通信原理硬件实验7时分复用数字基带通信系统

通信原理硬件实验7时分复用数字基带通信系统
通信原理硬件实验7时分复用数字基带通信系统

武汉大学教学实验报告

电子信息学院通信工程专业时间2015/12/29

实验名称时分复用数字基带通信系统指导教师吴静

姓名莫帮杰年级2013级学号2013301200227

一、实验目的

1、掌握时分复用数字基带通信系统的基本原理及数字信号传输过程。

2、掌握位同步信号、帧同步信号在数字分接中的作用。

二、实验内容

1、用数字信源模块、数字终端模块、位同步模块及帧同步模块连成一个理想信道时分复用数字基带通信系统,使系统正常工作。

2、用示波器观察分接后的数据信号,用于数据分接的帧同步信号、位同步信号。

三、基本原理

1、数字终端模块工作原理:原理框图如图7-1所示。它输入单极性非归零信号,位同步信号和帧同步信号,把两路数据信号从时分复用信号中分离出来,输出串行数据信号、对串行的数据进行串并转换得到两个8位的并行数据信号。两个并行信号驱动16个发光二极管,左边8个发光二极管显示第一路数据,右边8个二极管显示第二路数据,二极管亮状态表示“1”,熄灭状态表示“0”。

图7-2中主要器件是EPM7032,这是一片可编程逻辑器件,框图中同步分离和串并变换都是由这个芯片来完成的。它的输入需要位同步信号和帧同步信号和数据信号。

2、时分复用数字基带通信系统

图7-3为本实验箱使用的时分复用数字基带通信系统的原理方框图。数字信源输出时分复用单极性不归零码NRZ,其中有一个时隙为帧同步信号,两个时隙为数据信号。帧同步与位同步模块从NRZ中提取出帧同步信号和位同步信号,并且将数据和同步信号对齐后输出。三路信号提供给终端,终端就可以把两路复用数据信号正确的提取出来。

四、实验步骤

1、将信源模块的电源打开,使之正常工作;打开位同步与帧同步模块电源,使之工作;打开数字终端电源,使之正常工作。

2、将信源的同步码置为01110010,位同步与帧同步模块的S-PD和S-FS跳线组置

为 1.NRZ和 a.NRZ,将数字终端的信号接入开关 1.BS、2.FS和 3.DATA全都接通。

3、此时我们已经连接好了一个基带通信系统,我们会看到数字终端的LED显示和信源的信号部分LED显示是相同的,这表示信源的数据部分已经成功的传送到数字终端。

4、改动信号1和信号2的控制开关,不要改动同步码的控制开关,注意信号1和信号2的设定不要和同步码设定相同的信号。我们会看到终端的数据显示会跟随着信源的变化而变化,这表示此通信系统是实时的通信系统。

5、在同一坐标系下记录信源的NRZ和BS-OUT,数字终端的SIGNAL-IN、BS-IN和FS-IN。理解该基带通信系统中这些信号的意义。

6、画出该基带通信系统的框图。

五、实验结果

1、BS-IN和BS-OUT

2、NRZ和SIGNAL-IN

3、SIGNAL-IN和FS-IN

通信原理实验平台依据国内主流教材内容设计,涵盖数字基带传输、数字调制模拟信号数字化、同步技术、信道编码等主要教学内容,实验平台的技术方案与教材一致,使理论教学与实验教学实现无缝衔接。通过实验既能加深对理论的理解又能用学习理论指导实验,避免互相脱节的麻烦,获得理论与实践的双赢。 本实验平台共由24个实验模块组成,可分为信号源模块、终端编译码模块、线路编译码模块、信道调制解调模块、二次开发模块、各种测量通信接口模块,以及控制显示模块等几大类,各模块功能叙述如下: 1、液晶显示模块 显示实验模块及其工作方式以供选择。 2、键盘控制模块 (1)选择实验模块及其工作方式。 (2)学生可自己编制数字信号输入,进行编码或调制实验。 3、模拟信号源模块 提供同步正弦波、非同步信号(正弦波、三角波、方波)、音乐信号等模拟信号,可通过连 接线发送到各终端编码模块。 4、用户电话接口模块 提供用户电话接口,进行用户摘挂机检测,可发送语音信号,接收语音信号。 5、数字信号源模块 (1)CPLD可编程逻辑器件,编程输出各种数字信号 (2)通过计算机输入数字数据信号 (3)薄膜键盘键入编制数字信号 (4)EPM240芯片,学生二次开发编程输出各种数字信号、控制信号等 6、噪声源模块 提供白噪声信号,可加入到调制信道中模仿信道噪声干扰。 7、抽样定理与PAM实验系统 完成抽样定理的验证实验,及PAM通信系统实验。 注:提供多种频率的方波及窄脉冲信号抽样 8、PCM编译码系统模块 完成PCM的编码、译码实验; 完成两路PCM编码数字信号时分复用/解复用实验。

