住宅小区负荷与变压器容量的选择

住宅小区负荷与变压器容量的选择
住宅小区负荷与变压器容量的选择

住宅小区负荷与变压器容量的选择

摘要:与大、中城市的居民小区相比,目前城镇住宅小区没有高楼大厦,无需设置电梯,也没有集中空调。一般来讲,房地产开发商只考虑盖房子,不考虑开发公共事业,如学校、商场等。所以,城镇住宅小区仅有住宅用电,负荷预测较为简单。

关键词:住宅小区负荷变压器容量选择

1城镇住宅小区用电负荷的特点

与大、中城市的居民小区相比,目前城镇住宅小区没有高楼大厦,无需设置电梯,也没有集中空调。一般来讲,房地产开发商只考虑盖房子,不考虑开发公共事业,如学校、商场等。所以,城镇住宅小区仅有住宅用电,负荷预测较为简单。

2住宅用电的预测

(1)需用系数法:

小区内的住宅面积可分为三类:60m2以下的为小型,60~100m2为中型,100m2以上为大型。随着人们生活水平的提高,家用电器逐渐增多,特别是空调、热水器、电磁灶或微波炉等大功率家用电器进入普通家庭,家庭用电由原来纯照明向多功能方向发展。一般小型住宅的设备容量为:照明用电容量300W;娱乐用电容量(包括电视机、VCD或DVD、音响、电脑等)900W;卫生间用电容量(包括洗衣机、热水器、排风扇等)3500W;厨房用电容量(包括电饭煲、电热开水器、电冰箱、排风扇等)3500W;空调用电容量为1500W,合计用电容量8400W。中型住宅的居民,除照明用电容量外,还要增加空调、电视机,用电容量将增加1950W,总容量为10350W,约为小型住宅的1.25倍。大型住宅的居民因为经济条件宽裕,一般为双卫生间,用电容量将大幅增加,约为小型住宅的2.5倍。据统计,居民用电的最大负荷出现在夏季19~22时间段,这时用电负荷约3800W,是用电设备容量的45%,所以取需用系数为0.45。小型住宅的计算负荷取3800W,中型住宅取4750W,大型住宅取9500W。

(2)单位面积法:

据有关资料介绍,新建住宅内居民用电按建筑面积40W/m2负荷密度选择,大城市为60~80W/m2。本文取50W/m2,即小型住宅的计算负荷为3000W;中型住宅5000W;大型住宅10000W。

3变压器的选择

(1)同时系数:

住宅小区内居民由于作息时间不同,同时系数小些。取同时系数一般为:50户以下0.55,50~100户0.45,100户~200户0.40,200户以上0.35。

(2)变压器容量:

城镇住宅小区一般范围较小,供电变压器一般不考虑环网和双电源。根据小容量多布点的原则,单台变压器的容量不宜超过315kVA。

由于居民用电基本没有无功补偿,故取负荷功率因数cosφ=0.7。

(3)举例:

在一住宅区有100户,其中,大型为20套,中型为50套,小型为30套,确定变压器容量为多大?

用需用系数法计算小区的负荷为541.5kW;用单位面积法计算小区的负荷为540kW,两者基本一致,取541.5kW为小区的计算负荷。如cosφ=0.7,变压器的容量需为309.4kV A,可选用315kV A变压器。此题虽然最后选315KV A变压器是正确的但是没有把KW转换为KVA就直接选变压器了。(还有就是这里所说的住户负荷应该是单相负荷,选择变压器时需转换为三相负荷选取)不知道我说的对不对,请指教。

低压导线截面选择及供电半径的确定

摘要:低压导线截面的选择,有关的文件只规定了最小截面,有的以变压器容量为依据,有的选择几种导线列表说明,在供电半径上则规定不超过0.5km。本文介绍一种简单公式作为导线选择和供电半径确定的依据,供电参考。

关键词:低压导线截面选择半径确定

低压导线截面的选择,有关的文件只规定了最小截面,有的以变压器容量为依据,有的选择几种导线列表说明,在供电半径上则规定不超过0.5km。本文介绍一种简单公式作为导线选择和供电半径确定的依据,供电参考。

1低压导线截面的选择

1.1选择低压导线可用下式简单计算:

S=PL/CΔU%(1)

式中P——有功功率,kW;

L——输送距离,m;

C——电压损失系数。

系数C可选择:三相四线制供电且各相负荷均匀时,铜导线为85,铝导线为50;单相220V供电时,铜导线为14,铝导线为8.3。

(1)确定ΔU%的建议。根据《供电营业规则》(以下简称《规则》)中关于电压质量标准的要求来求取。即:10kV及以下三相供电的用户受电端供电电压允许偏差为额定电压的±7%;对于380V则为407~354V;220V单相供电,为额定电压的+5%,-10%,即231~198V。就是说只要末端电压不低于354V和198V就符合《规则》要求,而有的介绍ΔU%采用7%,笔者建议应予以纠正。

因此,在计算导线截面时,不应采用7%的电压损失系数,而应通过计算保证电压偏差不低于-7%(380V线路)和-10%(220V线路),从而就可满足用户要求。

(2)确定ΔU%的计算公式。根据电压偏差计算公式,Δδ%=(U2-Un)/Un×100,可改写为:Δδ=(U1-ΔU-Un)/Un,整理后得:

ΔU=U1-Un-Δδ.Un(2)

对于三相四线制用(2)式:ΔU=400-380-(-0.07×380)=46.6V,所以ΔU%=ΔU/U1×100=46.6/400×100=11.65;对于单相220V,ΔU=230-220-(-0.1×220)=32V,所以ΔU%=ΔU/U1×100=32/230×100=13.91。

1.2低压导线截面计算公式

1.2.1三相四线制:导线为铜线时,

Sst=PL/85×11.65=1.01PL×10-3mm2(3)

导线为铝线时,

Ssl=PL/50×11.65=1.72PL×10-3mm2(4)

1.2.2对于单相220V:导线为铜线时,

Sdt=PL/14×13.91=5.14PL×10-3mm2(5)

导线为铝线时,

Sdl=PL/8.3×13.91=8.66PL×10-3mm2(6)

式中下角标s、d、t、l分别表示三相、单相、铜、铝。所以只要知道了用电负荷kW和供电距离m,就可以方便地运用(3)~(6)式求出导线截面了。如果L用km,则去掉10-3。

1.5需说明的几点

1.5.1用公式计算出的截面是保证电压偏差要求的最小截面,实际选用一般是就近偏大一级。再者负荷是按集中考虑的,如果负荷分散,所求截面就留有了一定裕度。

1.5.2考虑到机械强度的要求,选出的导线应有最小截面的限制,一般情况主干线铝芯不小于35mm2,铜芯不小于25mm2;支线铝芯不小于25mm2,铜芯不小于16mm2。

1.5.3计算出的导线截面,还应用最大允许载流量来校核。如果负荷电流超过了允许载流量,则应增大截面。为简单记忆,也可按铜线不大于7A/mm2,铝线不大于5A/mm2的电流密度来校核。

2合理供电半径的确定

上面(3)~(6)式主要是满足末端电压偏差的要求,兼或考虑了经济性,下面则按电压偏差和经济性综合考虑截面选择和供电半径的确定。

当已知三相有功负荷时,则负荷电流If=P/。如用经济电流密度j选择导线,则S=If/。根据《规则》规定,农网三相供电的功率因数取0.85,所以S=P/×0.38×0.85j=P/0.5594j=1.79P/jmm2(7)

三相供电时,铜线和铝线的最大合理供电半径计算公式:

Lst=1.79×85×11.65/j=1773/jm(8)

Lsl=1.79×50×11.65/j=1042/jm(9)

若为单相供电在已知P时,则S=If/j=P/Un/j=4.55P/j(按阻性负荷计)。按上法,令4.55P/j=PL/CΔU%,从而求得:

L=4.55CΔU%/jm(10)

将前面求得的ΔU%代入(10),同样可求出单相供电时,铜线和铝线最大合理供电半径计算公式如下。

Ldt=4.55×14×13.91/j=885/jm(11)

Ldl=4.55×8.3×13.91/j=525/jm(12)

选定经济截面后,其最大合理供电半径,三相都大于0.5km,单相基本为三四百米,因此单纯规定不大于0.5km,对于三相来说是“精力过剩”,对单相来说则“力不从心”。

无功补偿的优化选择

近年来,随着农村电网的进一步完善,工农业生产用电规模不断扩大,用电量的日益增长和用电结构的变化,使得电力供需矛盾越来越突出。电力的供不应求迫使人们在降损节能上多做文章,因此,人们根据电力网的运行特点,从无功传输过程消耗有功的角度,推行了无功补偿。

近年来,随着农村电网的进一步完善,工农业生产用电规模不断扩大,用电量的日益增长和用电结构的变化,使得电力供需矛盾越来越突出。电力的供不应求迫使人们在降损节能上多做文章,因此,人们根据电力网的运行特点,从无功传输过程消耗有功的角度,推行了无功补偿。

