化工热力学教学大纲之欧阳光明创编

化工热力学教学大纲之欧阳光明创编
化工热力学教学大纲之欧阳光明创编

《化工热力学》教学大纲

欧阳光明(2021.03.07)

一、课程基本信息

课程中文名称:化工热力学

课程英文名称:Chemical Engineering Thermodynamics

课程编号:06131050

课程类型:学科基础课

总学时:54

学分:3

适用专业:化学工程与工艺

先修课程:物理化学、化工原理

开课院系:化工与制药学院

二、课程的性质与任务

化工热力学是化学工程学的一个重要分支,是化工类专业必修的专业基础课程。它是化工过程研究、开发与设计的理论基础,是一门理论性与应用性均较强的课程。该门课系统地介绍了将热力学原理应用于化学工程技术领域的研究方法。它以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,深刻阐述了各种物理和化学变化过程达到平衡的理论极限、条件和状态。

设置本课程,为了使考生能够掌握化工热力学的基本概念、理论和专业知识;能利用化工热力学的原理和模型对化工中涉及到的化学反应平衡原理、相平衡原理等进行分析和研究;能利用化工热力学的方法对化工中涉及的物系的热力学性质和其它化工物性进行关联和推算;并学会利用化工热力学的基本理论对化工中能量进行分析等。

三、课程教学基本要求

通过本课程学习,要求

1.正确理解化工热力学的有关基本概念和理论;

2.理解各个概念之间的联系和应用;

3.掌握化工热力学的基本计算方法;

4.能理论联系实际,灵活分析和解决实际化工生产和设计中的有关问题。

四、理论教学内容和基本要求

教学内容

第一章绪论

1.1 热力学发展简史

1.2 化工热力学的主要研究内容

1.3 化工热力学的研究方法及其发展

1.4 化工热力学在化工中的重要性

第二章流体的p-V-T关系

2.1 纯物质的p –V –T关系

2.2 气体的状态方程

2.2.1理想气体状态

2.2.2 维里方程

2.2.3 立方型状态方程

2.2.4 多参数状态方程

2.3 对应态原理及其应用

2.3.1 对比态原理

2.3.2 三参数对应态原理

2.3.3 普遍化状态方程

2.4 真实气体混合物的p-V-T关系

2.4.1 混合规则

2.4.2气体混合物的虚拟临界性质

2.4.2 气体混合的第二维里系数

2.4.3 混合物的状态方程

2.5液体的p –V -T关系

2.5.1 饱和液体体积

2.5.2 压缩液体(过冷液体)体积

2.5.3 液体混合物的p –V -T关系

第三章纯流体的热力学性质

3.1 热力学性质间的关系

3.1.1 热力学基本方程

3.1.2 Maxwell关系式

3.2焓变与熵变的计算

3.2.1 热容

3.2.2 理想气体的H、S、随T、p的变化

3.2.3 真实气体的H、S随T、p的变化

3.2.4 真实气体的焓变、熵变的计算

3.2.5 蒸发焓与蒸发熵

3.3 纯物质两相系统的热力学性质及热力学图表

3.3.1 两相系统的热力学性质

3.3.2 热力学性质图表

第四章均相混合物热力学性质

4.1变组成系统的热力学关系

4.2 偏摩尔性质

4.2.1 偏摩尔性质的引入及定义

4.2.2 偏摩尔性质的热力学关系

4.2.3 偏摩尔性质的计算

4.2.4 Gibbs-Duhm方程

4.3 混合过程性质变化

4.3.1 混合过程性质变化

4.3.2 混合过程的焓变化

4.4 逸度和逸度系数

4.4.1 逸度和逸度系数的定义

4.4.2 混合物的逸度与其组元逸度之间的关系

4.4.3 温度和压力对逸度的影响

4.4.4 逸度和逸度系数的计算

4.4.5 液体的逸度

4.5 理想混合物

4.5.1 理想混合物的提出

4.5.2 理想混合物的混合性质变化

4.6 活度和活度系数

4.6.1 活度和活度系数

4.6.2 活度系数标准态的选择

4.6.3 超额性质

4.7 活度系数模型

4.7.1 正规溶液模型

4.7.2 Whol型方程

4.7.3 Redlish-Kister经验式

4.7.4 无热溶液模型

4.7.5 局部组成型方程

第五章相平衡

5.1 相平衡基础

5.1.1 平衡判据

5.1.2 相律

5.2 互溶系统的汽液平衡关系式5.2.1 状态方程法

5.2.2 活度系数法

5.2.3 方法比较

5.3 中低压下汽液平衡

5.3.1中低压下二元汽液平衡相图5.3.2中低压下泡点、露点计算

5.3.3 低压下汽液平衡的计算

5.3.2 烃类的K值法和闪蒸计算5.4 高压下汽液平衡

5.4.1 高压下汽液平衡相图

5.4.2 高压下汽液平衡计算

5.5 汽液平衡热力学一致性检验5.5.1 积分检验法(面积检验法)5.5.2 微分检验法(点检验法)

5.6 平衡与稳定性

5.7 其他类型的相平衡

5.7.1 液液平衡

5.7.2 汽液液平衡

5.7.3 气液平衡

5.7.4 固液平衡

5.7.5 汽固平衡和超临界流体在固体(或液体)中的溶解度

第六章化工过程能量分析

6.1 热力学第一定律-能量转化与守恒方程

6.1.1 能量的种类

6.1.2热力学第一定律-能量守恒的基本式

6.1.3 封闭系统的热力学第一定律

6.1.4 稳流系统的热力学第一定律及其应用

6.2 热力学第二定律

6.2.1 熵与熵增原理

6.2.2 熵产生和熵平衡

6.2.3 热机与能量品位

6.3 理想功、损失功和热力学效率

6.3.1 理想功

6.3.2 损失功

6.3.3 热力学效率

6.4 有效能

6.4.1 有效能定义

6.4.2 稳流过程有效能计算

6.4.3 不可逆过程的有效能损失

6.4.4 有效能效率

6.4 化工过程能量分析及合理用能

第七章压缩、膨胀、动力循环与制冷循环

7.1 气体的压缩

7.2 膨胀过程

7.2.1 节流膨胀

7.2.2 绝热作功膨胀

7.3 蒸汽动力循环

7.3.1 Rankine循环及其热效率

7.3.2 蒸汽参数对热效率的影响

7.3.3 Rankine循环的改进

7.4 制冷循环

7.4.1 理想制冷循环

7.4.2 蒸汽压缩制冷循环

7.4.3 吸收式制冷循环

7.4.4 喷射式制冷循环

7.4.5 热泵及其应用

7.4.6 深冷循环与气体液化

7.5 制冷剂的选择

第八章物性数据的估算(选讲)

