空间面板参数估计的小样本特性探究(一)

空间面板参数估计的小样本特性探究(一)
空间面板参数估计的小样本特性探究(一)

空间面板参数估计的小样本特性探究(一)

张志强

2013-04-11 15:57:40 来源:《数量经济技术经济研究》(京)2012年9期第122~140页

内容提要:本文通过蒙特卡罗模拟方法比较了GMM、QML和固定效应空间面板(SOLS)参数估计方法和相应模型的检验功效。模拟的结果表明:在参数估计的有效性与一致性方面,小样本情况下GMM估计优于QML和SOLS估计;空间效应的识别方面,LM检验能够有效地识别空间效应及相应的模型形式,而LR检验的功效比较低。Wald检验能够有效识别空间Durbin模型的潜在形式。在小样本情况下Hausman检验易于选择固定效应模型而不是随机效应模型。据此提出了空间面板数据模型实证研究中的对策建议。

关键词:空间面板蒙特卡罗模拟检验功效

作者简介:张志强,南开大学经济学院城市与区域经济研究所。

引言

空间因素在计量经济研究中逐渐被学者们所重视,其应用领域也日渐增多。其中空间面板数据模型的应用领域尤为广泛,被应用于城市经济学、区域经济学、劳动经济学、能源经济学等多个领域。如Egger(2005)、Franzese(2007)等研究。Kholodilin (2010)综合利用了空间面板的估计方法,应用于欧盟的区域经济收敛性研究得出了稳健的估计结果。Baltagi(2010)将空间面板数据的研究模型应用于德国动态工资方程研究,进一步拓展了空间面板的实证研究领域。骆永民(2008)利用我国31个省份的空间面板数据分析了财政分权对经济增长的促进作用和空间溢出效应。符淼(2009)利用空间面板模型,分析了经济活动空间聚集与技术溢出的空间分布特征,并得出了技术溢出效应强度的递减半径。刘秉镰和武鹏(2010)采用空间面板数据模型方法,实证检验了中国交通基础设施投资与全要素生产率增长之间的相互关系。丁志国和赵宣凯(2011)利用了空间面板数据模型,分析了城市化进程对于城乡收入差距的直接影响与间接影响。

空间面板数据模型通常可选择的估计方法主要可以划分为两种类别,一种是基于极大似然函数(Maximum Likelihood Estimation)的估计方法;另外一种方法是基于广义矩的估计方法(GMM)。依据现有的研究,在大样本情况下GMM估计方法在给定的残差分布无论是同方差还是异方差条件下,得到的估计量都是渐进有效的。MLE(包括QMLE方法)的适用条件是残差分布必须满足正态分布并且同方差,否则得到的参数的估计结果是有偏的,然而当分布的残差满足正态与同方差分布时,GMM的参数估计效率低于MLE。在实证研究过程中,由于中国年度宏观数据的特点,使得有限样本属性往往成为空间面板计量经济模型估计时面临的首要问题,例如学者们通常以中国的30个省份为基本的分析单元,由于统计数据的可获得性与时间序列数据的连续性,使得横截面数据个体,通常限定在6~30个省份,而时间序列方面,通常所能够获得的数据序列是1978年以后的统计数据,时间序列纬度的数据在10~40之间。因此这里我们采用蒙特卡罗模拟的方法,分析ML、GMM和SOLS参数估计的有限样本属性,并就相关参数检验效率进行对比研究,为实证研究过程中,选择恰当的实证研究方法,提高参数估计的有效性与一致性提供可以借鉴的理论与实践参考。

一、空间面板数据模型的估计方法

空间面板计量经济学模型的识别与估计在过去十年中得到了迅速发展。Elhorst(2003、2010)将空间面板划分为如下几种不同的类型,即空间面板滞后模型(Spatial Panel Lag Model)、空间面板的误差模型(Spatial Error Model)、空间面板Durbin模型。其估计方法分为两种类别,即空间面板的极大似然估计和广义矩估计方法。

1.空间面板固定效应模型的极大似然估计

(1)空间面板滞后模型估计。在空间因素存在情况下,空间面板的滞后模型的基本设定为:

对于方程(1)而言,如果不考虑空间因素进行估计,就是非空间的固定效应回归,这显然存在明显的缺失必要解释变量问题以及内生性问题;显然这里直接的回归其中的解释变量,由于ρ Wy的存在,将形成内生的解释变量的偏差。将方程(1)可以表示为:

y=M δ+ε(2)

将模型(1)表示为矩阵形式如式(5)所示:

将μ的值带入到式(6),并依据估计面板固定效应估计时通常所采用的去平均化的过程得到拟似然函数:

(2)空间面板误差模型估计。空间面板的误差模型的基本模型设定如式(9)所示:

与空间面板的滞后效应模型相类似,得到如式(10)的空间面板的误差模型的极大似然函数:

2.空间面板的随机效应估计

显然空间面板随机效应滞后模型的估计,是通过联合估计空间面板的固定效应与非空间面板的随机效应模型来实现的。

(2)空间面板的随机效应误差模型。如果模型(9)中的空间效应参数变量是随机的,那么它的似然函数如式(17)所示:

从而得到目标参数的稳健估计量。

太阳能电池片的相关参数

硅太阳能电池的性能参数主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。 ①短路电流(isc):当将太阳能电池的正负极短路、使u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(a),短路电流随着光强的变化而变化。 ②开路电压(uoc):当将太阳能电池的正负极不接负载、使i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(v)。单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~ 0.7v。 ③峰值电流(im):峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(a)。 ④峰值电压(um):峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为 0.48v。 ⑤峰值功率(pm):峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:pm===im×um。峰值功率的单位是w(瓦)。太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度lkw/㎡、光谱aml.5、测试温度25℃。