众所周知,电力网在运行时,电源供给的无功功率是电能转换为其他形式能的前提,它为电能的输送、转换创造了条件。没有它,变压器就不能变压与输送电能,没有它,电动机的旋转磁场就建立不起来,电动机就无法转动。但是,长距离输送无功电力,又会造成有功功率的损耗和电压质量的降低,这不仅影响电力网的安全经济运行,而且也影响产品的质量。因此,如何减少无功电力的长距离输送,已成为电力部门和用电企业必不可少的研究课题。为此,我们根据用电设备消耗无功的多少,在负荷较集中、无功消耗较多的地点增设了无功电源点,使无功的需求量就地得到解决,这样不但减少了无功传输过程中造成的能量损耗和电压降落,而且提高了供用电双方和社会的经济效益,可谓一举两得。不过,虽然无功补偿能给企业和社会带来一定的效益,但补偿过程中还需要考虑很多问题,也就是说怎样进行补偿,才能收到最佳的效益呢?这就要求我们在补偿过程中必须遵守一定的原则、方法,做到科学合理的补偿,才能收到事半功倍的效果。

1 无功补偿的原则

全面规划,合理布局,分级补偿,就地平衡,具体内容如下。

总体平衡与局部平衡相结合,既要满足全网的总无功平衡,又要满足分线、分站的无功平衡。

集中补偿与分散补偿相结合,以分散补偿为主,这就要求在负荷集中的地方进行补偿,既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,目的是做到无功就地平衡,减少其长距离输送。

高压补偿与低压补偿相结合,以低压补偿为主,这和分散补偿相辅相成。

降损与调压相结合,以降损为主,兼顾调压。这是针对线路长,分支多,负荷分散,功率因数低的线路,这种线路最显著的特点是:负荷率低,线路损失大,若对此线路补偿,可明显提高线路的供电能力。

供电部门的无功补偿与用户补偿相结合,因为无功消耗大约60%在配电变压器中,其余的消耗在用户的用电设备中,若两者不能很好地配合,可能造成轻载或空载时过补偿,满负荷时欠补偿,使补偿失去了它的实际意义,得不到理想的效果。

2 根据补偿原则,确定无功补偿容量

按照上述的基本原则,根据无功在电力系统中的去向,确定几种主要的补偿方式及其容量。

变电站高压集中补偿:这种补偿是在变电站10(6)kV母线上集中装设高压并联电容器组,用以补偿主变的空载无功损耗和线路漏补的无功功率。目前,在农网上,除了大宗用户外,县局基本上采用这种补偿。比如:涉县各变电站在未进行人工补偿以前cosφ= 0.85,根据功率因数(0.85)调整电费标准,每月罚款为月总电费的2.5%,经过各站装设了电容器补偿后,平均cosφ=0.9,每月电费减少0.5%,一年下来,功率因数奖电费约为60万元,为企业增加了效益。

随线补偿:将电容器分散安装在高压配电线路上,主要补偿线路上的无功消耗,还可以提高线路末端电压,改善电压质量。其补偿容量一般遵循"三分之二"原则,即补偿容量为无功负荷的三分之二,而电压降为DU = (PR + QX)/Ue。

例1:一条10kV线路,长为5km,导线型号LGJ-70,其中g = 0.46W/km,X0 = 0.411Ω/km,所带负荷200 + j150,在线路末端补偿QC= 100kvar,求线路损耗和电压降。

①求线路上的损耗

补偿前:△P1 = 3×I2R = 3×(2002 + 1502)/102×5×0.46 = 4313W。

补偿后:△P2 = 3×I2R = 3×[2002 +(150 - 100)2]/102×5×0.46 = 2933W。

则一年少损失电量:△A = (△P1 - △P2)T×10-3 = (4313 - 2933)×365×24×10-3 = 12089kWh。

②求电压降

补偿前:△U = (PR + QX)/U = (200×0.46×5 + 150×0.411×5)/10 = 77V。

补偿后:△U = (PR + QX)/U = [200×0.46×5 + (150 - 100)×0.411×5] /10 = 56V。

所以补偿后电压由9.92kV提高到9.94kV,改善了电压质量。

3 随器补偿

将电容器安装在配电变压器低压侧,主要补偿配电变压器的空载无功功率和漏磁无功功率。一般情况下,农网配变负载率较低,轻载或空载时,无功负荷主要是变压器的空载励磁无功,因此配变无功补偿容量不易超过其空载无功,否则,在配变接近空载时可能造成过补偿,所以应按式Qb ≤I0%Se/100(其中:I0%是空载电流百分数,从手册中可查出,Se 是变压器的额定容量),但对于工业用户的变压器补偿,因其负荷率高,补偿时应从提高变压器出力的角度考虑。

例2:涉县良种场有一台变压器Se = 80kV A,cosφ= 0.8,带一抽水用电动机Pe =

75kW,P = Se×cosφ= 80×0.8 = 64kW < 75kW,可见变压器处于超载运行,若提高cosφ的方法提高变压器出力,设拟增cosφ= 0.95,则P = 0.95×80 = 76kW > 75kW,由公式Qb = P×tgφ可知,应补偿无功Qb = 25kvar。

4 随电动机补偿

将电容器直接并联在电动机上,用以补偿电动机的无功消耗。据运行统计,县级农网中约有60%的无功功率消耗在电动机上,因此,搞好电动机的无功补偿,使其无功就地平衡,既能减少配电线路的损耗,同时还可以提高电动机的出力。一般对7.5kW以上电动机进行补偿时,确定容量应按QC ≤3UeI0。另外,对于排灌所带机械负荷较大的电动机,补偿容量可适当加大,大于电动机的空载无功,但要小于额定无功负荷,即Q0 ≤QC ≤Qe。

例3:涉县自来水公司,一条线路长1km,导线型号LGJ-70,其中g = 0.46W/km,X0=0.411Ω/km,带一抽水用电动机Pe = 95kW,实用负荷为100 + j60,由于长期超载,在电动机上补偿无功QC = 30kvar,求补偿前后线路的损耗和电动机的出力。

视在功率S=(1002+602)1/2= 116.26kV A

①求线路上的损耗

补偿前:△P1 = 3×I2R = (1002 + 602)/0.382×1×0.46 = 43.32kW。

补偿后:△P1 = 3×I2R = [1002 + (60 - 30)2]/0.382×1×0.46 = 34.72kW。

△P1 - △P2 = 43.32 - 34.72 = 8.6 kW,则一年少损失电量8.6×24×365 =

75.33MWh。

②求电动机出力

补偿前:PN = 95kW < 100kW,电动机处于超载运行。

补偿后:PN = 112kW > 95kW,电动机运行正常,提高了电动机的出力。

5 低压集中补偿

在低压母线上装设自动投切的并联电容器成套装置主要补偿变压器本身及以上输电线路的无功功率损耗,而在配电线路上产生的损耗并未减少,因此,补偿不宜过大,否则变压器轻载或空载运行时,将造成过补偿,补偿容量应以变压器额定容量的30%~40%确定,即:Qb = (0.3 - 0.4)SN,或从提高功率因数的角度考虑Qb = P(tgφ1 - tgφ2),其中tg φ1 、tgφ2是补偿前后功率因数角的正切值。

6 补偿位置的确定

上述介绍了不同目的的补偿方法各不相同,但补偿位置在哪最合理呢?一般我们考虑把并联电容器安置在负荷较集中的地方或无功消耗严重的设备周围。

7 补偿后带来的经济效益

从提高功率因数上,还是以涉县电力局为例,功率因数由0.8提高到0.9左右,月电费罚3.7万元,到奖2.5万元,赢利7.2万元,给企业带来经济效益。

从电压质量上来说,如例1,末端电压由9.92kV提高到9.94kV,保证了产品质量,给用户带来了直接经济效益。

从降损节能上来说,降低了电能损耗,减少了电费的支出,同样给用户带来经济效益。如例3,年节能7.533万kWh,按电价0.5857元/kWh,年节约电费7.533×0.5857=4.4万元。

从提高变压器的处理上来说,由于减少了无功电流,所以提高了变压器的出力。如

例2,良种场若不是进行无功补偿,变压器长期处于超载运行,会因长期过热而烧坏变压器,而新安装一台变压器(100kV A),需投资1.3万元,但经过补偿,只需要投资近1000元就解决了变压器超载运行的问题,给良种场增创了1.2万元的经济效益。

总之,无功补偿不仅能改善农网功率因数和电压质量,而且可以使无功负荷就地平衡,提高农网的经济运行水平,同时降低电费支出,减轻工农业生产的负担,所以进行无功补偿是利国利民的好事,我们应下决心去抓,真正让用户得到实惠。

低压无功补偿的应用效果

摘要:在供电企业的管理工作中,线损率是供电企业的一个重要考核指标,它的高低直接关系到企业的经

济效益。关键词:低压无功补偿应用效果

相关站中站:无功补偿及电容器应用

1 问题的提出

在供电企业的管理工作中,线损率是供电企业的一个重要考核指标,它的高低直接关系到企业的经济

效益。

加强管理、优化线路参数等降损方式大家已经理解并在努力完善中,而对于采取就地无功补偿方式降低线损并没有得到科学的理解:有的电工嫌投入补偿电容后总电表转慢了,就停掉了JP柜内的补偿电容器;有的嫌晚上电压高,切掉线路补偿电容不再投入使用,使得电网无功补偿现状"雪上加霜"。的确,电容自身并不节电,但是根据电工原理我们知道补偿电容在工作中电容电流可以抵消电感电流,从而减少输配电线路中流动的电流,从而减少电流引起的损耗及电压降。电表走慢了,是因为减少了低压线路损耗,晚上线路电压高,可以通过调整变压器分接头调节输出电压来实现。

