3函数的基本性质

3函数的基本性质
3函数的基本性质

1.3 函数的基本性质

1.3.1单调性与最大(小)值(一)

课型:新授课

教学目标:

理解增函数、减函数、单调区间、单调性等概念,掌握增(减)函数的证明和判别, 学会运用函数图象理解和研究函数的性质。

教学重点:掌握运用定义或图象进行函数的单调性的证明和判别。

教学难点:理解概念。

教学过程:

一、复习准备:

1.引言:函数是描述事物运动变化规律的数学模型,那么能否发现变化中保持不变的特征呢?

2. 观察下列各个函数的图象,并探讨

下列变化规律:

①随x的增大,y的值有什么变化?

②能否看出函数的最大、最小值?

③函数图象是否具有某种对称性?

3. 画出函数f(x)= x、f(x)= x2的图像。(小结描点法的步骤:列表→描点→连线)

二、讲授新课:

前面学习了函数的概念、表示,接下来我们将学习

1.教学增函数、减函数、单调性、单调区间等概念:

①根据f(x)=x、f(x)=x2(x>0)的图象进行讨论:

随x的增大,函数值怎样变化?当x

1>x

2

时,f(x

1

)与f(x

2

)的大小关系怎

样?

②.一次函数、二次函数和反比例函数,在什么区间函数有怎样的增大或减小的性质?

③定义增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量x1,x2,当x1

④探讨:仿照增函数的定义说出减函数的定义;→区间局部性、取值任意性

⑤定义:如果函数f(x)在某个区间D上是增函数或减函数,就说f(x)在这一区间上具有(严格的)单调性,区间D叫f(x)的单调区间。

⑥讨论:图像如何表示单调增、单调减?

所有函数是不是都具有单调性?单调性与单调区间有什么关系?

⑦一次函数、二次函数、反比例函数的单调性

2.教学增函数、减函数的证明:

例1.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?

1、例题讲解

例1(P29例1)如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?

例2:(P29例2)物理学中的玻意耳定律k

p

V

=(k为正常数),告诉我们对于一定量的气体,当其体积V增大时,压强p如何变化?试用单调性定义证明.

例3.判断函数

2

1

y

x

=

-

在区间[2,6] 上的单调性

三、巩固练习:

1.求证f(x)=x+

x

1的(0,1)上是减函数,在[1,+∞]上是增函数。

2.判断f(x)=|x|、y=x3的单调性并证明。

3.讨论f(x)=x2-2x的单调性。推广:二次函数的单调性

4.课堂作业:书P32、2、3、4、5题。

四、小结:

比较函数值的大小问题,运用比较法而变成判别代数式的符号。

判断单调性的步骤:设x

1、x

2

∈给定区间,且x

1

2

;→计算f(x

1

)-f(x

2

)至

最简→判断差的符号→下结论。

五、作业:P39、1—3题

课后记:

课题:单调性与最大(小)值(二)

课型:新授课

教学目标:

更进一步理解函数单调性的概念及证明方法、判别方法,理解函数的最大(小)值及其几何意义.

教学重点:熟练求函数的最大(小)值。

教学难点:理解函数的最大(小)值,能利用单调性求函数的最大(小)值。 教学过程:

一、复习准备:

1.指出函数f(x)=ax 2+bx +c (a>0)的单调区间及单调性,并进行证明。

2. f(x)=ax 2+bx +c 的最小值的情况是怎样的?

3.知识回顾:增函数、减函数的定义。

二、讲授新课:

1.教学函数最大(小)值的概念:

① 指出下列函数图象的最高点或最低点,→ 能体现函数值有什么特征? ()23f x x =-+,()23f x x =-+ [1,2]x ∈-;2()21f x x x =++,2()21f x x x =++ [2,2]x ∈-

② 定义最大值:设函数y=f(x)的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有f(x)≤M ;存在x 0∈I ,使得f(x 0) = M . 那么,称M 是函数y=f(x)的最大值(Maximum V alue )

③ 探讨:仿照最大值定义,给出最小值(Minimum Value )的定义.

→ 一些什么方法可以求最大(小)值?(配方法、图象法、单调法) → 试举例说明方法.

2、 例题讲解:

例1(学生自学P30页例3)

例2.(P31例4)求函数21

y x =-在区间[2,6] 上的最大值和最小值.

例3.求函数y x =+

探究:32

y x =-的图象与3y x =的关系?

(解法一:单调法; 解法二:换元法)

三、巩固练习:

1. 求下列函数的最大值和最小值:

(1)25332,[,]22

y x x x =--∈-;

(2)|1||2|y x x =+--

2.一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如右:欲使每天的的营业额最高,应如何定价?(分析变化规律→建立函数模型→求解最大值)

3

、求函数2y x =.

四、小结:

求函数最值的常用方法有:

(1)配方法:即将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的最值.

(2)换元法:通过变量式代换转化为求二次函数在某区间上的最值.

(3)数形结合法:利用函数图象或几何方法求出最值.

五、作业:P39页A 组5、B 组1、2

后记:

课题:奇偶性

课型:新授课

教学要求:理解奇函数、偶函数的概念及几何意义,能熟练判别函数的奇偶性。教学重点:熟练判别函数的奇偶性。

教学难点:理解奇偶性。

教学过程:

一、复习准备:

1.提问:什么叫增函数、减函数?