第九章环境热力学(选讲)

基本要求

第一章绪论

了解:化工热力学的主要内容

理解:“化工热力学”与“物理化学”的主要区别

掌握:化工热力学的研究方法有经典热力学方法和分子热力学方法。

第二章流体的p-V-T关系

了解:

(1)维里方程的几种形式

(2)维里系数的物理意义

(3)多参数状态方程

(4)Lydersen 三参数压缩因子图

(5)液体的PVT关系

理解:

(1)RK方程的迭代形式及应用

(2)对比态原理

(3)气体混合物的虚拟临界参数

掌握:

(1)偏心因子

(2)三参数压缩因子图

(3)Pitzer 普遍化压缩因子图

(4)普遍化第二维里系数

(5)液体的纯经验的PVT关系

(6)Kay规则

重难点:

(1)立方型状态方程的普遍特点及计算

(2)三参数压缩因子图

(3)气体混合物的第二维里系数及应用

通过本章学习,掌握各热力学性质间的关系,进而学会计算一个实际过程的焓变和熵变,并学会一些热力学性质图表的应用。

了解:

(1)Helmholtz方程

(2)敞开系统热力学基本方程

(3)Maxwell关系式

(4)理想气体焓变和熵变计算(次重点)

(5)理想气体焓和熵随温度、压力的变化关系式

理解:

(1)封闭系统热力学基本方程

(2)麦克斯韦关系式的用途

(3)剩余性质的概念(重点)

(4)利用维里方程计算剩余性质

掌握:

(1)剩余焓、剩余熵与P、V、T的关系式

(2)对于一个实际过程,设计焓变和熵变的计算途径

(3)利用状态方程计算焓变和熵变(重点)

(4)利用R-K方程计算剩余性质

(5)利用普遍化关联式计算焓变和熵变(重点)

(6)利用普遍化第二维里系数计算剩余焓和剩余熵

(7)利用Pitzer三参数焓熵图计算剩余焓和剩余熵

(8)蒸发焓与蒸发熵(重点)

(9)T-S图的形状和构成

(10)T-S图的制作及使用:

(11)水蒸气表的构成及使用

第四章均相混合物热力学性质

通过本章学习,能理解流体混合物的相关热力学性质,正确理解和使用混合物中组元的逸度与活度的概念,为相平衡的计算打下基础。

了解:

(1)变组成系统的热力学基本方程

(2)偏摩尔量的定义及提出的意义

(3)理想混合物的定义

(4)理想混合物的相关热力学性质

(5)逸度与逸度系数的概念(重点)

(6)逸度系数与PVT的关系式

(7)活度的定义

(8)活度系数

(9)正规混合物的概念及方程适用条件

(10)无热混合物的概念及方程适用条件

(11)半经验型活度系数方程(重点)

理解:

(1)化学势(位)的概念

(2)混合性质的概念(重点)

(3)混合性质与偏摩尔量的关系

(4)理想溶液及其标准态(重点)

(5)利用R-K方程计算纯物质的逸度系数

(6)利用普遍化的第二维里系数计算逸度系数

(7)利用三参数普遍化逸度系数图计算逸度系数

(8)温度对逸度的影响

(9)压力对逸度的影响

(11)活度系数标准态的选择

(12)超额性质的定义

(13)局部组成的概念

(14)基团贡献法

掌握:

(1)偏摩尔量的计算(重点)

(2)作图法计算偏摩尔量

(3)二元截距法计算偏摩尔量

(4)吉布斯—杜亥姆方程(重点)

(5)混合体积变化和混合焓变的计算

(6)纯液体逸度的计算式

(7)Margulas方程的应用及适用条件

(8)Van Laar方程的应用及适用条件

(9)基于局部组成的活度系数方程(重点)

(10)Wilson 方程

(11)NRTL方程

第五章相平衡

通过本章学习,能学会应用化工热力学的知识处理汽液平衡计算(主要是泡、露点的计算),并能处理一些简单的液液平衡问题。

了解:

(1)平衡判据(重点)

(2)相对挥发度

(3)相平衡常数

(4)泡、露点的概念

(5)汽液平衡相图的类型、构成等

(6)高压汽液平衡相图的特点

(7)“逆向”现象

(8)汽液平衡一致性校验的依据(重点)

(9)液液平衡判据(重点)

(10)各种二元及三元的液液平衡相图

(11)汽液液平衡

(12)气液平衡

(13)固液平衡

理解:

(1)相平衡的五个判据

(2)相律(重点)

(3)高压汽液平衡的几个基本关系式

(4)高压相平衡计算(次重点)

(5)二元液液平衡计算的基本关系式及简单计算

(6)三元液液平衡的计算(次重点)

(7)三元液液平衡计算的基本关系式

掌握:

(1)低压下汽液平衡的表达式及计算

(2)中低压下泡、露点计算(重点)

(3)K值法(重点)

(4)状态方程法计算高压汽液平衡

(5)活度系数法计算高压汽液平衡

通过本章学习,能够了解热力学分析中的基本概念及基本方法,会应用热力学第一定律等分析实际问题。

了解:

(1)稳流系统的热力学第一定律

(2)熵与熵增原理

(3)理想功的概念及定义

(4)损失功的概念

(5)热力学效率(重点)

理解:

(1)可逆轴功

(2)实际轴功

(3)熵产生

(4)熵流

(5)能级

(6)热力学死态及有效能的概念

(7)有效能与理想功的关系

掌握:

(1)稳流系统的热力学第一定律的表达式及简化形式

(2)轴功的计算

(3)热量衡算

(4)熵平衡方程式

(5)物理有效能的概念

(6)化学有效能的概念

通过本章学习,了解基本的冷冻循环及深度冷冻循环,并能运用热力学性质图表进行简单的冷冻计算。

了解:

(1)制冷循环的原理(重点)

(2)逆卡诺循环制冷的循环过程

(3)吸收式制冷循环(次重点)

(4)吸收式制冷的循环途径与实现制冷的原理

(5)制冷工质的选择(次重点)

(6)深度制冷的概念(次重点)

