图像识别技术发展与应用

图像识别技术发展与应用

图像识别技术的研究现状论文

图像识别技术研究现状综述 简介: 图像识别是指图形刺激作用于感觉器官,人们辨认出它是经验过的某一图形的过程,也叫图像再认。在图像识别中,既要有当时进入感官的信息,也要有记忆中存储的信息。只有通过存储的信息与当前的信息进行比较的加工过程,才能实现对图像的再认。图像识别技术是以图像的主要特征为基础的,在图像识别过程中,知觉机制必须排除输入的多余信息,抽出关键的信息。在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。对于熟悉的图形,由于掌握了它的主要特征,就会把它当作一个单元来识别,而不再注意它的细节了。这种由孤立的单元材料组成的整体单位叫做组块,每一个组块是同时被感知的。图像在人类的感知中扮演着非常重要的角色,人类随时随处都要接触图像。随着数字图像技术的发展和实际应用的需要,出现了另一类问题,就是不要求其结果输出是一幅完整的图像,而是将经过图像处理后的图像,再经过分割和描述提取有效的特征,进而加以判决分类,这就是近20年来发展起来的一门新兴技术科学一图像识别。它以研究某些对象或过程的分类与描述为主要内容,以研制能够自动处理某些信息的机器视觉系统,代替传统的人工完成分类和辨识的任务为目的。 图像识别的发展大致经历了三个阶段:文字识别、图像处理和识别及物体识别:文字识别的研究是从1950年开始的,一般是识别字母、数字和符号,并从印刷文字识别到手写文字识别,应用非常广泛,并且已经研制了许多专用设备。图像处理和识别的研究,是从1965年开始的。过去人们主要是对照相技术、光学技术的研究,而现在则是利用计算技术、通过计算机来完成。计算机图像处理不但可以消除图像的失真、噪声,同时还可以进行图像的增强与复原,然后进行图像的判读、解析与识别,如航空照片的解析、遥感图像的处理与识别等,其用途之广,不胜枚举。物体识别也就是对三维世界的认识,它是和机器人研究有着密切关系的一个领域,在图像处理上没有特殊的难点,但必须知道距离信息,并且必须将环境模型化。在自动化技术已从体力劳动向部分智力劳动自动化发展的今天,尽管机器人的研究非常盛行,还只限于视觉能够观察到的场景。进入80年代,随着计算机和信息科学的发展,计算机视觉、人工智能的研究已成为新的动向 图像识别与图像处理的关系: 在研究图像时,首先要对获得的图像信息进行预处理(前处理)以滤去干扰、噪声,作几何、彩色校正等,以提供一个满足要求的图像。图像处理包括图像编码,图像增强、图像压缩、图像复原、图像分割等。对于图像处理来说,输入是图像,输出(即经过处理后的结果)也是图像。图像处理主要用来解决两个问题:一是判断图像中有无需要的信息;二是确定这些信息是什么。图像识别是指对上述处理后的图像进行分类,确定类别名称,它可以在分割的基础上选择需要提取的特征,并对某些参数进行测量,再提取这些特征,然后根据测量结果做出分类。为了更好地识别图像,还要对整个图像做结构上的分析,对图像进行描述,以便对图像的主要信息做一个好的解释,并通过许多对象相互间的结构关系对图像加深理解,以便更好帮助和识别。故图像识别是在上述分割后的每个部分中,找出它的形状及纹理特征,以便对图像进行分类,并对整个图像做结构上的分析。因而对图像识别环节来说,输入是图像(经过上述处理后的图像),输出是类别和图像的结构分析,而结构分析的结果则

简单介绍图像识别技术在各类行业的应用

简单介绍图像识别技术在各类行业的应用 图像识别作为计算视觉技术体系中的重要一环,一直备受重视。微软在两年前就公布了一项里程碑式的成果:它的图像系统识别图片的错误率比人类还要低。如今,图像识别技术又发展到一个新高度。这有赖于更多数据的开放、更多基础工具的开源、产业链的更新迭代,以及高性能的AI计算芯片、深度摄像头和优秀的深度学习算法等的进步,这些都为图像识别技术向更深处发展提供了源源不断的动力。 其实对于图像识别技术,大家已经不陌生,人脸识别、虹膜识别、指纹识别等都属于这个范畴,但是图像识别远不只如此,它涵盖了生物识别、物体与场景识别、视频识别三大类。发展至今,尽管与理想还相距甚远,但日渐成熟的图像识别技术已开始探索在各类行业的应用。 01 网络搜索 以Facebook和谷歌为例,近日,Facebook专门为图像和视频理解打造了一个专业计算机视觉平台Lumos,该平台可以为整个社交网络提供视觉搜索功能,它将从两个方面改善社交网络上的用户体验:基于图片本身(而不是图片标签和拍照时间)的搜索;升级的自动图片描述系统(可向视觉障碍者描述图片内容)。而对于谷歌而言,图片识别已经攻克,它的下一个挑战是视频识别,目标是提升图像识别技术,最终能够识别和搜索视频本身的原内容,从而改善视频推荐服务。除此以外,Snap和Twitter等也都在致力于此。 02 智能家居 在智能家居领域,通过摄像头获取到图像,然后通过图像识别技术识别出图像的内容,从而做出不同的响应。举个例子,我们在门口安装了摄像头,当有物体出现在摄像头范围内的时候,摄像头自动拍摄下图像进行识别,如果发现是可疑的人或物体,就可以及时报警给户主。如果图像和主人的面部匹配,则会主动为主人开门。还有家庭用的智能机器人,