就补偿装置来说,较高压补偿装置而言,低压无功补偿装置具备以下几个优点:一是安装灵活方便,对环境要求不高,配套设备少,维护维修方便,安全要求一般;二是投资少,由于电压等级低,设备在市场上即可购到,投资是同容量高压补偿装置的30%~50%;三是投切灵活,这也是它最大的优点,可以根据线路无功电流的变化,自动投入切除电容,达到无功的平衡。相对于高压补偿装置动辄几百千乏的投切来说,使用低压自动补偿装置可以达到"无极变速"。因此,在配电网中,为减少线路损耗达到最佳经济效益,应尽量减少有功功率以外的功率流动。并且无功补偿应以随机就地补偿为主,高压线路中的补偿、变

电站补偿为辅。

2 低压无功补偿装置的应用实例

为说明采取低压自动无功补偿装置节能降损的效果,举例说明。

例1:某供电企业给某淀粉厂加装470 kvar低压自动补偿电容柜,设定补偿限值cosj为0.95,小于限值则自动顺序投入电容器组。如功率因数超前,向线路反送无功功率,则开始顺序切除电容器,使功率因数在一个相对稳定的区域保持动态平衡。试机时一次电流1050 A,cosj = 0.7,装置自动投入400 kvar后,功率因数达到1,一次电流变为750 A,电流是补偿前的电流的70%,即减少线路电流30%左右。

表1列出了补偿前后参数的变化。

例2:某供电企业给某造纸厂加装500 kvar低压自动补偿柜,补偿前功率因数小于0.75,线路电流1300 A,自动补偿到功率因数为0.96后一次电流是1000 A,直观减少线路电流25%左右。

根据电路原理,线路的损耗与负荷电流的平方成正比,线路电流大则损耗大,线路电流减小则线损减少,例1中,补偿前电流为I,补偿后电流大约为0.7×I,根据DP = 3I2R,所以补偿后的线路损耗为补偿前

线路损耗值的49 %,线路损耗降低了大约51%左右。

例2中线路补偿后电流大约是补偿前电流的0.77,所以补偿后的线路损耗大概是补偿前线路损耗的

59%。

推算出补偿前后功率因数的变化与线路损耗变化的关系:

按表2所示:例1功率因数从0.7提高到1,补偿后的线路损耗为补偿前线路损耗的49%;线路功率因数从0.75提高到0.95后,线路损耗为补偿前的63%,降低线损效果明显。

用户低压端无功补偿装置一般按照用户无功负荷的变化自动投切补偿电容器,达到动态控制的目的,可以做到不向高压线路反送无功电能。在配电网中,若各用户低压侧配置了足够的无功补偿装置,则可使配电线路中的无功电流最小,也使配电线路的有功功率损耗最小,这是最理想的效果。另外,线路中的无

功电流小,也使线路压降减少,电压波动减少。

由此得出,配电网中的用户端实现无功就地补偿是合理的无功补偿方式,大力推广应用自动控制装置提高线路功率因数,达到动态的管理,这是理想的节能降损办法。否则,即使在线路关口处的功率因数很

高,也不能有效地降低线路的有功功率损耗。

根据上述理论与实际应用情况,顺平供电公司修试所采用工业微电脑自动控制器控制电容的投切,控制器内设过电压保护,可预防因系统过电压损坏电容器,可自行设定投切限值、投切时间等。该补偿装置容量可根据现场需要进行配置,在实际使用中,可根据仪表测量或通过理论计算方式确定应补偿的容量,应用灵活方便,尤其适合低压客户随机补偿使用,可有效提高电机效率,在农网中普及应用,可大幅降低线损。

几种低压无功补偿装置运行与管理情况分析

针对地区配电网络实施无功补偿的实际需要,通过近期组织进行的配网低压无功补偿装置的安装与运行调研,为今后低压电网开展无功补偿、更好地运用先进的无功补偿技术提供了一些经验与实际运行建议。

1 几种无功动态补偿装置的技术性能比较

在配电系统中安装并联电容器可改善电压分布,提高功率因数,减少电网损耗,且简便易行,因此该

技术正在应用中不断发展中。

目前,市场上存在着多种形式的低压无功补偿装置,供电部门应当根据地区电网运行实际需要,科学

合理的选择无功补偿方式。

根据南通电网降损节电措施计划,南通供电公司对市郊低压线路开展了无功补偿的试点分析比较工作,先后安装使用了4种型号的低压无功补偿装置,经过一段时间的配网运行观察,对4种无功动态补偿装置

的实际运行使用情况进行总结与比较,见表1。

表1 4种无功动态补偿装置技术性能比较

2低压无功补偿装置运行情况分析

2.1 LTB型柱上配变无功补偿箱

LTB型柱上配变无功补偿箱为1997年设计生产的早期产品,采用可控硅控制电容器组自动投切。由于设计未考虑低压负荷的三相不平衡问题,交流采样信号为A相实时负荷,通过计算采样相功率因数,控制电容器组三相同时投切,补偿容量较小,不分组投切。其中5

台安装在三相负荷均较重的啬园地区的台片基本上能发挥补偿作用,安装前变压器出口侧力率为0.68,安装后力率提高到0.77。但通过对安装在新村里的2台补偿箱进行多次检查,电容器投入运行指示灯一直未亮,据分析因采样相负荷较低,无功功率未达到装置设定启

动值,电容器一直未能投入。由于该补偿装置仅采集一相(A相)实时负荷进行计算,不能准确全面的反映电网实际三相无功缺额,在三相负荷不平衡时可能造成未采样相过补偿或电容器组无法投入。同时,设计选择功率因数做为控制物理量,在轻负荷情况下也会造成过补

偿,且装置易发生投切振荡,因此目前单一按功率因数控制方式已不能适应电网需要。

2.2 JKY无功补偿装置

JKY型属电压型无功补偿装置,装置安装接线方便,原理简单、成本较低,电容器根据电网运行电压投切,程序设定电网电压在175~198 V时电容器全部投人,电压在198~235 V时根据电压变化情况实现电容器分组投切。该装置具有通信接口,可进行远红外数据通信。由于电压型无功补偿装置是根据电压波动来决定电容器投切,所以适合安装在自然功率因数比较低且负荷稳定的地方,能取得较好的补偿效果。运行中,应对安装点的电网电压和负荷情况进行定期监测,对于运行负荷变化大的安装地点,为使补偿效果达到最优,补偿装置投入启动电压的设置须在地面进行跟踪修改,对运行维护要求较高。在电网电压波动较大的情况下,装置投入启动电压的选择要经过慎重计算,如选择不当可能出现无功补偿装置恒投、恒切情况。由于装置未对运行电流进行采样分析计算,无法直接计算低压线路的实际无功情况,只有通过运行电压间接反映电网无功负荷变化情况,电容器组难以实现准确投切,在非理想运行条件下易造成过补或无法投入,因此要求选择适合的安装地点,以体现其方便、高效、简单的灵活性。

2.3 JKFA型户外式低压无功补偿箱

JKFA无功补偿箱以无功功率和电压为控制参量进行复合控制,由单一参数控制发展多参数控制,无投切振荡和补偿死区,是今后低压无功补偿技术的方向趋势。采用固体开关和交流接触器并联程序控制投切,控制器具有RS-232通讯接口,能利用便携式电脑读取当前各相电压、无功,总有功、功率因数以及电容器投入时间等参数,无历史数据存储功能(已向厂家提出改进意见,并得到升级完善)。

JKFA无功补偿箱有2种型式:一种型式是电流互感器布置在补偿箱内,安装中只须将低压线直接串进接入补偿箱,优点是接线简单快捷,低压线路开断后只需引下7根导线(6根相线、1根零线),通过铜铝线夹接至补偿箱桩头,无二次电流连接线;另一种型式是分别接人电压线、电流线,3只户外式电流互感器分别从线路穿过,其二次电流线按照同一极性引出至补偿箱内,4根电压线同时从低压杆上引下,安装点容易选择,而接线较复杂,杆上接线对电流极性要求严格。

选择在负荷较重的南郊村台片安装了2台JKFA无功补偿箱,容量分别为45 kvar与90 kvar。实际使用中发现,由于负荷基本集中在变压器杆周围,因此受安装条件的限制,无功补偿箱后段线路无功负荷达不到启动点。如90 kvar电容器安装在变压器台架附近的2号杆上,据配电变压器25 m,线路后段无功功率只有25~28 kvar,电容器不能投入使用,而变压器杆第一分支接有2个用户,有功40~50 kW。此外,电容器杆另一方向的线路负荷有40~60 kW,力率均在0.68左右,根据当地负荷特点(24 h连续工作,平均力率水平0.70,个体私营织布企业生产状况相差不大)和电压状况(电容器投人前电压为398 V),为发挥无功补偿效果,因此在现场将电容器投入方式临时改为按电压(390~407 V)投入。电容器投入后电压达到405 V,配变台区下低压网络无功就地平衡,且不存在向10 kV系统倒送无功的可能性。另一台45 kvar电容器补偿装置,因选择的安装地点无耐张杆,无法开断低压线路,安装时临时采用在原低压线路并接一段大截面导线的方式,在其中串人电流互感器,经估算互感器仅测量了70%的线路电流(互感器穿入60 cm长120导线并接于50导线上),计人装置的无功负荷仅23 kvar,装置只投入第一组15 kvar电容器,厂家将机内CT变比由实际300/5调为425/5重新运行后,现场自动投入第二组30 kvar电容器。投入前力率为0.68,