2.指出f(x)=2x2-1的单调区间及单调性。→变题:|2x2-1|的单调区间

3.对于f(x)=x、f(x)=x2、f(x)=x3、f(x)=x4,分别比较f(x)与f(-x)。

二、讲授新课:

1.教学奇函数、偶函数的概念:

①给出两组图象:()

f x x

=、

1

()

f x

x

=、3

()

f x x

=;2

()

f x x

=、()||

f x x

=.

发现各组图象的共同特征→探究函数解析式在函数值方面的特征

②定义偶函数:一般地,对于函数()

f x定义域内的任意一个x,都有()()

f x f x

-=,那么函数()

f x叫偶函数(even function).

③探究:仿照偶函数的定义给出奇函数(odd function)的定义.

(如果对于函数定义域内的任意一个x,都有()()

f x f x

-=-),那么函数()

f x叫奇函数。

④讨论:定义域特点?与单调性定义的区别?图象特点?(定义域关于原点对称;整体性)

⑤ 练习:已知f(x)是偶函数,它在y 轴左边的图像如图所示,画出它右边的图像。

(假如f(x)是奇函数呢?)

1. 教学奇偶性判别:

例1.判断下列函数是否是偶函数.

(1)2()[1,2]f x x x =∈-

(2)32

()1

x x f x x -=-

例2.判断下列函数的奇偶性

(1)4()f x x = (2)5()f x x = (3)1()f x x x =+ (4)21()f x x

=. (5) 2211(0)2()11(0)2

x x g x x x ?+>??=??--

4、教学奇偶性与单调性综合的问题:

①出示例:已知f(x)是奇函数,且在(0,+∞)上是减函数,问f(x)的(-∞,0)上的单调性。

②找一例子说明判别结果(特例法) → 按定义求单调性,注意利用奇偶性和已知单调区间上的单调性。 (小结:设→转化→单调应用→奇偶应用→结论) ③变题:已知f(x)是偶函数,且在[a,b]上是减函数,试判断f(x)在[-b,-a]上的单调性,并给出证明。

三、巩固练习:

1、判别下列函数的奇偶性:

f(x)=|x +1|+|x -1| 、f(x)=23

x 、f(x)=x +x 1、 f(x)=21x x +、f(x)=x 2,x ∈[-2,3]

2.设f(x)=ax 7+bx +5,已知f(-7)=-17,求f(7)的值。

3.已知f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=11+x ,求f(x)、g(x)。

4.已知函数f(x),对任意实数x 、y ,都有f(x+y)=f(x)+f(y),试判别f(x)的奇偶性。(特值代入)

5.已知f(x)是奇函数,且在[3,7]是增函数且最大值为4,那么f(x)在[-7,-3]上是( )函数,且最 值是 。

四、小结

本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.

五、作业P39页A 组6、B 组3

后记:

课题:函数的基本性质运用

课 型:练习课

教学目标:

掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应用函数的基本性质解决一些问题。

教学重点:掌握函数的基本性质。

教学难点:应用性质解决问题。

教学过程:

一、复习准备:

1.讨论:如何从图象特征上得到奇函数、偶函数、增函数、减函数、最大值、最小值?

2.提问:如何从解析式得到奇函数、偶函数、增函数、减函数、最大值、最小值的定义?

二、教学典型习例:

1.函数性质综合题型:

①出示例1:作出函数y =x 2-2|x|-3的图像,指出单调区间和单调性。

分析作法:利用偶函数性质,先作y 轴右边的,再对称作。→学生作 →口答

→ 思考:y =|x 2-2x -3|的图像的图像如何作?→

②讨论推广:如何由()f x 的图象,得到(||)f x 、|()|f x 的图象?

③出示例2:已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数

分析证法 → 教师板演 → 变式训练

④讨论推广:奇函数或偶函数的单调区间及单调性有何关系?

(偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致)

2. 教学函数性质的应用:

①出示例 :求函数f(x)=x +x

1 (x>0)的值域。 分析:单调性怎样?值域呢?→小结:应用单调性求值域。 → 探究:计算机作图与结论推广

②出示例:某产品单价是120元,可销售80万件。市场调查后发现规律为降价x 元后可多销售2x 万件,写出销售金额y(万元)与x 的函数关系式,并求当降价多少个元时,销售金额最大?最大是多少?

分析:此题的数量关系是怎样的?函数呢?如何求函数的最大值?

小结:利用函数的单调性(主要是二次函数)解决有关最大值和最大值问题。

2.基本练习题:

1、判别下列函数的奇偶性:y =1+x +1-x 、 y =?????≤+>+-)

0()0(22x x x x x x (变式训练:f(x)偶函数,当x>0时,f(x)=….,则x<0时,f(x)=? )

2、求函数y =x

3、判断函数y=12

++x x 单调区间并证明。

(定义法、图象法; 推广: b ax d

cx ++的单调性)

4、讨论y=21x -在[-1,1]上的单调性。 (思路:先计算差,再讨论符号情况。)

三、巩固练习:

1.求函数y=c

x b ax ++2为奇函数的时,a 、b 、c 所满足的条件。 (c=0)

2.已知函数f(x)=ax 2+bx+3a+b 为偶函数,其定义域为[a-1,2a],求函数值域。

3. f(x)是定义在(-1,1)上的减函数,如何f(2-a)-f(a -3)<0。求a 的范围。

4. 求二次函数f(x)=x 2-2ax +2在[2,4]上的最大值与最小值。

四、小结:

本节课通过讲练结合全面提高对函数单调性和奇偶性的认识,综合运用函数性质解题

五、作业P44页A 组9、10题B 组6题

后记:

高中数学-三次函数的性质:单调区间和极值测试

高中数学-三次函数的性质:单调区间和极值测试 1.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是 ( ) A .f (2),f (3) B .f (3),f (5) C .f (2),f (5) D .f (5),f (3) 答案 B 解析 ∵f ′(x )=-2x +4, ∴当x ∈[3,5]时,f ′(x )<0, 故f (x )在[3,5]上单调递减, 故f (x )的最大值和最小值分别是f (3),f (5). 2.函数f (x )=x 3-3x (|x |<1) ( ) A .有最大值,但无最小值 B .有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值 答案 D 解析 f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x ) 在(-1,1)上是单调递减函数,无最大值和最小值,故选D. 3.函数y =x -sin x ,x ∈??????π2,π的最大值是 ( ) A .π-1 B.π2 -1 C .π D .π+1 答案 C 解析 因为y ′=1-cos x ,当x ∈??????π2,π,时,y ′>0,则函数在区间???? ??π2,π上为增函数,所以y 的最大值为y max =π-sin π=π,故选C. 4.(2012·安徽改编)函数f (x )=e x sin x 在区间? ?????0,π2上的值域为 ( ) A. B. C. D. 答案 A 解析 f ′(x )=e x (sin x +cos x ).

∵x ∈? ?????0,π2,f ′(x )>0. ∴f (x )在? ?????0,π2上是单调增函数, ∴f (x )min =f (0)=0,f (x )max =f ? ?? ??π2=. 5.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为________. 答案 -71 解析 f ′(x )=3x 2 -6x -9=3(x -3)(x +1). 由f ′(x )=0得x =3或x =-1. 又f (-4)=k -76,f (3)=k -27, f (-1)=k +5,f (4)=k -20. 由f (x )max =k +5=10,得k =5, ∴f (x )min =k -76=-71. 1.求函数y =f (x )在[a ,b ]上的最值 (1)极值是部分区间内的函数的最值,而最值是相对整个区间内的最大或最小值. (2)求最值的步骤: ①求出函数y =f (x )在(a ,b )内的极值; ②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值. 2.极值与最值的区别和联系 (1)函数的极值表示函数在某一点附近的局部性质,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较. (2)函数的极值不一定是最值,需要将极值和区间端点的函数值进行比较,或者考查函数在区间内的单调性. (3)如果连续函数在区间(a ,b )内只有一个极值,那么极大值就是最大值,极小值就是最小值. (4)可导函数在极值点的导数为零,但是导数为零的点不一定是极值点.例如,函数y =x 3 在x =0处导数为零,但x =0不是极值点.

三次函数的性质及在高考中的应用(附解答)

三次函数的性质及在高考中的应用 一、三次函数的常用性质 性质1:函数y ax bx cx d a =+++320()≠, 若a >0,当?≤0时,y =f(x)是增函数;当?>0时,其单调递增区间是(][)-∞+∞,,x x 12,单调递增区间是[]x x 12,; 若a <0,当?≤0时,y f x =()是减函数;当?>0时,其单调递减区间是(]-∞,x 2,[)x 1,+∞,单调递增区间是[]x x 21,。 推论:函数y ax bx cx d a =+++320()≠,当?≤0时,不存在极大值和极小值;当?>0时,有极大值f x ()1、极小值f x ()2。 根据a 和?的不同情况,其图象特征分别为: 性质2:函数y ax bx cx d a =+++320()≠是中心对称图形,其对称中心是(--b a f b a 33,())。 二、三次函数的性质在高考中的应用 高考试题对三次函数主要考查:函数图象的切线方程,函数的单调性,函数的极值,函数的最值,证明不等式,函数零点的个数等。 1.(2004重庆卷)设函数()(1)(),(1)f x x x x a a =--> (1)求导数/()f x ; 并证明()f x 有两个不同的极值点12,x x ; (2)若不等式12()()0f x f x +≤恒成立,求a 的取值范围。 2. (2008福建卷)已知函数321()23 f x x x =+-. (1)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上,求 证:点(n ,S n )也在y =f ′(x )的图象上; (2)求函数f (x )在区间(a -1,a )内的极值.

高三数学三次函数的性质以及在高考中的应用

三次函数的性质以及在高考中的应用 三次函数y ax bx cx d a =+++320()≠已经成为中学阶段一个重要的函数,在高考和一些重大考试中频繁出现有关它的单独命题。2004年高考,在江苏卷、浙江卷、天津卷、重庆卷、湖北卷中都出现了这个函数的单独命题,特别是湖北卷以压轴题的形式出现,更应该引起我们的重视。单调性和对称性最能反映这个函数的特性。下面我们就来探讨一下它的单调性、对称性以及图象变化规律。 函数y ax bx cx d a =+++320()≠的导函数为y ax bx c '=++322。我们不妨把方程3202ax bx c ++=称为原函数的导方程,其判别式?=-432()b ac 。若?>0,设其两根为 x b b ac a x b b ac a 12223333=---=-+-、,则可得到以下性质: 性质1:函数y ax bx cx d a =+++320()≠, 若a >0,当?≤0时,y =f(x)是增函数;当?>0时,其单调递增区间是(][)-∞+∞,,x x 12,单调递增区间是[]x x 12,; 若a <0,当?≤0时,y f x =()是减函数;当?>0时,其单调递减区间是(]-∞,x 2, [)x 1,+∞,单调递增区间是[]x x 21,。 (证明略) 推论:函数y ax bx cx d a =+++320()≠,当?≤0时,不存在极大值和极小值;当?>0 时,有极大值f x ()1、极小值f x ()2。 根据a 和?的不同情况,其图象特征分别为: 图1 性质2:函数f x ax bx cx d a x m n ()()[]=+++∈32 0≠,,,若x m n 0∈[],,且f x '()00=,则: f x f m f f n ()m a x {()()()}max =,,0; f x f m f x f n ()m i n {()()()}min =,,0。 (证明略) 性质3:函数y ax bx cx d a =+++320()≠是中心对称图形,其对称中心是(--b a f b a 33,())。