关于人脸识别技术的发展研究

人脸识别技术优势 863计划、国家科技支撑计划、自然科学基金都拨出专款资助人脸识别的相关研究。国家“十一五”科技发展规划中也将人脸识别技术的研究与发展列入其中[4],明确指出:“要在生物特征识别技术领域缩小与世界先进水平的差距,开展生物特征识别应用技术研究,人脸识别具有高安全性、低误报率的出入口控制新产品。”在这种环境下,国内一些科研院所和院校在人脸识别技术方面取得了很大进展。如中科院自动化所,清华大学,中科院计算所自主开发的人脸识别技术已经达到了国际先进的水平。人脸识别作为一种新兴的生物特征识别技术(Biometrics),与虹膜识别、指纹扫描、掌形扫描等技术相比,人脸识别技术在应用方面具有独到的优势: 1.人脸识别使用方便,用户接受度高。人脸识别技术使用通用的摄像机作为识别信息获取装置,以非接触的方式在识别对象未察觉的情况下完成识别过程。 2.直观性突出。人脸识别技术所使用的依据是人的面部图像,而人脸无疑是肉眼能够判别的最直观的信息源,方便人工确认、审计,“以貌取人”符合人的认知规律。 3.识别精确度高,速度快。与其它生物识别技术相比,人脸识别技术的识别精度处于较高的水平,误识率、拒认率较低。 4.不易仿冒。在安全性要求高的应用场合,人脸识别技术要求识别对象必须亲临识别现场,他人难以仿冒。人脸识别技术所独具的活性判别能力保证了他人无法以非活性的照片、木偶、蜡像来欺骗识别系统。这是指纹等生物特征识别技术所很难做到的。举例来说,用合法用户的断指即可仿冒合法用户的身份而使识别系统无从觉察。 5.使用通用性设备。人脸识别技术所使用的设备为一般的PC、摄像机等常规设备,由于目前计算机、闭路电视监控系统等已经得到了广泛的应用,因此对于多数用户而言使用人脸识别技术无需添置大量专用设备,从而既保护了用户的原有投资又扩展了用户已有设备的功能,满足了用户安全防范的需求。 6.基础资料易于获得。人脸识别技术所采用的依据是人脸照片或实时摄取的人脸图像,因而无疑是最容易获得的。 7.成本较低,易于推广使用。由于人脸识别技术所使用的是常规通用设备,价格均在一般用户可接受的范围之内,与其它生物识别技术相比,人脸识别产品具有很高的性能价格比。 概括地说,人脸识别技术是一种高精度、易于使用、稳定性高、难仿冒、性价比高的生物特征识别技术,具有极其广阔的市场应用前景。 我将人脸识别的一些应用列举出来,希望抛转引玉,大家不断完善,开拓更多的应用领域。 1)监控布控

图像识别技术发展状况及前景

医学图像配准技术 罗述谦综述 首都医科大学生物医学工程系(100054) 吕维雪审 浙江大学生物医学工程研究所(310027) 摘要医学图像配准是医学图像分析的基本课题,具有重要理论研究和临床应用价 值。本文较全面地介绍了医学图像配准的概念、分类、配准原理、主要的配准技术及评 估方法。 关键词医学图像配准多模 1 医学图像配准的概念 在做医学图像分析时,经常要将同一患者的几幅图像放在一起分析,从而得到该患者的多方面的综合信息,提高医学诊断和治疗的水平。对几幅不同的图像作定量分析,首先要解决这几幅图像的严格对齐问题,这就是我们所说的图像的配准。 医学图像配准是指对于一幅医学图像寻求一种(或一系列)空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。这种一致是指人体上的同一解剖点在两张匹配图像上有相的空间位置。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的点及手术感兴趣的点都达到匹配。 医学图像配准技术是90年代才发展起来的医学图像处理的一个重要分支。涉及“配准”的技术名词除registration外,mapping、matching、co-registration、integration、align-ment和fusion 等说法也经常使用。从多数文章的内容看,mapping偏重于空间映射;fu-sion指图像融合,即不仅包括配准,而且包括数据集成后的图像显示。虽然在成像过程之前也可以采取一些措施减小由身体移动等因素引起的空间位置误差,提高配准精度(称作数据获取前的配准preacquisition),但医学图像配准技术主要讨论的是数据获取后的(post-acquisition)配准,也称作回顾式配准(retrospective registration)。当前,国际上关于医学图像配准的研究集中在断层扫描图像( tomographic images,例如CT、MRI、SPECT、PET等)及时序图像(time seriesimages,例如fMRI及4D心动图像)的配准问题。 2 医学图像基本变换 对于在不同时间或/和不同条件下获取的两幅图像I1(x1,y1,z1)和I2(x2,y2,z2)配准,就是寻找一个映射关系P:(x1,y1,z1) (x2,y2,z2),使I1的每一个点在I2上都有唯一的点与之相对应。并且这两点应对应同一解剖位置。映射关系P表现为一组连续的空间变换。常用的空间几何变换有刚体变换(Rigid body transformation)、仿射变换(Affine transformation)、投影变换(Projec-tive transformation)和非线性变换(Nonlin-ear transformation)。 (1)刚体变换: 所谓刚体,是指物体内部任意两点间的距离保持不变。例如,可将人脑看作是一个刚体。 处理人脑图像,对不同方向成像的图像配准常使用刚体变换。刚体变换可以分解为旋转和平移:P(x)=Ax+b(1) x=(x,y,z)是像素的空间位置;A是3×3的旋转矩阵,b是3×1的平移向量。

