(完整word版)超声波加湿器原理及电路图

(完整word版)超声波加湿器原理及电路图
(完整word版)超声波加湿器原理及电路图

超声波加湿器电路图

超声波换能器常见问题:超声波振子受潮,可以用兆欧表检查与换能器相连接的插头,其中2脚为超声波换能器的正极,3脚是换能器的负极而且与换能器的外壳相连。检查,2 3 脚间的绝缘电阻值就可以判断基本情况,一般要求绝缘电阻大于30兆欧以上。如果达不到这个绝缘电阻值,一般是换能器受潮,可以把换能器整体(不包括喷塑外壳)放进烘箱设定100 ℃左右烘干3小时或者使用电吹风去潮至阻值正常为止。换能器振子打火,陶瓷材料碎裂,可以用肉眼和兆欧表结合检查,一般作为应急处理的措施,可以把个别损坏的振子断开,不会影响到别的振子正常使用。

振子脱胶,我们的换能器是采用胶结,螺钉紧固双重保证工艺,在一般情况下不会出现这种情况,由于螺钉的作用,振子脱胶后不会从振动面上落下,一般的判断方法是用手轻摇振子的尾部,仔细观察振动面的胶水情况做出判断。一般振子出现脱胶以后超声波电源输出的功率正常,但是由于振子与振动面连接不好,振动面的振动效果不好,长时间后可能会烧坏振子。振子脱胶的处理方法是比较麻烦的,一般情况只能送回生产厂家解决。避免振子脱胶最有效的方法是平时使用中注意不撞击振动面。振动面穿孔,一般换能器满负荷使用年以后可能会出现振动面穿孔的情况,这是由于振动面的不锈钢板长时间高频振动疲劳所至,振动面穿孔说明换能器的使用寿命已经到了,一般只能更换。

加湿器在冬季取暖的北方越来越受到欢迎,维修量也随之增加。本文提供几种常见机型电路图并就其基本原理和维修方法介绍如下:

加湿器基本结构如图一所示,由电源电路、控制电路、振荡电路与风机和换能器(压电陶瓷片)组成。电源部分有两种供电方式,一种是变压器降压整流滤波后为振荡电路供电,如图二ZS2-45型。因变压器过载能力强而被广泛机型采用。另一种是由开关电源供电,特点是重量明显减小,电源效率高,如图三半球牌CJ-380D。

控制电路包括缺水检测、缺水指示和雾量调整电路。缺水检测有两种方式,一是干簧管配合漂浮磁环检测方式,目前大多机型都采用此方式。如图四桑普SC 25A型,不缺水时包在泡沫塑料中的磁环被水漂浮起来,磁场使干簧管常开触点闭合,接通电源给振荡管提供偏置,振荡电路开始工作。当缺水时随着水面下降磁环离开干簧管受控区,干簧管触点释放,振荡管失去偏置而停振,加湿器处于待机状态。另一种是水面探针检测方式,如图五琦丽牌加湿器。加湿器的振荡管集电极是直接固定在换能片金属框架上的(是很好的水冷散热片)。因振荡管集电极是电源正极,所以水和探针为振荡管提供了偏置通路。当水面降到离开探针时,偏置通路被断开,加湿器进入待机状态。缺水指示都采用发光二极管点亮来指示,图六康福尔SPS-818和图三半球牌CJ-380D是通过PNP三极管在干簧管断开后基极处于低电位而导通点亮发光二极管的。有的机型则没有缺水指示。

雾量调整电路在所有的加湿器电路中都是通过调整面板上设置的电位器(起可调电阻作用)来调节振荡管的偏置实现的,这部分电路与缺水检查电路是串联的。为确保振荡管不会因偏置过高而损坏,电源电压都经过电阻分压和一个可调电阻压降后提供给雾量调整电位器的。经调整后的偏置电压通过电感电阻加到振荡管基极,使振荡管能在截至状态和最强振荡状态之间变化。

振荡电路由功率三极管和外围电容电感组成三点式振荡电路,这部分的电路在所有加湿器电路中几乎是一样的,电路振荡频率约0.65MHZ。因换能器本身就是一个固有频率约1.7MHZ的晶振,它通过耦合电容加跨接在振荡管基极和电源之间,振荡电路的6.5KHZ的振荡电压通过耦合电容加在换能器上。换能器受振荡电路激励后产生振荡,这个振荡信号又通过耦合电容反馈到振荡管基极,使振荡电路谐振在1.7MHZ,振荡幅度峰峰值达二百伏左右。强烈的超声波振荡电能经换能器转换成机械能将表面的水打成水雾,由送风电扇把水雾吹出从而使室内空气增加湿度。加湿器的风机有采用220V罩极式异步电机风扇,也有采用12V 仪表风扇。

加湿器的主要故障是不出雾或雾量小。开启电源开关不出雾,电源指示灯不亮,风机不转多属于电源故障,拆开机壳后先检查电源220V输入保险。此保险管熔断说明电路有短路性故障,如振荡功率管(BU406)击穿、整流二极管击穿、电源变压器初级绕组短路、开关电源开关管击穿等。如果开启电源开关后风机会转动,应检查振荡电路板上的二次电源保险是否开路(有机型使用0.5欧姆保险电阻),此保险管一般都加在38V整流后的电源地端。如果保险管已熔断多是振荡功率管击穿(也有瞬间电流过大烧坏保险管换上保险即可工作的)。振荡功率管击穿一般不会殃及其它元件,换上新管即可。BU406耐压400V,功率18W,换新管时要选择直流放大倍数大于50的同型号管子或耐压功率足够的其它NPN 中功率管。在维修中也发现有的机型使用大功率管的,这样会更加耐用一些。

二次保险完好并且振荡管无损坏,就需通电进行电压检测。为免换能器脱水振荡发热烧裂,必需先脱开换能器一条引线。换能器脱水工作轻则性能变差,重会损坏烧裂。振荡管不要脱开换能器金属框,以免失去散热片过热损坏。首先测量振荡管集电极对保险管(二次地)是否有50V左右的直流电压,有交流38V 但没有此电压多是电路板有漏水腐蚀开路的地方。加湿器在水雾环境里工作,电路板遭腐蚀是常有的事。如果有50V电压,则需测量振荡管be结电压。用导线将缺水检测干簧管闭合或缺水探针与电源挂通,此时调整雾量电位器be结电压能在0.6V左右变化。没有此电压说明偏置电路开路,多是电路板上的可调电阻损坏开路或接触不良,此可调电阻的故障率很高。这里还要强调一点,就是振荡管be结击穿也会造成无偏置电压,所以确定振荡管良好是进行这一步检查的前提。