三次函数性质总结

三次函数性质的探索 我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在 最大值与最小值,在某一闭区间取得最大值与最小值.那么,是什么决定函数的单调性呢? 利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置. 其中运用的较多的一次函数不等式性质是: 在上恒成立的充要条件 接着,我们同样学习了二次函数, 利用已学知识归纳得出:当时(如图1) ,在对称轴的左侧单调递减、右侧单调递增, 对称轴 上取得最小值; 当时(图2) ,在对称轴的左侧单调递增、右侧单调递减, 对称轴 上取得最大值. 在某一区间取得最大值与最小值. 其中决定函数的开口方向,同时决定对称轴,决定函数与轴相交的位置. 总结:一次函数只有一个单调性,二次函数有两个单调性,那么三次函数是否就有三个单调性呢? 三次函数专题 一、定义 定义1 形如的函数,称为“三次函数”(从函数解析式的结构上命名)。 定义 2 三次函数的导数 ,把叫做三次函数导函数的判 别式。 由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热点和亮点。 系列探究1: 从最简单的三次函数开始 反思1 :三次函数的相关性质呢? 反思2 :三次函数的相关性质呢? x y O

反思3 :三次函数的相关性质呢? 例题 1.(2012天津理4) 函数在区间内的零点个数是( ) (A)0 (B)1 (C)2 (D)3 探究一般三次函数的性质: 先求导 1、单调性: (1 )若,此时函数() f x在R上是增函数; (2 )若 ,令两根为 12 ,x x 且, 则 在 上单调递增,在上单调递减。 导函数 图 象 极值点 个数 2 0 2 0 2、零点 (1) 若0 3 2≤ -ac b,则恰有一个实根; (2) 若,且,则恰有一个实根; (3) 若,且,则有两个不相等的实根; (4) 若,且,则有三个不相等的实根. 说明: (1)(2) 有一个实根的充要条件是曲线与轴只相交一次,即在上为单调函数或两极值 同号. x x1x 2 x0x x1x2 x x0 x

三次函数的性质-的总结练习

三次函数的性质 三次函数f(x)=ax3+bx2+cx+d(a≠0)在高中阶段学习导数后频繁出现,同时也是其他复杂函数的重要组成部分,因此有必要对其性质有所了解,才可以做到知己知彼,百战不殆. 性质一单调性 以a>0为例,如图1,记Δ=b2?3ac为三次函数图象的判别式,则 图1 用判别式判断函数图象 当Δ?0时,f(x)为R上的单调递增函数; 当Δ>0时,f(x)会在中间一段单调递减,形成三个单调区间以及两个极值. 性质一的证明f(x)的导函数为 f′(x)=3ax3+2bx+c, 其判别式为4(b2?3ac),进而易得结论. 例1 设直线l与曲线y=x3+x+1有三个不同的交点A,B,C,且|AB|=|BC|=5√,求直线l的方程. 解由|AB|=|BC|可知B为三次函数的对称中心,由性质一可得B(0,1),进而不难求得直线l的方程y=2x+1. 性质二对称性 如图2,f(x)的图象关于点P(?b3a,f(?b3a))对称(特别地,极值点以及极值点对应的图象上的点也关于P对称). 图2 图象的对称性

反之,若三次函数的对称中心为(m,n),则其解析式可以设为 f(x)=α?(x?m)3+β?(x?m)+n, 其中α≠0. 性质二的证明由于 f(x)=a(x+b3a)3+(c?b23a)(x+b3a)?bc3a+2b327a2+d, 即 f(x)=(x+b3a)3+(c?b23a)(x+b3a)+f(?b3a), 于是性质二得证. 例2 设函数f(x)=x(x?1)(x?a),a>1. (1)求导数f′(x),并证明f(x)有两个不同的极值点x1,x2; (2)若不等式f(x1)+f(x2)?0成立,求a的取值范围. (1)解f(x)的导函数 f′(x)=(x?1)(x?a)+x(x?a)+x(x?1)=3x2?2(a+2)x+a, 而 f′(0)f′(1)f′(a)=a>0,=1?a<0,=a(a?1)>0, 于是f′(x)有两个变号零点,从而f(x)有两个不同的极值点. (2)解根据性质二,三次函数的对称中心(a+13,f(a+13))是两个极值点对应的函数图象上的点的中点.于是 f(x1)+f(x2)=2f(a+13)?0, 即 2?a+13?a?23??2a+13?0, 结合a>1,可得a的取值范围是[2,+∞). 注本题为2004年高考重庆卷理科数学第20题. 性质三切割线性质 如图3,设P是f(x)上任意一点(非对称中心),过P作函数f(x)图象的一条割线AB与一条切线PT(P点不为切点),A、B、T均在f(x)的图象上,则T点的横坐标平分A、B点的横坐标. 图3 切割线性质