注:可改变时分复用的时隙位置,时分可复用路数及进行时分数据交换,加深学生对时分复用概念的理解 9、增量调制的编码模块 完成增量调制的编码实验,可进行模块或系统实验。 注:提供了三种编码时钟 10、增量调制的译码模块 完成增量调制的译码实验,可进行独立模块或系统实验。 注:提供了对应的三种译码时钟 11、AMI/HDB3编译码系统模块 完成AMI编译码功能、HDB3编译码功能。 注:提供对全“1”、全“0”、伪随机码、手工编制数字信号等进行编码译码 12、卷积编码实验模块 完成卷积编码实验。 注:通过对地址开关拨动编制数字信号输入,可模拟在信道中插入误码,分析卷积编译码的纠错能力 13、卷积译码实验模块 完成卷积译码实验。 14、VCO数字频率合成器模块 完成对1KHz、2KHz和外加数字信号的倍频输出。 15、频移键控FSK(ASK)调制模块 完成频移键控FSK调制实验, ASK调制实验。 注:①可对方波,伪随机码,计算机数据等信号的调制输出; ②可对已调信号进行放大或衰减输出; ③可在已调信号中加入噪声,模拟信道干扰 ④可完成本实验箱的自环单工通信实验,也可完成两台实验箱间的双工通信实验 16、频移键控FSK(ASK)解调模块 完成频移键控FSK解调实验,ASK解调实验。 17、相移键控BPSK(DPSK)调制模块 完成相移键控BPSK(DPSK)调制实验。 注:①可对方波,伪随机码,及计算机数据等信号进行调制输出;

数字基带传输实验 实验报告

一、实验目的 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习Matlab 的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观测眼图和星座图判断信号的传输质量。 二、系统框图及编程原理 1.带限信道的基带系统模型(连续域分析) ?输入符号序列―― ?发送信号―― ――比特周期,二进制码元周期 ?发送滤波器―― 或或 ?发送滤波器输出――

?信道输出信号或接收滤波器输入信号 (信道特性为1) ?接收滤波器―― 或或 ?接收滤波器的输出信号 其中 (画出眼图) ?如果位同步理想,则抽样时刻为 ?抽样点数值为(画出星座图) ?判决为 2.升余弦滚降滤波器 式中称为滚降系数,取值为, 是常数。时,带宽为Hz;时,带宽为Hz。此频率特性在内可以叠加成一条直线,故系统无码间干扰传输的最小符号间隔为s,或无码间干扰传输的最大符号速率为Baud。

相应的时域波形为 此信号满足 在理想信道中,,上述信号波形在抽样时刻上无码间干扰。 如果传输码元速率满足,则通过此基带系统后无码间干扰。 3.最佳基带系统 将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能。 要求接收滤波器的频率特性与发送信号频谱共轭匹配。由于最佳基带系统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。 设信道特性理想,则有

(延时为0) 有 可选择滤波器长度使其具有线性相位。 如果基带系统为升余弦特性,则发送和接收滤波器为平方根升余弦特性。 由模拟滤波器设计数字滤波器的时域冲激响应 升余弦滤波器(或平方根升余弦滤波器)的带宽为,故其时域抽样速率至少为,取,其中为时域抽样间隔,归一化为1。 抽样后,系统的频率特性是以为周期的,折叠频率为。故在一个周期内 以间隔抽样,N为抽样个数。频率抽样为,。 相应的离散系统的冲激响应为 将上述信号移位,可得因果系统的冲激响应。 5.基带传输系统(离散域分析) ?输入符号序列―― ?发送信号―― ――比特周期,二进制码元周期 ?发送滤波器――

数字通信原理实验报告 指导老师学生姓名 学号 专业班级宋虹 ************* *********************

实验_ --------------------------------------- 2实验目的 ---------------------------------------- 2实验内容 ---------------------------------------- 2基本原理 ---------------------------------------- 2实验步骤 ---------------------------------------- 9实验结果 ---------------------------------------- 11

实验一数字基带信号 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握AMI、HDB,码的编码规则。 3、掌握从HDB,码信号中提取位同步信号的方法。 4、掌握集中插入帧同步码时分复用信号的帧结构特点。 5、了解HDB, (AMI)编译码集成电路CD22103o 二、实验内容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性 码(HDB,)、整流后的AMI码及整流后的HDB,码。 2、用示波器观察从HDB,码中和从AMI码中提取位同步信号的电路中有关波形。 3、用示波器观察HDB,、AMI译码输岀波形。 基本原理 本实验使用数字信源模块和HDBs编译码模块。 1、数字信源 本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。本单元产生NRZ信号,信号码速率约为170. 5KB, 帧结构如图1-2所示。帧长为24位,其中首位无泄义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无左义位用绿色发光二极管指示。发光二极管亮状态表示1码,熄状态表示0码。 本模块有以下测试点及输入输岀点: ?CLK 晶振信号测试点 ?BS-0UT 信源位同步信号输岀点/测试点(2个) ?FS 信源帧同步信号输出点/测试点 ?NRZ-OUT(AK)NRZ信号(绝对码)输岀点/测试点(4个) 图1-1中各单元与电路板上元器件对应关系如下:

信息科学与工程学院 课程:数字通信原理 题目:通信原理实验报告 专业班级: 学生姓名: 学号:

2017年12月1日

目录 实验一数字基带信号....................................二实验二数字调制......................................十六实验四数字解调与眼图..............................二十三