投入15 kvar后力率为0.93,投入30 kvar力率提高到0.99。通过将自动补偿装置内CT变比修正后,二次电流更接近负荷情况,从而使电容器组能够充分发挥作用。

2.4 XCJ一1型智能低压无功补偿装置

XCJ一1型智能低压无功补偿装置采用TPM2000型配电监控仪作为电容投切的控制器,功能比较多,可测量低压线路的电压、电流(包括零序电流)、功率因数、有功功率、无功功率、电压电流总畸变率、频率、有功无功电度,能够统计日最大最小电流、电压、功率及出现时刻,并统计整点各相的电压、电流、功率、力率等参数和电容器投切次数,可储存2个月的资料,电容器可分相投入。

经过数月的实际运行观察,通过读取的有关数据分析,XCJ一1型智能低压无功补偿装置运行效果良好。我们将一台60 kvar的xcJ一1型补偿装置安装在距变压器(177408号杆,200 kVA)95 m处的一条支路上,低压导线型号为LGJ~50,电容器投运前,相电压195~205 V,每相电流110~120 A,三相功率约50kW,功率因数0.70。电容器投入运行后,发现电容器每天投切8~12次,绝大部分时间是45 kvar投入运行,相电压提高到210~220 V,功率因数提高到0.9~0.95,电流降低了20 A,每月可降低400 v

线路损耗约300 kW·h。

通过读取控制器存储的运行数据,获得了整点的电压、电流、功率、功率因数及峰值和15 min最大值,绘制出运行期间电压、电流、有功、无功、功率因数等的波动曲线。这些详细运行数据的获得,使我们对电网运行情况及电容器投切效果一目了然,为今后进一步分析研究配电网络情况,提高低压配网运行的经

济运行水平创造了有利条件。

3结论与建议

(1)选择低压无功补偿装置应优先考虑科技含量高、技术原理先进、质量可靠、功能完善、便于运行维

护与分析的智能型设备l 2l。

(2)合理选择电容器补偿的安装地点十分重要。应尽量选择在低压台区负荷中心,以取得最优的就地补

偿效果,减少无功潮流在配电网络中的长距离传输,达到经济运行的最终目的。

(3)根据市郊地区公用配变的容量、负荷与自然功率因数情况,应当合理选择低压无功补偿装置的补偿容量,一般以30~60 kvar为宜。补偿容量太小难苏剑:几种低压无功补偿装置运行与管理情况分析以达到效果,容量选择过大有可能导致一定比例的电容器组发挥不了作用。

(4)低压配电网络具有分布范围广、节点多、负荷特性不一、负荷变化大等特点,以往仅仅根据大概估计与人工短时测量的方法对低压配电网进行监视,安全性、可靠性与准确度均较低,无法了解各相有功、无功负荷的变化情况。根据现代配电网络的运行管理需要,无功补偿设备也应具有先进的数据采集与储存分析功能,通过高速率采样监测电网各种交流量,并整点记录,便于对电网运行数据进行总结与分析。

(5)装置应提供远红外或串行口通讯功能,可实现就地抄表,并提供强大的后台软件对历史运行数据进行分析与计算。对电网中存在的少量谐波源负荷,在电容器投入后要求智能化补偿装置能较为准确的计算出负荷的谐波含量与变化情况。对出现谐波超标严重的情况,应当立即自动切除电容器组,保护无功补偿

装置的安全可靠运行。

(6)为便于现场安装,电流互感器可采用穿过与正线并联导线的安装方式。在软件中根据电流分配关系调整CT变比值,在不开断导线的同时同样能达到判断实际负荷电流目的,或选用成本较高的钳型电流夹

式互感器。

(7)电流型无功补偿装置建议厂家在软件中对电流互感器设计一电子开关,在电流极性方向有误时能够

判别并自动纠正,使安装中互感器接反或配变改造时不需停电处理。

(8)由于配网负荷普遍存在三相负荷不平衡情况,建议在负荷较大的配变台区安装具有分相投切的无功

补偿装置,根据“取平补齐”原则,以共补2~4组、分补1组或2组为宜。

(9)为便于配电部门以后的运行维护,要求厂家将无功补偿箱及附件锁采用通用钥匙。手持式数据采集

器,应能够采集20组以上的多路装置运行存储数据。

(10)无功补偿箱体上的电容器投切指示灯建议统一安装在箱体下方,且应选用高亮度指示灯,否则白

天肉眼无法看清电容器运行指示,生产厂家设计时予以改进完善。

(11)为使低压无功补偿收到实效,有效降低配网线损、改善电压质量,在安装实施无功补偿后还要重视监视维护与分析工作,不能“只装不管”,因电容器组的安装只是无功补偿工作的开始。因此,供电部门应考虑制定相应的低压无功补偿设备运行维护制度,明确职责,落实到人,通过定期检查、采集运行数据与分析补偿效果,保证设备的安全可靠运行,并发挥实效。

变压器容量计算

变压器: 变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。 变压器按用途可以分为:配电变压器、电力变压器、全密封变压器、组合式变压器、干式变压器、油浸式变压器、单相变压器、电炉变压器、整流变压器、电抗器、抗干扰变压器、防雷变压器、箱式变电器试验变压器、转角变压器、大电流变压器、励磁变压器等。 容量: 常指一个物体的容积的大小,容量的公制单位是升。容量也指物体或者空间所能够容纳的单位物体的数量。 变压器额定容量: 变压器额定容量是指主分接下视在功率的惯用值。在变压器铭牌上规定的容量就是额定容量,它是指分接开关位于主分接,是额定满载电压、额定电流与相应的相系数的乘积。对三相变压器而言,额定总容量容量等于=3根号额定线电压×线电流,额定容量一般以kVA 或MVA表示。额定容量是在规定的整个正常使用寿命期间,如30年,所能连续输出最大容量。而实际输出容量为有负载时的电压、额定电流与相应系数的乘积。 概念: 额定容量是指主分接下视在功率的惯用值。在变压器铭牌上规定

的容量就是额定容量,它是指分接开关位于主分接,是额定空载电压、额定电流与相应的相系数的乘积。对三相变压器而言,额定容量等于=根号3×额定相电压×相电流,额定容量一般以kVA或MVA表示。 计算: 额定容量是在规定的整个正常使用寿命期间,如30年,所能连续输出最大容量。而实际输出容量为有负载时的电压(感性负载时,负载时电压小于额定空载电压)、额定电流与相应系数的乘积。

住宅小区负荷与变压器容量的选择

住宅小区负荷与变压器容量的选择 1 负荷计算 1.1 单位指标法 应用单位指标法确定计算负荷Pjs(适用于照明及家用电负荷),即: Pjs=∑Pei×Ni÷1000(kW) 式中Pei——单位用电指标,如:W/户(不同户型的用电指标不同),由于地区用电水平的差异,各地区应根据当地的实际情况取用 Ni——单位数量,如户数(对应不同面积户型的户数) 邯郸市居民住宅负荷计算参考值见表1。 表1 居民住宅负荷表 户建筑面积(m2) <80 80~100 >100 计算负荷(W) 3000~4000 4000~6000 7000~8000 计算电流(A) 14~18 18~27 32~36 内线截面(mm2) 4 6 10 电能表规格(A) 5(20) 5(20) 10(40) 应用以上方法计算负荷应乘以同时系数,即实际最大负荷(PM)。 PM=Pjs×η(式中η——同时系数,不同的住户η值不同:一般情况下,25~100户的小区取0.4;101~200户的小区取0.33;200户以上的小区取0.26。) 1.2 单位面积法 按单位面积法计算负荷,在一定的面积区有一个标准,面积越大的区其负荷密度越小,其表达式如下: PM=Ped×S×η 式中PM——实际最大负荷,kW Ped——单位面积计算负荷,W/m2 S——小区总面积,m2 η——同时系数,取值范围同上 根据以上两种方法求出照明及家用负荷后,结合小区的实际情况,看是否还有其它负荷,如有其它负荷则应考虑进去。一般的成规模的小区会有路灯、公用照明、物业楼(物业办公及商场联用)用电负荷;如果是小高层(9层以上)(小康型)还应考虑电梯负荷;二次加压泵房负荷(供生活及消防用水),以上诸负荷在计算住宅小区负荷中占比重较大的是照明及家用电负荷,而照明及家用电负荷出现最大值的时段为每天19:00~22:00,因而在计算小区的最大负荷时就以19:00~22:00时段的照明及家用电负荷为基础,然后再叠加其它负荷。其它负荷计算方法为: 目前住宅小区基本上分两种类型:一种是经济适用型,一种是小康型(豪华型),尽管这两种住宅小区用电水平不同,但选择配变容量的方法大致相同。 1 负荷计算 1.1 单位指标法 应用单位指标法确定计算负荷Pjs(适用于照明及家用电负荷),即: Pjs=∑Pei×Ni÷1000(kW)