基于matlab的图像预处理技术研究文献综述

毕业设计文献综述 题目:基于matlab的图像预处理技术研究 专业:电子信息工程 1前言部分 众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。 图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。 图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。 图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动

浅析人工智能中的图像识别技术

浅析人工智能中的图像识别技术 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。文章简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1 图像识别技术的引入 图像识别是人工智能科技的一个重要领域。图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。图像识别,顾名思义,就是对图像做出各种处理、分析,最终识别我们所要研究的

目标。今天所指的图像识别并不仅仅是用人类的肉眼,而是借助计算机技术进行识别。虽然人类的识别能力很强大,但是对于高速发展的社会,人类自身识别能力已经满足不了我们的需求,于是就产生了基于计算机的图像识别技术。这就像人类研究生物细胞,完全靠肉眼观察细胞是不现实的,这样自然就产生了显微镜等用于精确观测的仪器。通常一个领域有固有技术无法解决的需求时,就会产生相应的新技术。图像识别技术也是如此,此技术的产生就是为了让计算机代替人类去处理大量的物理信息,解决人类无法识别或者识别率特别低的信息。 图像识别技术原理 其实,图像识别技术背后的原理并不是很难,只是其要处理的信息比较繁琐。计算机的任何处理技术都不是凭空产生的,它都是学者们从生活实践中得到启发而利用程序将其模拟实现的。计算机的图像识别技术和人类的图像识别在原理上并没有本质的区别,只是机器缺少人类在感觉与视觉差上的影响罢了。人类的图像识别也不单单是凭借整个图像存储在脑海中的记忆来识别的,我们识别图像都是依靠图像所具有

图像识别与人工智能研究所发展规划报告

图像所学科建设与发展规划 根据学校建设世界知名高水平大学的发展目标,特制定图像所相应的学科建设与发展规划,以推动本学科的跨越式发展。 一、学科建设总体目标 (一)学科基础 图像识别与人工智能研究所(简称图像所)将继续以跻身于我国的国防科技的发展为切入点,从事发展巡航导弹中制导、末制导关键技术,承担相关预先研究和攻关科研任务为学科建设的主攻方向。 (1)目前本学科点共有五个研究方向: “计算机视觉与应用”、 “成像自动目标识别与精确制导技术”、 “多谱成像与遥感图像处理”、 “人工智能与思维科学” “面向模式识别的专用处理机与IC芯片设计”。 (2)本学科点现有科研人员26人,其中教授(含博士生导师)7人,副教授7人。科研教学梯队层次高,年龄、专业结构合理。现有教学科研用房4000 平方米。实验设备固定资产5000余万元,已初步形成先进、配套的教学、科研、开发环境和雄厚的技术储备。 (3)学科特点 模式识别与智能系统是信息科学技术领域中发展最迅速的前沿领域之一。

来自不同成像传感器的不同谱段的图像信号能全面揭示客观世界的各种特性,智能控制是人工智能与自动控制相结合的现代控制理论和技术,图像模式处理、识别与智能控制的结合构成了智能信息系统和智能自动化系统发展的基础,不仅科学意义深远而且有十分广阔的应用前景。本学科点的主要特色是紧密结合航天、航空和信息技术领域的国家目标,进行应用基础和应用技术的研究和开发,重点研究多谱段图像模式信息的获取、表示、处理、分析与智能系统领域的基础理论与关键技术,同时培养和造就本领域高层次、高质量的科技人才。本学科点具有特色和优势的研究方向是: ·计算机视觉与应用 在基于信息融合的信号处理、基于视觉、力觉和超声波接近觉的多传感器机器人系统和飞行器三维航迹规划技术方面具有特色,承担了国家重大型号XY-20末制导航迹规划攻关项目并进入型号研制。 ·成像自动目标识别与精确制导技术 开展面向复杂背景和随机环境下成像自动目标检测、识别、跟踪的新理论、新方法、新算法和新系统的研究,其特色是瞄准有关国家安全的国家目标,紧密结合航天航空高技术发展,在基于图象和图象序列的自动目标识别,景象匹配定位等精确制导领域开展应用基础和高技术的研究,并将一系列高水平成果应用于国防高技术武器系统中。 ·多谱成像与遥感图像处理 研究微波辐射特性及成像技术、激光雷达成像信号处理和遥感图像处理与