实验一数字基带信号 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握AMI、HDB 3 码的编码规则。 3、掌握从HDB 3 码信号中提取位同步信号的方法。 4、掌握集中插入帧同步码时分复用信号的帧结构特点。 5、了解HDB 3 (AMI)编译码集成电路CD22103。 二、实验内容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶 高密度双极性码(HDB 3)、整流后的AMI码及整流后的HDB 3 码。 2、用示波器观察从HDB 3 码中和从AMI码中提取位同步信号的电路中有关波形。 3、用示波器观察HDB 3 、AMI译码输出波形。 三、基本原理 本实验使用数字信源模块和HDB 3 编译码模块。 1、数字信源 本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。发光二极管亮状态表示1码,熄状态表示0码。 本模块有以下测试点及输入输出点: ? CLK 晶振信号测试点 ? BS-OUT 信源位同步信号输出点/测试点(2个) ? FS 信源帧同步信号输出点/测试点 ? NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个) 图1-1中各单元与电路板上元器件对应关系如下: ?晶振CRY:晶体;U1:反相器7404 ?分频器U2:计数器74161;U3:计数器74193;U4:计

基带传输系统实验报告 一、 实验目的 1、 提高独立学习的能力; 2、 培养发现问题、解决问题和分析问题的能力; 3、 学习matlab 的使用; 4、 掌握基带数字传输系统的仿真方法; 5、 熟悉基带传输系统的基本结构; 6、 掌握带限信道的仿真以及性能分析; 7、 通过观察眼图和星座图判断信号的传输质量。 二、 实验原理 在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。 基带传输系统方框图如下: 基带脉冲输入 噪声 基带传输系统模型如下: 信道信号 形成器 信道 接收 滤波器 抽样 判决器 同步 提取 基带脉冲

各方框的功能如下: (1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉 冲,其频谱很宽,不利于传输。发送滤波器用于压缩输入信号频带,把传输 码变换成适宜于信道传输的基带信号波形。 (2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。另 外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。 (3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。 (4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。 (5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。 三、实验内容 1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序) 设滤波器长度为N=31,时域抽样频率错误!未找到引用源。o为4 /Ts,滚降系数分别取为0.1、0.5、1, (1)如果采用非匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (2)如果采用匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (1)非匹配滤波器 窗函数法: 子函数程序: function[Hf,hn,Hw,w]=umfw(N,Ts,a)

第四章(数字基带传输系统)习题及其答案 【题4-1】设二进制符号序列为110010001110,试以矩形脉冲为例,分别画出相应的单极性码型,双极性码波形,单极性归零码波形,双极性归零码波形,二进制差分码波形。 【答案4-1】 【题4-2】设随机二机制序列中的0和1分别由()g t 和()g t -组成,其出现概率分别为p 和(1)p -: 1)求其功率谱密度及功率; 2)若()g t 为图(a )所示的波形,s T 为码元宽度,问该序列存在离散分量 1 s f T =否? 3)若()g t 改为图(b )所示的波形,问该序列存在离散分量 1 s f T =否?

【答案4-2】 1)随机二进制序列的双边功率谱密度为 2 2 1212()(1)()()[()(1)()]() s s s s s s m P f P P G f G f f PG mf P G mf f mf ωδ∞ -∞=--++--∑ 由于 12()()()g t g t g t =-= 可得: 2 2 22 ()4(1)()(12) ()() s s s s s m P f P P G f f P G mf f mf ωδ∞ =-∞ =-+--∑ 式中:()G f 是()g t 的频谱函数。在功率谱密度()s P ω中,第一部分是其连续谱成分,第二部分是其离散谱成分。 随机二进制序列的功率为 2 2 2 2 2 2 22 1()2 [4(1)()(12)()()] 4(1)()(12)() () 4(1)()(12)() s s s s s m s s s s m s s s m S P d f P P G f f P G mf f mf df f P P G f df f P G mf f mf df f P P G f df f P G mf ωω π δδ∞ ∞ ∞ ∞∞ =-∞ ∞ ∞ ∞ ∞∞ =-∞∞ ∞ ∞ =-∞ = =-+ --=-+ --=-+-? ∑ ?∑ ?? ∑ ?----- 2)当基带脉冲波形()g t 为 1 (){2 0 else s T t g t t ≤= ()g t 的付式变换()G f 为

姓名:班级学号:47 实验九数字基带通信系统实验 一、实验目的 1.掌握时分复用数字基带通信系统的基本原理及数字信号传输过程 2.掌握位同步信号抖动、帧同步信号错位对数字信号传输的影响 3.掌握位同步信号、帧同步信号在数字分接中的作用 二、实验内容 1.用数字信源、数字终端、位同步及帧同步连成一个理想信道时分复用数字基带通 信系统,使系统正常工作。 2.观察位同步信号抖动对数字信号传输的影响。 3.观察帧同步信号错位对数字信号传输的影响。 4.用示波器观察分接后的数据信号、用于数据分接的帧同步信号、位同步信号。 三、基本原理 本实验使用数字信源模块(EL-TS-M6)和数字终端、位同步及帧同步模块(EL-TS-M7)。 1. 数字终端模块工作原理: 原理框图如图7-1所示。它输入单极性非归零信号、位同步信号和帧同步信号,把两路数据信号从时分复用信号中分离出来,输出两路串行数据信号和两个8位的并行数据信号。两个并行信号驱动16个发光二极管,左边8个发光二极管显示第一路数据,右边8个发光二极管显示第二路数据,二极管亮状态表示“1”,熄灭状态表示“0”。两个串行数据信号码速率为数字源输出信号码速率的1/3。 在数字终端模块中,有以下测试点及输入输出点: ? FS-IN 帧同步信号输入点 ? S-IN 时分复用基带信号输入点 ? BS-IN 位同步信号输入点 ? SD 抽样判决后的时分复用信号测试点 ? BD 延迟后的位同步信号测试点 ? FD 整形后的帧同步信号测试点 ? D1 分接后的第一路数字信号测试点 ? B1 第一路位同步信号测试点 ? F1 第一路帧同步信号测试点