⑥填充因子(ff):填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。计算公式为ff=pm/(isc×uoc)。填充因子是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋于矩形,电池的光电转换效率越高。串、并联电阻对填充因子有较大影响,太阳能电池的串联电阻越小,并联电阻越大,填充因子的系数越大。填充因子的系数一般在0.5~0.8之间,也可以用百分数表示。 ⑦转换效率(η):转换效率是指太阳能电池受光照时的最大输出功率与照射到电池上的太阳能量功率的比值。即: η=pm(电池片的峰值效率)/a(电池片的面积)×pin(单位面积的入射光功率),其中pin=lkw/㎡=100mw/cm2。 组件的板形设计一般从两个方向入手。一是根据现有电池片的功率和尺寸确定组件的功率和尺寸大小;二是根据组件尺寸和功率要求选择电池片的尺寸和功率。 电池组件不论功率大小,一般都是由36片、72片、54片和60片等几种串联形式组成。常见的排布方法有4片×9片、6片×6片、6片×12片、6片×9片和6片×10片等。下面就以36片串联形式的电池组件为例介绍电池组件的板型设计方法。

阀门的分类与基本参数

阀门的分类与基本参数 一.阀门的分类 阀门的种类很多,按不同的分类方法[18]可取不同的名称。 1.按用途和作用分 (1)截断阀类: 截断阀又称闭路阀,其作用是接通或截断管路中的介质。截断阀类包括闸阀、截止阀、旋塞阀、球阀、蝶阀和隔膜阀等。 (2)止回阀类: 止回阀又称单向阀或逆止阀,其作用是防止管路中的介质倒流。止回阀类包括止回阀和底阀等。 (3)调节阀类: 调节阀类包括调节阀、节流阀和减压阀等,其作用是用来调节介质的流量、压力等参数。 (4)分流阀类: 分流阀类包括各种形式的分配阀及疏水阀等,其作用是分配、分离或混合管路中的介质。 (5)安全阀类: 安全阀类的作用是防止装置中介质压力超过规定数值,从而对管路或设备提供超压安全保护。它包括各种形式的安全阀。 2. 驱动方式分 (1)手动阀: 靠人力操纵手轮、手柄或链轮驱动阀门。当阀门启闭扭矩较大时,可在手轮和阀杆之间设置齿轮或涡轮减速器。必要时,也可以利用万向接头及传动轴进行较远距离的操作。 (2)动力驱动阀: 动力驱动阀可利用各种动力源进行驱动。主要包括:电动阀、气动阀、液动阀和电磁阀等。 (3)自动阀: 自动阀不需要外力驱动,而利用介质本身的能量来使阀门动作。主要包括:止回阀、安全阀、减压阀、疏水阀和自动调节阀等。 3.按公称压力分 (1)真空阀:工作压力低于标准大气压。 (2)低压阀:公称压力小于或等于16公斤力/厘米2。

(3)中压阀:公称压力为25、40、64公斤力/厘米2。 (4)高压阀:公称压力为100~800公斤力/厘米2。 (5)超高压阀:公称压力大于或等于1000公斤力/厘米2。 4.按工作温度分 (1)高温阀:工作温度高于450OC。 (2)中温阀:工作温度高于120OC而低于或等于450OC。 (3)常温阀:工作温度高于或等于-40OC,而低于或等于120OC。 (4)低温阀:工作温度低于-40OC。 此外,还可按阀体材料分为铸铁阀、铸钢阀、锻钢阀、合金钢阀等;按使用部门分为通用阀、电站阀、船用阀、冶金用阀、水暖用阀等。 如上所述,阀门的分类方法很多,但主要是按其在管路中所起的作用或按其启闭件特点来进行分类的。为了便于统一起见,根据有关标准规定,把通用阀门分成如下十一类即:闸阀、截止阀、旋塞阀、球阀、蝶阀、隔膜阀、止回阀、节流阀、安全阀、减压阀和疏水阀。 按驱动方式、作用和结构特点分类,通用阀门综合列表如下: 闸阀 截止阀 截断阀类隔膜阀 旋塞阀 驱动阀球阀 蝶阀 通用阀门调节阀类—节流阀 止回阀类—止回阀 安全阀类—安全阀 自动阀分流阀类—疏水阀 调节阀类—减压阀 二.阀门的基本参数 阀门的基本参数[18]包括公称直径、公称压力和使用介质,这三者是阀门设计和选用中不可缺少的因素。 1.公称直径 公称直径是指阀门与管路连接处通道的名义直径,用D g表示。它表示阀门规格的大小,是阀门最主要的尺寸参数。为了便于设计、制造、选用和安装,我国已用国家标准的形式把公称直径系列确定下来。公称直径的数值应符合国家标准“管子和管路附件的公称直径”(GB1047-70)的规定,见附表1-1。 附表1-1阀门的公称通径系列(毫米)

阀门基本知识介绍

阀门基本知识培训 1.阀门的分类 1.1按阀门的用途分 a)截断用:截断管路中介质。如:闸阀、截止阀、球阀、旋塞阀、蝶阀等 b)止回用:防止介质倒流。如:止回阀 c)调节用:调节压力和流量。如:调节阀、减压阀、节流阀、蝶阀、V形开口 球阀、平衡阀等 d)分配用:改变管路中介质流向,分配介质。如:分配阀、三通或四通球阀、 旋塞阀等 e)安全用:用于超压安全保护。如:安全阀、溢流阀。 f)其它特殊用途:如蒸汽疏水阀、空气疏水阀、排污阀、放空阀、呼吸阀、排 渣阀、温度调节阀等。 1.2按驱动形式分 a)自动阀门。靠介质本身的能力而动作。 b)驱动阀门。包括手动、电动、气动、液动等 1.3按压力分 a)真空阀:小于标准大气压 b)低压阀门:PN≤1.6MPa c)中压阀门:PN2.5~6.4MPa d)高压阀门:PN10.0~80.0MPa e)超高压阀门:PN≥100Mpa 1.4按工作温度分 a)超低温阀:t<100°C b)低温阀:-100°C≤t≤-40°C c)常温阀:-40°C450°C 1.5按通用分类 闸阀 流阻小,启闭力小,开启时间长 按阀杆分:明杆闸阀、暗杆闸阀 按闸板分:平板闸阀(单平板、双平板)、楔式闸阀(单闸板、双闸 板) 按中法兰分:螺栓连接阀盖、压力密封阀盖、螺纹焊接阀盖截止阀 工作行程小,启闭时间短,流阻大,启闭力大 按阀杆分:外螺纹截止阀、下螺纹截止阀 按流道分:直通式截止阀、角式截止阀、三通截止阀,Y型截止阀