图像识别技术

伴随着通信技术与信息处理技术的迅猛发展,越来越多的纸质文档通过数字采集设备转换成文本图像,从而使文本图像数据能够快捷的在网络、卫星、传真通信信道中传输,因此,文本图像已逐渐成一个重要的信息来源。但是,现有的文本图像处理系统自动化程度低,且通用性不高,无法满足文本图像处理广泛性与实时性的要求。因此,研究如何对文本图像进行分析与处理,以便高效、快捷的获取文本图像的信息,是一项十分有意义的研究课题。本文在总结已有研究成果的基础上对文本图像的识别检索、预处理、版面分析和表格图像识别展开研究。所做的主要工作如下:1.依据图像的灰度分布和结构特征差异,对基于图像信息度量的文本图像识别检索算法进行改进,构造一种基于信息度量与Radon变换的文本图像识别检索算法。该算法综合利用文本图像与连续色调】图像的灰度分布与结构特征差异进行文本图像的识别检索。实验结果表明,所构造算法可有效降低文本图像识别检索的误识率。2.对基于Hough变换的文本图像倾斜检 图像识别,是利用计算机对图像进行处理、分析和理解,以识别各种不同模 式的目标和对像的技术。 图像识别可能是以图像的主要特征为基础的。每个图像都有它的特征,如字 母A有个尖,P有个圈、而Y的中心有个锐角等。对图像识别时眼动的研究表明, 视线总是集中在图像的主要特征上,也就是集中在图像轮廓曲度最大或轮廓方向 突然改变的地方,这些地方的信息量最大。由此可见,在图像识别过程中,知觉 机制必须排除输入的多余信息,抽出关键的信息。 图像识别的目的在于用计算机自动处理图像信息,以代替人去完成图像分类 及辨识的任务。数字图像处理与识别技术是模式识别领域一个重要的研究方向, 近几十年来,图像识别技术取得了深入和迅速的发展,并广泛应用于图像遥感、机 器人视觉、生物医学、地质勘探等多个领域。 随着图像识别技术在多领域的发展,由其在计算机视觉和图像处理研究中,已经取得了一定的研究成果。Mallat在小波变换中滤波器的设计、Belhumeur在Fisher变换中的识别模型和Largrange优化方式建立支持向量机。本文在总结上述研究成果的基础上,首先对摄像头采集的数据进行了处理,完成JPEG的编码,详细讨论了JPEG图像解码的过程并实现了其算法。

仪器仪表数字图像的识别及其应用

摘要:本文针对仪器仪表应用环境的实际情况,设计了数字图像识别硬件平台,采用STC12LE5A60S2单片机驱动图像传感器OV7670采集图像,可减少由人为因素或传感器干扰引起的数据错误,省去采集卡,节省了成本。通过无线通信,成功地将数字图像识别技术应用到了检测环境中。经过试验,证明了系统的稳定性。 关键词:图像采集;无线通信;STC12LE5A60S2;OV7670引言 目前,仪器仪表被广泛地应用于各行各业的测量系统中。但是,由于某些仪器仪表只是通过LCD、LED数码管或者表盘来显示数值,并没有提供数据传送的接口,因此很难实现数据的自动采集以及保证数据的实时性和准确性,难以满足对测量系统工作自动化的要求[1]。现如今,随着科学技术的不断进步,对测量系统的管理也从人工监管方式逐步向自动管理方式转变[2]。为了提高系统的工作效率,需要对测量系统所采集的数据进行实时监控,控制中心要快速、准确、自动获取所需数值,这是急需解决的问题。 为了使系统能够很好地实现控制功能,笔者设计出基于数字图像的仪器仪表读数识别系统。该系统利用单片机控制图像传感器自动读取仪器仪表的数字图像,经过图像处理和图像识别技术,将识别结果通过无线网络传输,传送至控制中心,由控制中心对采集数据进行综合管理,从而真正实现数据的统一管理和对系统控制的自动化。 数字图像识别系统 仪器仪表数字图像采集系统主要组成部分有单片机、图像传感器、LCD显示器、无线收发模块以及数据存储器,系统功能框图如图1所示。单片机作为系统的控制核心,

