大学电子专业集成运算放大器指标测试

大学电子专业集成运算放大器指标测试
大学电子专业集成运算放大器指标测试

实验二十集成运算放大器指标测试

一、实验目的

(l)加深对集成运算放大器特性和参数的理解。

(2)学习集成运算放大器主要性能指标的测试方法。

三、实验仪器及设备

(1)低频信号发生器1台

(2)晶体管毫伏表1台

(3)双踪示波器1台

(4)双路稳压电源1台

(5)数字式万用表l块

(6)微型计算机系统1套

二、实验原理

集成运算放大器是一种高增益的直接耦合放大电路,在理想情况下,集成运放的A ud =∞、R i=∞、U OS=0、I OS=0、K CMR=∞。但是实际上并不存在理想的集成运算放大器。为了解实际运放与理想运放的差别,以便正确使用集成运算放大器,有必要研究其实际特性,并对其主要指标进行测试。集成运放组件的各项指标通常是由专用仪器进行测试的,下面介绍的是运放主要指标的简易测试方法。

本实验采用的集成运放为双列直插式组件μA741(或LM741),引脚排列如图20-1示,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正、负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入几十KΩ的电位器,滑动触头接到负电源端,⑧脚为空脚。

图20-1 μA741管脚图图20-2 U0S、I0S、I IB测试电路

1.集成运放主要指标测试

(1)输入失调电压U0S

理想运放组件当输入信号为零时,其输出也为零。但是即使是最优质的集成组件,由于运放内部差动输入级参数的不完全对称,输出电压往往不为零,这种零输入时输出不为零的

现象称为集成运放的失调。

在常温下,当输入信号为零时,集成运放的输出电压不为零,该输出电压称为输出失调电压。为了使输出电压回到零,需要在输入端加上反向补偿电压,该补偿电压称为输入失调电压U 0S 。U 0S 的大小主要反映了运放内部差分输入级中两个三极管U BE 的失配程度。当运放的输入外接电阻(包括信号源内阻)比较小时,失调电压及其温漂往往是引起运放误差的主要原因。

失调电压测试电路如图20-2所示。闭合开关K 1及K 2,使电阻R B 短接,测量此时的输出电压U 01 即为输出失调电压,则输入失调电压

O1F

11

OS U R R R U +=

实际测出的U 0S 可能为正,也可能为负,一般在1~5mV ,对于高质量的运放U 0S 在1mV 以下。

测试中应注意:① 将运放调零端开路。

② 要求电阻R 1和R 2,R 3和R F 的参数严格对称。

(2)输入失调电流I 0S

在常温下,当输入信号为零时,集成运算放大器两个输入端的输入电流之间的差值称为输入失调电流I 0S ,设I B1和I B2分别是运放同相输入端和反相输入端的输入电流,则输入失调电流I 0S =│I B1-I B2│。输入失调电流的大小反映了运放内部差分输入级中两个三极管基极静态电流的失配程度。当集成运算放大器的输入端外接电阻比较大时,输入失调电流及其温漂是造成运放误差的主要原因。

输入失调电流的测试电路如图20-2所示,电路中R 1= R 2,R 3=R F ,而且两个输入端上的电阻R B 必须精确配对才能保证测量精度。测量方法是:

① 闭合开关K 1及K 2,在低输入电阻下,测出输出电压U 01,如前所述,这是由输入失调电压U 0S 所引起的输出电压。

② 断开K 1及K 2,两个输入电阻R B 接入,此时,输出电压U 02可以看作是由输入失调电压U 0S 和输入失调电流I 0S 共同引起的。由于R B 阻值较大,R B >>R 1,因此输入电流I B1和I B2在电阻R 1和R 2上的压降可以忽略。流经它们的输入电流的差异,将变成输入电压的差异,因此,也会影响输出电压的大小,可见测出两个电阻R B 接入时的输出电压U 02 ,若从中扣除输入失调电压U 0S 的影响,则输入失调电流I 0S 为