按阀瓣分:锥面密封、球面密封、抛物线型、平面密封、刀型密封、V型、针型截止阀、柱塞式截止阀 按中法兰分:螺栓连接阀盖、压力密封阀盖、螺纹焊接阀盖止回阀 介质单向流动 按结构形式分:旋启式止回阀、升降式止回阀、蝶式止回阀、对夹式 止回阀 球阀 流阻小,使用温度不高,节流性差 按结构形式分:浮动球阀、固定球阀 按中腔结构分:一片式球阀、两片式球阀、三片式球阀、上装式球阀蝶阀 启闭力小,流阻小,调节性能好,使用压力和温度范围小 按结构形式分:中心蝶阀、单偏心蝶阀、双偏心蝶阀、三偏心蝶阀 按连接形式分:对夹式蝶阀、法兰式蝶阀、支耳式蝶阀、焊接式蝶阀2.阀门的主要性能参数 公称通径(口径)1/2~36” 工作压力、工作温度与公称压力的关系: 工作压力并圆整到下一个25PSI,水密封试验压力按1.1倍的工作压力,气密封试验压力按0.6Mpa

阀门主要参数标准

阀门主要参数:公称通径,公称压力,工作压力,工作温度 2007-6-10 09:37 阀门的主要性能参数:公称通径、公称压力、工作压力和工作温度 表示阀门的主要性能参数为公称通径、公称压力、工作压力和工作温度等。 一、公称通径 公称通径DN是管路系统中所有管路附件用数字表示的尺寸,以区别用螺纹或外径表示的那些零件。公称通径是用作参考的经过圆整的数字,与加工尺寸数值上不完全等同。 公称通径是用字母“DN”后紧跟一个数字标志。如公称通径250mm应标志为DN250。 二、公称压力 公称压力PN是一个用数字表示的与压力有关的标示代号,是供参考用的方便的圆整数。同一公称压力PN值所标示的同一公称通径!" 的所有管路附件具有与端部连接型式相适应的同一连接尺寸。 在我国,涉及公称压力时,为了明确起见,通常给出计量单位,以“MPA”表示。在英、美等国家中,尽管目前在有关标准中已列入了公称压力的概念,但实际使用中仍采用英制单位Class。由于公称压力和压力级的温度基准不同,因此两者没有严格的对应关系。两者间大致的对应关系参见表。 日本标准中有一种“K”级制,例如10K、20K、40K等。这种压力级的概念与英制单位中的压力级制相同,但计量单位采用米制。 三、压力—温度额定值 阀门的压力—温度额定值,是在指定温度下用表压表示的最大允许工作压力。当温度升高时,最大允许工作压力随之降低。压力—温度额定值数据是在不同工作温度和工作压力下正确选用法兰、阀门及管件的主要依据,也是工程设计和生产制造中的基本参数。 各种材料的压力—温度额定值、数据见第4章,许多国家都制订了阀门、管件、法兰的压力——温度额定值标准。 1、美国标准 在美国标准中,钢制阀门的压力—温度额定值按ASME/ANSI B16.5a-1992、ASME B16.34-1996的规定;铸铁阀门的压力—温度额定值按ANSI B16.1-1989~B16.4-1989,ANSI B16.42-1985的规定:青铜阀门的压力—温度额定值按ASME/ANSI B16.15a-1992、ASME B16.24-1991的规定。 1)美国ASME/ANSI B16.5a-1992中规定了英制单位和米制单位两种法兰尺寸系列,同时分别列出了适用了两种单位制的法兰压力温度额定值。在该标准附录D 中给出了确定英制单位压力—温度额定值的方法。 2)美国ANSI B16.42-1985《球墨铸铁管法兰及法兰管件》标准中规定了CL150

easyui-属性详解

jquery_easyui_中文解析 最近经常接触easyui,但是easyui官网又总是上不去,所以在网上搜罗了easyui 的中文解析,以备查询。 CSS类定义: div easyui-window window窗口样式 属性如下: 1)modal:是否生成模态窗口。true[是] false[否] 2)shadow:是否显示窗口阴影。true[显示] false[不显示] div easyui-panel 面板 属性如下: 1)title:该标题文本显示在面板头部。 2)iconCls:在面板上通过一个CSS类显示16x16图标。 3)width:设置面板宽度。默认auto。 4)height:设置面板高度。默认auto。 5)left:设置面板左边距。 6)top:设置面板顶部位置。 7)cls:在面板中增加一个Class类。 8)headerCls:在面板头部中增加一个Class类。 9)bodyCls:在面板内容中增加一个Class类。 10)style:在面板中增加一个指定样式。 11)fit:当True时设置该面板尺寸适合于它的父容器。默认false。 12)border:当定义时显示面板边界。默认true。 13)doSize:如果设置为True,该面板将重绘大小,并重建布局。默认true。 14)collapsible:当定义时显示可折叠面板的按钮。默认false。 15)minimizable:当定义时显示最小化面板的按钮。默认false。 16)maximizable:当定义时显示最大化面板的按钮。默认false。 17)closable:当定义时显示关闭面板的按钮。默认false。 18)tools:自定义工具栏,每个工具都包含两个属性:iconCls、handler。 19)collapsed:当定义时该面板初始化时处于收缩状态。默认false。 20)minimized:当定义时该面板初始化时处于最小化状态。默认false。 21)maximized:当定义时该面板初始化时处于最大化状态。默认false。 22)closed:当定义时该面板初始化时处于关闭状态。默认false。 23)href:一个url,加载远程数据并显示在面板中。 24)loadingMessage:当加载远程数据时,在面板中显示一个消息。默认 Loading… 事件如下: 1)onLoad:当远程数据加载完毕后激活。