控制图像传感器采集仪器仪表数字图像,将仪器仪表图像数据存储在扩展的外部数据存储器中,利用数字图像处理和模式识别技术读取仪器仪表数字,通过无线收发模块将仪器仪表数字发送到控制中心,控制中心可以直观地显示所采集的数据并对数据进行统一管理。 图像采集电路 本设计中,仪器仪表图像数据采集模块选用的图像传感器是美国OmniVision公司的彩色/黑白CMOS图像传感器OV7670,该传感器可以通过I2C总线进行对其内部寄存器进行配置,使得输出数据速率、格式都可以得到改变,且输出数据已经做完分离,处理起来相对也比较容易[3~4]。基于功能的实现和价格两方面的考虑,本设计最终决定选取该型号图像传感器作为图像数据采集的核心器件。 由于OV7670图像传感器的工作电压为2.45V到3V,对外部工作时钟频率在 10MHz到48MHz,因此控制芯片选用宏晶科技的单时钟/机器周期的 STC12LE5A60S2单片机。该单片机工作电压在2.2V到3.6V,能够和OV7670图像传感器理想匹配;工作频率在0~35MHz,且内部含有波特率发生器,最大可以产生12MHz的方波[5~6],该信号可以作为OV7670图像传感器的外部工作时钟,也满足了OV7670图像传感器对工作时钟频率的要求。图像采集硬件电路图如图2所示。 图像传感器的SDA和SCL分别为内部寄存器配置数据线和时钟线,单片机通过 P1.2、P1.3模拟I2C总线对图像传感器内部寄存器进行配置,使得图像数据输出为QVGA格式,在QVGA的基础之上再次对输出数据进行水平、垂直方向分别8抽样,使得最终输出为像素为60×80;帧同步输出信号VSYNC引脚接入单片机P3.2口,由P3.2引脚捕捉该信号,当捕捉到帧同步输出信号时,开始采集仪表图像数据,图像有效数据是通过单片机对有效像素信号捕捉获取的,有效像素信号是指图像传感器像素时钟信号PCLK接74HC74二分频后与行同步信号HREF经过与非门的信号;主函数中对像素时钟信号PCLK进行捕捉,在该信号有效时,选通图像采集数据控制线,将图像保存在缓存,然后使图像数据线无效,将缓存数据存储到62LV256存储器中,这样就得到了一个像素点的灰度值;行同步信号HREF接入单片机定时器T0中断,当单片机捕

数字图像处理技术的研究现状与发展方向

数字图像处理技术的研究现状与发展方向 孔大力崔洋 (山东水利职业学院,山东日照276826) 摘要:随着计算机技术的不断发展,数字图像处理技术的应用领域越来越广泛。本文主要对数字图像处理技术的方法、优点、数字图像处理的传统领域及热门领域及其未来的发展等进行相关的讨论。 关键词:数字图像处理;特征提取;分割;检索 引言 图像是指物体的描述信息,数字图像是一个物体的数字表示,图像处理则是对图像信息进行加工以满足人的视觉心理和应用需求的行为。数字图像处理是指利用计算机或其他数字设备对图像信息进行各种加工和处理,它是一门新兴的应用学科,其发展速度异常迅速,应用领域极为广泛。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。 1数字图像处理的目的 一般而言,对图像进行加工和分析主要有以下三方面的目的[1]: (1)提高图像的视感质量,以达到赏心悦目的目的。如去除图像中的噪声,改变图像中的亮度和颜色,增强图像中的某些成分与抑制某些成分,对图像进行几何变换等,从而改善图像的质量,以达到或真实的、或清晰的、或色彩丰富的、或意想不到的艺术效果。 (2)提取图像中所包含的某些特征或特殊信息,以便于计算机进行分析,例如,常用做模式识别和计算机视觉的预处理等。这些特征包含很多方面,如频域特性、灰度/颜色特性、边界/区域特性、纹理特性、形状/拓扑特性以及关系结构等。 (3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。 2数字图像处理的方法 数字图像处理按处理方法分,主要有以下三类,即图像到图像的处理、图像到数据的处理和数据到图像的处理[2]。 (1)图像到图像。图像到图像的处理,其输入和输出均为图像。这种处理技术主要有图像增强、图像复原和图像编码。 首先,各类图像系统中图像的传送和转换中,总要造成图像的某些降质。第一类解决方法不考虑图像降质的原因,只将图像中感兴趣的特征有选择地突出,衰减次要信息,提高图像的可读性,增强图像中某些特征,使处理后的图像更适合人眼观察和机器分析。这类方法就是图像增强。例如,对图像的灰度值进行修正,可以增强图像的对比度;对图像进行平滑,可以抑制混入图像的噪声;利用锐化技