《数字通信原理与技术》实验报告 学院:江苏城市职业学院 专业:计算机科学与技术 班级: 姓名:___________ 学号: ________

实验一熟悉MATLAB环境 一、实验目的 (1)熟悉MATLAB的主要操作命令。 (2)掌握简单的绘图命令。 (3)用MATLAB编程并学会创建函数。 (4)观察离散系统的频率响应。 二、实验内容 (1)数组的加、减、乘、除和乘方运算。输入A=【1 2 3 4】,B=【3 4 5 6】,求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 (2)用MATLAB实现下列序列: a)x(n)=0.8n 0≦n≦15 b)x(n)=e(0.2+0.3j) 0≦n≦15 c)x(n)=3cos(0.125πn+0.2π)+0.2sin(0.25πn+0.1π) 0≦n≦15 d) 将c)中的x(n)扩展成以16为周期的函数x16(n)=x(n+16),绘出四个周期。 e) 将c)中的x(n)扩展成以10为周期的函数x10(n)=x(n+10),绘出四个周期。 (3) 绘出下列时间函数图形,对x轴、y轴以及图形上方均须加上适当的标注: a)x (t )=sin(2πt) 0≦n≦10s b) x (t)=cos(100πt)sin(πt) 0≦n≦14s 三、程序和实验结果 (1)实验结果: 1、A=[1,2,3,4] B=[3,4,5,6] C=A+B D=A-B E=A.*B F=A./B G=A.^B A =1 2 3 4 B =3 4 5 6 C =4 6 8 10 D =-2 -2 -2 -2 E =3 8 15 24 F =0.3333 0.5000 0.6000 0.6667 G =1 16 243 4096 >> stem(A) >> stem(B) >> stem(C) >> stem(D) >> stem(E) >> stem(F)

基带传输系统实验报告 一、实验目的 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习matlab的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观察眼图和星座图判断信号的传输质量。 二、实验原理 在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。 基带传输系统方框图如下: 基带传输系统模型如下:

各方框的功能如下: (1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉 冲,其频谱很宽,不利于传输。发送滤波器用于压缩输入信号频带,把传输 码变换成适宜于信道传输的基带信号波形。 (2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。另 外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。 (3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。 (4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。 (5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。 三、实验内容 1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序) 设滤波器长度为N=31,时域抽样频率Fo为 4 /Ts,滚降系数分别取为、、1,

AMI、HDB3码实验 1、说明AMI码和HDB3码的特点,及其变换原则。 回答: AMI码的特点:1、无直流成分,低频成分也少,高频成分少,信码能量集中在fB/2处; 2、码型有了一定的检错能力,检出单个误码; 3、当连0数不多时可通过全波整流法提取时钟信息,但是连0数过多时就无法正常地提出时钟信息。 变换规则:二进码序列中“0”仍编为“0”;而二进码序列中的“1”码则交替地变为“+1”码及“-1”码。 HDB3码的特点:1、无直流成分,低频成分也少,高频成分少,信码能量集中在fB/2处; 2、码型有了一定的检错能力,检出单个误码; 3、可通过全波整流法提取时钟信息。 变换规则:(1)二进制信号序列中的“0”码在HDB3码中仍编为“0”码,二进制信号中“1”码,在HDB3码中应交替地成+1和-1码,但序列中出现四个连“0”码时应按特殊规律编码; (2)二进制序列中四个连“0”按以下规则编码:信码中出现四个连“0”码时,要将这四个连“0”码用000V或B00V取代节来代替(B和V也是“1”码,可正、可负)。这两个取代节选取原则是,使任意两个相邻v脉冲间的传号数为奇数时选用000V取代节,偶数时则选用B00V取代节。 2、示波器看到的HDB3变换规则与书本上和老师讲的有什么不同,为什么有这个差别。 回答:示波器上看到的HDB3编码器的输出P22点的波形比书本上的理论上的输出波形要延时5个码位。原因是实验电路中采用了由4个移位寄存器和与非门组成的四连零测试模块去检测二进制码流中是否有四连零,因此输出的HDB3码有5个码位的延时。 3、用滤波法在信码中提取定时信息,对于HDB3码要作哪些变换,电路中如何实现这些变换。 回答:首先,对HDB3码进行全波整流,把双极性的HDB3码变成单极性的归零码,这个在电路上是通过整流二极管实现的;然后,把归零码经晶体管调谐电路进行选频,提取时钟分量;最后,对提取的时钟分量进行整形来产生定时脉冲。 PCM实验思考题参考答案 1.PCM编译码系统由哪些部分构成?各部分的作用是什么? 回答: 其中,低通滤波器:把话音信号带宽限制为3.4KHz,把高于这个频率的信号过滤掉。

塔里木大学信息工程学院通信原理课程设计 2016届课程设计 《基于MATLAB的数字基带传输系统的研究与分 析》 课程设计说明书 学生姓名 学号 所属学院信息工程学院 专业通信工程 班级通信16-1 指导教师蒋霎