管道阀门分类、特性、参数及选型

在流体管道系统中,阀门是控制元件,其主要作用是隔离设备和管道系统、调节流量、防止回流、调节和排泄压力。 阀门可用于控制空气、水、蒸汽、各种腐蚀性介质、泥浆、油品、液态金属和放射性介质等各种类型流体的流动。由于管道系统选择最适合的阀门显得非常重要,所以,了解阀门的特性及选择阀门的步骤和依据也变得至关重要起来。 阀门的分类 一、阀门总的可分两大类:第一类自动阀门:依靠介质(液体、气体)本身的能力而自行动作的阀门。如止回阀、安全阀、调节阀、疏水阀、减压阀等。第二类驱动阀门:借助手动、电动、液动、气动来操纵动作的阀门。如闸阀,截止阀、节流阀、蝶阀、球阀、旋塞阀等。 二、按结构特征,根据关闭件相对于阀座移动的方向可分:1.截门形:关闭件沿着阀座中心移动;2.闸门形:关闭件沿着垂直阀座中心移动;3.旋塞和球形:关闭件是柱塞或球,围绕本身的中心线旋转; 4.旋启形:关闭件围绕阀座外的轴旋转; 5.碟形:关闭件的圆盘,围绕阀座内的轴旋转; 6.滑阀形:关闭件在垂直于通道的方向滑动。 三、按用途,根据阀门的不同用途可分:1.开断用:用来接通或切断管路介质,如截止阀、闸阀、球阀、蝶阀等。2.止回用:用来防止介质倒流,如止回阀。3.调节用:用来调节介质的压力和流量,如调节阀、减压阀。4.分配用:用来改变介质流向、分配介质,如

三通旋塞、分配阀、滑阀等。5.安全阀:在介质压力超过规定值时,用来排放多余的介质,保证管路系统及设备安全,如安全阀、事故阀。6.其他特殊用途:如疏水阀、放空阀、排污阀等。 四、按驱动方式,根据不同的驱动方式可分:1.手动:借助手轮、手柄、杠杆或链轮等,有人力驱动,传动较大力矩时装有蜗轮、齿轮等减速装置。2.电动:借助电机或其他电气装置来驱动。3.液动:借助(水、油)来驱动。4.气动:借助压缩空气来驱动。 五、按压力,根据阀门的公称压力可分:1.真空阀:绝对压力 <0.1Mpa 即 760mm 汞柱高的阀门,通常用 mm 汞柱或mm水柱表示压力。2.低压阀:公称压力PN≤1.6Mpa 的阀门(包括PN≤1.6MPa 的钢阀)3.中压阀:公称压力 PN2.5—6.4MPa 的阀门。4.高压阀:公称压力 PN10.0—80.0MPa 的阀门。5.超高压阀:公称压力 PN≥100.0MPa 的阀门。 六、按介质的温度分,根据阀门工作时的介质温度可分:1.普通阀门:适用于介质温度-40℃~425℃的阀门。2.高温阀门:适用于介质温度425℃~600℃的阀门。3.耐热阀门:适用于介质温度600℃以上的阀门。4.低温阀门:适用于介质温度-150℃~ -40℃的阀门。5.超低温阀门:适用于介质温度-150℃以下的阀门。 七、按公称通径分,根据阀门的公称通径可分:1.小口径阀门:公称通径 DN<40mm 的阀门。2.中口径阀门:公称通径 DN50~300mm 的阀门。3.大口径阀门:公称通径 DN350~1200mm 的阀门。4.特大口径阀门:公称通径DN≥1400mm 的阀门。

Access表中各种属性的设置分析

ACCESS数据表中各个属性的含义、设置方法: 格式: Format 属性:可以使用Format属性自定义数字、日期、时间和文本的显示方式。Format属性只影响数据的显示方式,不影响数据的存储方式。String型,可读/写。 expression.Format expression 必需。返回“应用于”列表中的一个对象的表达式。 说明 可以使用预定义的格式,或者使用格式符号创建自定义格式。 Format对不同的数据类型使用不同的设置,对于控件,可以在控件的属性表中设置该属性。对于字段,可以在表“设计”视图或“查询”窗口的“设计”视图中(“字段属性”的属性表中)设置该该属性。也可以使用宏或Visual Basic。 注释在 Visual Basic 中,可输入对应预定义格式的子符串表达式或者输入自定义格式。Access 为“时间/日期”、“数字”和“货币”、“文本”和“备注”和“是/否”数据类型提供预定义格式,预定义格式与国家/地区设置有关。Access显示对应于所选国家/地区的格式,例如,如果在“常规”选项卡中选取“英语(美国)”,则1234.56 的“货币”格式是$1,234.56,如果在“常规”选项卡中选取“英语(英国)”,该数字将显示为£1,234.56。 如果在表“设计”字视图中设置字段的Format属性,Access使用该格式在数据表中显示数据。对窗体和报表上的新控件也应用字段的Format属性。 在任意数据类型的自定义格式中都可以使用以下符号: 不能将“数字”和“货币”型的数据类型的自定义格式符号与“日期/时间”、“是/否”或“文本”和“备注”格式符号混合使用。 如果在数据上定义了输入掩码同时又设置了Format属性,在显示数据时,Format属性将优先,而忽略输入掩码。例如,如果在表“设计”视图中创建了“密码”输入掩码,同时又为字段设