B

F 1101

O2B2B1OS 1

R R R R U U I I I +-=-=

一般,I 0S 约为几十~几百nA(10-9A ),高质量运放I OS 低于1nA 。 测试中应注意:① 将运放调零端开路。

② 两输入端电阻R B 必须精确配对。

(3)输入偏置电流I IB

输入偏置电流是指在常温下,且输入信号为零时,集成运算放大器两个输入端输入电流的平均值,即)(2

1

21B B IB I I I +=

。集成运放的I IB 一般在10nA ~1μA 范围内。 输入偏置电流的测试电路如图20-2所示。(电路中的两个开关K 1和K 2在实验中可利用导线的接通与否来取代开关)

当K 1断开、K 2闭合时,若测得运放输出电压为U O3,则

))(1(11

3B B OS F

O R I U R R U ++

= 当K 1闭合、K 2断开时,若测得运放输出电压为U O4,则

))(1(21

4B B OS F

O R I U R R U -+

= 两式相减,得:

)1)((1

2143R R I I R U U F

B B B O O +

+=- 因此,输入偏置电流为:

B

F O O B B IB R R R R U U I I I 1

)(21)(21114321?

+?-=+=

在测量输入偏置电流I IB 时,应注意:

(1)只有当集成运放的输出电压尚未达到饱和值时,测试电路所获得的各项测试结果才是正确的。

(2)在测试时,应该用示波器监视输出电压波形,若发现集成运放的输出端产生自激,则必须加补偿电容,以消除自激振荡。

(4)开环差模放大倍数A ud

集成运放在没有外部反馈时的直流差模放大倍数称为开环差模电压放大倍数,用A ud 表示。它定义为开环输出电压U 0与两个差分输入端之间所加信号电压U id 之比

id

ud U U A =

按定义A ud 应是信号频率为零时的直流放大倍数,但为了测试方便,通常采用低频(几十Hz 以下)正弦交流信号进行测量。由于集成运放的开环电压放大倍数很高,难以直接进行测量,故一般采用闭环测量方法。A ud 的测试方法很多,一般采用同时引入直流反馈和交流反馈的测试方法,如图20-3所示。

图20-3 A ud 测试电路

被测运放一方面通过R F 、R 1、R 2引入直流反馈,以抑制输出电压失调;另一方面通过R F 和R S 引入交流反馈,输入回路中的电阻R 1和R 2同时又起到对输入交流信号u S 进行分压衰减的作用,使u i d 足够小,以保证运放工作在线性区。同相输入端电阻R 3应与反相输入端电阻R 2相匹配,以减小输入偏置电流的影响。电容C 为隔直电容。被测运放的开环电压放大倍数为

i

021id 0ud )(1U U

R R U U A +==

通常低增益运放A ud 约为60~70db ,中增益运放约为80db ,高增益在100db 以上,可

达120~140db 。

测试中应注意:① 测试前电路应首先消振及调零。 ② 被测运放要工作在线性区。

③ 输入信号频率应较低,一般用50~100HZ ,输出信号幅度应较小,

且无明显失真。

(5)共模抑制比K CMR

集成运放的差模电压放大倍数A d 与共模电压放大倍数A C 之比称为共模抑制比

(dB)20lg C

d CMR C d CMR A A

K A A K ==

或 共模抑制比K CMR 在应用中是一个很重要的参数,理想运放对输入的共模信号其输出为

零。但在实际的集成运放中,其输出不可能没有共模信号的成分,输出端共模信号愈小,说明电路对称性愈好,也就是说运放对共模干扰信号的抑制能力愈强,即K CMR 愈大。K CMR 的测试电路如图20-4所示。