在检查并排除上述故障后,可用示波器观察振荡管发射极波形,应有0.65MHZ约20V的振荡波形。在观察过程中把换能器被脱开的引线接触一下原焊点,振荡波形立刻发生变化,频率将谐振在1.7MHZ。如果振荡频率无变化说明换能器失效,与换能器串联的47n耦合电容失效也会造成这种现象。失效的换能器一般表面金属膜已经开裂或剥落,还有的压电陶瓷片已经破碎。外型完好但确已失效的换能器也有。换能器背面有两根引线,外圈与表面一体常用黑线或黄线,要接与电源相连的一点,中心引线常用红线,接偶合电容一点。经上述检修后加水试机能看到换能器表面的水被激起水柱和雾化效果。

有雾但雾小,首先检查换能器是否干净,换能器在使用一段时间后表面会凝结一层水垢,需拆下换能器进行清理。如清理后出雾仍然很小就是换能器性能不良,需更换换能器。如果手头没有配件,对采用变压器供电的机型可在整流桥后并联一个470Uf/63V的电解电容,以提高电源供电效率而增加雾量。

超声波发生器电源控制电路

超声波发生器电源控制电路信息发布时间:(2008年8月7日22:02:40 ) 发布者IP地址: 信息详细内容: 第60324篇:基于PWM大功率超声波电源的设计发布时间:2006年12月30日点击次数:120 来源:电子设计应用作者:内蒙古科技大学机械工程学院苏凤岐汪建新孙建平摘要:本文详细介绍了为驱动磁滞伸缩换能器而设计的一种频率、功率可调式大功率超声波电源,该电源采用由IGBT构成的全桥式逆变主电路,实现了逆变降压和输出电压调控。控制电路以脉宽调制电路为核心,通过给定信号和反馈信号电压的比较,获得宽度可变的脉冲信号,调节电源的输出电压,并实现对电源的闭环控制。关键词:IGBT;波形发生器;超声换能器;脉宽调制引言近年来,随着全控制型电子器件和PWM技术的迅速发展,功率超声的应用及其驱动电源的开发已成为热点研究领域之一。本文介绍的高频换能器驱动电源,采用全桥移相式串联电路拓扑,以单片脉宽调制电路为核心、IGBT功率管为功率开关器件,实现了大功率输出。它具有效率高、性能稳定、体积小、质量轻和调节方便等优点。超声波电源的设计超声波电源的组成及原理框图逆变式超声波电源主要由主电路和控制电路两部分组成,其基本原理框图如图1所示。图1超声波发生器原理框图主电路是将电能从电网传递给负载的电路,其主要作用是减小变压器体积和改善电源的动态品质。控制电路则主要为逆变主电路提供开关脉冲信号,驱动逆变主电路工作,并借助反馈电路和给定电路来实现对逆变器的闭环控制。逆变主电路逆变主电路包括输入整流滤波、逆变器和输出滤波三个主要部分,而逆变器则是其核心部件。逆变器本设计采用的逆变电路为全桥式逆变电路,其优点是:适用于大功率输出,主变压器只需一个原边绕组,通过正、反向的电压得到正、反向的磁通。因此,变压器铁芯和绕组得到最佳利用,使效率得到提高。另外,功率开关管在正常运行情况下,最大的反向电压不会超过电源电压,4个能量恢复二极管能消除一部分由漏感产生的瞬时电压,无须设置能量恢复绕组,反激能量 便得到恢复利用。在全桥式逆变电路中,采用IGBT作为大功率开关器件。IGBT管构成的逆变器的电路原理图如图2所示。图2桥式变换电路图交流电经桥式整流器而获得直流电压,并经C0滤波,变成平滑的直流电压V+。该电压加在IGBT功率管Tr1、Tr2、Tr3、Tr4组成的逆变桥上。当Tr1、Tr2、Tr3、Tr4都截止时,中频变压器T 原边线圈绕组T1p两端的电压U1=0。给Tr1、Tr3触发脉冲,这两个功率管导通, Tr2、Tr4截止时, 此时中频变压器T原边线圈绕组T1p两端的电压U1=V+,流经变压器原边线圈绕组T1p的电流方向由下至上。当Tr1、Tr3截止, Tr2、Tr4导通时, 此时中频变压器T原边线圈绕组T1p两端的电压U1=-V+,变压器原边线圈绕组T1p电流的方向为由上至下。由此可见,通过Tr1、Tr3和Tr2、Tr4的交替导通和关断,也就是交替驱动Tr1、Tr3和Tr2、Tr4, 中频变压器T的二次侧即得到矩形波交流输出,实现了直流变交流的过程。T r1, Tr2、Tr3, Tr4的通断受控于电子控制电路,其每秒钟驱动IGBT的次数决定了电源的工作频率。中频变压器在逆变器部分, 中频变压器的作用是实现电压变换,功率传递以及输入、输出之间的隔离。由于中频变压器的工作频率较高,随着频率的增大,铁芯的铁损将成倍增加。为了减少其铁损需选用厚度极薄的硅钢片,这显然是很不经济的,因而选用高导磁合金材料的铁氧体磁芯。铁氧体磁芯的规格可根据输出功率及其效率来确定,则磁芯有效截面积Ae、总磁感应强度增量△B也就确定。根据公式1,可计算出中频变压器的原边绕组匝数。 (1) 其中,Np为变压器原边绕组匝数,U1为变压器绕组电压,△B为总磁感应强度增量,Ton为最大导通时间。控制电路控制电路主要由电子控制电路和驱动电路构成,而电子控制电路又包括时序控制电路和脉宽调制电路。其中,脉宽调制电路是整个超声电源控制系统的核心,它与控制系统中的其它电路都有直接联系,其主要作用是将电压给定信号和电压 反馈信号进行比较放大,根据给定值与反馈值的差值,输出相应宽度的脉冲信号,以调整电源输出电压的大小。通常采用定频率调脉宽的PWM方式来达到换能器所需的各种特性控制。脉宽调制电路还有欠压、过压、过流等保护功能,封锁输出脉冲,使电源停止输出。另外,脉宽调制电路还具有软启动、死区设定等功能。脉宽调制电路本设计采用SG3525A作为电源的PWM芯片。该芯片使用简单,只需要外接少量电阻电容,即可构成所需的脉宽调制电路。如图3所示,芯片内部主要由误差放大器N1、比较器N2、振荡器、分相器和触发器等组成。图3 脉宽调制电路图给定电压Ug和反馈电压Uf分别接至误差放大器N1的同相端和反相端,N1 端的输出电压UN1接至比较器N2的反相输入端,同时,振荡器产生的三角波信号UN2,接至N2的同相输入端。误差放大器的输出与锯齿波电压在比较器中进行比较,从而在比较器的输出端输出一个随误差放大器输出电压的高低而改变脉宽的方波脉冲。再将此方波脉冲送或非门的一个输入端,或非门另三个输入端分别为触发器、振荡锯齿波、欠压