如何选择变压器:容量计算方法

电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。 如何选择变压器? 选用配电变压器时,如果把容量选择过大,就会形成“大马拉小车”的现象。不仅增加了设备投资,而且还会使变压器长期处于空载状态,使无功损失增加。 如果变压器容量选择过小,将会使变压器长期处与过负荷状态。易烧毁变压器。依据“小容量,密布点”的原则,配电变压器应尽量位于负荷中心,供电半径不超过0.5千米。 配电变压器的负载率在0.5~0.6之间效率最高,此时变压器的容量称为经济容量。如果负载比较稳定,连续生产的情况可按经济容量选择变压器容量。 对于仅向排灌等动力负载供电的专用变压器,一般可按异步电动机铭牌功率的1.2倍选用变压器的容量。 一般电动机的启动电流是额定电流的4~7倍,变压器应能承受住这种冲击,直接启动的电动机中最大的一台的容量,一般不应超过变压器容量的30%左右。 应当指出的是:排灌专用变压器一般不应接入其他负荷,以便在非排灌期及时停运,减少电能损失。 对于供电照明、农副业产品加工等综合用电变压器容量的选择,要考虑用电设备的同时功率,可按实际可能出现的最大负荷的1.25倍选用变压器的容量。 根据农村电网用户分散、负荷密度小、负荷季节性和间隙性强等特点,可采用调容量变压器。调容量变压器是一种可以根据负荷大小进行无负荷调整容量的变压器,它适宜于负荷季节性变化明显的地点使用。 对于变电所或用电负荷较大的工矿企业,一般采用母子变压器供电方式,其中一台(母变压器)按最大负荷配置,另一台(子变压器)按低负荷状态选择,就可以大大提高配电变压器利用率,降低配电变压器的空载损耗。 针对农村中某些配变一年中除了少量高峰用电负荷外,长时间处于低负荷运行状态实际情况,对有条件的用户,也可采用母子变或变压器并列运行的供电方式。在负荷变化较大时,根据电能损耗最低的原则,投入不同容量的变压器。 变压器的容量是个功率单位(视在功率),用AV(伏安)或KVA(千伏安)表示。 它是交流电压和交流电流有效值的乘积,计算公式S=UI。变压器额定容量的大小会在其的铭牌上标明。

怎样配置住宅小区配电变压器

怎样科学配置住宅小区配电变压器 1 前言 在经济和文化持续发展,大力构建和谐社会的今天,人们的衣、食、住、行的条件正在逐步得到改善,住宅生活小区的用电成为人们关注的重要话题。既要使居民家庭用好电,又要使供电企业的供电经济、高效,尽可能地把各种电气损耗降到最低限度。因此,供电企业必须加强用电营销的精细化管理,同时,供电企业和用电单位在规划、勘察及设计用电负荷时,要切合实际加以分析并严格遵守有关的电力规程和设计规范,科学分析、计算变压器配置,合理地选择变压器容量,切实做到供电部门经济运行,同时也减轻用户不合理的投资及不必要的电损负担。不但是对新的住宅区要规范设计,而且还要对一些现有的老住宅小区变压器配置方法进行分析,对已不能适应当前实际情况的变压器配置,有必要进行重新调整,以实现供电部门与用电户的双赢。 2 推广配电室或箱变 长期以来,住宅小区供电方式一般都在附近10kV变压器台区(供电部门公变或用电单位专变)低压侧直接引电源至小区,而且一个变压器台区所带的负荷也比较大,大多数变压器台区同时供应几个小区和一些零散的住宅群的生活用电,造成变压器台区经常过载。尤其是在冬、夏季用电高峰期更加严重,甚至导致变压器过载,直至烧毁变压器现象的发生。另外,人们对供电可靠性要求也不断提高。因此,我们对新建住宅小区的供电方式应该有所改变,必须根据目前广大居民的用电需求及负荷特性进行科学的规划。 (1)新建住宅区内建设配套配电室 配电室由高低压开关柜室和变压器室组成,高、低压进出线均采用电缆并敷设于电缆沟、桥架或电缆保护管内;同时,还要在变压器的高压侧设熔断器(容量较小时)或断路器(容量较大时),低压侧设立框架式或塑壳式断路器并合理设定保护参数,以便对变压器进行有效的保护。如果一些住宅小区公用面积较小,也可以采用箱式变电站(简称箱变)。这样,就能有效地保护变压器,大大提高供电的安全性、可靠性和稳定性。 (2)选择多种供电方式。 第一种方案:10kV高压侧双电源进线(该方式可以通过10kV进线高压开关柜互投装置来实现主备电源互为备用),经出线开关柜后接至变压器;低压侧采用单母线分段,正常情况下分段运行。第二种方案:10kV高压侧单电源进线,低压侧单母线分段或不分段。前一种方式可靠性较高,但投资大,适用于较高档的住宅小区,特别是有高层建筑的小区;后一种方式可靠性较前一种低,但投资比较节省。从目前的情况来看,后一种方式的供电可靠性已能够满足普通的生活用电,一般采用后种方式,但考虑以后的发展,配电室应该预留有安装备用电源高、低压进线柜的位置。综合以上两点,当前新建住宅小区应该配套建立配电室或箱变;同时,10kV电源进线应该预留进线位置(以保证供电可靠性),首期可以根据实际情况只接入1回10kV进线。 3 预测用电负荷 单位住宅小区用电负荷的特点必须考虑楼层的高低、是否安装电梯、消防水泵等设施,是否设置中央空调等因素。还要考虑除住宅外,是否存在社区办学校(幼儿园)、商场、娱乐场所等公共事业。根据这些实际情况来综合预测住宅的用电负荷。 目前,我国大部分地区新建住宅小区的套房为2房2厅、3房2厅,极少数为4房2厅。套房面积普遍为90~130m2,少数在140m2以上。随着住宅家用电器拥有量的迅速增加,特别是微波炉、电磁炉、消毒柜、电热水器等大功率电器进入普通家庭,以往常规考虑4~6kW的设计功率已不能满足现代家居的要求,根据对某城市家庭用电器的调查统计,得出

住宅小区负荷与变压器容量的选择(含实例)

住宅小区负荷与变压器容量的选择(含实例) 2013-05-27 14:31系统分类:工程实例专业分类:建筑电气浏览数:1549 目前住宅小区基本上分两种类型:一种是经济适用型,一种是小康型(豪华型),尽管这两种住宅小区用电水平不同,但选择配变容量的方法大致相同。 1 负荷计算 1.1 单位指标法 应用单位指标法确定计算负荷Pjs(适用于照明及家用电负荷),即: Pjs=∑Pei×Ni÷1000(kW) 式中Pei——单位用电指标,如:W/户(不同户型的用电指标不同),由于地区用电水平的差异,各地区应根据当地的实际情况取用 Ni——单位数量,如户数(对应不同面积户型的户数) 邯郸市居民住宅负荷计算参考值见表1。 表1 居民住宅负荷表 户建筑面积(m2)<8080~100>100 计算负荷(W)3000~40004000~60007000~8000 计算电流(A)14~1818~2732~36 内线截面(mm2)4610 电能表规格(A)5(20)5(20)10(40) 应用以上方法计算负荷应乘以同时系数,即实际最大负荷(PM)。 PM=Pjs×η(式中η——同时系数,不同的住户η值不同:一般情况下,25~100户的小区取0.4;101~200户的小区取0.33;200户以上的小区取0.26。) 1.2 单位面积法

按单位面积法计算负荷,在一定的面积区有一个标准,面积越大的区其负荷密度越小,其表达式如下: PM=Ped×S×η 式中PM——实际最大负荷,kW Ped——单位面积计算负荷,W/m2 S——小区总面积,m2 η——同时系数,取值范围同上 根据以上两种方法求出照明及家用负荷后,结合小区的实际情况,看是否还有其它负荷,如有其它负荷则应考虑进去。一般的成规模的小区会有路灯、公用照明、物业楼(物业办公及商场联用)用电负荷;如果是小高层(9层以上)(小康型)还应考虑电梯负荷;二次加压泵房负荷(供生活及消防用水),以上诸负荷在计算住宅小区负荷中占比重较大的是照明及家用电负荷,而照明及家用电负荷出现最大值的时段为每天19:00~22:00,因而在计算小区的最大负荷时就以19:00~22:00时段的照明及家用电负荷为基础,然后再叠加其它负荷。其它负荷计算方法为: (1) 电梯: PD=∑PDi×ηD。 式中PD——电梯实际最大总负荷,kW PDi——单部电梯负荷,kW ηD——多部电梯运行时的同时系数(取值范围见表2) 表2 电梯同时系数一览表

变压器容量的选择与计算

变压器容量的选择与计算 电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。 一、台数选择 变压器的台数一般根据负荷等级、用电容量和经济运行等条件综合考虑确定。当符合下列条件之一时,宜装设两台及以上变压器: 1.有大量一级或二级负荷在变压器出现故障或检修时,多台变压器可保证一、二级负荷的供电可靠性。当仅有少量二级负荷时,也可装设一台变压器,但变电所低压侧必须有足够容量的联络电源作为备用。 2.季节性负荷变化较大根据实际负荷的大小,相应投入变压器的台数,可做到经济运行、节约电能。 3.集中负荷容量较大虽为三级负荷,但一台变压器供电容量不够,这时也应装设两台及以上变压器。 当备用电源容量受到限制时,宜将重要负荷集中并且与非重要负荷分别由不同的变压器供电,以方便备用电源的切换。 二、容量选择 变压器容量的选择,要根据它所带设备的计算负荷,还有所带负荷的种类和特点来确定。首先要准确求计算负荷,计算负荷是供电设备计算的基本依据。确定计算负荷目前最常用的一种方法是需要系数法,按需要系数法确定三相用电设备组计算负荷的基本公式为:

有功计算负荷(kw ) c m d e P P K P == 无功计算负荷(kvar ) tan c c Q P ?= 视在计算负荷(kvA ) cos c c P S ?= 计算电流(A ) c I = 式中 N U ——用电设备所在电网的额定电压(kv ); d K ——需要系数; Pe ——设备额定功率; K Σq ——无功功率同期系数; K Σp ——有功功率同期系数; tan φ设备功率因数角的正切值。 例如:某380V 线路上,接有水泵电动机5台,共200kW ,另有通风机5台共55kW ,确定线路上总的计算负荷的步骤为 (1)水泵电动机组需要系数d K =0.7~0.8(取d K =0.8),cos 0.8?=,tan 0.75?=,因此 (2)通风机组需要系数d K =0.7~0.8(取d K =0.8),cos 0.8?=,tan 0.75?=,因此 考虑各组用电设备的同时系数,取有功负荷的为0.95P K =∑,无功负荷的为 0.97q K =∑,总计算负荷为

变压器计算公式

变压器计算公式已知容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数是考虑电动机功率因数和效率等计算而得的综合值。功率因数为,效率不,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电压数去除、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW 数又恰是6kV数的倍数,则容量除以千伏数,商数乘以系数。 (5)误差。由口诀c 中系数是取电动机功率因数为、效率为而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。

怎么计算变压器的容量

怎么计算变压器的容量, 变压器是用来变换交流电压、电流而传输交流电能的一种静止的电器设备,电力变压器是发电厂和变电所的主要设备之一。变压器的作用是多方面的不仅能升高电压把电能送到用电地区,还能把电压降低为各级使用电压,以满足用电的需要。我们都知道变压器在不同的环境下,它的用途也有所不同。今天就来给大家来讲讲关于变压器容量的计算方式,看看是怎样计算的。 1.常规方法:根据《电力工程设计手册》,变压器容量应根据计算负荷选择,对平稳负荷 供电的单台变压器,负荷率一般取85%左右。即:β=S/Se 式中:S———计算负荷容量(kV A);Se———变压器容量(kV A);β———负荷率(通常取80%~90%)。 2.计算负载的每相最大功率:将A相、B相、C相每相负载功率独立相加,如A相负载总功率10KW,B相负载总功率9KW,C相负载总功率11KW,取最大值11KW。(注:单相每台设备的功率按照铭牌上面的最大值计算,三相设备功率除以3,等于这台设备的每相功率。)例如:C相负载总功率 = (电脑300W X 10台)+(空调2KW X 4台)= 11KW 3..计算三相总功率:11KW X 3相 = 33KW(变压器三相总功率) 三相总功率 / 0.8,这是最重要的步骤,目前市场上销售的变压器90%以上功率因素只有0.8,所以需要除以0.8的功率因素。 33KW / 0.8 = 41.25KW(变压器总功率) 41.25KW / 0.85 = 48.529KW(需要购买的变压器功率) ,那么在购买时选择50KV A的变压器就可以了。 注意问题:首先变压器的额定容量,应该是变压器在规定的使用条件下,能够保证变压器正常运行的最大载荷视在功率;然后这个视在功率就是变压器的输出功率,也是变压器能带最大负载的视在功率; 并且变压器额定运行时,变压器的输出视在功率等于额定容量;变压器额定运行时,变压器的输入视在功率大于额定容量。 在变压器铭牌上规定的容量就是额定容量,它是指分接开关位于主分接,是额定空载电压、额定电流与相应的相系数的乘积。对三相变压器而言,额定容量等于=√3×额定空载相电压×额定相电流,额定容量一般以kV A或MV A表示。额定容量是在规定的整个正常使用寿命期间,如30年,所能连续输出最大容量。而实际输出容量为有负载时的电压(感性负载时,负载时电压小于额定空载电压)、额定电流与相应系数的乘积。 变压器容量的选择对综合投资效益有很大影响。变压器容量选得过大,出现"大马拉小车"现象,不仅一次性投资大,空载损耗也大。变压器容量选得过小,变压器负载损耗增大,经济上不合理,技术上也不可行。 变压器的最佳负载率(即效率最高时的负载率),不是在额定状态下,而是在40%~70%之间,负载率过高,损耗明显增大;另一方面,由于变压器容量裕度小,负荷稍有增加,便需更换大容量箱变,频繁增容势必会增加投资,影响供电。 选择变压器容量,要以现有的负荷为依据,适当考虑负荷发展,选择变压器容量可以按照5年电力发展计划确定。

住宅小区负荷与变压器容量的选择含实例

住宅小区负荷与变压器容量的选择含实例 标准化管理部编码-[99968T-6889628-J68568-1689N]

住宅小区负荷与变压器容量的选择(含实例) 2013-05-2714:31???系统分类:工程实例???专业分类:建筑电气???浏览数:1549 目前住宅小区基本上分两种类型:一种是经济适用型,一种是小康型(豪华型),尽管这两种住宅小区用电水平不同,但选择配变容量的方法大致相同。 1 负荷计算 1.1 单位指标法 应用单位指标法确定计算负荷Pjs(适用于照明及家用电负荷),即: Pjs=∑Pei×Ni÷1000(kW) 式中Pei——单位用电指标,如:W/户(不同户型的用电指标不同),由于地区用电水平的差异,各地区应根据当地的实际情况取用 Ni——单位数量,如户数(对应不同面积户型的户数)邯郸市居民住宅负荷计算参考值见表1。 表1 居民住宅负荷表 户建筑面积(m2)??<80?80~100?>100 计算负荷(W)?3000~4000?4000~6000?7000~8000 计算电流(A)?14~18?18~27?32~36 内线截面(mm2)?4?6?10 电能表规格(A)?5(20)?5(20)?10(40) 应用以上方法计算负荷应乘以同时系数,即实际最大负荷(PM)。 PM=Pjs×η(式中η——同时系数,不同的住户η值不同:一般情况下,25~100户的小区取0.4;101~200户的小区取0.33;200户以上的小区取0.26。) 1.2 单位面积法 按单位面积法计算负荷,在一定的面积区有一个标准,面积越大的区其负荷密度越小,其表达式如下: PM=Ped×S×η 式中PM——实际最大负荷,kW Ped——单位面积计算负荷,W/m2 S——小区总面积,m2 η——同时系数,取值范围同上 根据以上两种方法求出照明及家用负荷后,结合小区的实际情况,看是否还有其它负荷,如有其它负荷则应考虑进去。一般的成规模的小区会有路灯、公用照明、物业楼(物业办公及商场联用)用电负荷;如果是小高层(9层以 上)(小康型)还应考虑电梯负荷;二次加压泵房负荷(供生活及消防用水),以上诸负荷在计算住宅小区负荷中占比重较大的是照明及家用电负荷,而照明及家用电负荷出现最大值的时段为每天19:00~22:00,因而在计算小区的最大负荷时就以19:00~22:00时段的照明及家用电负荷为基础,然后再叠加其它负荷。其它负荷计算方法为: (1) 电梯: PD=∑PDi×ηD。 式中PD——电梯实际最大总负荷,kW PDi——单部电梯负荷,kW

负荷计算及变压器选择

负荷计算及变压器选择1.专用工程

负荷计算及变压器容量、台数选择 根据用电设备组名称查表得出:Kx(需要系数),cosΦ,tanΦ(见excel表格或《工业与民用配电手册》)设备容量Pe 根据下面的公式,计算Pj,Qj,Sj,Ij 基本公式:Pj=Pe*Kx Qj=Pj*tanΦ Sj= Ij= 取同时系数:Kp=,Kq= 计算出Pj,Qj,Sj 可以计算出补偿前的功率因数cosΦ,功率因数一般补偿到,查表可查出无功补偿率q c 补偿容量Qc=Pj*q c,计算补偿后的设备容量:Pj,Qj,Sj,Ij 变压器损耗:ΔPb=,ΔQb= 变压器负荷率75%-85%,选择变压器台数和容量 无功补偿率qc附表(见excel表格或《工业与民用配电手册》) 2公用工程 负荷计算 A)套住宅建筑面积在60㎡及以下时,用电负荷不宜小于4KW;建筑面积在60-120㎡,用电负荷不宜小于8KW;建筑面积在120-150㎡时,用电负荷不宜小于12KW;建筑面积在150㎡以上时,用电负荷不宜小于16KW,超出部分建筑面积可按40-50W/㎡计算。 B)新建住宅内公用设施用电按实际设备容量负荷计算,设备容量不明确时,按负荷密度估算,物业管理类60-100W/㎡;商业(会所)类100-150W/㎡. 变压器容量、台数的选择 S=(总负荷*)/2 (10KV公用配电室变压器单台容量不宜大于800KVA,如果需要选择二台的话除以2)为配置系数 关于变压器容量选择,我们来举个简单例子如下: 户型介绍 1#楼:层高均高3米;共3个单元,11层,一层2户;建筑面积均为80平方。 2#楼:层高均为3米,共3个单元,7层,一层2户,建筑面积均为71平方。 3#楼:层高均为3米,共2个单元,7层,一层2户,1单元建筑面积为71平方,2单元建筑面积为49平方。