图20-4 K CMR 测试电路

集成运放工作在闭环状态下的差模电压放大倍数为

1

F

d R R A -

= 当接入共模输入信号U ic 时,测得U 0C ,则共模电压放大倍数为

iC

0C

C U U A =

得共模抑制比

0C

iC 1F C d CMR

U U R R A A K ==

测试中应注意:① 消振与调零

② R 1与R 2、R 3与R F 之间阻值严格对称

③ 输入信号U ic 幅度必须小于集成运放的最大共模输入电压范围 U icm

(6)共模输入电压范围U icm

集成运放所能承受的最大共模电压称为共模输入电压范围,超出这个范围,运放的K CMR 会大大下降,输出波形产生失真,有些运放还会出现“自锁”现象以及永久性的损坏。 U icm 的测试电路如图20-5所示。

被测运放接成电压跟随器形式,输出端接示波器,观察最大不失真输出波形,从而确定U icm 值。

图20-5 U icm 测试电路 图20-6 U OPP 测试电路

(7)输出电压最大动态范围U max

集成运放的动态范围与电源电压、外接负载及信号源频率有关。

测试电路如图20-6所示。改变u S 幅度,观察u 0削顶失真开始时刻,从而确定u 0的不失真范围,这就是运放在某一定电源电压下可能输出的电压峰峰值U omax 。

(8)转换速率R S

转换速率R S 反映了集成运放对信号变化速度的适应能力。在大信号条件下,集成运放的输出电压随时间的最大变化率称为转换速率,即max

dt

dv S o R =

,单位为s V μ/。集成运

算放大器一般在每微秒零点几伏以上,高速型运放的转换速率高达每微秒上百伏。

转换速率与运放的电路结构、反馈深度及补偿网络有关,手册中给出的R S 一般是在运放接成电压跟随器或反相器的情况下测得的。R S 的测试电路如图20—7所示,图中被测运放构成反相器。对于最大允许共模输入电压较高的集成运放,也可接成电压跟随器。

若输入信号是前沿陡峭的大幅度方波(峰峰值≥1V ),则由输出波形υO 的过渡区斜率

(一般取0.9+om V ~0.9-om V ),可得到被测运放的转换速率,如图20—8所示。由图可得:

1

29.09.0t V t V S om

om R ?=

?=-

+ 若测得正向与负向的转换速率不同,则应取其中数值较小者。

图20—7

R S 测试电路 图20—8 R S 测试波形

当采用正弦电压作为输入信号时,设正弦输出电压为ft V v o o π2sin (max)=,式中V o(max)

为集成运放的最大不失真输出电压。则转换速率为:(max)max

2o o

R fV dt

dv S π==

,由此可得:

f

S V R

o π2(max)=

。可见,集成运放的最大不失真输出电压幅度受运放工作频率的限制。随着频率的升高,由于转换速率一定,运放的最大不失真输出电压幅度将减小。当输入正弦波υs 的频率太高时,由于受转换速率的限制,将出现输出电压的变化跟不上输入电压的变化,从而引起输出正弦波形严重失真,甚至使输出几乎成为三角波,而且幅度也将明显地减小,如图20—8所示。因此,通常集成运算放大器在大信号条件下的最高工作频率远低于小信号工作时的上限频率。

图20—8 因R S 引起的失真

(9)增益带宽积

频率响应是运算放大器重要的交流参数。增益(A )越高,带宽(BW )越窄,增益带宽积为常数,即A*BW=常数。该常数决定于特定的放大器,开环时因增益太高,带宽很窄,所以很少使用。闭环时,增益1/R R A f -= (理想时),它的大小与带宽成反比。放大倍数等于1时的带宽称为单位增益带宽。

增益带宽积的测试电路如图20—9所示,图中f R R R //13=。

图20-9 测试增益带宽积电路

u可加入100mV的正弦波,用示波器同时观测输入输出波形,将结果填入表20-1中。

s

首先取表20-1中第一组数据Rf=R1=10kΩ,测量放大器的单位增益带宽,将信号发生器频率由低逐渐增高,直到A=0.707时所对应的频率就是运算放大器放大倍数等于1时的带宽,即单位增益带宽。再取表20-1中第2、3组数据,分别测出不同电压增益A时的带宽BW,通过计算求出增益带宽积A*BW。