三次函数的三大性质初探

三初探 随着导数内容进入新教材,函数的研究范围也随之扩大,用导数的方法研究三次函数的性质,不仅方便实用,而且三次函数的性质变得十分明朗,本文给出三次函数的三大主要性质. 1 单调性 三次函数)0()(23>+++=a d cx bx ax x f , (1) 若032 ≤-ac b ,则)(x f 在),(+∞-∞上为增函数; (2) 若032>-ac b ,则)(x f 在),(1x -∞和),(2+∞x 上为增函数,)(x f 在),(21x x 上为减函数,其中a ac b b x a ac b b x 33,332221-+-=---=. 证明 c bx ax x f ++=23)('2, △=)3(412422ac b ac b -=-, (1) 当0≤? 即032 ≤-ac b 时,0)('≥x f 在 R 上恒成立, 即)(x f 在),(+∞-∞为增函数. (2) 当0>? 即032 >-ac b 时,解方程0)('=x f ,得 a ac b b x a ac b b x 33,332221-+-=---= 0)('>x f ?1x x <或2x x > ?)(x f 在),(1x -∞和),(2+∞x 上为增函数. ?<0)('x f 21x x x <+++=a d cx bx ax x f , (1) 若032≤-ac b ,则)(x f 在R 上无极值; (2) 若032>-ac b ,则)(x f 在R 上有两个极值;且)(x f 在1x x =处取得极大值,在2x x =处取得极小值.

高三数学三次函数图象和性质与四次函数问题

三次函数与四次函数 大连市红旗高中王金泽 wjz9589@https://www.360docs.net/doc/e414500579.html, 在初中,已经初步学习了二次函数,到了高中又系统的学习和深化了二次函数,三次函数是继二次函数后接触的新的多项式函数类型,它是二次函数的发展,和二次函数类似也有“与x轴交点个数”等类似问题。三次函数是目前高考尤其是文科高考的热点,不仅仅如此,通过深化对三次函数的学习,可以解决四次函数问题。2008年高考有多个省份出现了四次函数高考题,本文的目的就是,对三次函数做个重点的归纳,并且阐述在四次函数中的应用 第一部分:三次函数的图象特征、以及与x轴的交点个数(根的个数)、极值情况 三次函数图象说明 a对图象 的影响 可以根据极限的思想去分析 当a>0时,在x→+∞右向上 伸展,x→-∞左向下伸展。 当a<0时,在x→+∞右向下 伸展,x→-∞左向上伸展。 (可以联系二次函数a对开口的影 响去联想三次函数右侧伸展情况) 与x轴有三 个交点 若0 3 2> -ac b,且 ) ( ) ( 2 1 < ?x f x f,既两个极 值异号;图象与x轴有三个交点 与x轴有二 个交点 若0 3 2> -ac b,且 ) ( ) ( 2 1 = ?x f x f,既有一 个极值为0,图象与x轴有两个 交点 与x轴有一 个交点 1。存在极值时即0 3 2> -ac b, 且0 ) ( ) ( 2 1 > ?x f x f,既两个 极值同号,图象与x轴有一个交点。 2。不存在极值,函数是单调函数 时图象也与x轴有一个交点。

1.()0f x =根的个数 三次函数d cx bx ax x f +++=23)( 导函数为二次函数:)0(23)(2/≠++=a c bx ax x f , 二次函数的判别式化简为:△=)3(412422ac b ac b -=-, (1) 若032 ≤-ac b ,则0)(=x f 恰有一个实根; (2) 若032>-ac b ,且0)()(21>?x f x f ,则0)(=x f 恰有一个实根; (3) 若032>-ac b ,且0)()(21=?x f x f ,则0)(=x f 有两个不相等的实根; (4) 若032>-ac b ,且0)()(21-ac b ,且0)()(21>?x f x f ). (3)0)(=x f 有两个相异实根的充要条件是曲线)(x f y =与X 轴有两个公共点且其中之一为切点,所以 032>-ac b ,且0)()(21=?x f x f . (4)0)(=x f 有三个不相等的实根的充要条件是曲线)(x f y =与X 轴有三个公共点,即)(x f 有一个极大值,一个极小值,且两极值异号.所以032 >-ac b 且0)()(21++=a c bx ax x f , 二次函数的判别式化简为:△=)3(412422ac b ac b -=-, (1) 若032 ≤-ac b ,则)(x f 在),(+∞-∞上为增函数; (2) 若032>-ac b ,则)(x f 在),(1x -∞和),(2+∞x 上为增函数,)(x f 在),(21x x 上为减函数,其中 a ac b b x a a c b b x 33,332221-+-= ---=. 证明:c bx ax x f ++=23)('2, △=)3(41242 2ac b ac b -=-, (1) 当0≤? 即032 ≤-ac b 时,0)('≥x f 在 R 上恒成立, 即)(x f 在),(+∞-∞为增函数.