关于人工智能中的图像识别技术的研究

191 关于人工智能中的图像识别技术的研究 翁和王 (武夷学院数学与计算机学院,福建武夷山354300) 摘要:图像识别技术作为在信息时代发展起来的一项信息技术,其主要是利用计算机对人工进行替代,实现对众多的物 理信息进行处理。计算机技术快速发展也推动了图像识别技术得以迅猛的发展。文章就图像识别的技术原理、模式识别进行图像识别技术概述,并对其识别过程进行一定的分析,重点对神经网络以及非线性降维两个形式的图像识别技术加以分析。以期对图像识别有关的研究人员与应用人士有所参考。关键词:人工智能;原理与过程;图像识别技术;非线性;神经网络中图分类号:TP18文献标识码:A 文章编号:1673-1131(2016)10-0191-02 0引言 图像识别技术作为人工智能内的重要领域之一,在计算机技术和信息技术快速发展的背景下,其也得到了愈发广泛的使用,其在医疗诊断、指纹识别、面部识别以及卫星云图识别等方面具有着很好的应用。图像识别技术通常是指利用计算机对系统前端捕获的图片根据既定的目标对其进行处理。图像识别在人们日常的生活中也得到普遍的应用,诸如条码识别、车牌捕捉以及手写识别等。随着其不断的发展与完善,其今后的应用领域也会更加的广泛。 1图像识别技术的概述1.1图像识别的技术原理 事实上,图像识别具有的原理并非很深奥,主要是图像识别所需处理的信息非常的复杂。计算机中的所有处理技术均不能随意出现,是众多学者通过实践获得的启示,通过程序使其得到模拟与实现。计算机实现图像识别所需的原理与人类进行图像识别所需的原理基本上是一致的,仅仅是计算机不存在人类视觉和感觉方面的影响。人类在进行图像识别过程中并非仅是利用这一图像存在于脑海内的记忆加以识别,而是通过图像自身拥有的特征对其进行相应的分类,之后利用各个类别拥有的特征使图片被识别出来。当我们看到图片时,大脑便会快速感知出以前见过这张或与之相类似的图片与否。事实上在看到和感知间已经实现了快速的识别,这一识别与搜索存在一定的相似性[1]。在识别过程中,大脑将会按照存储记忆内被分好类的图片展开识别,检查其是否和这一图像存在相同或者是类似特征记忆存储,便识别出以往时候看见过这一图片。计算机进行图像识别的原理也是这样,利用分类和提取出图像的重要特征,并对多余的无用特征加以有效地排除,以此实现对图像的识别。计算机所能提取出来的上述特征有时会较为明显,而有时也会非常的普通,这在极大程度上对计算机识别效率造成一定的影响。总而言之,利用计算机进行视觉识别时,图像中的内容一般是通过图像特征对其加以描述的[2]。 1.2模式识别 模式识别作为信息科学与人工智能中的重要组成,其通 常是对现象和事物处于不同形式中信息实现处理与分析,以便能够达到对现象与事物进行分类、描述以及辨认等目标。而计算机能够实现图像识别便是对人类进行图像识别时的一种模拟,在实现图像识别时,能够展开模式识别是不可或缺的。以往的模式识别仅仅是人类所掌握基本智能之一,伴随人工智能以及计算机技术得到兴起与发展,人类自身具有的识别 模式便无法再满足人类的生活需求,对此人们便需要利用计算机来对人类脑力劳动进行一定程度的替代与扩展。这也就产生了计算机形式的模式识别。简而言之,模式识别便是对数据实现分类,其是一门和数学有着密切联系的科学,其所运 用的大量思想便是数学中的统计和概率[3] 。可以将模式识别分成统计模糊模式、识别模式识别以及句法模式识别三类。 2图像识别技术的识别过程 由于计算机进行图像识别和人类进行图像识别所采用的是一样的原理,因此上述两种识别过程也会存在一定的相似性。可以将图像识别技术划分为如下几步:第一步,信息的获取,其是指利用传感器将声音和光等信息装换为电信号,简而言之便是获取识别对象具有的基本信息,同时将其装换成为计算机可以识别的信息。第二步,预处理,其是指对图像进行去噪、变换以及平滑等处理操作,以此来提升图像所具有的重要特点。第三步,特征抽取与选择,其是在模式识别过程中,要对图像进行特征的抽取与选择,简而言之便是识别的图像是多种多样的,若想通过一定的方式将其分离开,便要对图像中拥有的自身特征进行识别,在特征的获取时便称为特征抽取[4]。在进行特征抽取过程中,获取的特征并非一定对本次识别有所价值,此时便要对所获取的特征进行一定的提取,这便是特征选择。对于图像识别整个过程而言,特征抽取与选择时期中最为关键的步骤之一,因此,这一步使进行图像识别理解时的重点内容。第四步,分类器设计与分类决策,其中分类器设计即利用训练来制定出一个识别规则,借此识别规则便能够获得一个特征种类,从而让图像识别可以达到更高的辨识率。而分类决策则是对特征空间内的被识别对象实现分类的最佳识别方法。 3图像识别技术的研究分析 3.1神经网络形式的图像识别技术 神经网络形式的图像识别是目前较为新型的技术,其是基于以往的图像识别方式,并将神经网络算法进行有效的融合。这里所说的神经网络指的是人工神经网络,换句话说便是该神经网络并非是动物体所拥有的神经网络,而是人类根据动物神经网络进行人工模拟的一种神经网络。对于神经网络形式的图像识别技术而言,遗传算法和BP 神经网络进行有效的结合是目前基于神经网络形式的图像识别技术内最为经典的模型,其在诸多的领域之中均有所应用。对图像识别系统运用神经网络系统,通常先对图像特征进行提取,之后将图像特征向神经网络中加以映射,以此实现对图像的识别与分类。例如,对于智能汽车监控中拍照识别技术而言, 2016 (Sum.No 166) 信息通信 INFORMATION &COMMUNICATIONS 2016年第10期(总第166期)