实验结果表明:增益增加时,带宽减小,但增益带宽积不变。因此运算放大器在给定电压增益下,其最高工作频率受到增益带宽积的限制,应用时要特别注意这一点。

2.集成运放在使用时应考虑的一些问题

(1)输入信号选用交、直流量均可,但在选取信号的频率和幅度时,应考虑运放的频响特性和输出幅度的限制。

(2)运放的调零。为提高运算精度,在运算前,应首先对直流输出电位进行调零,即保证输入为零时,输出也为零。当运放有外接调零端子时,可按组件要求接入调零电位器R W,调零时,将输入端接地,调零端接入电位器R W,用直流电压表测量输出电压U0,细心调节R W,使U0为零(即失调电压为零)。如运放没有调零端子,若要调零,可按图7-7所示电路进行调零。

一个运放如不能调零,大致有如下原因:

①组件正常,接线有错误。

②组件正常,但负反馈不够强(R F/R1太大),为此可将R F短路,观察是否能调零。

③组件正常,但由于它所允许的共模输入电压太低,可能出现自锁现象,因而不能调零。为此可将电源断开后,再重新接通,如能恢复正常,则属于这种情况。

④组件正常,但电路有自激现象,应进行消振。

⑤组件内部损坏,应更换好的集成块。

(a) (b)

图20-9调零电路

(3)运放的消振。一个集成运放自激时,表现为即使输入信号为零,亦会有输出,使各种运算功能无法实现,严重时还会损坏器件。在实验中,可用示波器监视输出波形。为消除运放的自激,常采用如下措施:

①若运放有相位补偿端子,可外接RC补偿电路,产品手册中提供了补偿电路及元件。

②电路布线、元、器件布局应尽量减少分布电容。

③在正、负电源进线与地之间接上几十μF的电解电容和0.01~0.1μF的陶瓷电容相并联以减小电源引线的影响。

四、实验内容

实验前看清运放管脚排列及电源电压极性及数值,切忌正、负电源接反。

1.测量输入失调电压U0S

按图20-2连接实验电路。闭合开关K1、K2,用直流电压表测量输出端电压U01,并计算U0S,记入表20-2。

2.测量输入失调电流I0S

实验电路如图20-2。断开开关K1、K2,测量U02,并计算I0S,记入表20-1。

3. 测量输入偏置电流I IB

实验电路如图20-2。K1断开、K2闭合,测量U03;K1闭合、K2断开,测量U04,并计算I IB,记入表20-2。

4.测量开环差模电压放大倍数A ud

按图20-3连接实验电路,运放输入端加f=50Hz,U s=50mV正弦信号,用示波器监视输出波形。用交流毫伏表测量U0和U i,并计算A ud。记入表20-2。

5.测量共模抑制比K CMR

按图20-4连接实验电路,运放输入端加f=50Hz,U iC=1V正弦信号,监视输出波形。测量U0C和U iC,计算K CMR,记入表20-2。

6.测量共模输入电压范围U icm

按图20-5连接实验电路,运放输入端加u S(f=50Hz)正弦信号,用示波器监视输出波形。改变u S的幅度,当输出u0出现削顶失真的临界点,对应的u S值即为U icm。记入表20-2。

7. 测量输出电压最大动态范围U omax

按图20-6连接实验电路,运放输入端加u S(f=50Hz)正弦信号,用示波器监视输出

波形。改变u S的幅度,当输出u0出现削顶失真的临界点,对应的u o值即为U omax。记入表20-2。

表20-2

五、思考题

1.查阅μA741典型指标数据及管脚功能。

2.测量输入失调参数时,为何要精选运放反相及同相输入端的电阻,以保证严格对称。

3.测量输入失调参数时,为什么要将运放调零端开路,而在进行其它测试时,则要求对输出电压进行调零。

4.测试信号的频率选取的原则是什么?