三次函数的图象与性质

三次函数的图象与性质 河源市河源中学 钟少辉 三次函数()f x =32(0)ax bx cx d a +++≠是中学阶段一个重要的函数,已经成为高考的高频考点。本文研究了三次函数的图象,并且得到它的几个性质,以及例说性质的应用。 已知三次函数:32(0)y ax bx cx d a =+++≠定义域(,)-∞+∞ 则232y ax bx c '=++ , 62y ax b ''=+。由0y '=得 2320ax bx c ++= (1) 依一元二次方程根的判别式知: 1.1若24120b ac ?=-> , 即23b ac >。则方程(1)必有两个不相等的实根12,x x ,即三次函数必有两个驻点12,x x (这里不妨设21x x >), 且123()()y a x x x x '=--。由函数极值的判定定理则有: 1.a >0 当1(,)()0x x f x '∈-∞时,>,()f x 单调递增。 当12(,)()0x x x f x '∈时,<, ()f x 单调递减。当2(,)()0x x f x '∈+∞时,> ,()f x 单调递增。 驻点即为极值点,且在两个驻点中值较小的一个点上取得极大值,在值较大的一个点上 取得极小值,且12,x =。 Ⅱ.0a < 情况正好与I 相反,在此不再赘述。 由以上讨论知:1223b x x a +=-,而由0y ''= 得33b x a =-,因而:6()3b y a x a ''=+,当a>0, (,)3b x a ∈-∞- 时,()0f x ''<,曲线是(向下凹) 。(,)3b x a ∈-+∞时,()0f x ''>曲线是(向上凹)。当 0a <, (,)3b x a ∈-∞-时,()0f x ''>,曲线是(向上凹),(,)3b x a ∈-+∞时,()0 f x ''<曲线是(向下凹)。 所以,无论a 的正负,3x 为曲线拐点的横坐标,且12 32 x x x += 即:曲线拐点的横坐标为两极值点(或二驻点)连线的中点 通过以上的讨论知:三次函数3 2 y ax bx cx d =+++,当23b ac >时,其图形的一般形状见 图1。 图1 0a > 0a <

二次函数图像性质及应用

二次函数图象性质及应用 一选择题 1.已知抛物线y=﹣x2+2x﹣3,下列判断正确的是() A.开口方向向上,y 有最小值是﹣2 B.抛物线与x轴有两个交点 C.顶点坐标是(﹣1,﹣2) D.当x<1 时,y 随x增大而增大 2.若二次函数y=x2+bx+5 配方后为y=(x-2)2+k,则b、k 的值分别为() A.0、5 B.0、1 C.﹣4、5 D.﹣4、1 3.将抛物线先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是 A. B. 3 =x D.3 - )2 y2- =x + (5 y2- (52+ )2 - =x )2 y C. 3 (5 4.把抛物线y=﹣2x2+4x+1 图象向左平移2个单位,再向上平移3个单位,所得的抛物线函数关系式是() A.y=﹣2(x-1)2+6 B.y=﹣2(x-1)2﹣6 C.y=﹣2(x+1)2+6 D.y=-2(x+1)2-6 5.函数y=ax+b 和y=ax2+bx+c 在同一直角坐标系内的图象大致是() A. B. C. D. 6.二次函数y=ax2+bx+c 的图象如图,则a bc,b2﹣4ac,2a+b,a+b+c 这四个式子中,值为正数的有() A.4 个 B.3 个 C.2 个 D.1 个 第6题图第8题图

7.二次函数y=ax2+bx+c 对于x的任何值都恒为负值的条件是() A.a>0,△>0 B.a>0,△<0 C.a<0,△>0 D.a<0,△<0 8.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是() A.y=x2-x-2 B.y=﹣x2﹣x+2 C.y=﹣x2﹣x+1 D.y=﹣x2+x+2

三次函数的性质与应用

三次函数的性质及应用 蔚县一中 苏翠林 三次函数的一般形式为)、、、,0()(23R d c b a a d cx bx ax x f ∈≠+++=,全国各省市高考试卷以导数为工具,有重点地考查了有关三次函数的单调性、极值、在闭区间上的最值等函数性态,凸显“在知识网络交汇点上命题”的理念。三次函数的导数为二次函数 ,因此 ,三次函数交汇了函数、不等式、方程等众多知识点以它为载体的试题 ,背景新颖独特 ,选拔功能强 。如果学生对三次函数的图象、性质以及三次方程根的情况有所了解,那就更加得心应手了。 一、三次函数的图象 1、学生对以下两个三次函数的图象比较熟悉 y y x 2、d cx bx ax x f +++=23)(的图象有以下四种情况 0,0≤?>a 0,0>?>a 0,0≤??

1、定义域:R 2、值域:R 3、单调性: 易证:三次函数)(0)(23>+++=a d cx bx ax x f ,导函数为二次函数)0(23)(2/>++=a c bx ax x f ,导函数的判别式化简为:△=)3(412422ac b ac b -=-。 (1) 若032≤-ac b ,则)(x f 在),(+∞-∞上为增函数(图1); (2) 若032>-ac b ,则)(x f 在),(1x -∞和),(2+∞x 上为增函数,)(x f 在 ),(21x x 上为减函数,其中a ac b b x a ac b b x 33,332221-+-=---=(图2)。 三次函数d cx bx ax x f +++=23)((a<0)的情况为图3、图4 4、极值: 三次函数)0()(23>+++=a d cx bx ax x f , (1) 若032≤-ac b ,则)(x f 在R 上无极值(图1); (2) 若032>-ac b ,则)(x f 在R 上有两个极值;且)(x f 在1x x =处取得极大值,在2x x =处取得极小值(图2)。 三次函数)0()(23<+++=a d cx bx ax x f , (1) 若032≤-ac b ,则)(x f 在R 上无极值(图3); (2) 若032>-ac b ,则)(x f 在R 上有两个极值;且)(x f 在1x x =处取得极小值,在2x x =处取得极大值(图4). 5、对称性: 函数y ax bx cx d a =+++320()≠是中心对称图形,其对称中心是(--b a f b a 33,())。 证明:设函数f x ax bx cx d a ()()=+++320≠的对称中心为(m ,n )。