图像识别匹配技术原理

第1章绪论 1.1研究背景及意义 数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。通常,像素在计算机中保存为二维整数数组的光栅图像,这些值经常用压缩格式进行传输和储存。数字图像可以由许多不同的输入设备和技术生成,例如数码相机、扫描仪、坐标测量机等,也可以从任意的非图像数据合成得到,例如数学函数或者三维几何模型,三维几何模型是计算机图形学的一个主要分支。数字图像处理领域就是研究它们的变换算法。 数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。 图像配准(Image registration)就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。 图像配准的方法迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准研究工作,产生了不少图像配准方法。总的来说,各种方法都是面向一定范围的应用领域,也具有各自的特点。比如计算机视觉中的景物匹配和飞行器定位系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其所采用的算法称之为图像相关等等。 基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。主要特点是实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变换的搜索过程中往往需要巨大的运算量。经过几十年的发展,人们提出了许多基于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、序贯相似度检测匹配法、交互信息法。 目前主要图像配准方法有基于互信息的配准方法,基于相关性的配准方法和基于梯度的配准方法。其中基于梯度的方法基本很少单独使用,而作为一个辅助

人脸检测和识别技术的文献综述

人脸识别技术综述 摘要:在阅读关于人脸检测识别技术方面文献后,本文主要讨论了人脸识别技术的基本介绍、研究历史,人脸检测和人脸识别的主要研究方法,人脸识别技术的应用前景,并且总结了人脸识别技术的优越性和当下研究存在的困难。 关键词:人脸识别;人脸检测;几何特征方法;模板匹配方法;神经网络方法;统计方法;模板匹配;基于外观方法; 随着社会的发展,信息化程度的不断提高,人们对身份鉴别的准确性和实用性提出了更高的要求,传统的身份识别方式已经不能满足这些要求。人脸识别技术(FRT)是当今模式识别和人工智能领域的一个重要研究方向.虽然人脸识别的研究已有很长的历史,各种人脸识别的技术也很多,但由于人脸属于复杂模式而且容易受表情、肤色和衣着的影响,目前还没有一种人脸识别技术是公认快速有效的[1]基于生物特征的身份认证技术是一项新兴的安全技术,也是本世纪最有发展潜力的技术之一[2]。 1. 人脸识别技术基本介绍 人脸识别技术是基于人的脸部特征,一个完整的人脸识别过程一般包括人脸检测和人脸识别两大部分,人脸检测是指计算机在包含有人脸的图像中检测出人脸,并给出人脸所在区域的位置和大小等信息的过程[3],人脸识别就是将待识别的人脸与已知人脸进行比较,得

出相似程度的相关信息。 计算机人脸识别技术也就是利用计算机分析人脸图象, 进而从中出有效的识别信息, 用来“辨认”身份的一门技术.人脸自动识别系统包括三个主要技术环节[4]。首先是图像预处理,由于实际成像系统多少存在不完善的地方以及外界光照条件等因素的影响,在一定程度上增加了图像的噪声,使图像变得模糊、对比度低、区域灰度不平衡等。为了提高图像的质量,保证提取特征的有有效性,进而提高识别系统的识别率,在提取特征之前,有必要对图像进行预处理操作;人脸的检测和定位,即从输入图像中找出人脸及人脸所在的位置,并将人脸从背景中分割出来,对库中所有的人脸图像大小和各器官的位置归一化;最后是对归一化的人脸图像应用人脸识别技术进行特征提取与识别。 2. 人脸识别技术的研究历史 国内关于人脸自动识别的研究始于二十世纪80年代,由于人脸识别系统和视频解码的大量运用,人脸检测的研究才得到了新的发展利用运动、颜色和综合信息等更具有鲁棒性的方法被提出来变形模板,弹性曲线等在特征提取方面的许多进展使得人脸特征的定位变得更为准确。 人脸识别的研究大致可分为四个阶段。第一个阶段以Bertillon,Allen和Parke为代表,主要研究人脸识别所需要的面部特征;第二个阶段是人机交互识别阶段;第三个阶段是真正的机器自动识别阶段;第四个阶段是鲁棒的人脸识别技术的研究阶段。目前,国外多所

图像识别技术浅析

图像识别技术浅析 Analysis of Image Recognition Technology 刘峰伯软件学院2010544029 【摘要】:本文描述了图像识别系统的结构与工作原理,在对图像预处理、特征提取、分类、图像匹配算法进行深入研究和分析的基础上,分析和比较了各种算法的优缺点,并讨论了其中的关键技术。 【关键词】:图像识别;预处理;特征提取;匹配 【Abstract】This paper describes the structure and working principle of an image recognition system. The advantages and disadvantages of various a1gorithms are compared on the basis of in-depth analysis of the image pre-processing, feature extraction, classification and image matching algorithms, and discussed the key technology. 【Key Word】Image Recognition;Pre-Processing;Feature Extraction;Matchi ng. 一、引言 图像识别,是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。随着计算机技术与信息技术的发展,图像识别技术获得了越来越广泛的应用。例如医疗诊断中各种医学图片的分析与识别、天气预报中的卫星云图识别、遥感图片识别、指纹识别、脸谱识别等,图像识别技术越来越多地渗透到我们的日常生活中。 二、图像识别系统 1、概述 自动图像识别系统的过程分为五部分:图像输入、预处理、特征提取、分类和匹配,其中预处理又可分为图像分割、图像增强、二值化和细化等几个部分。 (1)图像输入 将图像采集下来输入计算机进行处理是图像识别的首要步骤。 (2)预处理 为了减少后续算法的复杂度和提高效率,图像的预处理是必不可少的。其中