超声波加湿器电路图

超声波加湿器电路图 超声换能器一工作就使最底层的一片压电陶瓷片某一处或多处振裂,即使更换新片也无济于事,而其它五块却无任何问题,试再次更换新的仍是最底面与铁柱相接触的那一片瞬间产生几道裂纹,再次开关机裂纹不再扩大,但肯定会影响使用寿命,因为已经坏掉了几个,寿命一般只能用一个月左右,真是纳闷至极,不知谁能解释这个问题,请回复,在此深表感谢。对此厂家也没能作出一个合适的解释,希望专家们多多指教。 超声波换能器常见问题:超声波振子受潮,可以用兆欧表检查与换能器相连接的插头,其中2脚为超声波换能器的正极,3脚是换能器的负极而且与换能器的外壳相连。检查,2 3 脚间的绝缘电阻值就可以判断基本情况,一般要求绝缘电阻大于30兆欧以上。如果达不到这个绝缘电阻值,一般是换能器受潮,可以把换能器整体(不包括喷塑外壳)放进烘箱设定100 ℃左右烘干3小时或者使用电吹风去潮至阻值正常为止。换能器振子打火,陶瓷材料碎裂,可以用肉眼和兆欧表结合检查,一般作为应急处理的措施,可以把个别损坏的振子断开,不会影响到别的振子正常使用。 振子脱胶,我们的换能器是采用胶结,螺钉紧固双重保证工艺,在一般情况下不会出现这种情况,由于螺钉的作用,振子脱胶后不会从振动面上落下,一般的判断方法是用手轻摇振子的尾部,仔细观察振动面的胶水情况做出判断。一般振子出现脱胶以后超声波电源输出的功率正常,但是由于振子与振动面连接不好,振动面的振动效果不好,长时间后可能会烧坏振子。振子脱胶的处理方法是比较麻烦的,一般情况只能送回生产厂家解决。避免振子脱胶最有效的方法是平时使用中注意不撞击振动面。振动面穿孔,一般换能器满负荷使用年以后可能会出现振动面穿孔的情况,这是由于振动面的不锈钢板长时间高频振动疲劳所至,振动面穿孔说明换能器的使用寿命已经到了,一般只能更换。 超声波加湿器电路图 加湿器在冬季取暖的北方越来越受到欢迎,维修量也随之增加。本文提供几种常见机型电路图并就其基本原理和维修方法介绍如下: 加湿器基本结构如图一所示,由电源电路、控制电路、振荡电路与风机和换能器(压电陶瓷片)组成。电源部分有两种供电方式,一种是变压器降压整流滤波后为振荡电路供电,如图二ZS2-45型。因变压器过载能力强而被广泛机型采用。另一种是由开关电源供电,特点是重量明显减小,电源效率高,如图三半球牌CJ-380D。 f |+|&u _ Y f 控制电路包括缺水检测、缺水指示和雾量调整电路。缺水检测有两种方式,一是干簧管配合漂浮磁环检测方式,目前大多机型都采用此方式。如图四桑普SC 25A型,不缺水时包在泡沫塑料中的磁环被水漂浮起来,磁场使干簧管常开触点闭合,接通电源给振荡管提供偏置,振荡电路开始工作。当缺水时随着水面下降磁环离开干簧管受控区,干簧管触点释放,振荡管失去偏置而停振,加湿器处于待机状态。另一种是水面探针检测方式,如图五琦丽牌加湿器。加湿器的振荡管集电极是直接固定在换能片金属框架上的(是很好的水冷散热片)。因振荡管集电极是电源正极,所以水和探针为振荡管提供了偏置通路。当水面降到离开探针时,偏置通路被断开,加湿器进入待机状态。缺水指示都采用发光二极管点亮来指示,图六康福尔SPS-818和图三半球牌CJ-380D是通过PNP三极管在干簧管断开后基极处于低电位而导通点亮发光二极管的。有的机型则没有缺水指示。b o R L/s c o q$A'Z 雾量调整电路在所有的加湿器电路中都是通过调整面板上设置的电位器(起可调电阻作用)来调节振荡管的偏置实现的,这部分电路与缺水检查电路是串联的。为确保振荡管不会因偏置过高而损坏,电源电压都经过电阻分压和一个可调电阻压降后提供给雾量调整电位器的。经调整后的偏置电压通过电感电阻加到振荡管基极,使振荡管能在截至状态和最强振荡状态之间变化。9? L;y5@7Z y,R q F W q

超声波收发电路大全

40kHZ超声波发射电路(1) 40kHZ超声波发射电路之一,由F1~F3三门振荡器在F3的输出为40kHZ方波,工作频率主要由C1、R1和RP决定,用RP可调电阻来调节频率。F3的输出激励换能器T40-16的一端和反向器F4,F4输出激励换能器T40-16的另一端,因此,加入F4使激励电压提高了一倍。电容C3、C2平衡F3和F4的输出,使波形稳定。电路中反向器F1~F4用CC4069六反向器中的四个反向器,剩余两个不用(输入端应接地)。电源用9V叠层电池。测量F3输出频率应为40kHZ±2kHZ,否则应调节RP。发射超声波信号大于8m。 40kHZ超声波发射电路(2) 40kHZ超声波发射电路之二,电路中晶体管VT1、VT2组成强反馈稳频振荡器,振荡频率等于超声波换能器T40-16的共振频率。T40-16是反馈耦合元件,对于电路来说又是输出换能器。T40-16两端的振荡波形近似于方波,电压振幅接近电源电压。S是电源开关,按一下S,便能驱动T40-16发射出一串40kHZ超声波信号。电路工作电压9V,工作电流约25mA。发射超声波信号大于8m。电路不需调试即可工作。 40kHZ超声波发射电路(3)