三次函数的图像与性质

三次函数的图像与性质 形如f(x)=ax3+bx2+cx+d(a≠0)的函数叫做三次函数。由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题已经成为高考命题的一个新的热点和亮点,尤其是文科数学更是如此。我们可以采用类比的方法,利用几何画板,较为深入地研究三次函数的图像与性质以及三次方程的解的个数的问题。 1三次函数的图像与性质 设三次函数f(x)=ax3+bx2+cx+d(a≠0),其导函数f’(x)=3ax2+2bx+c,其判别式△=4b2-12ac=4(b2-3ac)。当a>0时,若△>0,方程f’(x)=0有两个不相等的实数根,记作x1,x2,不妨令x1f(x2)。 结论1:f(x1)·f(x2)>0时,函数f(x)的图像与x轴有且仅有一个公共点;f(x1)·f(x2)=0时,函数f(x)的图像与x轴有且仅有两个公共点;f (x1)·f(x2)0,f(x2)0为例): 当a>0时,f(x)的四种图象 3推论 设三次函数f(x)=ax3+bx2+cx+d(a>0),其导函数f’(x)=3ax2+2bx+c 的判别式△=4b2-12ac=4(b2-3ac)>0。方程f’(x)=0有两个不相等的实数根,记作x1,x2,不妨令x1

一元三次函数性质与图象探索

一元三次函数性质与图象探索 高中部宋润生 我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在最大值与最小值,在某一区间 取得最大值与最小值.那么,是什么决定函数的单调性呢?利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置. 接着,我们同样学习了二次函数,图象大致如下: 图1 图2 利用已学知识归纳得出:当时(如图1),在对称轴的左侧单调递减、右侧单调递增,对称轴上取得最小值;当时(图2),在对称轴的左侧单调递增、右侧单调递减,对

称轴上取得最大值.在某一区间取得最大值与最小值.其中a决定函数的开口方向,a、b同时决定对称轴,c决定函数与y轴相交的位置. 三次函数的图象有六类.如图: 图3 图4

图5 图6 图7 图8 分析:由图3函数有哪些特点呢?归纳:解析式是,整个定义域上函数单调递增,在图4中解析式是,整个定义域上函数单调递增减.整个定义域上不存在极值,函数必经过原点.单调性又与什么知识相关呢?导数,现在求出函数的导数是 ,验证与0的关系,当时,即 的图象在是单调递增;当时,即 的图象在是单调递减相一致.当 ,根据图象知道,在处不是函数f(x)的极值点.所以 的根是函数取得极值的必要不充分条件.现在思考并验证函数 与函数图象有什么关系?经过验证得 出:函数与相同,当

时函数图象是图象向上平移|d|个单位;当时函数图象是图象向下平移|d|个单位;函数的导数都是. 在图5中解析式是,整个定义域上函数单调递增.在图6中解析式是,整个定义域上函数单调递增减.整个定义域上不存在极值.函数的导数,经过验证在图5中因为即,所以的图象在是单调递增;在图6中因为即,所以 的图象在是单调递减;函数都不存在极大值或极小值.为什么在图5中a>0、,在图6中a<0、呢?a>0、 或a<0、是又有什么结果呢?因为导数是二次函数,当a>0、或a<0、时判别式,导数函数不小于0,方程有一个根.当a>0、或a<0、时 ,方程有两个根.那么函数图象有什么特点呢?猜想如果,那么有两根,函数f(x)应有增也有减,我们来验证一下图7、图8: 在图7中解析式是,在或 上函数单调递增,在上函数单调递减;在处取得极大值,在处取得极小值;在图8中解析式是 ,在或上函数单调递减,在上函数单调递增;在处取得极小值,在处取得极

一元三次函数的图象和性质

一元三次函数的图象和性质学案 一.考纲指要: 1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次)。 2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值;会求闭区间上函数的最大值、最小值。 二、命题落点 1.高考考查的热点集中在求导法则以及导数在函数研究上的应用. 2.函数的单调性是函数一条重要性质.利用导数与函数的单调性的关系,研究函数的性质(比初等方法精确细微)是高考的重点. 3.关于函数特征,最值问题较多,导数法求最值要比初等方法快捷简便. 4.关于三次函数的极值、对称性、证明不等式等问题,考察较多。 【常用结论】 1. (重点)三次函数的单调性由a 来决定;b 、c 决定函数有没有极值。 d 确定函数图象与y 轴交点。 2. (重点)函数f(x)的极值由导函数f '(x)=3ax 2+2bx+c 的判别式△决定: ①△≤0无极值,单调区间为R ②△>0既有极大值,又有极小值。有三个单调区间。 3.(了解)三次函数图象的对称性: 三次函数f(x)=ax 3+bx 2+cx+d(a ≠0)的图象是中心对称图形,其对称中心是()3(,3a b f a b --).(三次函数f(x)=ax 3+bx 2 +cx+d(a ≠0)的图象经过平移后能得到奇函数图象,可以用待定系数法求得) 三次函数f(x)=ax 3+bx 2+cx+d(a ≠0)的图象的对称中心在其导函数 f '(x)=3ax 2+2bx+c 的图象对称轴上.

若三次函数f(x)=ax3+bx2+cx+d(a≠0)有极值,那么它的对称中心是两个极值点的中点. 【典例精析】 例题.设a∈R,讨论关于x的方程x3+3x2-a=0的相异的实根的个数? 【实战演练】 1.若函数f(x)=ax3+x恰有三个单调区间,则实数a的取值范围是- 。 2.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,则a的取值范围是 . 3.已知函数y=f(x)=x3+px2+qx的图象与x轴切于非原点的一点,且y极小=-4,那么p= ,q= . 4.已知函数f(x)=-x2+8x与g(x)=6lnx+m的图象有且只有两个不同的交点,求实数m的值? 5.已知f(x)=x3-3x,过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围? 6.设函数f(x)=x3-6x+5,x∈R. (1)求函数f(x)的单调区间和极值 (2)若关于x的方程f(x)=a有三个不同的实根,求实数a的取值范围. (3)已知当x∈(1,+∞)时, f(x)≥k(x-1)恒成立,求实数k的取值范围.