硅太阳能电池的主要性能参数

硅太阳能电池的主要性能参数 本信息来源于太阳能人才网|https://www.360docs.net/doc/e418981122.html, 原文链接: 硅太阳能电池的性能参数主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。 ①短路电流(isc):当将太阳能电池的正负极短路、使u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(a),短路电流随着光强的变化而变化。 ②开路电压(uoc):当将太阳能电池的正负极不接负载、使i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(v)。单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~0.7v。 ③峰值电流(im):峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(a)。 ④峰值电压(um):峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为0.48v。 ⑤峰值功率(pm):峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:pm===im ×um。峰值功率的单位是w(瓦)。太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度lkw/㎡、光谱aml.5、测试温度25℃。 ⑥填充因子(ff):填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。计算公式为ff=pm/(isc×uoc)。填充因子是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋于矩形,电池的光电转换效率越高。 串、并联电阻对填充因子有较大影响,太阳能电池的串联电阻越小,并联电阻越大,填充因子的系数越大。填充因子的系数一般在0.5~0.8之间,也可以用百分数表示。 ⑦转换效率(η):转换效率是指太阳能电池受光照时的最大输出功率与照射到电池上的太阳能量功率的比值。即: η=pm(电池片的峰值效率)/a(电池片的面积)×pin(单位面积的入射光功率),其中pin=lkw /㎡=100mw/cm2。 电池组件的板型设计 在生产电池组件之前,就要对电池组件的外型尺寸、输出功率以及电池片的排列布局等进行设计,这种设计在业内就叫太阳能电池组件的板型设计。电池组件板型设计的过程是一个对电池组件的外型尺寸、输出功率、电池片排列布局等因素综合考虑的过程。设计者既要了解电池片的性能参数,还要了解电池组件的生产工艺过程和用户的使用需求,做到电池组件尺寸合理,电池片排布紧凑美观。 组件的板形设计一般从两个方向入手。一是根据现有电池片的功率和尺寸确定组件的功率和尺寸大小;二是根据组件尺寸和功率要求选择电池片的尺寸和功率。 电池组件不论功率大小,一般都是由36片、72片、54片和60片等几种串联形式组成。常见的排布方法有4片×9片、6片×6片、6片×12片、6片×9片和6片×10片等。下面就以36片串联形式的电池组件为例介绍电池组件的板型设计方法。

阀门基本知识

阀门基本知识介绍、选用及维护 第一节阀门的有关基本常识概述:阀门是流体管路的控制装置。其基本功能是接通或切断管路介质的流通,改变介质的流动方向,调节介质的压力和流量,保护管路和设备的正常运行。 一、阀门的分类: 按用途和作用可分为: 1、截断阀:截断或接通管道介质。如:闸阀、截止阀、球阀、蝶阀、隔膜阀、旋塞阀。 2 、止回阀:防止管道中的介质倒流。 3 、分配阀:改变介质的流向,分配、分离或混合介质的作用。如分配阀、疏水阀、三通球阀。 4 、调节阀:调节介质的压力和流量。如减压阀、调节阀、节流阀。 5 、安全阀:防止装置中介质压力超过规定值,提供超压安全保护作用。 按公称压力分类: 1)真空阀:工作压力低于标准大气压。2)低压阀:公称压力≤1.6。3)中压阀:公称压力为 2.5~6.4 。4)高压阀:公称压力为10~80.0 。5)超高压阀:公称压力≥100。 按工作温度分类: 1)常温阀:用于介质工作温度 -40℃≤t≤120℃2)中温阀:用于介质工作温度120℃<

t≤450℃3)高温阀:用于介质工作温度t> 450℃4)低温阀:用于介质工作温度 -100℃≤t≤-40℃5)超低温阀:用于介质工作温度t< -100℃ 二、阀门的基本参数 阀门的基本参数是:公称通径、公称压力、压力一温度等级以及阀门适用介质。 1、阀门的公称通径 公称通径是指阀门与管道连接处通道的名义直径,用表示,在字母“”后紧跟一个数字标志。如公称通称200应该标志为200,它表示阀门规格,是阀门最主要的参数。 2、阀门的公称压力 公称压力是指与阀门的机械强度有关的设计给定压力,它是阀门在基准温度下允许的最大工作压力。公称压力用表示,它表示阀门的承载能力,是阀门最主要的性能参数。公称压力用来度量。 3、阀门的压力与温度等级 当阀门工作温度超过公称压力的基准温度时,其最大工作压力必须相应降低,阀门的工作温度和相应的最大工作压力变化表简称温压表。是阀门设计和选用的基准。 4、适用介质 工业阀门广泛地应用于石油、化工、冶金、电力、核能等部门,通过管道阀门的介质气体(如空气、蒸气、氨气、氮气、氢气、煤气、石油

参数面板介绍

Basic parameters(基本属性)参数 1.Diffuse(漫射) Diffuse(漫射):材质的基本色,红色小方块区是可加载贴图的选项。 2.Reflection(反射) (1)Reflection(反射):材质的反射选项,3ds Max的反射控制是数值的,VRay则是用色彩来控制,黑色为不反射,白色为反射;反射的强度用色彩的深度来控制,即色彩越黑,反射越少,色彩越白反射越多;用色彩控制的好处在于反射的色彩可以更准确地控制。(2)Hilight glossiness(高光光泽):当选择不反射材质时,可以激活L按钮,此时参数控制即被激活。 (3)Resl golssiness(反射光泽):控制反射的模糊率,同时也控制材质的高光受光曲线。 (4)Fresnel reflections(菲涅耳反射):一种和IOR相关的反射方式,IOR值的变化将影响其变化效果。

(5)Subdivs(细分):控制材质渲染质量,数值越高效果越好,用时也越多。 (6)Max depth(最大深度):控制反射次数(比如两个面对面的镜子,Max depth决定有多少此的反射)。 (7)Use interpolation(使用插值):加速光泽反射的计算方式。 (8)Exit color(色彩出口):用于控制反射种的反射的色彩。 3.Refraction(折射) 前面介绍了Diffuse(漫射)和Reflection(反射)的相关参数及其含义,下面接着来介绍一性爱Refraction(折射)的相关参数,如图所示的参数面板。 (1)Refract(折射倍增值):控制透明度及色彩,同样可以在小方块处加入贴图。(2)Glossiness(光泽度):同反射的参数,此参数项控制透明的模糊度。 (3)Subdivs(细分):控制材质渲染质量,数值越高效果越好,用时也越多。 (4)Use interpolation(使用插值):加速折射光泽的计算方式。 (5)IOR:该参数值决定材质的折射率。是指光线通过透明物体所发生的折射率,通过修改IOR值可以制作出类似钻石等一些有特殊折射属性的物质类型。 (6)Max depth(最大深度):控制折射次数。 (7)Exit color(色彩出口):用于控制折射中的折射的色彩。