塔里木大学教务处制 摘要 本论文主要研究了数字信号的基带传输的基本概念及数字信号基带传输的传输过程和如何用MATLAB软件仿真设计数字基带传输系统。本文首先介绍了本课题的理论依据,包括数字通信,数字基带传输系统的组成及数字基带信号的传输过程。接着介绍了数字基带传输系统的特性包括数字PAM信号功率普密度及常用线路码型,并通过比较最终选择双极性不归零码。然后介绍了MATLAB仿真软件。之后介绍了数字基带信号的最佳接收的条件以及如何通过示波器观察基带信号的波形。最后按照仿真过程基本步骤用MATLAB的仿真工具实现了数字基带传输系统的仿真过程,对系统进行了分析。 关键字:数字基带传输系统MATLAB 计算机仿真;

目录 1.前言 0 2.正文 0 2.1数字基带传输系统 0 2.2 数字基带信号 (1) 2.2.1基本的基带信号波形 (1) 2.2.2基带传输的常用码型 (2) 2.3实验原理 (5) 2.3.1数字通信系统模型 (5) 2.3.2数字基带传输系统模型 (5) 3.1MATLAB软件简介 (6) 3.1.1软件介绍 (6) 3.1.2 Matlab语言的特点 (7) 4.1实验内容 (7) 4.1.1理想低通特性 (8) 4.1.2余弦滚降特性 (8) 4.1.3 Matlab设计流程图 (9) 4.1.4余弦滚降系基于matlab的程序及仿真结果 (9) 致谢 (12) 参考文献 (13) 附录 (14)

数字通信原理 实验报告 实验一AMI、HDB3编译码实验 学院计算机与电子信息学院 专业班级 姓名学号 指导教师 实验报告评分:_______

实验一 AMI、HDB3编译码实验 一、实验目的 了解由二进制单极性码变换为AMI码HDB3码的编码译码规则,掌握它的工作原理和实验方法。 二、实验内容 1.伪随机码基带信号实验 2.AMI码实验 ① AMI码编码实验 ② AMI码译码实验 ③ AMI码位同步提取实验 3.HDB3编码实验 4.HDB3译码实验 5.HDB3位同步提取实验 6.AMI和HDB3位同步提取比较实验 7.HDB3码频谱测量实验 8.书本上的HDB3码变化和示波器观察的HDB3码变化差异实验 三、基本原理:PCM信号基带传输线路码型 PCM信号在电缆信道中传输时一般采用基带传输方式,尽管是采用基带传输方式,但也不是将PCM编码器输出的单极性码序列直接送入信道传输,因为单极性脉冲序列的功率谱中含有丰富的直流分量和较多的低频分量,不适于直接送人用变压器耦合的电缆信道传输,为了获得优质的传输特性,一般是将单数性脉冲序列进行码型变换,以适应传输信道的特性。 (一)传输码型的选择 在选择传输码型时,要考虑信号的传输信道的特性以及对定时提取的要求等。归结起来,传输码型的选择,要考虑以下几个原则: 1.传输信道低频截止特性的影响 在电缆信道传输时,要求传输码型的频谱中不应含有直流分量,同时低频分量要尽量少。原因是PCM端机,再生中继器与电缆线路相连接时,需要安装变压器,以便实现远端供电(因设置无人站)以及平衡电路与不平衡电路的连接。 图1.1是表示具有远端供电时变压器隔离电源的作用,以保护局内设备。 图1.1变压器的隔离作用 由于变压器的接入,使信道具有低频截止特性,如果信码流中存在直流和低频成分,则

实验一基带传输系统实验 目录: 一、实验目的 (2) 二、实验原理 (2) 三、实验内容 (3) (一)因果数字升余弦滚降滤波器设计 (3) 1) 窗函数法设计非匹配形式的基带系统的发送滤波器 (3) 2) 频率抽样法设计匹配形式的基带系统的发送滤波器 (5) 3) 非匹配形式下窗函数设计法和匹配模式下频率抽样法设计的滤波器第一零点带 宽和第一旁瓣衰减 (7) (二)根据离散域基带系统模型,设计无码间干扰的二进制数字基带传输系统 (7) (三)非匹配模式和匹配模式的无码间干扰的数字基带传输系统测试 (10) 1) 非匹配滤波器无加性噪声系统 (10) 2) 非匹配滤波器和匹配滤波器加加性噪声系统 (12) 四、实验心得 (15) 指导老师:马丕明 班级:通信一班 姓名:石恬静201100120172 蒋金201100120222

一、实验目的 1、 提高独立学习的能力; 2、 培养发现问题、解决问题和分析问题的能力; 3、 学习matlab 的使用; 4、 掌握基带数字传输系统的仿真方法; 5、 熟悉基带传输系统的基本结构; 6、 掌握带限信道的仿真以及性能分析; 7、 通过观察眼图和星座图判断信号的传输质量。 二、实验原理 数字通信系统的模型如下图所示: 在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。 带限信道的数字基带传输系统的传输模型为: 发送滤波器 传输信道 接收滤波器 输入符号序列 {a }l ,其取值为1或-1;每隔一个比特周期Tb 发送一个脉冲信号得到 发送信号()d t ;在匹配形式下,发送滤器和接收滤波器都是平方根升余弦滚降滤波器,在