三次函数的性质:单调区间和极值

4.3.3 三次函数的性质:单调区间和极值 1.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是 ( ) A .f (2),f (3) B .f (3),f (5) C .f (2),f (5) D .f (5),f (3) 答案 B 解析 ∵f ′(x )=-2x +4, ∴当x ∈[3,5]时,f ′(x )<0, 故f (x )在[3,5]上单调递减, 故f (x )的最大值和最小值分别是f (3),f (5). 2.函数f (x )=x 3-3x (|x |<1) ( ) A .有最大值,但无最小值 B .有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值 答案 D 解析 f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x ) 在(-1,1)上是单调递减函数,无最大值和最小值,故选D. 3.函数y =x -sin x ,x ∈???? ??π2,π的最大值是 ( ) A .π-1 B.π2-1 C .π D .π+1 答案 C 解析 因为y ′=1-cos x ,当x ∈??????π2,π,时,y ′>0,则函数在区间???? ??π2,π上为增函数,所以y 的最大值为y max =π-sin π=π,故选C.

4.(2012·安徽改编)函数f (x )=e x sin x 在区间??????0,π2上的值域为 ( ) A. B. C. D. 答案 A 解析 f ′(x )=e x (sin x +cos x ). ∵x ∈???? ??0,π2,f ′(x )>0. ∴f (x )在???? ??0,π2上是单调增函数, ∴f (x )min =f (0)=0,f (x )max =f ? ????π2=. 5.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为________. 答案 -71 解析 f ′(x )=3x 2-6x -9=3(x -3)(x +1). 由f ′(x )=0得x =3或x =-1. 又f (-4)=k -76,f (3)=k -27, f (-1)=k +5,f (4)=k -20. 由f (x )max =k +5=10,得k =5, ∴f (x )min =k -76=-71. 1.求函数y =f (x )在[a ,b ]上的最值 (1)极值是部分区间内的函数的最值,而最值是相对整个区间内的最大或最小值. (2)求最值的步骤:

三次函数 性质大全

三次函数)0(≠a d cx bx ax x f +++=23)(性质大全 本文从三个专题(专题一 三次函数的图象及单调性,专题二 三次函 数的对称性,专题三 三次函数切线问题)来介绍三次数的性质,对同 学们学习三次函数大有帮助,可以解绝三次函数涉及到的高考题,是能够充分准备,应对高考。 专题一 三次函数的图象及单调性 c bx ax x f ++='23)(2,当01242≤-=?ac b 时,函数是单调增函数,或单调减函数,当时042>-=?ac b ,设0)(='x f 的两根分别为,,21x x 则原函数 0>a 时函数)(x f 图象 (先上升) 0a 时)(x f 在),(1x x -∞∈或),(2+∞∈x x 单调递增;)(x f 在),(21x x x ∈单调递减在1x x =处)(x f 取得极大值)(1x f ,在2x x =处)(x f 取得极小值)(2x f . 2.0

注意:三次函数f(x)有极值 导函数(x)f '的判别式0>? 3.一般地d cx bx ax x f +++=23)()0(>a 在导数023)(2=++='c bx ax x f 有两根 ,,21x x 且21x x <时,在1x 处有1()()f x f x M ==极大值;在2x 处有 2()()f x f x m ==极小值, 4 .三次方程根的个数问题,由三次函数图象极易得到以下结论: 若()y f x =为三次函数,其导数为()y f x '=,则: ⑴若()0f x '≥或()0f x '≤恒成立,则()0f x =仅有一实数解。 ⑵若()0f x '=有两个不等实数解,m n 则: ① 若()()0>n f m f ,则()0f x =有一实数解. ② 若()()0=n f m f ,则()0f x =有二个不等实数解. ③ 若()()0

三次函数的性质

三次函数的切线问题 三次函数的切线蕴含着许多美妙的性质,用导数方法探求切线的性质,为分析问题和解决问题提供了新的视角、新的方法,不仅方便实用,而且三次函数的切线性质变得十分明朗.纵览近几年高考数学试题,三次函数的切线问题频频出现,本文给出三次函数切线的三个基本问题. 一、已知斜率为k 与三次函数图象相切的切线 三次函数)0()(23≠+++=a d cx bx ax x f 1、0>a ,斜率a b a c k 332 -=时,有且只有一条切线; a b a c k 332 ->时,有两条不同的切线; a b a c k 332 -<时,没有切线; 2、0时,没有切线; 证明 c bx ax x f ++=23)(2/ 1、 0>a 当a b x 3-=时,.33)(2 min /a b a c x f -= ∴ 当a b ac k 332-= 时,方程a b a c c bx ax 33232 2-=++有两个相同解, 所以斜率为k 的切线有且只有一条;其方程为: ).3(33)3(2a b x a b a c a b f y +-=--

当a b a c k 332 ->时,方程k c bx ax =++232,有两个不同的解21,x x ,且21x x +=-a b 32-,即存在两个不同的切点))(,()),(,(2211x f x x f x ,且两个切点关于三次函数图象对称中心对称。所以斜率为k 的切线有两条。 当a b a c k 332 -<时,方程k c bx ax =++232无实根,所以斜率为k 的切线不存在。 2、0

二次函数图像与性质总结(含答案)

二次函数的图像与性质 一、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

相关文档
最新文档