太阳能电池片功率计算公式

太阳能电池片功率计算公式 电池片制造商在产品规格表中会给出标准测试条件下的太阳电池性能参数:一般包括有短路电流Isc;开路电压Voc;最大功率点电压Vap;最大功率点电 流Iap;最大功率Pmpp; 转换效率Eff等。标准测试条件下,最大功率Pmpp与转换效率之间有如下关系: Pmpp = 电池面积(m2)*1000(W/m2)*Eff 举例如下: 产品类型转化效率(%)功率(W) 单晶125*125 15 2.22855 单晶156*156 15 3.58425 多晶125*125 15 2.34375 多晶156*156 15 3.6504 注1:测试条件符合AM1.5太阳光谱的辐照强度1000W/m2,电池温度25℃,测试方法 符合IEC904-1,容许偏差Efficiency ±5% REL。 注2:AM1.5 AM是air mass的简称,意思是大气质量。 AM1.5是一种条件,它描述太阳光入射于地表之平均照度,其太阳总辐照度为1000W/m2;太阳电池的标定温度为25±1℃。 注3:IEC904-1 IEC:国际电工委员会,international electrotechnical commission。 IEC904等同于GB/T6495。 注4:REL:rate of energy loss 能量损耗率

太阳能电池功率 一:首先计算出电流: 如:12V蓄电池系统;30W的灯2只,共60瓦。 电流= 60W÷12V= 5 A 二:计算出蓄电池容量需求: 如:路灯每夜照明时间9.5小时,实际满负载照明为 7小时(h); 例一:1 路 LED 灯 (如晚上7:30开启100%功率,夜11:00降至50%功率,凌晨4:00后再100%功率,凌晨5:00 关闭) 例二:2 路非LED灯(低压钠灯、无极灯、节能灯、等) (如晚上7:30两路开启,夜11:00关闭1路,凌晨4:00开启2路,凌晨5:00关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天)蓄电池= 5A× 7h×( 5+1)天= 5A× 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留5%-20%左右。 所以210AH也只是应用中真正标准的70%-85%左右。另外还要根据负载的不同,测出实际的损耗,实际的工作电流受恒流源、镇流器、线损等影响,可能会在5A的基础上增加15%-25%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V=(5A× 7h× 120%)÷ 4.5h WP÷17.4V= 9.33 WP = 162(W) ★:4.5h每天光照时间为长江中下游附近地区日照系数。 另外在太阳能路灯组件中,线损、控制器的损耗、及镇流器或恒流源的功耗各有不同,实际应用中可能在15%-25%左右。所以162W也只是理论值,根据实际情况需要有所增加。

太阳能电池探究亮特性光照强度关系

扬州大学物理科学与技术学院 大学物理综合实验训练论文实验名称:太阳能电池探究亮特性光照强度关系 班级:物教1201班 姓名:郑清华 学号:120801117 指导老师:李俊来

太阳能电池探究亮特性光照强度关系 物教1201 郑清华指导老师:李俊来 摘要:本文介绍了太阳能电池研究背景、实验原理等。在不同光强条件对单晶硅太阳电尺进行了测试.研究发现,当光强为3433.56—10617.33W/2 m时,开路电压随着光强的增加呈对数关系增加,短路电流几乎呈线性变化。效率随着光强的增加先增加后减小,最大效率值1、21%。填充因子随着光强的增加减小。 关键词:太阳能电池;输出特性;光强特性。 一、研究背景 随着经济社会的不断发展,能量与能源问题的重要性日益凸显。人类对能源的需求,随着社会经济而急剧膨胀,专家估计目前每年能源总消耗量为200亿吨标准煤,并且其中90%左右为不可再生的化石能源来维持。就目前情况,全球化石能源储备只能维持100年左右。太阳能以其清洁、长久、无害等优点自然而然成为人类可持续发展不得不考虑的能源方式。太阳每年通过大气向地球输送的能量高达3×1024焦耳,而地球上人类一年的能源总需求达到约4.363×1020焦耳,也就是说,如果我们可以收集其中的万分之一到万分之二就足够我们的需求。太阳能是最为清洁的能源,并且不受任何地域限制,随处可取。此外,将太阳能转换为电能后,电能又是应用范围最广,输送最方便的一种能源。 太阳能一般指太阳光的辐射能量。我们知道在太阳内部无时无刻不在进行着氢转变为氦的热核反应,反应过程中伴随着巨大的能量释放到宇宙空间。太阳释放到宇宙空间的所有能量都属于太阳能的范畴。太阳能电池是目前太阳能利用的关键环节,核心概念是pn结和光生伏特效应 晶体硅太阳电池在如今的光伏市场中占据了绝对主导的地位,而且这一地位在今后很长一段时间内不会改变,因此提高晶体硅太阳电池效率,降低生产成本, 使晶体硅太阳电池能与常规能源进行竞争成为现今光伏时代的主题.太阳能是最具发展潜力的新能源。光伏发电是解决能源危机,实现能源可持续发展的重要途径之一。硅太阳能电池是当今市场的主流产品,其最高效率是24.7%,由新南威尔士大学马丁·格林教授研制的PERL单晶硅电池取得单并保持至今。继续提高转换效率十分困难,但电池的效率会随温度和光强变化而变化。因此,研究温度和光强对太阳能电池的影响是必要的。 二、太阳能光伏电池实验 (一)实验目的 1.了解pn结的基本结构与工作原理。 2.了解太阳能电池组件的基本结构,理解其工作原理。

mapgis属性编辑参数

图斑属性结构: 行政辖区属性结构

争议区属性结构 接合图表属性结构

分式编排:/分子/分母/ 如:/123/456/表示:123 456 2.13、修改文本 修改文本:用鼠标左键来捕获注释或版面,修改其文本内容。 子串统改文本:系统弹出统改文本的对话框,用户可输入“搜索文本内容”和“替换文本内容”,系统即将包含有“搜索文本内容”的字串替换成“替换文本内容”,它的替换条件是只要字符串包含有“搜索文本内容”即可替换。 全串统改文本:系统弹出统改文本的对话框,用户可输入“搜索文本内容”和“替换文本内容”,系统即将符合“搜索文本内容”的字串替换成“替换文本内容”,它的替换条件是只有字符串与“搜索文本内容”完全相同时才进行替换。 ⑶、比例尺分母 比例尺输入只需输入比例尺分母即可,值得注意的是本程序在进行投影转换时,输入的长度单位若为米,而MAPGIS系统中绘出图形的长度单位是毫米,因此转换时,需将米转换成毫米,这样在输入比例尺分母时,需在原有比例的基础上,除以1000,即生成1:10