变压器容量选择的计算

变压器容量选择的计算 方法一 变压器容量选择的计算,按照常规的计算方法;是小区住宅用户的设计总容量,就是一户一户的容量的总和,又因为住宅用电是单相,我们需要将这个数转换成三相四线用电,那么,相电流跟线电流的关系就是根号3的问题,也就是就这个单相功率的总和除于1.732,变换为三相四线的功率,比如现在有一个小区,200 户住宅,每户6-8KW用电量,一户一户的总和是1400÷1.732 ≈ 808KW,这个数是小区所有电器同时使用时的最大功率,那么,实际使用时,这种情况是不会发生的,那么,就产生了一个叫同时用电率,一般选择70-80%,这是根据小区的用户结构特征,决定的。但是,根据变压器的经济运行值为75%,那么,我们可以将这二个值抵消,就按照这个功率求变压器的容量,那么,这个变压器的容量就是合计的总功率1400÷1.732≈ 808KW,根据居民用电的情况,现在0.85-0.9,视在功率Sp = P÷0.85 = 808/0.85 ≈951KVA 。还可以怎么计算,先把总1400功率分成三条线的使用功率,就是单相功率,1400÷3=467KW,然后,把这个单相用电转换成三相用电,467×1.732 ≈ 808KW, 再除于功率因数0.85也≈ 951KVA。 ??? 按照这个数据套变压器的标准容量,建议选择二台变压器,总容量为945KVA,一台630KVA的,另一台315KVA的,在实际施工过程中还可以分批投入使用,如果考虑到今后的发展,也可以选择二台500KVA的变压器,或者直接选择一台1000KVA。 ??? 10KV/0.4KV的电压,1KVA 变压器容量,额定输入输出电流如何计算;我们知道变压器的功率KVA 是表示视在功率,计算三相交流电流时无需再计算功率因数,因此,Sp=√3×U×I 那么,I低=Sp/√3/0.4=1/0.6928≈1.4434? 也就是说1KVA变压器容量的额定输出电流为1.4434A,根据变压器的有效率,和能耗比的不同而选择大概范围。高压10KV输入到变压器的满载时的额定电流大约为;I 高=Sp/√3/10=1/17.32≈0.057737? 也就是说1KVA容量的变压器高压额定输入电流为0.05774A。 方法二 1 城镇住宅小区用电负荷的特点: 与大、中城市的居民小区相比,目前城镇住宅小区没有高楼大厦,无需设置电梯,也没有集中空调。一般来讲,房地产开发商只考虑盖房子,不考虑开发公共事业,如学校、商场等。所以,城镇住宅小区仅有住宅用电,负荷预测较为简单。 2 住宅用电的预测 (1)需用系数法: 小区内的住宅面积可分为三类:60m2以下的为小型,60~100m2为中型,100m2以上为大型。随着人们生活水平的提高,家用电器逐渐增多,特别是空调、热水器、电磁灶或微波炉等大功率家用电器进入普通家庭,家庭用电由原来纯照明向多功能方向发展。一般小型住宅的设备容量为:照明用电容量300W;娱乐用电容量(包括电视机、VCD或DVD、音响、电脑等)900W;卫生间用电容量(包括洗衣机、热水器、排风扇等)3500W;厨房用电容量(包括电饭煲、电热开水器、电冰箱、排风扇等)3500W;空调用电容量为1500W ,合计用电容量8400W。中型住宅的居民,除照明用电容量外,还要增加空调、电视机,用电容量将增加1950W,总容量为10350W,约为小型住宅的1.25倍。大型住宅的居民因为经济条件宽裕,一般为双卫生间,用电容量将大幅增加,约为小型住宅的2.5倍。据统计,居民用电的最大负荷出现在夏季19~22时间段,这时用电负荷约3800W,是用电设备容量的45%,所以取需用系数为0.45。小型住宅的计算负荷取3800W,中型住宅取4750W,大型住宅取9500W。 (2)单位面积法: 据有关资料介绍,新建住宅内居民用电按建筑面积40W/m2负荷密度选择,大城市为60~80W/m2。本文取50W/m2,即小型住宅的计算负荷为3000W;中型住宅5000W;大型住宅10000W。 3 变压器的选择 (1)同时系数:住宅小区内居民由于作息时间不同,同时系数小些。取同时系数一般为:50户以下0.55,

变压器规格容量

规格按电压来说分36 伏,110伏,0.4 千伏,10 千伏,22千伏,6 千伏,35 千伏,110 千伏,220千伏,350 千伏,200 千伏,500 千伏,250 千伏,600 千伏按容量来说我国现在变压器的额定容量是按照R10 优先系数,即按10 的开10 次方的倍数来计算,50KV A,80KV A,100KV A 等变压器的型号太多了变压器的型号由:变压器绕组数+相数+冷却方式+是否强迫油循环+有载或无载调压+设计序号+“-”+容量+高压侧额定电压组成。如:SFPZ9-120000/110 指的是三相(双绕组变压器省略绕组数,如果是三绕则前面还有个S)双绕组强迫油循环风冷有载调压,设计序号为9,容量为120000KV A,高压侧额定电压为110KV 的变压器。容量的话国家标准容量为:30,50,63,80,100,125,160,200,250,315,400,500,630,800,1000,1250,1600,2000 变压器容量单位KV A? 10KV A 的变压器,最大可以接多少KW 的电器? 30KVA 的变压器,最大可以接多少KW 的电器? 我们计划租用一个车间,有动力电380V,变压器容量30KVA.我要安装一个电热炉75KW,电焊机53KW,还有其他小功率电器.变压器容量够吗? 变压器使用KV A 做单位,原因是在负载没有确定的情况下,是不能得到有功功率(符号P,单位KW)和无功功率(符号Q,单位KV AR)的大小的,只有使用KV A 为单位,表示视在功率,符号S。S^2=P^2+Q^ 2 你可以理解负载为纯阻抗时,变压器的有功功率。另外,如何根据以KV A 作单位的变压器产量,计算出变压器的台数呢?将负载的大小除以变压器容量,留出余度,就是变压器台数,如果功率因数很小,就要多加几台变压器,但这样不是很经济,更好的办法是进行无功补偿。你可以参考一下负载的功率大小,以及功率因数,如果功率因数没有的话,可以估计取0.8,(电力变压器一般是110KV、220KV、500KV)问题补充:110KV 的变压器,是不是指它输出的最高电压为110KV?不是最高输出电压,而是额定输出电压。也就是一次侧输入额定电压时,二次侧输出的电压,你可以理解为正常工作电压。首先选择变压器的额定电压。高压侧电压与所接入电网电压相等,低压侧电压比低压侧电网的电压高10%或5%(取决变压器电压等级和阻抗电压大小);额定容量选择。计算变压器所带负荷的大小(要求统计最大综合负荷,将有功负荷kW 值换算成视在功率kV A),如果是两台变压器,那么每台变压器的容量可按照最大综合负荷的70%选择,一台变压器要按总负荷考虑,并留有适当的裕度。其它名牌参数可结合变压器产品适当考虑。 例如:选择35/10kV 变压器。假定最大负荷为3500kW,功率因数为0.8,选两台变压器,容量S=0.7×3500/0.8=3062kV A,可选择3150kV A 的变压器,电压比为35kV/10.5kV。再从产品目录中选择型号。选择两台变压器时,考虑一台停运或故障时,另一台能送出70%以上的功率,这是规程规定的。0.8 是初步考虑负荷的功率因数大致取值。如果选1 台变压器,就不乘0.7 那么有功功率怎么换算成视在功率呢?不好意思本人基础很差~~ 还想再详细点你那个S=0.7×3500/0.8=3062kV A 中的0.7 是什么?小区如何配变压器有10 栋楼四个单元六层每层三户,公式如何算? 要看小区有没有商户,有没有电梯1)需用系数法:小区内的住宅面积可分为三类:60m2 以下的为小型,60~100m2 为中型,100m2 以上为大型。随着人们生活水平的提高,家用电器逐渐增多,特别是空调、热水器、电磁灶或微波炉等大功率家用电器进入普通家庭,家庭用电由原来纯照明向多功能方向发展。一般小型住宅每户的设备容量为:照明用电容量300W;娱乐用电容量(包括电视机、VCD 或DVD、音响、电脑等)900W;卫生间用电容量(包括洗衣机、热水器、排风扇等)3500W;厨房用电容量(包括电饭煲、电热开水器、电冰箱、排风扇等)3500W;空调用电容量为1500W,合计用电容量8400W. 中型住宅的居民,每户除照明用电容量外,还要增加空调、电视机,用电容量将增加1950W,总容量为10350W,约为小型住宅的1.25 倍。大型住宅的居民每户因为经济条件宽裕,一般为双卫生间,用电容量将大幅增加,约为小型住宅的2.5 倍。据统计,居民用电的最大负荷出现在夏季19~22 时间段,这时用电负荷约3800W,是用电设备容量的45%,所以取需用系数为0.45.小型住宅的计算负荷取每户3800W,中型住宅取每