40kHZ超声波发射电路之三,由VT1、VT2组成正反馈回授振荡器。电路的振荡频率决定于反馈元件的T40-16,其谐振频率为 40kHZ±2kHZ。频率稳定性好,不需作任何调整,并由T40-16作为换能器发出40kHZ的超声波信号。电感L1与电容C2调谐在40kHZ 起作谐振作用。本电路适应电压较宽(3~12V),且频率不变。电感采用固定式,电感量5.1mH。整机工作电流约25mA。发射超声波信号大于8m。 40kHZ超声波发射电路(4) 40kHZ超声波发射电路之四,它主要由四与非门电路CC4011完成振荡及驱动功能,通过超声换能器T40-16辐射出超声波去控制接收机。其中门YF1与门YF2组成可控振荡器,当S按下时,振荡器起振,调整RP改变振荡频率,应为40kHZ。振荡信号分别控制由YF4、YF3组成的差相驱动器工作,当YF3输出高电平时,YF4一定输出低电平;YF3输出低电平时,YF4输出高电平。此电平控制T40-16换能器发出40kHZ超声波。电路中YF1~YF4采用高速CMOS电路74HC00四与非门电路,该电路特点是输出驱动电流大(大于15mA),效率高等。电路工作电压9V,工作电流大于35mA,发射超声波信号大于10m。 40kHZ超声波发射电路(5)

超声波加湿器工作原理

超声波加湿器雾化工作原理及特点 超声波雾化原理:利用压电陶瓷所固有超声波振荡特点,通过一定的振荡电路手段与压电陶瓷固有振荡频率产生共振,就能直接将与压电陶瓷接触的液体雾化成1--3μm的微小颗粒。 超声波加湿器其原理是,电路超声波振荡,传输到压电陶瓷振子表面,压电陶瓷振子会产生轴向机械共振变化,这种机械共振变化再传输到与其接触的液体,使液体表面产生隆起,并在隆起的周围发生空化作用,由这种空化作用产生的冲击波将以振子的振动频率不断反复,使液体表面产生有限振幅的表面张力波。这种张力波的波头飞散,使液体雾化,同时产生大量的负离子。 压电陶瓷粉料:压电陶瓷主要由锆钛酸铅(PZT)所组成, 在氧化锆(ZrO2)、氧化铅 (PbO)及氧化钛(TiO2)等的粉末原料中,按一定比例适当添加微量的添加物后,由多道加工程序完成陶瓷粉料制作,再利用油压机使之压缩成各种规格形状,成型后在1350 ℃ 左右温度下进行烧结,所得的成品,再以电镀的方法或者不锈钢贴片法完成电极极化工作后,就是压电陶瓷晶片成品。 雾化单元与雾化量:由于其单独成型的压电陶瓷振荡频率是固有的,因此,只能产生一个震荡冲击波。如果需要增加雾化量,只可采用多组并联同时工作的方法来实现。以现有技术考虑压电陶瓷寿命,每一单元振子功率为0.25W,雾化量为0.3L。由于液体溶液表面张力不同,各种液体的雾化量也不完全相同,相对液体表面张力越大,雾化量越小,反之则越大。液体内所含杂质不同,对设备的使用寿命、雾化效果、保养周期都有一定的影响,以水为例,当水中钙、镁、矽酸含量高时,各种加湿方法在一定程度上都会受到影响,影响加湿效率,甚至会造成设备损坏,再超声波加湿中,水中钙、镁、矽酸含量高时,会造成雾化

超声波发射电路设计

中北大学 课程设计说明书 学生姓名:杨胜华学号:0805014137 学院:信息与通信工程学院 专业:电子信息科学与技术 题目:超声波发射电路设计 指导教师:程耀瑜职称: 教授 李文强职称:讲师 2011 年 1 月 7 日 中北大学

课程设计任务书 2010/2011学年第一学期 学院:信息与通信工程学院 专业:电子信息科学与技术 学生姓名:杨胜华学号:0805014137 课程设计题目:超声波发射电路设计 起迄日期:12月26日~1月7日 课程设计地点:中北大学 指导教师:程耀瑜,李文强 系主任:程耀瑜 下达任务书日期: 2010 年 12 月 26 日 课程设计任务书

课程设计任务书

目录

一.绪论----------------------------------------------------------------1页 1.1课程设计的目的及意义-------------------------------------1页 1.2 超声波发射电路的设计思路------------------------------3页 1.3 课程设计的任务及要求------------------------------------ 3页二.课程的方案设计与选取---------------------------------------- 4页 2.1 课程的方案设计--------------------------------------------- 4页 2.2 课程的方案选取--------------------------------------------- 6页三.系统的硬件结构------------------------------------------------- 6页 3.1 触发脉冲产生电路------------------------------------------ 7页 3.2发射脉冲产生电路------------------------------------------- 8页 3.3 换能器部分--------------------------------------------------- 9页四.Protel 99 SE 简介及原理图绘制 4.1Protel 99 SE 相关介绍及原理图绘制--------------------11页五.总结----------------------------------------------------------------12页六.参考文献----------------------------------------------------------14页附录一:超声波发射电路仿真-------------------------------------15页附录二:超声波发射电路原理图----------------------------------17页 绪论

超声波加湿器电路图锦集

超声波加湿器电路图经典电路 设备维修 超声换能器一工作就使最底层的一片压电陶瓷片某一处或多处振裂,即使更换新片也无济于事,而其它五块却无任何问题,试再次更换新的仍是最底面与铁柱相接触的那一片瞬间产生几道裂纹,再次开关机裂纹不再扩大,但肯定会影响使用寿命,因为已经坏掉了几个,寿命一般只能用一个月左右,真是纳闷至极,不知谁能解释这个问题,请回复,在此深表感谢。对此厂家也没能作出一个合适的解释,希望专家们多多指教。 超声波换能器常见问题:超声波振子受潮,可以用兆欧表检查与换能器相连接的插头,其中2脚为超声波换能器的正极,3脚是换能器的负极而且与换能器的外壳相连。检查,2 3 脚间的绝缘电阻值就可以判断基本情况,一般要求绝缘电阻大于30兆欧以上。如果达不到这个绝缘电阻值,一般是换能器受潮,可以把换能器整体(不包括喷塑外壳)放进烘箱设定100 ℃左右烘干3小时或者使用电吹风去潮至阻值正常为止。换能器振子打火,陶瓷材料碎裂,可以用肉眼和兆欧表结合检查,一般作为应急处理的措施,可以把个别损坏的振子断开,不会影响 到别的振子正常使用。 振子脱胶,我们的换能器是采用胶结,螺钉紧固双重保证工艺,在一般情况下不会出现这种情况,由于螺钉的作用,振子脱胶后不会从振动面上落下,一般的判断方法是用手轻摇振子的尾部,仔细观察振动面的胶水情况做