实验九 BPSK 传输系统 一、 实验前的准备 (1)预习帧成形及其传输电路的构成;预习自定义帧结构的帧同步系统电路的构成。 (2)熟悉实验指导书附录B 和附录C 中实验箱面板分布及测试孔位置,定义本实验相关模块的跳线状态。 (3)实验前重点掌握的内容: 了解软件无线电的基本概念; 熟悉软件无线电BPSK 调制和解调原理; 明确波形成形的原理; 明确载波提取原理; 明确位定时提取原理。 二、 实验目的 加深对PCM30/32系统帧结构、帧同步系统及其工作过程、系统话路、信令、帧同步和告警复用和分用过程的理解; 三、 实验仪器 (1)ZH5001A 通信原理综合实验系统一台 (2)20MHz 双踪示波器一台 四、 基本原理 理论上二进制相移键控(BPSK )可以用幅度恒定,而其载波相位随着输入信号m (1、0码)而改变,通常这两个相位相差180°。如果每比特能量为E b ,则传输的BPSK 信号为: )2cos(2)(c c b b f T E t S θπ+= 其中 ???===1 180 000 m m c θ 一个数据码流直接调制后的信号如下图所示:

在“通信原理综合实验系统”中,BPSK的调制工作过程如下:首先输入数据进行Nyquist滤波,滤波后的结果分别送入I、Q两路支路。因为I、Q两路信号一样,本振频率是一样的,相位相差180度, 所以经调制合路之后仍为BPSK方式。 采用直接数据(非归零码)调制与成形信号调制的信号如下图所示: Tb 归零码 载波 直接调制 成形调制

图 3.2-6 BPSK 实验方框图 BPSK调制原理框图如上

通信原理实验一 数字基带传输 一、实验目的 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习Matlab 的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观测眼图和星座图判断信号的传输质量。 二、实验原理 1.匹配滤波器和非匹配滤波器: 升余弦滚降滤波器频域特性:

将频域转化为时域 2. 最佳基带系统 将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能。 要求接收滤波器的频率特性与发送信号频谱共轭匹配。由于最佳基带系统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。 设信道特性理想,则有 (延时为0) 有 可选择滤波器长度使其具有线性相位。 如果基带系统为升余弦特性,则发送和接收滤波器为平方根升余弦特性。 3.基带传输系统(离散域分析) ?输入符号序列―― ?发送信号―― ――比特周期,二进制码元周期 ?发送滤波器―― 或 ?发送滤波器输出――

?信道输出信号或接收滤波器输入信号 (信道特性为1) ?接收滤波器―― 或 ?接收滤波器的输出信号 (画出眼图) ?如果位同步理想,则抽样时刻为 ?抽样点数值为(画出星座图) ?判决为 其中若为最佳基带传输系统,则发送滤波器和接收滤波器都为根升余弦滤波器,当采用非匹配滤波器时,发送滤波器由升余弦滤波器基带特性实现,接收滤波器为直通。 三、实验内容 1.通过匹配滤波和非匹配滤波方式,得到不同的滚降系数下发送滤波器的时域波形和频率特性。 实验程序: (1)非匹配情况下: 升余弦滚降滤波器的模块函数(频域到时域的转换) function [Hf,ht]=f_unmatch(alpha,Ts,N,F0) k=[-(N-1)/2:(N-1)/2]; f=F0/N*k; for i=1:N; if (abs(f(i))<=(1-alpha)/(2*Ts)) Hf(i)=Ts; elseif(abs(f(i))<=(1+alpha)/(2*Ts)) Hf(i)=Ts/2*(1+cos(pi*Ts/alpha*(abs(f(i))-(1-alpha)/(2*Ts)))); else Hf(i)=0; end; end; 主函数 alpha=input('alpha=');%输入不同的滚降系数值 N=31;%序列长度 Ts=4; F0=1;%抽样频率

实验二数字基带传输技术仿真实验 实验要求: 1、学生按照实验指导报告独立完成相关实验的内容; 2、上机实验后撰写实验报告,记录下自己的实验过程,记录实验心得。 3、以电子形式在规定日期提交实验报告。 实验指导 1、单极性不归零码 单极性不归零码是一种最简单最常用的基带信号形式。这种信号脉冲的零电平和正电平分别对应着二进制代码0和1,即,在一个码元时间内用脉冲的有或者无来对应表示0或者1码。其特点是极性简单,有直流分量,脉冲之间无间隔。 生成单极性不归零码的MATLAB实现程序如下: function y=snrz(x) %本函数实现将输入的一段二进制代码编为相应的单极性不归零码输出 %输入x为二进制码,输出y为编号的码 t0=200; t=0:1/t0:length(x); %给出相应的时间序列 for i=1:length(x) %计算码元的值 if x(i)==1 %如果输入信息为1 for j=1:t0 %该码元对应的点值取1 y((i-1)*t0+j)=1; end else for j=1:t0 %如果输入信息为0,码元对应的点值取0 y((i-1)*t0+j)=0; end end end y=[y,x(i)]; plot(t,y);

%采用title 命令来实现标记出各码元对应的二元信息 title('1 0 1 1 0 0 1 0'); grid on; axis([0,i,-0.1,1.1]); 在命令窗口中输入x的二进制代码和函数名,就可以得到所对应的单极性不归零码输出,如输入以下指令,将出现图1所示结果。 x=[1 0 1 1 0 0 1 0]; snrz(x) 图1 单极性不归零码 2、双极性不归零码 在双极性不归零码中,脉冲的正负对应着二进制代码的1和0,由于它是幅度相等极性相反的双极性波形,故当0、1符号等可能出现时无直流分量。这样,恢复信号的判决电平为0,因而不受信道特性变化的影响,抗干扰能力较强,故双极性码较单极性码更有利于在信道中传输。 双极性不归零码的MATLAB实现程序如下: function y=dnrz(x) t0=200; t=0:1/t0:length(x); for i=1:length(x) if x(i)==1