运算放大器的保护 放大器输入保护的利与弊

目前广泛应用的电压型集成运算放大器是一种高放大倍数的直接耦合放大器。在该集成电路的输入与输出之间接入不同的反馈网络,可实现不同用途的电路,例如利用集成运算放大器可非常方便的完成信号放大、信号运算(加、减、乘、除、对数、反对数、平方、开方等)、信号的处理(滤波、调制)以及波形的产生和变换。集成运算放大器的种类非常多,可适用于不同的场合。 3.2.1 集成运算放大器的分类 按照集成运算放大器的参数来分,集成运算放大器可分为如下几类。 1.通用型运算放大器 通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例μA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。 2.高阻型运算放大器 这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般r id>(109~101 2)Ω,I IB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高, 输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。 3.低温漂型运算放大器

在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、 AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。 4.高速型运算放大器 在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率S R一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、μA715等,其S R=5 0~70V/μs,BW G>20MHz。 5.低功耗型运算放大器 由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μW,可采用单节电池供电。 6.高压大功率型运算放大器 运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅 助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D 41集成运放的电源电压可达±150V,μA791集成运放的输出电流可达1A。 3.2.2 正确选择集成运算放大器 集成运算放大器是模拟集成电路中应用最广泛的一种器件。在由运算放大器组成的各种系统中,由于应用要求不一样,对运算放大器的性能要求也不一样。

集成运放电路试题及答案

第三章集成运放电路 一、填空题 1、(3-1,低)理想集成运放的A ud= ,K CMR= 。 2、(3-1,低)理想集成运放的开环差模输入电阻ri= ,开环差模输出电阻ro= 。 3、(3-1,中)电压比较器中集成运放工作在非线性区,输出电压Uo只有或两种的状态。 4、(3-1,低)集成运放工作在线形区的必要条件是___________ 。 5、(3-1,难)集成运放工作在非线形区的必要条件是__________,特点是___________,___________。 6、(3-1,中)集成运放在输入电压为零的情况下,存在一定的输出电压,这种现象称为__________。 7、(3-2,低)反相输入式的线性集成运放适合放大 (a.电流、b.电压) 信号,同相输入式的线性集成运放适合放大 (a.电流、b.电压)信号。 8、(3-2,中)反相比例运算电路组成电压(a.并联、b.串联)负反馈电路,而同相比例运算电路组成电压(a.并联、b.串联)负反馈电路。 9、(3-2,中)分别选择“反相”或“同相”填入下列各空内。 (1)比例运算电路中集成运放反相输入端为虚地,而比例运算电路中集成运放两个输入端的电位等于输入电压。 (2)比例运算电路的输入电阻大,而比例运算电路的输入电阻小。 (3)比例运算电路的输入电流等于零,而比例运算电路的输入电流等于流过反馈电阻中的电流。 (4)比例运算电路的比例系数大于1,而比例运算电路的比例系数小于零。 10、(3-2,难)分别填入各种放大器名称 (1)运算电路可实现A u>1的放大器。 (2)运算电路可实现A u<0的放大器。 (3)运算电路可将三角波电压转换成方波电压。 (4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。 (5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。 11、(3-3,中)集成放大器的非线性应用电路有、等。 12、(3-3,中)在运算电路中,运算放大器工作在区;在滞回比较器中,运算放大器工作在区。 13、(3-3,中)_________和_________是分析集成运算放大器线性区应用的重要依据。