出判断。一般振子出现脱胶以后超声波电源输出的功率正常,但是由于振子与振动面连接不好,振动面的振动效果不好,长时间后可能会烧坏振子。振子脱胶的处理方法是比较麻烦的,一般情况只能送回生产厂家解决。避免振子脱胶最有效的方法是平时使用中注意不撞击振动面。振动面穿孔,一般换能器满负荷使用年以后可能会出现振动面穿孔的情况,这是由于振动面的不锈钢板长时间高频振动疲劳所至,振动面穿孔说明换能器的使用寿命已经 到了,一般只能更换。 超声波加湿器电路图 加湿器在冬季取暖的北方越来越受到欢迎,维修量也随之增加。本文提供几种常见机型电路图并就其基本原理和维修方法介绍如下:&qH;P [ g-b8b$@!r#g)N 加湿器基本结构如图一所示,由电源电路、控制电路、振荡电路与风机和换能器(压电陶瓷片)组成。电源部分有两种供电方式,一种是变压器降压整流滤波后为振荡电路供电,如图二ZS2-45型。因变压器过载能力强而被广泛机型采用。另一种是由开关电源供电,特点是重量明显减小,电源效率高,如图三半球牌CJ-380D。 f |+|&u _ Y f 控制电路包括缺水检测、缺水指示和雾量调整电路。缺水检测有两种方式,一是干簧管配合漂浮磁

各种加湿器工作原理简介

各种加湿器工作原理、简介2014-12-08暖通南社 1、电极式加湿器

工作原理:自来水一般都有一定的导电率,把电极片插入自来水中,并与交流电连接在一起,由于水导电,电流会从电极之间的水中通过,传递给水的电能全部转化热能,使水加热产生蒸汽。电极式蒸汽加湿器产生的蒸汽压力较低,蒸汽不含矿物质,没有细菌及白粉。 电极式加湿器是利用三根铜棒或不锈钢棒插入盛水的容器中做电极。将电极和三相电源接通之后,就有电流从水中通过。在这里水是电阻,因而能被加热蒸发成蒸汽。除三相电外,也有使用两根电极的单相电极式加湿器。 由于水位越高,导电面积越大,通过电流也越强,因而发热量也越大。所以,产生的蒸汽量多少可以用水位高低来调节。电极式加湿器的功率应根据所需蒸汽大小,按下式确定(考虑结垢影响可设安全系数)。

电极式加湿器结构紧凑,而且加湿量也容易控制,所以用的较多。它的缺点是耗电量较大,电极上易积水垢和腐蚀,因此,宜用在小型空调系统中。 2、电热式加湿器 工作原理: 电热式加湿器是根据电流通过电阻产生热,电能转换成热能的原理,电加热管浸没在水中,电热管产生热量,从而使水沸腾变成水蒸汽,电热式加湿器创造一个湿度环境经过三个过程: 1、产生蒸汽:通过电加热使水沸腾产生蒸汽。 2、控制:通过加湿器配有的微机控制蒸汽的产生及供应。 3、传播:通过蒸汽扩散装置把水蒸汽送入空气处理机或风管内的气流。 这三个过程的部件作为一个系统共同工作构成了一台完整的电热式加湿器。 电热式加湿器是用管状电热元件置于水盘中做成的。元件通电之后便能将水加热而产生蒸汽。补水靠浮球阀自动控制,以免发生断水空烧现象。此种电热式加湿器的加湿量大小取决于水温和水表面积。 3、干蒸汽加湿器

超声波测距电路图

超声波测距电路图 超声波测距电路原理和制作 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。 二、超声波测距原理 1、超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。

2、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振 来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 图1 超声波传感器结构 这就是所谓的时间差测距法。 < 三、超声波测距系统的电路设计 图2 超声波测距电路原理图

超声波发射和接收电路

超声波发射和接收电路 在本设计中,我们设计的发射和接收电路都是分别只有一个,通过继电器进行顺、逆流方向收发电路的切换,这样做既降低了成本,又消除了非对称性电路误差,且发射脉冲通过使用单独的继电器分别对发射和接收换能器进行控制,使换能器的发射和接收电路完全隔离,消除了发射信号对接收的影响。 4.2.1超声波发射电路 接收信号的大小和好坏直接取决于发射传感器的发射信号,由于使用收发共用型超声换能器,所以除了选用性能优良的超声波传感器外,发射电路和前级信号接收电路至关重要,它决定着整个系统的灵敏度和精度。 超声波测量最常用的换能器发射电路大体可分为三种类型:窄脉冲触发的宽带激励电路、调制脉冲谐振电路和单脉冲发射电路。从早先国内进口的日本超声波流量计来看,基本都采用的是窄脉冲驱动电路。这种电路在设计上一般是用一个极快速的电子开关通过对储能元件的放电来实现,这些开关器件通常为晶闸管或大功率场效应管(MOSFET)。由于需要输出激励信号的瞬时功率大,因此开关器件必须由直流高压供电,一般要达到几十到一百伏以上,这在电池供电的系统中无法实现;此外,开关瞬间会产生高压脉冲,对整个电路的抗干扰设计不利。而脉冲谐振电路设计起来比较简单,其基本方法是用振荡电路产生一个高频振荡,经过幅值和功率放大后接至换能器,使换能器发出超声波,确保高频振荡的频率与换能器固有频率一致,则可获得超声发射的最佳效果。谐振电路能够使用较低的电压产生较强的超声波发射,适合使用电池供电的系统,而且它能精确地控制发射信号,效率高。 在本设计中,超声发射电路采用了连续脉冲发射电路,它由脉冲发生、放大电路构成,具体电路连接如图17所示。单片机发出的方波信号经三极管放大和变压器升压,达到足够功率后推动换能器超声超声波,这里变压器的主要用途是升高脉冲电压和使振荡器的输出阻抗与负载(超声换能器)阻抗匹配,变压器与探头接成单端激励方式。 图17超声波发射电路 4.3.2 超声波接收电路