(7)深度制冷的概念及用途

(8)林德循环的过程及实现深度制冷的原理

(9)克劳特循环的过程及实现深度制冷的原理

理解:

(1)制冷能力、制冷系数等概念

(2)蒸汽压缩制冷循环(重点)

(3)蒸汽压缩制冷循环的途径与实现制冷的原理

掌握:

应用热力学性质图表计算制冷问题

第八章物性数据的估算(选讲)

第九章环境热力学(选讲)

五、实验教学内容和基本要求(无)

六、课外教学内容和基本要求(无)

七、有关教学环节的要求

1.熟知考试大纲对课程提出的总要求和各章的知识点。

2.应掌握各知识点要求达到的能力层次,并深刻理解对各知识点的考核目标。

3.注意对考生应试能力的培养,特别是自学能力的培养,要

引导学生逐步学会独立学习,在自学过程中善于提出问题,分析问题,作出判断,解决问题。

八、学时分配建议

九、建议教材及主要教学参考书

马沛生. 化工热力学. 第一版. 北京:石油化工出版社,2005年执笔人:宣爱国教研室主任:程建教学院长(主任):丁一刚

化工热力学详细答案

化工热力学详细答案

————————————————————————————————作者:————————————————————————————————日期:

化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V = RT P =68.314673 4.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.5 6 0.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p = =6 0.08678.314190.6 4.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106= 5 8.314673 2.98710 V -?-?-0.553.224(673)( 2.98710)V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 664.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ???? =+=+?= ??? ???? V =1.390×10-3 m 3·mol -1 2.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算27 3.15K 时将CO 2压缩到比体积为 550.1cm 3·mol - 1所需要的压力。实验值为3.090MPa 。 解: 从附录二查得CO 2得临界参数和偏心因子为

化工热力学教学大纲

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 化工热力学是化学工程的重要分支和基础学科,是热力学基本定律应用于化学工程领域中而形成的一门学科。本课程主要研究化工过程中各种形式的能量之间相互转化的规律及过程趋近平衡的极限条件,主要涉及能量及组成的计算。能量计算包括功能互换,也包括物理热和化学热的计算,前者包括温度、压力对焓的影响及各种相变热,后者主要是反应热。组成计算包括化学平衡和相平衡。化学平衡包括平衡常数及平衡组成的计算,并确定反应方向;相平衡包括在不同温度、压力条件下各相组成的确定。化工热力学是化工过程研究、开发与设计的理论基础,是一门理论性与应用性均较强的课程,是化学工程与工艺专业的专业基础课程。 2.设计思路: 化工热力学应用热力学基本定律研究化工过程中能量的有效利用、各种热力学过程、相平衡和化学平衡,还研究与上述内容有关的基础数据,如物质的p-V-T关系和热化学数据。 本课程主要包括四部分的内容,各部分的内容和基本要求如下: 第一部分,流体的p-V-T关系,要求掌握各种p-V-T关系使用范围,会应用各种p-V-T关系进行基本的p-V-T 计算。 第二部分,纯物质(流体)的热力学性质,要求掌握应用p-V-T关系求解纯物质的热力学性质的方法。 第三部分,热力学基本定律及其应用,要求掌握化工过程能量分析的方法,了解和掌握化工热力学原理的应用(压缩、膨胀、动力循环与制冷循环等)。 第四部分,均相混合物热力学性质,掌握利用混合规则求解均相混合物热力学性质的方法。 第五部分,相平衡,掌握气液相平衡的计算方法。 3. 课程与其他课程的关系: 本课程适宜安排在修完高等数学、大学物理、物理化学(上)等有关基础课课程之后开设,内容上注意与物理化学的衔接。 二、课程目标 通过本课程的学习,学生将系统地掌握运用化工热力学的基本概念、理论和计算方法,分析和解决化工生产中有关能量转换和有效利用、相平衡和化学变化的实际问题的能力,能利用化工热力学的方法对化工中涉及的物

北京化工大学《化工热力学》2016-2017考试试卷A参考答案

北京化工大学2016——2017学年第一学期 《化工热力学》期末考试试卷 班级: 姓名: 学号: 任课教师: 分数: 一、(2?8=16分)正误题(正确的画√,错误的画×,标在[ ]中) [√]剩余性质法计算热力学性质的方便之处在于利用了理想气体的性质。 [×]Virial 方程中12B 反映了不同分子间的相互作用力的大小,因此120B =的气体混合物,必定是理想气体混合物。 [√]在二元体系中,如果在某浓度范围内Henry 定律适用于组分1,则在相同的浓度范围内,Lewis-Randall 规则必然适用于组分2。 [×]某绝热的房间内有一个冰箱,通电后若打开冰箱门,则房间内温度将逐渐下降。 [×]溶液的超额性质数值越大,则溶液的非理想性越大。 [×]水蒸汽为加热介质时,只要传质推动力满足要求,应尽量采用较低压力。 [×]通过热力学一致性检验,可以判断汽液平衡数据是否正确。 [×]如果一个系统经历某过程后熵值没有变化,则该过程可逆且绝热。 二、(第1空2分,其它每空1分,共18分)填空题 (1)某气体符合/()p RT V b =-的状态方程,从 1V 等温可逆膨胀至 2V ,则体系的 S ? 为 21ln V b R V b --。 (2)写出下列偏摩尔量的关系式:,,(/)j i E i T p n nG RT n ≠???=?????ln i γ,

,,(/)j i R i T p n nG RT n ≠???=??????ln i ?, ,,(/)j i i T p n nG RT n ≠???=?????i μ。 (3)对于温度为T ,压力为P 以及组成为{x}的理想溶液,E V =__0__, E H =__0__,/E G RT =__0__,ln i γ=__0__,?i f =__i f __。 (4)Rankine 循环的四个过程是:等温加热(蒸发),绝热膨胀(做功),等压(冷凝)冷却,绝热压缩。 (5)纯物质的临界点关系满足0p V ???= ????, 220p V ???= ???? ,van der Waals 方程的临界压缩因子是__0.375__,常见流体的临界压缩因子的范围是_0.2-0.3_。 二、(5?6=30分)简答题(简明扼要,写在以下空白处) (1)简述如何通过水蒸汽表计算某一状态下水蒸汽的剩余焓和逸度(假定该温度条件下表中最低压力的蒸汽为理想气体)。 剩余焓: ①通过线性插值,从过热水蒸汽表中查出给定状态下的焓值; ②从饱和蒸汽表中查得标准状态时的蒸发焓vap H ?(饱和液体的焓-饱和蒸汽的焓); ③通过00()T ig ig ig p p T H C dT C T T ?=≈-? 计算理想气体的焓变; ④通过R ig vap H H H H ?=-?-?得到剩余焓。 逸度: ①通过线性插值,从过热水蒸汽表中查出给定状态下的焓和熵并根据G H TS =-得到Gibbs 自由能(,)G T p ; ②从过热蒸汽表中查得最低压力时的焓和熵,计算得到Gibbs 自由能0(,)ig G T p ;

