元二次方程2230kx x -+=有实根,则k 得取值范围是 18、如图,在Rt △ABC 中,∠B=90°,∠A=40°, AC 的垂直平分线MN 与AB 相交于D 点,则 B C

人教版八年级数学分式知识点和典型例题(最新整理)

a ● ÷ 第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1. 转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2. 建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题— ——分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3. 类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2. 与分式运算有关的运算法则 3. 分式的化简求值(通分与约分) 4. 幂的运算法则 【主要公式】1.同分母加减法则: b ± c = b ± c (a ≠ 0) a a a b d bc da bc ± da 2. 异分母加减法则: ± = ± = a c ac ac ac (a ≠ 0, c ≠ 0) ; 3. 分式的乘法与除法: b ? d = bd a c ac , b ÷ c = b ? d = bd a d a c ac 4. 同底数幂的加减运算法则:实际是合并同类项 5. 同底数幂的乘法与除法;a m a n =a m+n ; a m a n =a m -n 6. 积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = mn 7. 负指数幂: a -p = 1 a p a 0=1

平行四边形经典题型(培优提高)

中心对称与平行四边形的判定 知识归纳 1.中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与 原图形重合,那么就说这个图形是中心对称图形,这个点就是它的对称中心. 分析:一个图形;围绕一点旋转1800;重合. 2.思考:中心对称与中心对称图形有什么区别和联系? 1)区别: 中心对称是指两个全等图形之间的位置关系,成中心对称的两个图形中,其中一个图形上所有点关于对称中心的对称点都在另一个图形上,反之,另一个图形上所有点关于对称中心的对称点都在这;而中心对称图形是指一个图形本身成中心对称,中心对称图形上所有点关于对称中心的对称点都在这个图形本身上. 2)联系: 如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形;一个中心对称图形也可以看成是关于中心对称的两个图形. 3.中心对称图性质 1)中心对称图形的对称点所连线段都经过对称中心,而且被对称中心所平分. 2)中心对称图形的两个部分是全等的. 注:常见的中心对称图形有:矩形,菱形,正方形,平行四边形,圆,边数为偶数的正多边形,某些规则图形等. 正偶边形是中心对称图形 正奇边形不是中心对称图形如:正三角形不是中心对称图形、等腰梯形不是中心对称图形 4.平行四边形的性质: ①平行四边形两组对边相等。 ②平行四边形两组对角相等。 ③平行四边形对角线互分平分。 5.平行四边形判定: 定理1、一组对边平行且相等的四边形是平行四边形 定理2、两组对边分别相等的四边形是平行四边形。 定理3、对角线互相平分的四边形是平行四边形。 定理4、两组对角分别相等的四边形是平行四边形。 6.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。 7.逆定理1:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是 三角形的中位线。 逆定理2:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

初二下学期数学期末试卷

八年级数学试题 一、精心选一选(每小题3分,共30分) 1、下列式子中,从左到右的变形正确的是 ( ) A 、 1 -b 1-a b a B 、 bm am a = b C 、 a b a ab = 2 D m a m b a b ÷÷= 2、在四边形ABCD 中,∠B= 90 , ∠A: ∠D: ∠C=1:2:3,则∠C 为 ( ) A 、 160 B 、 135 C 、 90 D 、 45 3、甲、乙、丙、丁四支足球队在一次预选赛中进球数分别为:9,9,x ,7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是 ( ) A 、10 B 、9 C 、8 D 、7 4. 如果 2a b =,则 22 2 2 a a b b a b -++的值为 ( ) (A) 45 (B) 1 (C) 35 (D) 2 5、梯形ABCD 中,A D ∥BC ,加上什么条件,梯形ABCD 不一定是等腰梯形 ( ) A 、AC=BD B 、∠ABC=∠DCB C 、A C ⊥B D D 、AB=CD 6、当a= —2时,分式 2 -a 5a 32-a a 22 ( ) A 、值为0 B 、有意义 C 、无意义 D 、值等于7 2 7、已知反比例函数x m 2-1y = 的图像上两点A (11y x ,),B (22y x ,), 当1x <0<2x 时,有1y <2y ,则m 的取值范围是 ( ) A 、m <0 B 、m >0 C 、m < 2 1 D 、m >— 2 1 8、已知菱形ABCD 的周长为40cm ,两条对角线BD :AC=3:4,则两条对角线BD 和AC 的长分别是 ( ) A 、24cm 32cm B 、12cm 16cm C 、6cm 8cm D 、3cm 4cm 9、如图一,正比例函数)(0k kx y ?=与反比例函数x 1y = 的图像相交于A 、C 两点过点A 做x 轴 的垂线交x 轴于B , 连接BC 。若△ABC 的面积为S ,则 ( ) A 、S=1 B 、S=2 C 、S=3 D 、S 的值不确定

相关文档
最新文档