加湿器原理汇总

1、等焓加湿器:即利用水吸收空气的显热进行蒸发加湿,其在焓、湿图上的变化为近似等焓过程。 2、等温加湿器:即利用热能将液态水转化成蒸汽与空气混合进行加湿,其在焓、湿图上的变化为近似等温过程。 加湿器原理汇总 (1)干蒸汽加湿器工作原理:接通蒸汽源,饱 入蒸发室;由于蒸发室断面突然增大,使蒸汽减速,加之惯性作用及折流板的阻挡,蒸汽中所含的凝结水被分离出来,经蒸发室底部的冷凝水出口排出;分离出水份的蒸汽由分离室顶部进入已被预热的干燥室,干燥室内压力下降,汽化温度降低,残留于蒸汽中的水份再被加热汽化,从而完成了对饱和蒸汽的干燥处理,完成了对饱和蒸汽的汽水分离;干燥的蒸汽经调节阀进入喷管,从带有消声金属网喷孔中喷出,实现了对空气的加湿处理。特点:它是水气分离和热作用的结合,利用饱和蒸汽热量加热使喷出的蒸汽为干蒸汽,基本上是一种等温加湿。 (2)电极式加湿器工作原理:当水中溶解有微量 当把电极插入这种水中时,水就会像普通电阻一样,自身发热,这样就会产生蒸汽,从而对空气加湿。电极式加湿器通过控制加湿罐中水位的高低,控制水的导电发热状态,进而控制蒸汽加湿量的多少。 电极式加湿由于水作为电路的一部分,因而无水时即无电流,克服了电热式无水空烧不安全的缺点。 与电极式相似的加湿设备还有电热式加湿器,它 蒸汽喷嘴把蒸汽喷进加湿空间,达到加湿的目的。 (3)红外线加湿红外线加湿为洁净加湿,适用于有洁净要求的空调系统。它属强制蒸发加湿, 2200 ℃加热的红外灯作热源加热水箱中的水,使表 面的水迅速蒸发产生过热蒸汽对空气进行加湿,其优点有加湿速度快、动作灵敏、易控制等。因为发生的是过热蒸汽,对于加湿比较困难的低湿场合仍能得到很好的效果,由于加热温度达2200℃,为无菌型加湿,对加湿用水质有特殊要求,无需分布装置可利用自然对流对空气进行加湿。 (4)喷淋加湿工作原理:利用喷淋泵将水泵至喷 交换,达到加湿目的。喷淋加湿除具有加湿功能外,还能吸附空气中的悬浮物,具有加湿、过滤双重效果。 (5)高压喷雾加湿器高压喷雾加湿与喷淋加湿原理相似,将自来水经过加湿器主机增压后,由管路输 并在空气中雾化。被喷出的水雾粒子与空气进行热湿交换,达到蒸发并加湿空气的目的。高压喷雾加湿由于提高了喷嘴处水压,所以其雾化效果更好,无需通风系统配合即可直接用于空气加湿。但加湿过程中会有大量水份析出,水中的矿物质积聚在物体表面会产生白色粉尘污染,长期使用易导致细菌繁殖,一般使用在要求不高的加湿场合。 (6)气水混合加湿器:是将自来水和压缩空气由管 出,利用空化效应使水雾化达到加湿目的。这种加湿方式与高压喷雾加湿相比雾化效果更好,具有造价较低、高效节能、使用方便可任意组合、易于管理、加湿洁净等优点。尤其是加湿洁净,因其输送水雾的压缩空气来自于压缩循环,达到的温度细菌不能生存;虽经雾化但未被空气吸收的水绝不会再次用于雾化;每次加湿结束时系统自动激活喷嘴排空循环,利用压缩空气将与空气、水流接触的部件彻底吹干,从而消除偶然沾染生物得以存活的条件。 (7)超声波加湿器工作原理:超声波加湿是利用 电能转换成机械能,产生1.7MH Z 超声波,超声波能由水底向水表面扩散,水表面在空化效应作用下,产生3—5 微米水雾粒子与流通的空气进行热湿交换,达到等焓加湿空气的目的。 但是,超声波加湿使用不纯的水,会造成细菌繁殖,“白粉”污染等后果,使长期生活在加湿环境中的人罹患所谓“加湿器病”,而且由于喷入空气中的水雾需要吸收空气显热气化,因而造成空气温度降低。因此,现在规定使用超声波加湿给水必须是洁净的软化水、蒸馏水或纯水。 (8)湿膜式加湿器:通过供水管路或循环水系统 流,从而将湿膜表面润湿,当空气穿过潮湿的湿膜时,其湿度增加,温度下降,这一加湿过程为等焓加湿过程。在这一过程中,湿膜上的少量水被蒸发掉,但不

高压微雾加湿器原理及说明

大型高压微雾加湿器最显著优点就是加湿量大、加湿效率高、雾细、节能、卫生、可靠等,能够有效的加湿、降温、除尘、消除静电等功能。 型号:AHW系列类别:高压微雾加湿器--加湿系统品牌:百力拓强 主机尺寸:660*700*735 电压:380V 功率:2.5KW 高压微雾加湿器系统说明: 高压微雾加湿设备是特别针对大型车间在投资传统加湿设备,面临的投资大、运行成本高、维护工作量大等问题,引进国际先进技术,经过科学的改进而研制生产的,在系统的稳定性和降低能耗方面取得了突破性进展,并成功的进行了多个系统集成,输入电源检测保护系统、恒压供水系统、断水保护系统、湿度自动控制系统、电机保护系统、自动供水、排水系统、自动卸压系统、液压油更换系统等。使系统整体更可靠,更安全。特别适合于纺织、卷烟、电子、工业除尘、酿造、印刷等产业的大空间整体或局部加湿,以及空调段加湿。 高压微雾加湿器工作原理: 高压微雾加湿器是我公司引进国外先进的技术,结合我国国情开发、研制和生产的具有高科技含量的加湿系统,它利用柱塞泵将经过超强过滤器净化处理过的水加压至30-70kg/cm2,通过高压管路将加压的水输送到“超微细”喷嘴雾化,并高速旋转,以1~15μm的超微雾粒子喷射到整个空间,超微雾粒子在空气中吸收热量,汽化、蒸发,空间湿度增大,空气的温度降低。 室内直接加湿:

水源最好是纯水或者软化水(可避免粉尘污染环境),经泵站单元以高压送至雾化喷咀阵列,喷咀安装在室内,喷出的细雾在室内空气中的气化效率取决于室内的温度湿度和风速。控制单元通过湿度传感器测量出相对湿度从而调节喷雾压力和流量如需要也可以用电磁阀来调整雾化喷咀阵列。特别适用于烟厂的大范围加湿;纺织厂高粉尘度条件下加湿;汽车涂装线大空间条件下加湿;大型电子厂房的大空间加湿;发电厂厂房内的加湿;焊接车间内的加湿;炼钢厂厂房内的加湿;酿造行业高温高湿环境条件的加湿和降温;冷库气调库内的加湿。