化工热力学答案(完整资料).doc

【最新整理,下载后即可编辑】 化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V = RT P = 6 8.314673 4.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.56 0.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p ==6 0.08678.314190.64.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106= 5 8.314673 2.98710V -?-?- 0.553.224 (673)( 2.98710) V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 6 6 4.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ???? =+=+?= ??? ???? V =1.390×10-3 m 3·mol -1

化工热力学本科试卷A

泰山学院课程考试专用 泰山学院材料与化学工程系2005级、2007级3+2化学工程与 工艺专业本科2007~2008学年第一学期 《化工热力学》试卷A (试卷共8页,答题时间120分钟) 一、 判断题(每小题1分,共15 分。请将答案 填在下面的表格内) 1、只要温度、压力一定,任何偏摩尔性质都等于化学位。 2、对于确定的纯气体来说,其维里系数B 、C 、……只是温度的函数。 3、孤立体系的熵总是不变的。 4、当过程不可逆时,体系的作功能力较完全可逆的情况下有所下降。 5、二元液相部分互溶体系及其蒸汽的达到相平衡时,体系的自由度为2。 6、理想溶液中所有组分的活度系数均为1。 7、二元混合物的相图中泡点线表示的饱和汽相,露点线表示的是饱和液相。 8、二元组分形成恒沸物时,在恒沸点体系的相对挥发度等于1。 9、若化学平衡常数随着温度的升高而升高,则反应的标准焓变化0H ?为负值。 10、纯物质的平衡汽化过程,其摩尔体积、焓及吉布斯函数的变化均大于零。 11、在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。 12、对于理想溶液的某一容量性质恒有0i i M M =。 13、能量不仅有数量的大小还有质量的高低,相同数量的电能和热能来说,电 能的做功能力大于热能。 14、无论以Henry 定律为基准,还是以Lewis-Randall 规则为基准定义标准态 逸度,混合物中组分i 的活度和逸度的值不变。 15、逸度与压力的单位是相同的。

二、填空题(1-5题每空1分,6-11题每空2分,共25分) 1、在相同的初态下,节流膨胀的降温效果 (大于/小于) 等熵膨胀的降温效果。 2、恒温恒压下,吉布斯-杜亥姆方程为 (以i M 表示)。 3、形成二元溶液时,当异种分子之间的作用力小于同种分子之间的作用力时, 形成正偏差溶液,正偏差较大的溶液具有最 的沸点。 4、对于二元混合物来说一定温度下的泡点压力与露点压力 (相同/不 同)的。 5、当过程的熵产生 时,过程为自发过程。 6、当化学反应的温度不发生变化时,对体积增大的气相反应,增大压力,反 应进度 ,加入惰性气体反应进度 。 7、已知平衡压力和液相组成,用完全理想体系下的汽液平衡准则计算泡点温 度时,在假设的温度下算出1i y <∑,说明假设的温度 , 应 ,重新计算,直到1i y =∑。 8、正丁醇(1)和水(2)组成液液平衡系统,25℃,测得水相中正丁醇的摩 尔分数为0.00007,而醇相中水的摩尔分数为0.26,则水在水相中的活度系数为 ,水在醇相中的活度系数为 。 9、某换热器内,冷热两种流体进行换热,热流体的流率为 -1100kmol h ?,-1-129kJ kmol K p c =??,温度从500K 降为350K,冷流体的流率 也是-1100kmol h ?,-1-129kJ kmol K p c =??,温度从300K 进入热交换器,该换热器表面的热损失-187000kJ h Q =-?,则冷流体的终态温度t 2= K,该换热过程的损耗功W L = kJ/h 。设300K T Θ=,冷热流体的压力变化可以忽略不计。

《化工传递过程》课程教学大纲

《化工传递过程》课程教学大纲 一、课程说明 课程编码4302026 课程类别专业主干课 修读学期第五学期学分 2 学时48 课程英文名称Transfer Processes in Chemical Engineering 适用专业化学工程与工艺 先修课程物理化学、化工原理、化工热力学 二、课程的地位及作用 《化工传递过程》是针对化学工程与工艺方向的必修课。是一门探讨自然现象和化工过程中动量、热量和质量传递速率的课程。化学工程中各个单元操作均被看成传热、传质及流体流动的特殊情况或特定的组合,对单元操作的任何进一步的研究,最终都是归结为这几种传递过程的研究。将化工单元操作(化工原理)的共性归纳为动量、热量和质量传递过程(三传)的原理系统地论述,将化学工程的研究方法由经验分析上升为理论分析方法。各传递过程既有独立性又有类似性,虽然课程中概念、定义和公式较多,基本方程又相当复杂,给学习带来一定的困难,但可运用三传的类似关系进行研究理解,使学生掌握化学工程专业中有关动量、热量和质量传递的共性问题。该课程的学习有助于学生深入了解各类传递过程的机理,为改进各种传递过程和设备的设计,操作和控制提供理论基础;为今后的科学研究提供各种的基础数学模型;为速度、温度、浓度分布及传递速率的确定提供必要的帮助,为分析和解决过程工程和强化设备性能等问题提供坚实的理论基础。 三、课程教学目标 1. 侧重于熟悉掌握传递过程的各种基本理论;正确的提供所求强度量的分布规律及传递速率表达式; 2. 掌握传递过程的微分方程并达到能够熟练地运用方程的水平;