图像识别技术在安全防范系统中的应用

图像识别技术在安全防范系统中的应用 摘要:本文通过对图像识别技术在安全防范系统中的应用现状分析,提出在不增加硬件成本的基础上融入图像识别技术及软件支持,能够提高安全防范系统的智能程度和自动化控制能力,为智能建筑的使用者提供更为安全、快捷、舒适的工作生活环境。abstract: this paper analyzed the application of image recognition technology in security & protection system,proposed to introduce the image recognition technology and software support on the basis of without additional hardware cost, to improve the intelligent degree and automatic control ability of security & protection system and provide more safe,fast, comfortable working and living environment for users of intelligent building. 关键词:安全防范系统;图像识别技术;门禁控制;车辆管理key words: security & protection system;image recognition technology;access control;vehicle management 中图分类号:tp391 文献标识码:a 文章编号:1006-4311(2013)23-0218-02 0 引言 安全防范系统(sps,security & protection system),是以维护社会公共安全为目的,运用现代电子技术、视频采集技术、传感器技术、计算机技术和网络技术构建的集散型控制系统或网络,具

图像识别技术综述,计算机智能前沿课程的论文

图像识别技术综述杨列 20821152 摘要 本文对图像识别的基本方法,并展望了图像识别技术所面临的问题及发展方向。 1. 前言 图像识别所研究的问题,是如何用计算机代替为人自动去处理大量的物理信息,解决人类生理器官所不能识别的问题,从而从部分上代替人的脑力劳动。图像的含义也比较广泛,最早是指图片,后来把如声波的波形图也归为图像。具体来说,图像可以是各种图画,字符,声波信号,透视胶片,空间物体。综合来说,又可以分为直观视觉图像(图案,文字)和间接转换图像(声音,心率等)两类。 由于图像识别涉及许多学科,图像本身含义也相当广泛性和丰富性,本文只从由光学采集器获得二维灰度图像的识别的几个重要方面做一些综述。t. 2. 图像识别方法 2.1图像识别的基本方法及特点 图像识别的方法很多,可概括为三种:统计(或决策理论)法,结构(或句法)方法和神经网络法。[1] 对于一幅实际图像来说,目标和背景常常不是线性可分的,统计法是一种分类误差最小的方法。它以数学上的决策理论为基础,根据这种理论建立统计学识别模型。其基本模型是对研究的图像进行大量的统计分析,找出规律性认识,提出反映图像本质特点的特征进行识别。如Bayes模型和马尔科夫(MRF)模型。但是统计方法基本严格的数学模型,而忽略了图像中被识别对象的空间相互关系,即结构关系,所以当被识别物体的结构特征为主要特征时,用统计方法便会很难识别。 句法识别是对统计识别方法的补充,统计方法用数值来描述图像的特征,句法方法则是用符号来描述图像特征的。它模仿了语言学中句法的层次结构,采用分层描述方法,把复杂图像分解为单层或多层的简单子图像,主要突出识别对象的结构信息。模式识别是从统计方法发展起来的,而句法方法更扩大了模式识别的能力,使其不仅限于对象物的分类,而且用于景物的分析与物体结构的识别。 神经网络方法是指用神经网络的算法对图像进行识别的方法,神经网络系统是由大量简单的处理单元(神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特性,是人脑神经网络系统的简化,抽象和模拟。句法方法侧重于模拟人的逻辑思维,而神经网络侧重于模拟和实现人的认知过程中的感知觉过程,形象思维,分布式记忆和自学自组织的过程,与符号处理是一种互补的关系。但神经网络具有大规模并行,分布式存储和处理,自组织,自适应和自学习的能力,特别适用于处理需要同时考虑许多因素和条件的不精确和模糊的信息处理问题。 2.2 其它图像识别方法 模糊集(Fuzzy Set)识别方法。在模式识别,自动控制等方面有广泛应用。在图像识别中,有些问题极其复杂,很难用一些确定的标准作出判断。人脑的识别精度不高,却能够用一些不够精确,也即模糊的概念准确地辨识复杂事物的特征,怎样用不太精确的方式来描述复杂的系统,怎样建立合理的数学模型来研究模糊现象,并能快速准确地进行识别,就是模糊识别法研究的目的。 标记松弛法(Relaxation Labeling) [2]是另一种采用符号来描述图像特征的识别方法,在这种方法中,处理对象一般称为目标,而描述目标的符号则称为标记,标记松弛法先对目标给定一组不确切的标记,通过迭代运算[3]逐次更新标记,最后求得这组目标的较为确切的标记集,算法的整个过程与人对某一事物的猜测推理过程相类似。由于以迭代方式进行,所以易于实现,但所缺点是计算量太大[4],只有采用并行处理的方法,标记松弛法才能充分发挥它的作用。 此外,还有实用性很强的识别方法,就是模板匹配(Template Matching)法,模板匹配法是按

相关文档
最新文档