超声波发生器的整体电路5

超声波发生器的整体电路基本由三部分组成,信号发生部分,功率放大部分,换能器和换能器的的匹配电路组成。信号发生电路可由RC 振荡电路、555 定时器构成的多谐波振荡器分别产生正弦波和矩形波两种,并且依据不同的原理可以实现变频。功率放大部分,由选定的功率放大器或模块实现功率放大,用来达到驱动功率放大器的功率。换能器是用来实现能量转化的,在两种电路中的用法和作用完全相同,都是在匹配电路的作用下实现能量转化的最大化。 5.1 变频RC 振荡整体电路的简述。 变频RC振荡整体电路由三部分部分组成,第一部分是变频RC振荡电路的发生部分,振变频RC振荡电路是用来产生一定频率和一定幅值正弦波的电路,它不需要外接输入信号,输出端就有信号输出。它的基本构思是在放大电路中人为地介入正反馈电路来产生稳定的振荡。根据选择电阻的不同来控制不同的频率,它的基本组成是RC振荡电路,运算放大器等组成 第二部分是功率放大部分。信号发生电路中输出的信号功率较小,不足以带动换能器工作,在逐级信号传递过程中,信号功率因太小,易失真和掺入杂波,加上功率放大电路,以满足小功率信号传递的需要。为输出足够大的功率,功率放大电路的输出电压、电流幅度都比较大。功率放大电路工作在大信号工作状态,从能量转换的观点来看,功率放大电路提供给负载的交流功率是在输入交流信号的控制下,将直流电源提供的能量转换成交流能量而来的。 第三部分为换能器和换能器的匹配电路,换能器是超声波发生器的核心器件,其特性参数决定整个设备的性能。超声波换能器就是通过换能器将高频电能转换为机械振动。换能器的特性取决与选材和制作工艺,匹配电路的作用是保证电信号能高效而安全地传输给换能器。 由三部分组成的变频RC 振荡整体电路如下

超声波加湿器工作原理

超声波加湿器工作原理:超声波加湿器是采 加湿器/氧吧/小家电/空气超声波加湿器工作原理:超声波加湿器是采 主要规格 / 特殊功能: 超声波加湿器工作原理:超声波加湿器是采用超声波高频振荡的原理,将水雾化为一至五微米的超微粒子,通过风动装置,将水雾扩散到空气中,从而达到均匀加湿空气的目的。其特点是,加湿强度大,加湿均匀,加湿效率高;节能、省电;超长使用寿命;湿度自动平衡,无水自动保护;兼具医疗雾化、冷敷浴面、清洗首饰等功能。加湿器主要的作用是维持室内空气湿度,如果室内的环境湿度在百分之五十以上时,感冒病毒的成活率极低。 加湿器利用多种方式将水雾化,使居室保持较高的湿度,并产生一定数量的天然负氧离子,可治疗和缓解流感、高血压、气管炎等疾病,并对神经系统、心血管系统和人体的新陈代谢起到一定保护作用。超声波加湿器的用途:水箱中加入食醋,可预防感冒水箱中加消毒药水,为室内清洁消毒水箱中加消炎药接管治疗呼吸道疾病水箱中加入庆大霉素可治疗呼吸道发炎可作为医疗雾化器使用,为咽炎患者带来福音治疗干眼病,医生让母亲用加湿器熏眼睛效果很好水箱中滴入一二滴熏衣草精油提高睡眠质量水箱中加入薄荷精油或花露水有效缓解幼儿鼻塞在水箱中放入板兰根可预防感冒将抗病毒口服液或双黄莲口服液加入水箱中能有效预防流感把口鼻对着加湿器的雾气深呼吸,改善鼻塞口干症状朝向加湿器的出气口对皮肤有镇静补水的功效水箱中加入少许香水玫瑰精油可以香熏敷面膜的时候配上加湿器会吸收更好让加湿器蒸汽轻轻喷在脸上补充水分再擦护肤品家庭用美容器美容效果更好化完彩妆让水雾在脸上喷两下既保湿又定妆给头发喷雾加湿后再打定型水又蓬松又方便加湿器中加少量桔子皮可以为室内加香居室加湿让木质器具不变形,新装修后的房屋,将醋加入加湿器可减轻装修的气味。干燥季节装修时,房内放置加湿器,可防止刚刷的墙面开裂。将敌敌畏稀释加入加湿器,工作一小时后可消灭蟑螂加湿器有清洁首饰的功能烫伤可以用加湿器的喷雾喷,降温止痛。在水箱里放一块海绵或绵制的口罩,可以不产生白色粉尘,在水箱中加入几滴食醋,有效减少水箱中沉积的水碱待熨衣服放在加湿器喷雾口,更方便熨烫。花店用加湿器保鲜;水果店也可用加湿器来保鲜。对电脑屏幕喷雾清除辐射和静电灰尘在水箱中可以放珊瑚、水草之类,可变为观赏的一景切洋葱时,在旁边开加湿器,可避免流眼泪。用加湿器吹信封上的邮票可以保证票面完整可当喷水壶湿润花叶天气干燥,绘图机罢工.我放了一台加湿器,机器好多了. 罐子里的食糖久了不容易拿出来可以用加湿器雾化变软后拿出 超声波加湿器的工作要原理及保养和维护: 1)超声波加湿器是目前市场上的主导产品,具有耗电省,噪音低,加湿明显及产生负氧离子的特点。是世界上一种较为成熟的技术。 工作原理:是利用换能器(也叫震荡片)将电能转化成机械能,产生170 万次/ 秒的高频震荡,将水雾化成≤ 5 μ m 的超微粒子,在通过风动装置扩散到空气当中以增加环境湿度。2)超声波加湿器的保养和维护:北方地区水质较硬,使用一定时间后,换能器、水箱及水槽内会结有水垢,建议每周用专用清洗剂清洗水垢。若条件允许,可使用软化水,如白开水。将清洗

超声波测距电路图

超声波测距电路图超声波测距电路原理和制作 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。 二、超声波测距原理 1、超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。 2、压电式超声波发生器原理

压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 图1 超声波传感器结构 这就是所谓的时间差测距法。< 三、超声波测距系统的电路设计 图2 超声波测距电路原理图 本系统的特点是利用单片机控制超声波的发射和对超声波自发射至接收往返时间的计时,单片机选用8751,经济易用,且片内有4K的ROM,便于编程。电路原理图如图2所示。其中只画出前方测距电路的接线图,左侧和右侧测距电路与前方测距电路相同,故省略之。