3. 能够正确地分析、简化三传基本微分方程;对实际情况建立必要的数学模型; 4. 了解传递过程的发展趋势、方向和其在化学工程中的具体运用领域; 5. 通过学习加深对化学工程基本原理的理解,使学生能顺利学习后续的专业课,提高自学与更新本专业知识的能力。 四、课程学时学分、教学要求及主要教学内容 (一) 课程学时分配一览表 章节主要内容总学时 学时分配讲授实践 第1章传递过程概论 2 2 0 第2章动量传递概论与动量传递微分方程 6 6 0 第3章动量传递方程的若干解 6 6 0 第4章边界层流动 6 4 0 第5章湍流 6 4 0 第6章热量传递概论与能量方程 6 6 0 第7章热传导 2 2 0 第8章对流传热 2 2 0 第9章质量传递概论与传质微分方程 4 4 0 第10章分子传质 4 4 0 第11章对流传质 2 2 0 第12章多种传递同时进行的过程 2 2 0 (二) 课程教学要求及主要内容 第一章传递过程概论 教学目的和要求: 1.流体流动的基本概念; 2.掌握传递过程的类似性; 3.传递过程的衡算方法。 教学重点和难点:

化工热力学习题集(附答案)

模拟题一 1. T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( c ) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽 2. T 温度下的过冷纯液体的压力P ( a ) A. >()T P s B. <()T P s C. =()T P s 3. T 温度下的过热纯蒸汽的压力P ( b ) A. >()T P s B. <()T P s C. =()T P s 4. 纯物质的第二virial 系数B ( a ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( a ) A. 第三virial 系数 B. 第二virial 系数 C. 无穷项 D. 只需要理想气体方程 6. 液化石油气的主要成分是( a ) A. 丙烷、丁烷和少量的戊烷 B. 甲烷、乙烷 C. 正己烷 7. 立方型状态方程计算V 时如果出现三个根,则最大的根表示( ) A. 饱和液摩尔体积 B. 饱和汽摩尔体积 C. 无物理意义 8. 偏心因子的定义式( ) A. 0.7lg()1s r Tr P ω==-- B. 0.8lg()1s r Tr P ω==-- C. 1.0lg()s r Tr P ω==- 9. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( ) A. 1x y z Z Z x x y y ?????????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ?????????= ? ? ?????????? D. 1y Z x Z y y x x Z ?????????=- ? ? ?????????? 10. 关于偏离函数M R ,理想性质M *,下列公式正确的是( ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 11. 下面的说法中不正确的是 ( ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。

《化工热力学》课程考试大纲

《化工热力学》课程考试大纲 第一部分考试说明 一、考试性质 《化工热力学》是是化学工程学分支学科之一,是化学工程与工艺专业(本科段)的一门专业课,《化工热力学》课程结合化工过程阐述热力学定律及其运用,是化工过程研究、设计和开发的理论基础。 应考者学完本课程后,学生应初步具备运用热力学定律和有关理论知识,对化工过程进行热力学分析的基本能力;应初步掌握化学工程设计和研究中获取热力学数据的方法,对化工过程进行相关计算的方法,目标是培养他们能理论联系实际,灵活分析和解决实际化工生产和设计中的有关涉及平衡的问题,并为学习后续课程和从事化工类专业实际工作奠定基础。 二、考试目标 本课程的考试目的在于检验学生掌握化工热力学的基本概念、理论和计算方法知识的程度。利用化工热力学的原理和模型对化工中涉及到的化学反应平衡原理、相平衡原理等进行分析和研究;利用化工热力学的方法对化工中涉及的物系的热力学性质和其它化工物性进行关联和推算;以及利用化工热力学的基本理论对化工中能量进行分析等的能力。 三、考试形式与试卷结构 (一)答题方式 闭卷/开卷/A4,笔试/小论文/读书报告/其他请注明。 考试方式采用开卷形式。 答案必须全部答在答题纸上,答在试卷上无效。(如有答题卡,请注明选择题的答案必须答在答题卡上,非选择题的答案答在答题纸上。) (二)答题时间 90分钟。 (三)基本题型 (1)基础概念题 包括单(多)选题、判断题、简述题,通常约占卷面成绩的20~30%。 (2)计算题 涵盖课程章节的全部内容,如流体(纯流体或混合物)的pVT性质计算、溶液的热力学性质计算、相平衡计算、化学反应平衡计算和热力学第一定律、热力学第二定律的应用计算、熵分析计算和有效能计算。该部分内容约占卷面成绩的60%~75% (3)证明推导题 基本热力学方程及其关系的推导,约占卷面成绩的5%~10%。

化工热力学复习题及答案

第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。(错。G S H U ??=?=?,,0,0但和 0不一定等于A ?,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状 态是T ,P 的理想气体,右侧是T 温度的真空。当隔板抽去后,由于Q =W =0, 0=U ?,0=T ?,0=H ?,故体系将在T ,2V ,0.5P 状态下达到平衡,()2ln 5.0ln R P P R S =-=?,2ln RT S T H G -=-=???,2ln RT S T U A -=-=???) 2. 封闭体系的体积为一常数。(错) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等, 初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态压力相 等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 6. 自变量与独立变量是一致的,从属变量与函数是一致的。(错。有时可能不一致) 三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。 3. 1MPa=106Pa=10bar=9.8692atm=7500.62mmHg 。 4. 1kJ=1000J=238.10cal=9869.2atm cm 3=10000bar cm 3=1000Pa m 3。 5. 普适气体常数R =8.314MPa cm 3 mol -1 K -1=83.14bar cm 3 mol -1 K -1=8.314 J mol -1 K -1 =1.980cal mol -1 K -1。 第2章P-V-T关系和状态方程 一、是否题 1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。) 2. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是超临 界流体。) 3. 纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸汽的摩尔体积随着温度的升高而减小。(对。则纯物质的P -V 相图上的饱和汽体系和饱和液体系曲线可知。) 4. 纯物质的三相点随着所处的压力或温度的不同而改变。(错。纯物质的三相平衡时,体系自 由度是零,体系的状态已经确定。)