用电量及变压器容量的估算

民用建筑供电系统设计常见问题探讨(一) 用电量及变压器容量的估算 庞传贵李维时(中国建筑设计研究院) 摘要本文简要阐述了各类民用建筑的负荷估算及变压器容量的确定,并介绍了负荷计算的部分作法关键词用电指标、变压器容量负荷率、负荷计算、三相平衡 1、民用建筑的负荷: 民用建筑的用电指标,尤其是负荷计算中需要系数的大小,一直是一个意见很不一致,没有完全解决好的问题,主要是因为民用建筑的情况非常繁杂,不同的地区,不同的单位,不同的设备,不同的使用情况,不同的工程规模,不同的建设投资标准等等,使每平方米建筑面积的用电量有较大的差异,很难给出一个大家均可使用的标准。工程设计者,往往宁大勿小,使已建成的许多工程的变压器容量选择偏大,多数在很低的负荷率下运行。1984年在建设部设计局的支持下,由建设部建筑设计院,北京市建筑设计院、上海市华东建筑设计院、西北建筑设计院、西南建筑设计院等单位组成的民用建筑用电负荷调查组,在北京、上海、西安等地对各类宾馆饭店进行了大量的调查研究和蹲点实测,发现有很大的分散性,历时一年多也只获得了阶段性成果。由于国家经济的迅速发展和人们对民用建筑用电量的认识的较大差别,目前意见仍难统一。我们参照“全国民用建筑工程设计技术措施”中的“表2.5.2-1各类建筑物的用电指标”,修改补充成为表1,供工程设计者在方案或初步设计阶段,作为估算变压器安装容量的参考。 表1 各类建筑物的用电指标 降低25~35VA/m2。表中所列用电指标的上限值是按空调采用电动压缩机制冷时的数值。 上表中数值不是施工图设计时某个房间的负荷指标,对某个房间的负荷,应按其实际安装的用电设备的需要设计。还要注意“表1”中的每平方米瓦数可折算为伏安数,即将瓦数除以功率因数0.9(补偿后),再除以变压器的负载率0.65~0.85,这样使每平方米建筑面积的伏安数为瓦数的约1.5倍左右,此伏安数可作为确定变压器容量的依据。这个指标有人认为偏高,有人认为偏低,实际上该表中的数值已有一个可根据实际情况选用的范围,以适应不同情况的要求。且在折算到变压器的安装容量时,变压器的负载率又有一个范围作

变压器容量选择算步骤

变压器容量选择计算步骤 当我们提到变压器容量的时候,很多人不知道变压器容量计算公式是什么。那么变压器容量怎么计算呢?下面就跟电工学习网一起来看看吧。 一、变压器容量计算公式 1、计算负载的每相最大功率 将A相、B相、C相每相负载功率独立相加,如A相负载总功率10KW,B相负载总功率9KW,C相负载总功率11KW,取最大值11KW。(注:单相每台设备的功率按照铭牌上面的最大值计算,三相设备功率除以3,等于这台设备的每相功率。) 例如:C相负载总功率=(电脑300WX10台)+(空调2KWX4台)=11KW

2、计算三相总功率 11KWX3相=33KW(变压器三相总功率) 三相总功率/0.8,这是最重要的步骤,目前市场上销售的变压器90%以上功率因素只有0.8,所以需要除以0.8的功率因素。 33KW/0.8=41.25KW(变压器总功率) 变压器总功率/0.85,根据《电力工程设计手册》,变压器容量应根据计算负荷选择,对平稳负荷供电的单台变压器,负荷率一般取85%左右。 41.25KW/0.85=48.529KW(需要购买的变压器功率),那么在购买时选择50KVA的变压器就可以了。

二、关于变压器容量计算的一些问题 1、变压器的额定容量,应该是变压器在规定的使用条件下,能够保证变压器正常运行的最大载荷视在功率; 2、这个视在功率就是变压器的输出功率,也是变压器能带最大负载的视在功率; 3、变压器额定运行时,变压器的输出视在功率等于额定容量; 4、变压器额定运行时,变压器的输入视在功率大于额定容量;

5、由于变压器的效率很高,一般认为变压器额定运行时,变压器的输入视在功率等于额定容量,由此进行的运算及结果也是基本准确的; 6、所以在使用变压器时,你只要观察变压器输出的电流、电压、功率因数及其视在功率等于或小于额定容量就是安全的(使用条件满足时); 7、有人认为变压器有损耗,必须在额定容量90%以下运行是错误的! 8、变压器在设计选用容量时,根据计算负荷要乘以安全系数是对的。

设备功率计算变压器容量

根据设备功率计算变压器容量(一) 一)根据你提供的设备清单如下: 电焊机25台,功率分别为:*8;8KVA*6;16KVA*5;30KVA*2;180KVA*2;200KVA*2;ε=50% 电焊机,Kx=, 二)你厂所需500KVA的变压器理由计算如下: KVA即千伏安,表示电焊机的容量, ε=50%,表示电焊机的额定暂载率是50%,在进行负荷计算的时候,电焊机应该统一换算到100%来计算。 Kx=,表示电焊机的需用系数是。需用系数是综合了同时系数、负荷系数、设备效率、线路效率之后得到的一个系数。各种设备不尽相同。 P js表示计算负荷的有功功率。是综合了各类因素后,得到的设备计算功率。 Q js表示计算负荷的无功功率。有功功率乘以功率因数角度的正切值,等于无功功率。也就是你上面的Q js=P js*tgΦ。 cosΦ表示功率因数。功率因数越高,系统的无功功率越低。不同的设备,功率因数也不尽相同。在你的计算式中,取了电焊机的功率因数为。如果是我计算的话,我就取~,呵呵!因为我觉得电焊机的功率因数是没有的。 另外,在你的计算中,没有对焊接设备进行容量转换。我上面说了,电焊机应该统一将暂载率换算到100%来计算。换算公式为:P e=P N*((额定暂载率除以100%暂载率)开根号) P e是换算后的功率,P N是额定功率 额定功率=额定容量*功率因数 因此,你的共计25台焊机的额定容量应该是S=*8+8KVA*6+16KVA*5+30KVA*2+180KVA*2+200KVA*2=972KVA 则额定功率为972KVA*=(我这里计算是取的功率因数为,没有按你的计算) 那么换算功率为*(50%/100%)开根号=*根号=*= 然后将需用系数Kx=代入,则计算负荷P js=K x*P e=*= 到这里,又出现了一个问题。因为大家都知道,电焊机属于单相负载(不论接一零一火220V或者接两根火线380V,都成为单相负载),因此计算负荷有个单相到三相转换的过程。转换方法就是,如果接的是220V,也就是接入相电压时,等效功率要乘以3,如果接的是380V,也就是接入线电压时,等效功率要乘以根号3。因为不知道你的电焊机哪些接220,哪些接380,所以我也无法为你计算。如果不知道,可以统一乘以根号3。因为大容量电焊机对总的负荷影响大,而大容量电焊机都是接380V的。所以你可以全部乘以根号3。那么: P js=*= 则无功功率为Q js=P js*tgΦ=(KVar就是千乏,无功功率的单位) 则系统总容量为S=(有功功率的平方+无功功率的平方)开根号= 总计算电流为I= 那么你们需要一台500KVA的变压器才能使这些电焊机正常工作。

住宅小区的电气设计变压器容量和台数的选择

住宅小区的电气设计变压器容量和台数的选择 要确定合适的变压器容量和台数也是件困难的事情。容量选择大了,台数选择多了将造成浪费; 而相反,则造成变压器的过载,供电可靠性和安全性又得不到保证。那么,怎样才能做到选择合理? 下面以一个实例来探讨这个问题。 假设有一个小区有20幢8层楼房,每幢楼有2个单元,每个单元每层有2套住户,即该小区共有住户640户,每套住宅面积从90~150m2不等。下面用两种方法来确定该小区的总用电量。 (1)单位住户负荷预测法: 根据资料统计,我国住宅电气设计每户计算负荷大概为:近期每户4kW,远期每户为10kW。 则该住宅小区总负荷P为: P近期=4kW/户×640户=2560kW P远期=10kW/户×640户=6400kW (2)单位面积法: 根据资料介绍的经验值,我国住宅电气设计住户的单位面积计算负荷大概为:近期每m2为35W, 远期每m2为90W。由于该小区各户的面积不等,为方便计算,这里取每套住宅面积为120m2作为平均值, 则该住宅小区总负荷P为: P近期=35W/m2×120m2/户×640户=2688kW P远期=90W/m2×120m2/户×640户=6912kW 根据以上两种计算方法得出的结果,现取P近期为2600kW,为6500kW。由于住宅小区内居民的 作息时间不同,而取同时系数为0.4,则折算后该住宅小区的总负荷P′为: P′近期=2600×0.4=1040kW

P′远期=6500×0.4=2600kW 考虑到变压器的经济运行及功率因数,取变压器最佳负荷率k为0.85,功率因数 cosφ为0.75,则变压器容量S应为: S=P′/(kcosφ) S近期=1040/(0.85×0.75)=1631kVA S远期=2600/(0.85×0.75)=4078kVA 通过以上计算,加上考虑该小区总面积较大,因而在区内2个地方各建一座配电房,每座配电 房各供10幢楼房,近期选用2台1000kVA变压器,每座配电房各立1台,这样可以满足近期及近若干年负荷的增加,而远期再各增加1台1000kVA变压器就可以满足本小区居民的用电。

相关文档
最新文档