实验七:时分复用数字基带通信系统 一、实验目的 1.掌握时分复用数字基带通信系统的基本原理及数字信号传输过程。 2.掌握位同步信号抖动、帧同步信号错位对数字信号传输的影响。 3.掌握位同步信号、帧同步信号在数字分接中的作用。 二、实验内容 1.用数字信源模块、数字终端模块、位同步模块及帧同步模块连成一个理想信道时分复用数字基带通信系统,使系统正常工作。 2.观察位同步信号抖动对数字信号传输的影响。 3.观察帧同步信号错位对数字信号传输的影响。 4.用示波器观察分接后的数据信号、用于数据分接的帧同步信号、位同步信号。 三、基本原理 本实验要使用数字终端模块。 1. 数字终端模块工作原理: 原理框图如图7-1所示,电原理图如图7-2所示(见附录)。它输入单极性非归零信号、位同步信号和帧同步信号,把两路数据信号从时分复用信号中分离出来,输出两路串行数据信号和两个8位的并行数据信号。两个并行信号驱动16个发光二极管,左边8个发光二极管显示第一路数据,右边8个发光二极管显示第二路数据,二极管亮状态表示“1”,熄灭状态表示“0”。两个串行数据信号码速率为数字源输出信号码速率的1/3。 在数字终端模块中,有以下测试点及输入输出点: ? S-IN 时分复用基带信号输入点 ? SD 抽样判后的时分复用信号测试点 ? BD 延迟后的位同步信号测试点 ? FD 整形后的帧同步信号测试点 ? D1 分接后的第一路数字信号测试点 ? B1 第一路位同步信号测试点

? F1 第一路帧同步信号测试点 ? D2 分接后的第二路数字信号测试点 ? B2 第二路位同步信号测试点 ? F2 第二路帧同步信号测试点 延迟1延迟2 整形延迟3FS-IN BS-IN S-IN FD FD -7 FD -15 FD -8 FD -16 BD 显示 串/并变换 串/并变换 F2÷3 并/串变换并/串变换 D 2 B1 F1 D 1 SD-D BD 显示 B2 图7-1 数字终端原理方框图 图7-1中各单元与电路板上元器件对的应关系如下: ? 延迟1 U63:单稳态多谐振荡器4528 ? 延迟2 U62:A :D 触发器4013 ? 整形 U64:A :单稳态多谐振荡器4528;U62:B :D 触发器4013 ? 延迟3 U67、U68、U69:移位寄存器40174 ? ÷3 U72:内藏译码器的二进制寄存器4017 ? 串/并变换 U65、U70:八级移位寄存器4094 ? 并/串变换 U66、U71:八级移位寄存器4014(或4021) ? 显示 三极管9013;发光二极管 延迟1、延迟2、延迟3、整形及÷3等5个单元可使串/并变换器和并/串变换器的输入信号SD 、位同步信号及帧同步信号满足正确的相位关系,如图7-3所示。 移位寄存器40174把FD 延迟7、8、15、16个码元周期,得到FD-7、FD-15、FD-8(即F1)和FD-16(即F2)等4个帧同步信号。在FD-7及B D 的作用下,

数字基带传输实验预习报告 一、实验目的: 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习Matlab 的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观测眼图和星座图判断信号的传输质量。 二、实验原理: 1、带限信道的基带传输系统: 发送滤波器 传输信道 接受滤波器 {a n } x(t) y(t) r(t) {a n } 定时信号 2、升余弦滚降滤波器 其频率响应为: () T G ω () C ω 噪声源 R G ω() 抽样判决 位定时提 取

C T , 1|f|2c T α -≤ ()d H f = 1-[1cos (||)]22c T T f T παα+-,c 11||22c f T T αα -+≤ 0, 1+|f| 2C T α 在实验中,时间抽样间隔和抽样频率都归一化为1,得到升余弦滤波器的频率响应常数c T =4。 无码间干扰传输的最小符号间隔为c T 秒,或无码间干扰传输的最大符号速率为1/c T 。相应 的时域单位冲激响应信号h ()d t ,满足()d c h nT = 1,n=0 。在理想信道中, 0,n ≠0 h ()d t 信号波形在抽样时刻上无码间干扰。 3、最佳基带传输系统: 将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能,并且,接收滤波器的频率特性与发送信号频谱共轭匹配。 实验时,具体采用两种方式,一是采用匹配滤波器,发送滤波器和接受滤波器对称的系统,发送滤波器和接受滤波器都是升余弦平方根特性;二是不采用匹配滤波器方式,升余弦滚降基带特性完全由发送滤波器实现,接受滤波器为直通。 4、用模拟升余弦滚降滤波器设计数字升余弦滚降滤波器 这种方式主要采用窗函数法和频率抽样法。 (1)窗函数法是从模拟升余弦滚降滤波器的单位冲激响应h ()d t ,先进行时间抽样,然后进行截短、加窗,最后向右移位,得到实际的因果的数字升余弦滚降滤波器的单位冲击响应。 (2)频率抽样法是从模拟升余弦滚降滤波器的频率响应 d () H f ,频率抽样后,进行离散时间 傅里叶反变换后,最后向右移位,得到实际的因果的数字升余弦滚降滤波器的单位冲激响应。