00000图时,输入的比例尺分母应为1000,而非1000000。对于毫米单位,则直接输入相应的比例尺倒数即可,即1000000。若求高斯大地坐标,则设置单位为米,比例尺分母为1即可。 ⑶、比例尺分母 比例尺输入只需输入比例尺分母即可,值得注意的是本程序在进行投影转换时,输入的长度单位若为米,而MAPGIS系统中绘出图形的长度单位是毫米,因此转换时,需将米转换成毫米,这样在输入比例尺分母时,需在原有比例的基础上,除以1000,即生成1:1000000图时,输入的比例尺分母应为1000,而非1000000。对于毫米单位,则直接输入相应的比例尺倒数即可,即1000000。若求高斯大地坐标,则设置单位为米,比例尺分母为1即可。 4.7.5、条件合并 在用户选择条件合并的功能后,首先要求用户选择要合并的区文件,然后才弹出条件合并的对话框如下图: 合并条件:根据属性提取要合并的区实体。 合并方式: (1)、只合并符合条件的实体:指区的合并只在合并条件选择出来的区实体中进行;(2)、合并所有符合条件的选择的实体相邻的某一个区,如果两个区符合合并的条件,不管相邻的区是否在选择的实体中,都把他们合并起来。 相等字段条件:系统根据选择的字段的值决定两个区是否能合并。 注: 1 、对于要求全部合并的实体,用户可以选择可以包含全部实体的条件,如:ID >= 0,在进行辖区处理后,系统有可能没有对辖区进行合并,用户可在此进行条件和并。 2 、合并之前,用户需要确保区的拓扑关系正确 3 、如果用户不选择合并相等条件,则只合并按照合并条件选择的实体。 4.7.6、同类拼接 添加文件:选择要进行拼接的文件,用户可以按住CTRL或SHIFT键的同时用鼠标来

电池片参数表格

2.340电气参数 单晶硅太阳电池 125mm*125mm*150mm(对角)型号 Efficiency Power Vmp Imp Voc Isc Eff(%)Ppm(W)Vmp(V)Imp(A)Voc(V)Isc(A)>18.50>2.7480.540 5.1000.625 5.400JSC5M18518.50 2.7480.540 5.100 0.625 5.400 JSC5M18218.25 2.711JSC5M18018.00 2.674JSC5M17717.75 2.637JSC5M17517.50 2.600JSC5M17217.25 2.563JSC5M17017.00 2.526JSC5M16716.75 2.488JSC5M16516.50 2.451JSC5M16216.25 2.414JSC5M16016.00 2.377JSC5M15715.75JSC5M15515.50 2.303JSC5M15015.00 2.228JSC5M14514.50 2.154JSC5M140 14.00 2.080<14.00 <2.080 电气参数 单晶硅太阳电池 125mm*125mm*165mm(对角)型号 Efficiency Power Vmp Imp Voc Isc Eff(%)Ppm(W)Vmp(V)Imp(A)Voc(V)Isc(A)>18.50>2.8630.540 5.3400.625 5.750JSC5M18518.50 2.8630.540 5.340 0.625 5.750 JSC5M18218.25 2.825JSC5M18018.00 2.786JSC5M17717.75 2.747JSC5M17517.50 2.709JSC5M17217.25 2.670JSC5M170 17.00 2.631

阀门基本知识培训

阀门基本知识培训 阀门概念:阀门是流体输送系统中的控制部件,具有导流、截流、调节、节流、防止倒流、分流或溢流卸载等功能。 阀门原理:依靠驱动或自动机构使启闭件做升降、滑移、旋摆或回转运动,从而改变其流道面积的大小以实现其控制功能。 1.阀门的分类 1.1按阀门的用途分 a)截断用:截断管路中介质。如:闸阀、截止阀、球阀、旋塞阀、蝶阀等 b)止回用:防止介质倒流。如:止回阀 c)调节用:调节压力和流量。如:调节阀、减压阀、节流阀、蝶阀、V形开口球阀、平衡阀等 d)分配用:改变管路中介质流向,分配介质。如:分配阀、三通或四通球阀、旋塞阀等 e)安全用:用于超压安全保护。如:安全阀、溢流阀。 f)其它特殊用途:如蒸汽疏水阀、空气疏水阀、排污阀、放空阀、呼吸阀、排渣阀、温度调节阀等。 1.2按驱动形式分 a)自动阀门:靠介质本身的能力而动作。 b)驱动阀门:包括手动、电动、气动、液动等 1.3按压力分 a)真空阀:小于标准大气压 b)低压阀门:PN≤ c)中压阀门:~ d)高压阀门:~ e)超高压阀门:PN≥100Mpa 1.4按工作温度分 a)超低温阀:t<100°C b)低温阀:-100°C≤t≤-40°C c)常温阀:-40°C450°C 按通用分类 闸阀(gate):闸板由阀杆带动,沿阀座密封面做升降运动的阀门 流阻小,启闭力小,开启时间长 按阀杆分:明杆闸阀(outside screw-and-yoke: OS&Y) 暗杆闸阀(non rising stem: NRS) 按闸板分:平板闸阀parallel gate(单平板single gate、双平板double-disc parallel gate) 楔式闸阀wedge gate(单闸板one-piece wedge、双闸板split wedge) 弹性闸板flexible wedge、刚性闸板solid wedge 按中法兰分:螺栓连接阀盖(bolted bonnet: 压力密封阀盖(pressure seal bonnet) 螺纹焊接阀盖(screw-welded bonnet) 截止阀(globe):阀瓣由阀杆带动,沿阀座密封面轴线做升降运动的阀门 工作行程小,启闭时间短,流阻大,启闭力大 按阀杆分:外螺纹截止阀、下螺纹截止阀 按流道分:直通式截止阀、角式截止阀(angle globe)、三通截止阀(three-way),Y型截止阀(Y-type) 按阀瓣分:锥面密封(plug)、球面密封(ball)、抛物线型(parabolic)、平面密封(plain)、刀型密封、V型、针型截止阀(needle)、柱塞式截止阀 按中法兰分:螺栓连接阀盖、压力密封阀盖、螺纹焊接阀盖 止回阀(check):阀瓣借介质作用力,自动阻止介质逆流的阀门 介质单向流动 按结构形式分:旋启式止回阀(swing check) 升降式止回阀(piston,lift-check)