集成运算放大电路单元测试题

集成运算放大电路单元测试题 一、单选题(每题2分) 1.对差分放大电路而言,下列说法不正确的为()。 A.可以用作直流放大器B.可以用作交流放大器 C.可以用作限幅器D.具有很强的放大共模信号的能力 2.差分放大电路如图所示,当有输入电压u i时,V1管集电极电流i C1=0.7mA,此时V2管集电极电位u C2等于()。 A. 5V B. 3V C. 7V D. 0V )。 A. 共基极放大电路 B. 互补对称放大电路 C. 差分放大电路 D. 电容耦合放大电路 4.把差分放大电路中的发射极公共电阻改为电流源可以() A.增大差模输入电阻B.提高共模增益 C.提高差模增益D.提高共模抑制比 5.某放大器的中频电压增益为40dB,则在上限频率f H处的电压放大倍数约为()倍。 A. 43 B. 100 C. 37 D. 70 27.对恒流源而言,下列说法不正确的为()。 A.可以用作偏置电路B.可以用作有源负载 C.交流电阻很大D.直流电阻很大 6.某双极型三极管多级放大电路中,测得A 1u =25,A 2 u =-10 ,A 3 u ≈1,则可判断这三级电路的组态分 别是()。 A. 共射极、共基极、共集电极 B. 共基极、共射极、共集电极 C. 共基极、共基极、共集电极 D. 共集电极、共基极、共基极 7.选用差分放大电路的主要原因是()。 A.减小温漂B.提高输入电阻C.稳定放大倍数D.减小失真 8.图示电路() A.等效为PNP管B.等效为NPN管 C.为复合管,其等效类型不能确定D.三极管连接错误,不能构成复合管

图号3401 9.某放大器输入电压为10mv时,输出电压为7V;输入电压为15mv时, 输出电压为6.5V,则该放大器的电压放大倍数为()。 A. 100 B. 700 C. -100 D. 433 37.设放大器的信号源内阻为R S,负载电阻为R L,输入、输出电阻分别为R i、R o,则当要求放大器恒压输出时,应满足()。 A. R o >>R L B. R o <>R S D. R S <

运算放大器的典型应用

Op Amp Circuit Collection AN-31

Practical Differentiator f c e 1 2q R2C1 f h e 1 2q R1C1 e 1 2q R2C2 f c m f h m f unity gain TL H 7057–9 Integrator V OUT e b 1 R1C1 t2 t1 V IN dt f c e 1 2q R1C1 R1e R2 For minimum offset error due to input bias current TL H 7057–10 Fast Integrator TL H 7057–11Current to Voltage Converter V OUT e l IN R1 For minimum error due to bias current R2e R1 TL H 7057–12 Circuit for Operating the LM101 without a Negative Supply TL H 7057–13Circuit for Generating the Second Positive Voltage TL H 7057–14

Neutralizing Input Capacitance to Optimize Response Time C N s R1 R2 C S TL H 7057–15 Integrator with Bias Current Compensation Adjust for zero integrator drift Current drift typically0 1 n A C over b55 C to125 C temperature range TL H 7057–16 Voltage Comparator for Driving DTL or TTL Integrated Circuits TL H 7057–17 Threshold Detector for Photodiodes TL H 7057–18 Double-Ended Limit Detector V OUT e4 6V for V LT s V IN s V UT V OUT e0V for V IN k V LT or V IN l V UT TL H 7057–19 Multiple Aperture Window Discriminator TL H 7057–20

集成运算放大器练习题及答案

第十章 练习题 1. 集成运算放大器是: 答 ( ) (a) 直接耦合多级放大器 (b) 阻容耦合多级放大器 (c) 变压器耦合多级放大器 2. 集成运算放大器的共模抑制比越大, 表示该组件: 答 ( ) (a) 差模信号放大倍数越大; (b) 带负载能力越强; (c) 抑制零点漂移的能力越强 3. 电路如图10-1所示,R F2 引入的反馈为 : 答 ( ) (a) 串联电压负反馈 (b) 并联电压负反馈 (c) 串联电流负反馈 (d) 正反馈 图10-1 4. 比例运算电路如图10-2所示,该电路的输出电阻为: 答 ( ) (a) R F (b) R 1+R F (c) 零 图10-2 5. 电路如图10-3所示,能够实现u u O i =- 运算关系的电路是: 答 ( ) (a) 图1 (b) 图2 (c) 图3 图10-3 6. 电路如图10-4所示,则该电路为: 答 ( )