教学大纲格式

《化工分离工程》课程教学大纲 课程名称:化工分离工程 课程类型: 专业基础课 总学时:54 讲课学时:54 学分:3 适用对象: 化学工程与工艺 先修课程:《化工原理》、《化工热力学》 一、课程性质、目的和任务 本课程是高等学校化工类专业的一门专业基础课,是学生在具备了物理化学、化工原理、化工热力学、传递过程原理等技术基础知识后的一门必修课。它是利用这些课程有关相平衡热力学、动力学、分子及其聚状态的微观机理,传热、传质和动量传递理论来研究化工生产实际中复杂物系的分离和提纯技术。 二、教学基本要求 通过本课程的学习,要求学生掌握有关特殊精馏、化学萃取、膜分离、吸附与离子交换及其它分离技术的基本概念、原理及过程。 三、教学内容及要求 1 绪论(2学时) 介绍分离操作在化工生产中的重要性;分离过程的分类,每一类分离过程的定义和实例分析。 2 特殊精馏(10学时) 2.1 恒沸精馏:定义,基本概念,恒沸精馏的基本原理及相关的工艺流程,恒沸精馏塔的计算。(2学时) 2.2 萃取精馏:萃取剂作用的微观机理;萃取精馏的定义,萃取剂的选择,萃取精馏的基本原理及相关的工艺流程。(2学时) 2.3 加盐精馏:盐效应定义和机理,溶盐精馏过程、应用及优缺点分析,加盐萃取精馏的基本原理及工艺过程。(2学时) 2.4 反应精馏:反应精馏的定义,分类,每类过程的原理及应用。(2学时) 2.5 作业及讨论:分组,每组自选一种特殊精馏过程为主题,查阅相关文献,写一篇课程小论文并制作PPT,每组派一个代表讲解,全班讨论。(2学时) 3 化学萃取(10学时) 3.1 化学萃取:概述,化学萃取过程的分类及每类过程的主要特点,化学萃取的相平衡,化学萃取过程的控制步骤。(2学时) 3.2 络合萃取法的应用:物理萃取与络合萃取的区别与联系,过程的特征,萃取体系选择,典型举例。(1学时) 3.3 液膜分离技术:概述,分类及每类过程的主要特点,液膜分离过程机理,影响液膜传质的因素及影响规律,工艺流程及应用。(3学时)

化工热力学作业答案

一、试计算一个125cm 3的刚性容器,在50℃和18.745MPa 的条件下能贮存甲烷多少克(实验值是17克)?分别比较理想气体方程、三参数对应态原理和PR 方程的结果。 解:查出T c =190.58K,P c =4.604MPa,ω=0.011 (1) 利用理想气体状态方程nRT PV = g m RT PV n 14872.0=?== (2) 三参数对应态原理 查表得 Z 0=0.8846 Z 1=0.2562 (3) PR 方程利用软件计算得g m n mol cm V 3.1602.1/7268.1223=?=?= 二、用virial 方程估算0.5MPa ,373.15K 时的等摩尔甲烷(1)-乙烷(2)-戊烷(3)混合物的摩尔体积(实验值5975cm 3mol -1)。已知373.15K 时的virial 系数如下(单位:cm 3 mol -1), 399,122,75,621,241,20231312332211-=-=-=-=-=-=B B B B B B 。 解:混合物的virial 系数是 44 .2309 399 212227526212412022231 132332122132 3222121313 1 -=?-?-?----= +++++==∑∑==B y y B y y B y y B y B y B y B y y B ij i j j i 298.597444.2305.0/15.373314.8/=-?=+=B P RT V cm 3 mol -1 三、(1) 在一定的温度和常压下,二元溶液中的组分1的偏摩尔焓如服从下式2 211 x H H α+=,并已知纯组分的焓是H 1,H 2,试求出H 2和H 表达式。 解: ()112221 2 2121121222dx x dx x x x dx dx H d x x H d x x H d αα-=-=???? ??-=- =得 2122x H H α+= 同样有2211 x H H α+= 所以 212211x x x H x H H x H i i α++==∑ ()()1,,o r r r r Z Z P T Z P T ω=+323.1518.745 1.696 4.071190.58 4.604r r T P = ===0.88640.0110.25620.8892Z =+?=30.88928.314323.15127.4/18.745 ZRT V cm mol P ??= ==1250.9812127.4t V n mol V ===15.7m g =

《化工热力学》课程标准

《化工热力学》课程标准 英文名称:Chemical Engineering Thermodynamics 课程编号: 适用专业:应用化学本科学分数:2 一、课程性质 所属一级学科——化学工程,二级学科——化学工程基础学科。 《化工热力学》是应用化学专业的重要专业方向课程。该课程包括化工基础理论,热力学案例分析、化工节能创新等化工技能,是化工类专业教学体系和人才培养体系中比较重要的专业课。 先修课程为《高等数学》、《物理化学》、《化工原理》等。 二、课程理念 1、该课程是化学工程的精髓 《化工热力学》课程属于工学学科门类下化学工程学科,是化工过程研究、开发和设计的理论基础,在科研和生产领域具有不可缺少的地位。它是从化学工程的角度,分析并给出化工过程经历的实质性变化,在原理和计算方法上指导各种化工过程的进行和优化。 该课程是应用化学专业的重要专业方向课程,是化学工程的精髓,是所有单元操作的基础,是《化工原理》、《反应工程》、《化工分离过程》等课程的基础和指导。 该课程在化学化工类人才培养中起着重要的承前启后、由基础到专业的桥梁作用,是化工类人才持续深造和研究开发必须打好的知识功底。 2、理论与工程应用相结合,培养学生的工程与开发能力 该课程定位为工程学科专业方向课,故在培养学生科学素质的同时,始终强调工程能力的培养,将化工热力学理论,模型与工程应用融为一体,旨在培养学生能够应用和建立热力学模型解决化学工程和工艺开发中的问题。 3、砸实热力学知识,培养学生扎实的学习能力和创造能力 该课程是以化工热力学、工程热力学和统计热力学为学科基础,以计算机及其技术为工具,培养学生从热力学角度分析解决现代化工技术的复杂工程问题。为了培养创新型高素质人才,既要给学生以干粮——扎实的热力学知识,又要给学生以猎枪——获取和创造知识的能力。 4、重视过程与动态评价 采用平时表现与考试成绩相结合的评价理念。学生在完成课后作业、课堂讨论、口试等内容和环节后,获得参加考试资格。知识和能力之间应树立一种内在联系,多看重教学过程中学生的参与程度和提高程度,不把期末考试作为教学评价的唯一标准,坚持“过程评价”和“动态评价”。 三、课程目标 总目标: 通过介绍化工热力学的起源、现状和发展,使学生了解热力学在化工过程中的主要实际应用;引导学生构建化工热力学课程的知识网络,使学生掌握化工热力学的基本概念和基本原理,利用化工热力学的方法对化工中物系的热力学性质和其它化工物性进行关联及推算,利用化工热力学的原理和模型进行化工过程能量、相平衡分析和研究;训练学生理论联系实际的思维,使学生具备利用热力学知识分析解决化工领域中有关实际问题的初步能力,形成基本知识扎实、应用能力突出的专业素养。 分目标:

化工热力学教学大纲新编

化工热力学教学大纲新 编 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

《化工热力学》教学大纲 一、课程基本信息 课程中文名称:化工热力学 课程英文名称:Chemical Engineering Thermodynamics 课程编号:06131050 课程类型:学科基础课 总学时:54 学分:3 适用专业:化学工程与工艺 先修课程:物理化学、化工原理 开课院系:化工与制药学院 二、课程的性质与任务 化工热力学是化学工程学的一个重要分支,是化工类专业必修的专业基础课程。它是化工过程研究、开发与设计的理论基础,是一门理论性与应用性均较强的课程。该门课系统地介绍了将热力学原理应用于化学工程技术领域的研究方法。它以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,深刻阐述了各种物理和化学变化过程达到平衡的理论极限、条件和状态。 设置本课程,为了使考生能够掌握化工热力学的基本概念、理论和专业知识;能利用化工热力学的原理和模型对化工中涉及到的化学反应平衡原理、相平衡原理等进行分析和研究;能利用化工热力学的方法对化工中涉及的物系的热力学性质和其它化工物性进行关联和推算;并学会利用化工热力学的基本理论对化工中能量进行分析等。 三、课程教学基本要求 通过本课程学习,要求 1.正确理解化工热力学的有关基本概念和理论; 2.理解各个概念之间的联系和应用; 3.掌握化工热力学的基本计算方法; 4.能理论联系实际,灵活分析和解决实际化工生产和设计中的有关问题。 四、理论教学内容和基本要求

教学内容 第一章绪论 热力学发展简史 化工热力学的主要研究内容 化工热力学的研究方法及其发展 化工热力学在化工中的重要性 第二章流体的p-V-T关系 纯物质的p –V –T关系 气体的状态方程 2.2.1理想气体状态 2.2.2 维里方程 2.2.3 立方型状态方程 2.2.4 多参数状态方程 对应态原理及其应用 2.3.1 对比态原理 2.3.2 三参数对应态原理 2.3.3 普遍化状态方程 真实气体混合物的p-V-T关系 2.4.1 混合规则 2.4.2气体混合物的虚拟临界性质 2.4.2 气体混合的第二维里系数 2.4.3 混合物的状态方程 液体的p –V -T关系 2.5.1 饱和液体体积 2.5.2 压缩液体(过冷液体)体积 2.5.3 液体混合物的p –V -T关系 第三章纯流体的热力学性质 热力学性质间的关系 3.1.1 热力学基本方程 3.1.2 Maxwell关系式 焓变与熵变的计算 3.2.1 热容

化工热力学课后作业答案(学生版)

习题 第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。(错。G S H U ??=?=?,,0,0但和 0不一定等于A ?,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧 状态是T ,P 的理想气体,右侧是T 温度的真空。当隔板抽去后,由于Q =W =0,0=U ?,0=T ?,0=H ?, 故体系将在T ,2V ,0.5P 状态下达到平衡,()2ln 5.0ln R P P R S =-=?,2ln RT S T H G -=-=???,2ln RT S T U A -=-=???) 2. 封闭体系的体积为一常数。(错) 3. 封闭体系中有两个相βα,。在尚未达到平衡时,βα,两个相都是均相敞开体系; 达到平衡时,则βα,两个相都等价于均相封闭体系。(对) 4. 理想气体的焓和热容仅是温度的函数。(对) 5. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量 中只有一个强度性质,所以,这与相律有矛盾。(错。V 也是强度性质) 7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相 等,初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态 压力相等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 8. 描述封闭体系中理想气体绝热可逆途径的方程是γ γ) 1(1212-??? ? ??=P P T T (其中ig V ig P C C =γ), 而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。(错。) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。(错。有时可能不一致) 10. 自变量与独立变量是不可能相同的。(错。有时可以一致) 三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。

化工热力学教学大纲

《化工热力学》教学大纲 一、课程基本信息 课程中文名称:化工热力学 课程英文名称:Chemical Engineering Thermodynamics 课程编号:06131050 课程类型:学科基础课 总学时:54 学分:3 适用专业:化学工程与工艺 先修课程:物理化学、化工原理 开课院系:化工与制药学院 二、课程的性质与任务 化工热力学是化学工程学的一个重要分支,是化工类专业必修的专业基础课程。它是化工过程研究、开发与设计的理论基础,是一门理论性与应用性均较强的课程。该门课系统地介绍了将热力学原理应用于化学工程技术领域的研究方法。它以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,深刻阐述了各种物理和化学变化过程达到平衡的理论极限、条件和状态。 设置本课程,为了使考生能够掌握化工热力学的基本概念、理论和专业知识;能利用化工热力学的原理和模型对化工中涉及到的化学反应平衡原理、相平衡原理等进行分析和研究;能利用化工热力学的方法对化工中涉及的物系的热力学性质和其它化工物性进行关联和推算;并学会利用化工热力学的基本理论对化工中能量进行分析等。 三、课程教学基本要求 通过本课程学习,要求 1.正确理解化工热力学的有关基本概念和理论; 2.理解各个概念之间的联系和应用; 3.掌握化工热力学的基本计算方法; 4.能理论联系实际,灵活分析和解决实际化工生产和设计中的有关问题。 四、理论教学内容和基本要求

教学内容 第一章绪论 1.1 热力学发展简史 1.2 化工热力学的主要研究内容 1.3 化工热力学的研究方法及其发展1.4 化工热力学在化工中的重要性第二章流体的p-V-T关系 2.1 纯物质的p –V –T关系 2.2 气体的状态方程 2.2.1理想气体状态 2.2.2 维里方程 2.2.3 立方型状态方程 2.2.4 多参数状态方程 2.3 对应态原理及其应用 2.3.1 对比态原理 2.3.2 三参数对应态原理 2.3.3 普遍化状态方程 2.4 真实气体混合物的p-V-T关系2.4.1 混合规则 2.4.2气体混合物的虚拟临界性质2.4.2 气体混合的第二维里系数 2.4.3 混合物的状态方程 2.5液体的p –V -T关系 2.5.1 饱和液体体积 2.5.2 压缩液体(过冷液体)体积2.5.3 液体混合物的p –V -T关系 第三章纯流体的热力学性质 3.1 热力学性质间的关系 3.1.1 热力学基本方程 3.1.2 Maxwell关系式 3.2焓变与熵变的计算