单晶硅太阳能电池板详细参数(精)

单晶硅太阳能电池板详细参数(精)

单晶硅太阳能电池板,铝合金边框,钢化玻璃面板详细参数:单晶硅太阳能板100W 尺寸:963x805x35MM 净重:11KGS 工作电压:33.5V 工作电流:2.99A 开路电压:41.5V 短路电流:3.57A 蓄电池:24v 二、产品特点: 采用平均转换效率在15%以上的优质单晶硅太阳电池单片,具有优良的弱光响应性能,符合 IEC61215 和电气保护 II 级标准。太阳能电池转换效率高。 而且太阳能电池板阵列一次性性能佳。太阳能电池板阵列的表面 采用高透光绒面钢化玻璃封装,气密性、耐候性好,抗腐蚀。 阳极氧化铝边框:机械强 度高,具有良好的抗风性和防雹性,可在各种复杂恶劣的气候条件下使用,便于安装。太阳能电池板在制造时, 先进行化学处理, 表面做成了一个象金字塔一样的绒面, 能减少反射,更好地吸收光能。采用双栅线,使组件的封装的可靠性更高。 太阳能电池板阵列抗冲击性能佳, 符合 IEC 国际标准。 太阳能电池板阵列层之间采用双层 EVA 材料以及 TPT 复合材料,组件气密性好,抗潮,抗紫外线好,不容易老化。直流接线盒:采 用密封防水、高可靠性多功能 ABS 塑料接线盒,耐老化防水防潮性能好;连接端采用易操作的专用公母插头, 使用安全、方便、可靠。带有旁路二极管能减少局部阴影而引起的损害。 工作温度:-40℃~+90℃使用寿命可达 20 年以上,衰减小于 20%。三、 问题集锦:1、什么是太阳能电池 答:太阳能电池是基于半导体的光伏效应将太阳辐射 直接转换为电能的半导体器件。 现在商品化的太阳能电池主要有以下几种类型:单晶硅太阳 能电池、多晶硅太阳能电池、非晶硅太阳能电池,目前还有碲华镉电池、铜铟硒电池、纳米氧化钛敏化电池、多晶硅薄膜太阳能电池及有机太阳能电池等。 晶体硅(单晶、多晶太阳能电池需要高纯度的硅原料,一般要求纯度至少是 99. 99998%,也就是一千万个硅原子中最多允许 2 个杂质原子存在。硅材料是用二氧化硅(SiO2,也就是我们所熟悉的沙子作为原料, 将其熔化并除去杂质就可制取粗级硅。从二氧化硅到太阳能电池片, 涉及多个生

新编整理[阀门主要性能参数]cpu的主要性能参数有

[阀门主要性能参数]cpu的主要性能参数有阀门(famen)是流体输送系统中的控制部件,具有截止、调节、导流、防止逆流、稳压、分流或溢流泄压等功能。 用于流体控制系统的阀门,从最简单的截止阀到极为复杂的自控系统中所用的各种阀门,其品种和规格相当繁多。阀门可用于控制空气、水、蒸汽、各种腐蚀性介质、泥浆、油品、液态金属和放射性介质等各种类型流体的流动。阀门根据材质还分为铸铁阀门,铸钢阀门,不锈钢阀门(201、304、316等),铬钼钢阀门,铬钼钒钢阀门,双相钢阀门,塑料阀门,非标订制等阀门材质。 表示阀门的主要性能参数为公称通径、公称压力、工作压力和工作温度等。 一、公称通径 公称通径DN是管路系统中所有管路附件用数字表示的尺寸,以区别用螺纹或外径表示的那些零件。公称通径是用作参考的经过圆整的数字,与加工尺寸数值上不完全等同。 公称通径是用字母DN后紧跟一个数字标志。如公称通径250mm 应标志为DN250。 二、公称压力 公称压力PN是一个用数字表示的与压力有关的标示代号,是供参考用的方便的圆整数。同一公称压力PN值所标示的同一公称通径!的所有管路附件具有与端部连接型式相适应的同一连接尺寸。 在我国,涉及公称压力时,为了明确起见,通常给出计量单位,以MPA表示。在英、美等国家中,尽管目前在有关标准中已列入了公称压力的概念,但实际使用中仍采用英制单位Class。由于公称压

力和压力级的温度基准不同,因此两者没有严格的对应关系。两者间大致的对应关系参见表。 日本标准中有一种K级制,例如10K、20K、40K等。这种压力级的概念与英制单位中的压力级制相同,但计量单位采用米制。 三、压力-温度额定值 阀门的压力-温度额定值,是在指定温度下用表压表示的最大允许工作压力。当温度升高时,最大允许工作压力随之降低。压力-温度额定值数据是在不同工作温度和工作压力下正确选用法兰、阀门及管件的主要依据,也是工程设计和生产制造中的基本参数。 各种材料的压力-温度额定值、数据见第4章,许多国家都制订了阀门、管件、法兰的压力--温度额定值标准。 1、美国标准 在美国标准中,钢制阀门的压力-温度额定值按ASME/ANSIB16.5a-1992、ASMEB16.34-1996的规定;铸铁阀门的压力-温度额定值按ANSIB16.1-1989~B16.4-1989,ANSIB16.42-1985的规定:青铜阀门的压力-温度额定值按ASME/ANSIB16.15a-1992、ASMEB16.24-1991的规定。 1)美国ASME/ANSIB16.5a-1992中规定了英制单位和米制单位两种法兰尺寸系列,同时分别列出了适用了两种单位制的法兰压力温度额定值。在该标准附录D中给出了确定英制单位压力-温度额定值的方法。 2)美国ANSIB16.42-1985《球墨铸铁管法兰及法兰管件》标准中规定了CL150和CL300球墨铸铁法兰压力-温度额定值在标准附录中又规定了压力-温度等级的制订方法,其基本原理、使用范围、限

相关文档
最新文档