超声波加湿原理

超声波加湿器为空气增加湿度,其工作是靠加湿器中的“超声波换能器”器件。该器件是一种“压电陶瓷晶体”,类似压电蜂鸣器中的压电陶瓷片,只是其固有频率比蜂鸣器要高得多,在超声频以上。 当有超声频以上的高频电压加到“换能器”两端时,因“压电效应”,由电振荡变换为机械振荡,其金属片的一端(与水池接触的那一端)将产生超声波,作用于水中,“换能器”附近的水在超声波的作用下沸腾,并在风扇的作用下,通过水箱上的蒸发口,将雾汽吹到空气中,为空气加湿。 那么,加在“换能器”两端的高频电压又是如何产生的呢?上图是北京产亚都YC—D22型超声波加湿器电路(按照实物绘出)。 该电路类似于电视机的行振荡与行扫描电路,只是电视机的行振荡是独立设置的,而加湿器的振荡是靠电路的正反馈形成的。振荡管BU406如同电视机的行管,D5等同于电视机的阻尼二极管.C2、C4、C5(及换能器)为逆程电容.L2等同于电视机的行输出变压器初级线圈。 高频振荡的形成见右图所示的交流等效图。振荡管BU406因电源供电正常、偏置齐全,将导通,有交流电流IC产生,致使L2产生上负下正的自感电势。正反馈电容C3,形成正反馈电压给BU406的b极,使UB406通导加剧,直至饱和。L2在此刻储能,磁芯“吸”足磁能很快达到“磁饱和”。L2磁饱和后,两端自感电势极性反转,变为上正下负,C2也将其正反馈至BU406的b 极,使其迅速截止,L2上的上正下负的自感电势对C2、C4、c5及换能器充电,当电容充到最大值时,L2恰好“泄” 磁完毕,且成为充电后电容器的放电路径,并使L2产生上负下正的自感电势。因此时BU406还处在截止状态,所以,自感电势便通过D5阻尼二极管将磁能回归于电源,一个振荡周期就完成了。

超声波电路设计指导

超声波电路设计指导 1.超声波发射电路 τ 图1 发射电路 T IRFP840 耐压500V以上,额定功率10W以上的场效应管 U1 IR4426 电源电压用12V 注1:若使用IR4427,当注意其输入输出波形不反相,故须正 脉冲输入。 注2:U1极忌长时间导通。在U1与T之间可以插入限流电 阻保护U1,电阻不宜大,否则输出脉冲边沿会变得过缓;在 正常工作状态,U1只在极短时内导通,即使无限流电阻也不 致损坏。 R1 50K~1MΩ电阻取值与两次发射的最小间隔时间有关,间隔越长则回路充 放电时间可越长,R1可以越大。 建议设法取1MΩ,以便减小250V电源的输出电流。 C1 1000pF/1000V 高压瓷片电容 RL 510Ω 简要工作原理如下: 当T截止时,250V电压源通过R1和RL向C1充电。一般认为,持续充电时间大于5倍的回路充放电常数,则C1两端电压能基本达到250V,为驱动超声波发射做好准备。 当T瞬时导通,T、C1和RL构成放电回路。超声波传感器的阻抗约为50Ω,故C1中的电荷被快速释放,在超声波传感器上形成一个负向冲击脉冲,脉冲宽度约为0.5~1.5us。

图2 超声波传感器上信号波形示意2.超声波接收电路 限幅限幅放大检波后级放大比较 或1N60 图3 接收电路 图3中: (1)R1、R2取值一般为100~300Ω,与后级放大器输入阻抗大小有关。 (2)Ci不宜太大,否则超声波发射后电路会有一段时间无法正常接收回波信号,故一般可小于0.1uF; 也不宜太小,否则信号损耗会比较大。 (3)通路上放大器的总增益应大于50dB,大于60dB则更佳。 (4)检波电路时间常数的选取要得当,太大则造成包络展宽,太小则单个回波脉冲会被检测成多个脉冲。可根据超声波工作频率确定,并通过观测检波输出波形加以矫正。 3.脉冲间隔测量电路 请参考并分析ultrasonic.ddb中图纸。 4.声波传导耦合剂 实验中,使用超声波传感器探头探测实验样块。样块与探头的接触面、多个样块层叠时样块之间的接触面,可能因不平整而有空气间隙,影响声波传导,带来较严重的界面衰耗,故建议实验中使用清水在接触面涂抹填充,作为耦合剂,并压实接触面,减小声波传导损耗。 有些同学选择将样块完全浸没在一个盛水容器中。这种做法当十分小心操作,防止将探头完全浸没造成损毁!探头的前部为密封构造,故可局部浸入水中,但后部并不密封。 医学B超常用凡士林作耦合剂,若有条件使用,则效果或许更理想。

超声波加湿器的维修实列及故障原因

摘要:超声波加湿器是我国秋冬季工业生产和家居使用率最高的电器,能调节室内空气,增加湿度,消除静电,消毒除尘,防病健身,滋润皮肤。产品说明书中一般都不带维修电路图,现在着重介绍超声波加湿器电路和维修,供参考。 一、电路和工作原理 整机电路如图1 所示,主要有电源和超声波振荡两部分电路组成。电源由 AC220V 市电通过以场效应管(4N60B) 作振荡的开关稳压电源,输出38V 和12V 两路。其中38V 供超声波振荡电路;12V 供直流电机FA( 风扇) 。图中VR2(5.1k Ω ) 为调节雾化加湿程度控制器,LED1( 红色) 为缺水指示灯( 该家电应注意随时加水) ,LED2 为( 绿色) 加湿指示灯。 该加湿器常见故障是不能加湿,风扇不转,但不能加湿的LED2 绿色指示灯并未亮。 此故障常见为电源供电部分发生故障较多,如Fu(1.6A) 保险管熔断,若管内有严重发黑的痕迹,必有击穿短路现象,要仔细检查D1 ~D4 ,C1 , ZD9 ,Q3 和IC1 、IC2 、D12 、D13 等相关元件。只有检查出故障原因后才能更换上同规格1.6A 保险管通电。其次是超声波振荡Q2(BU406) 换能器件DT 、VT 干簧管、C3 、C4 、C5 等主要元件损坏或性能不良,导致超声波形成电路不能正常工作。另外.虽然缺水指示灯LED1 未亮。但因盛水不足或电路Q1 损坏,电路自动保护,加湿器也不工作。 风扇FA 不能启动。先查供电CT ∥2T5 接插件及12V 电压是否正常,如没有12V 电压,再查D13 、C4 是否击穿。电机本身是否烧坏或其内部有无阻塞现象,可以更换电机或清洗加油。 加湿器使用功效降低。主要是雾化湿气很弱。调节VR2 到最大也不见效,这除了供电不足,超声波振荡电路性能变劣,换能器件DT 性能不良外,还有使用中未及时清除盛水池内水垢及加水水质差等。若有污垢会降低DT 换能作用。加湿器功能下降。 二、维修实例 [ 例1] 使用一年后,功效逐步降低,雾气变弱。 经调节VR2 至最大范围内也无效,更换Q2 ,BU406 也无明显变化,进一步检查电路元件也无明显异常,但发现盛水池内比较脏。换能器件表面及水池底部池壁上都积了一层白色水垢,用洗洁精擦拭多遍将污物彻底清除后安装好再通电,果然有明显效果。 [ 例2] 不能加湿,通电后无显示,风扇不转。 首先检查电源部分,发现又是保险管烧断,但管并不发黑,无明显痕迹。采用电源脱离的方式,接入自备假负载单独检测,并换上一只1.5A 的保险管试通电,

相关文档
最新文档