化工热力学试卷三套与答案

一. 选择题(每题2分,共10分) 1.纯物质的第二virial 系数B ( A ) A 仅是温度的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 2.T 温度下的过冷纯液体的压力P (A 。参考P -V 图上的亚临界等温线。) A. >()T P s B. <()T P s C. =()T P s 3. 二元气体混合物的摩尔分数y 1=0.3,在一定的T ,P 下,8812.0?,9381.0?21==?? ,则此时混合物的逸度系数为 。(C ) A 0.9097 B 0.89827 C 0.8979 D 0.9092 4. 某流体在稳流装置中经历了一个不可逆绝热过程,装置所产生的功为24kJ ,则流体的熵变( A ) A.大于零 B.小于零 C.等于零 D.可正可负 5. Henry 规则( C ) A 仅适用于溶剂组分 B 仅适用于溶质组分 C 适用于稀溶液的溶质组分 D 阶段适用于稀溶液的溶剂 二、 填空题(每题2分,共10分) 1. 液态水常压下从25℃加热至50℃,其等压平均热容为75.31J/mol,则此过程的 焓变为(1882.75)J/mol 。 2. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变 化至P 2,则,等温过程的 W =21ln P P RT -,Q =2 1 ln P P RT ,U = 0 ,H = 0 。 3. 正丁烷的偏心因子ω=0.193,临界压力为p c =3.797MPa ,则在Tr =0.7时的蒸 汽压为( 0.2435 )MPa 。 4. 温度为T 的热源与温度为T 0的环境之间进行变温热量传递,其等于热容为Cp , 则E xQ 的计算式为(0 (1)T xQ p T T E C dT T = - ? )。

化工热力学教学大纲

《化工热力学》课程教学大纲 课程代码:080131037 课程英文名称:Chemical Engineering Thermodynamics 课程总学时:40 讲课:40 实验:0 上机:0 适用专业:化学工程与工艺 大纲编写(修订)时间:2017.7 一、大纲使用说明 (一)课程的地位及教学目标 本课程是化学工程与工艺专业的专业基础必修课程。化工热力学是研究热力学基本原理在实际化工过程中具体应用的一门科学,它是化学工程学科的重要组成部分,是化工过程研究、开发与设计的理论基础。 通过本课程的学习,学生将达到以下要求: 1.掌握化工热力学的基本概念、理论和专业知识; 2.能够利用化工热力学的原理和模型计算化工中涉及的热力学数据; 3.能够利用相平衡原理进行分析和研究; 4.能够利用化工热力学的基本理论对化工过程的能量利用进行分析。 (二)知识、能力及技能方面的基本要求 1.基本知识:掌握热力学的研究内容和研究方法,熟悉化工热力学的应用领域及发展历程和趋势。 2.基本理论和方法:掌握热力学基本定律及有关概念,并能够以此为基础,借助表达系统特征的模型进行热力学性质的计算;掌握相平衡的计算方法及热力学一致性检验方法;掌握化工过程的能量分析方法,确定能量的有效利用程度;掌握热力循环的过程及热力学分析,理解完善循环过程的方法。 3.基本技能:具备查阅和使用常用工程计算图表、手册等资料的能力;具有对复杂实际体系进行热力学性质的数值计算能力;具有一定的工程意识,具有在专业生产领域的工作中运用热力学方法分析和解决实际问题的能力。 (三)实施说明 1.教学方法:化工热力学是物理化学中热力学部分的延伸,授课中应由浅入深,将理想系统和实际系统进行比较,将纯组分和混合物进行比较,突出说明经典热力学处理实际问题的方法。对于能量分析及热力循环的相关内容,结合生产和生活实际进行讲解,以调动学生的学习兴趣,收到良好教学效果。 2.教学手段:采用多媒体和板书相结合的方式。 (四)对先修课的要求 本课程应在高等数学、物理化学课程之后开设。 (五)对习题课、实践环节的要求 1.本课程内容比较抽象,难于理解,在讲解理论知识的基础上,根据课程内容安排两次习题课,共4学时,分别练习和讲解热力学性质的计算和相平衡的计算、化工过程的能量分析和热力循环内容。对于复杂的计算问题,引导、鼓励学生运用计算机进行求解,加强计算能力和计算机应用能力。 2.课后作业的布置要少而精、内容多样化,作业题包括基本概念、基本理论及应用计算等方面的内容,通过作业的完成达到巩固理论、掌握计算方法和技巧、提高分析问题和解决问题能力

(精选)化工热力学复习题及答案

《化工热力学》课程模拟考试试卷 A 开课学院:化工学院,专业:材料化学工程 考试形式: ,所需时间: 分钟 考生姓名: 学号: 班级: 任课教师: 题对的写T ,错的写F) 1.理想气体的压缩因子1Z =,但由于分子间相互作用力的存在,实际气体的压缩因子 。 (A) 小于1 (B) 大于1 (C) 可能小于1也可能大于1 (D) 说不清楚 2.甲烷c 4.599MPa p =,处在r 0.3p =时,甲烷的压力为 。 (A) 15.33MPa (B) 2.7594 MPa ; (C) 1.3797 MPa (D) 1.1746 MPa 3.关于建立状态方程的作用,以下叙述不正确的是 。 (A) 可以解决由于实验的p -V -T 数据有限无法全面了解流体p -V -T 行为的问题。 (B) 可以解决实验的p -V -T 数据精确度不高的问题。 (C) 可以从容易获得的物性数据(p 、V 、T 、x )来推算较难测定的数据(H ,U ,S , G )。 (D) 可以解决由于p -V -T 数据离散不便于求导和积分,无法获得数据点以外的 p -V -T 的问题。 4.对于流体混合物,下面式子错误的是 。 (A) lim i i i x M M ∞→=(B)i i i H U pV =+ (C) 理想溶液的i i V V =,i i U U = (D) 理想溶液的i i S S =,i i G G = 5.剩余性质R M 的概念是表示什么差别的 。 (A) 真实溶液与理想溶液 (B) 理想气体与真实气体 (C) 浓度与活度 (D) 压力与逸度 6.纯物质在临界点处的状态,通常都是 。 (A) 气体状态 (B) 液体状态 (C) 固体状态 (D) 气液不分状态

相关文档
最新文档