通信原理实验报告 实验名称:数字信号的基带传输 班级:08211317 学号:08211660 姓名:张媛(27)

一.实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性; (3)通过时域、频域波形分析系统性能。 二、仿真环境 SystemView 仿真软件 三、实验原理 (1 )数字基带传输系统的基本结构 它主要由信道信号形成器、信道、接收滤滤器和抽样判决器组成。为了保证系统可靠有序地工作,还应有同步系统。 1.信道信号形成器 把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的。 2.信道 是允许基带信号通过的媒质,通常为有线信道,信道的传输特性通常不满足无失真传输条件,甚至是随机变化的。另外信道还会进入噪声。 3.接收滤波器 滤除带外噪声,对信道特性均衡,使输出的基带波形有利于抽样判决。 4.抽样判决器 在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。而用来抽样的位定时脉冲则依靠同步提取电路从接收信号中提取。 (2) 奈奎斯特第一准则 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变, 即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号, 因为信息完全恢复携带在抽样点幅度上。 奈奎斯特准则要求在波形成形输入到接收端的滤波器输出的整个 传送过程传递函数满足: 令k′=j -k , 并考虑到k′也为整数,可用k 表示: ???=+-0)(1])[(0或其它常数t T k j h b k j k j ≠=?? ?=+0 1)(0t kT h b 00≠=k k

4PSK和4ASK的MATLAB仿真 一、实验目的: 学会利用MATLAB软件进行4PSK和4ASK调制的仿真。通过实验提高学生实际动手能力和编程能力,为日后从事通信工作奠定良好的基础。 二、实验内容:利用MATLAB软件编写程序,画出4PSK和4ASK图形,进一步了解4PSK和4ASK调制的原理。 (1)设二进制数字序列为0 1 0 1 1 0 0 0 1 1 0 1 0 0,编程产生4PSK调制信号波形。 (2)设二进制数字序列为1 1 0 0 1 1 0 0 1 0 0 1 1 1,编程产生4ASK调制信号波形。 三、程序和实验结果: (1)4PSK程序 clf clc clear T=1; M=4; fc=1/T; N=500; delta_T=T/(N-1); input=[0 1 0 1 1 0 0 0 1 1 0 1 0 0] input1=reshape(input,2,7) t=0:delta_T:T for i=1:7 hold on if input1([1 2],i)==[0;0] u=cos(2*pi*fc*t);plot(t,u) elseif input1([1 2],i)==[1;0] u=cos(2*pi*fc*t+2*pi/M);plot(t,u) elseif input1([1 2],i)==[1;1] u=cos(2*pi*fc*t+4*pi/M);plot(t,u) elseif input1([1 2],i)==[0;1] u=cos(2*pi*fc*t+6*pi/M);plot(t,u) end t=t+T end grid hold off 实验结果:

通信原理实验报告三数字锁相环实验

实验3数字锁相环实验 一、实验原理和电路说明 在电信网中,同步是一个十分重要的概念。同步的种类很多,有时钟同步、比特同步等等,其最终目的使本地终端时钟源锁定在另一个参考时钟源上,如果所有的终端均采用这种方式,则所有终端将以统一步调进行工作。 同步的技术基础是锁相,因而锁相技术是通信中最重要的技术之一。锁相环分为模拟锁相环与数字锁相环,本实验将对数字锁相环进行实验。 图2.2.1 数字锁相环的结构 数字锁相环的结构如图2.2.1所示,其主要由四大部分组成:参考时钟、多模分频器(一般为三种模式:超前分频、正常分频、滞后分频)、相位比较(双路相位比较)、高倍时钟振荡器(一般为参考时钟的整数倍,此倍数大于20)等。数字锁相环均在FPGA内部实现,其工作过程如图2.2.2所示。

T1时刻T2时刻T3时刻T4时刻 图2.2.2 数字锁相环的基本锁相过程与数字锁相环的基本特征 在图2.2.1,采样器1、2构成一个数字鉴相器,时钟信号E、F对D信号进行采样,如果采样值为01,则数字锁相环不进行调整(÷64);如果采样值为00,则下一个分频系数为(1/63);如果采样值为11,则下一分频系数为(÷65)。数字锁相环调整的最终结果使本地分频时钟锁在输入的信道时钟上。 在图2.2.2中也给出了数字锁相环的基本锁相过程与数字锁相环的基本特征。在锁相环开始工作之前的T1时该,图2.2.2中D点的时钟与输入参考时钟C没有确定的相关系,鉴相输出为00,则下一时刻分频器为÷63模式,这样使D点信号前沿提前。在T2时刻,鉴相输出为01,则下一时刻分频器为÷64模式。由于振荡器为自由方式,因而在T3时刻,鉴相输出为11,则下一时刻分频器为÷65模式,这样使D点信号前沿滞后。这样,可变分频器不断在三种模式之间进行切换,其最终目的使D点时钟信号的时钟沿在E、F时钟上升沿之间,从而使D点信号与外部参考信号达到同步。 在该模块中,各测试点定义如下: 1、TPMZ01:本地经数字锁相环之后输出时钟(56KHz) 2、TPMZ02:本地经数字锁相环之后输出时钟(16KHz) 3、TPMZ03:外部输入时钟÷4分频后信号(16KHz) 4、TPMZ04:外部输入时钟÷4分频后延时信号(16KHz) 5、TPMZ05:数字锁相环调整信号 二、实验仪器 1、J H5001通信原理综合实验系统一台

相关文档
最新文档