(a)加法运算电路; (b)反相积分运算电路; (c) 同相比例运算电路 图10-4 7. 电路如图10-5所示,该电路为: 答 ( ) (a) 加法运算电路 (b) 减法运算电路 (c) 比例运算电路 O u i 1 u i2 图10-5 8. 电路如图10-6所示,该电路为: 答 ( ) (a) 加法运算电路 (b) 减法运算电路 (c) 比例运算电路 u O u i 1u i2 图10-6 9. 电路如图10-7所示,该电路为: 答 ( ) (a)比例运算电路 (b) 比例—积分运算电路 (c) 微分运算电路 O u 图10-7 10. 电路如图10-8所示 ,输入电压u I V =1,电阻R R 1210==k Ω, 电位器R P 的阻值为20k Ω 。 试求:(1) 当R P 滑动点滑动到A 点时,u O =? (2) 当R P 滑动点滑动到B 点时,u O =? (3) 当R P 滑动点滑动到C 点(R P 的中点)时 , u O =?

通用集成运算放大器测试方法

运算放大器电参数测试方法通用集成运算放大器电路测试方法 作者:李雷 一、器件介绍 集成运算放大器(简称运放)是模拟集成电路中较大的一个系列,也是各种电子系统中不可缺少的基本功能电路,它广泛的应用于各种电子整机和组合电路之中。本文主 要介绍通用运算放大器的测试原理和实用测试方法。 1.运算放大器的分类 从不同的角度,运算放大器可以分为多类: 1.从单片集成规模上可分为:单运放(如:OP07A)、双运放(AD712)、四运放 (LM124)。 2.从输出幅度及功率上可分为:普通运放、大功率运放(LM12)、高压运放(OPA445)。 3.从输入形式上可分为:普通运放、高输入阻抗运放(AD515、LF353)。 4.从电参数上可分为:普通运放、高精密运放(例如:OP37A)、高速运放(AD847)等。 5.从工作原理上可分为:电压反馈型运放、电流反馈型运放(AD811)、跨倒运放(CA3180)等。 6.从应用场合上可分为:通用运放、仪表运放(INA128)、音频运放(LM386)、视频运放(AD845)、隔离运放(BB3656)等。 2.通用运放的典型测试原理图(INTERSIL公司)

李雷 第 1 页2008-9-10

运算放大器电参数测试方法 二、电参数的测试方法以及注意事项 一般来说集成运算放大器的电参数分为两类:直流参数和交流参数。直流参数主要包括:失调电压、偏置电流、失调电流、失调电压调节范围、输出幅度、大信号电压增益、电源电压抑制比、共模抑制比、共模输入范围、电源电流十项。交流参数主要包括:大信号压摆率、小信号过冲、单位增益带宽、建立时间、上升时间、下降时间六项。而其中电源电流、偏置电流、失调电流、失调电压、输出幅度、开环增益、电源电压抑制比、共模抑制比、大信号压摆率、单位增益带宽这十项参数反映了运算放大器的精度、 速度、放大能力等重要指标,故作为考核运放器件性能的关键参数。 通常运算放大器电参数的测试分为两种方法:一种是单管测试法,另一种是带辅助放大器的测试方法。尽管单管测试法外围线路较为简单,但由于不同运放各项电参数差异很大,不利于计算机测试系统实现自动测试,故在生产测试中较少采用(有兴趣的人员可参考北京市半导体器件研究所李铭章教授编写的《运算放大器电参数测试方法》)。 为了能采用统一的测量线路实现自动测试,发展了利用辅助放大器进行测试的新方法。 该测试方法具有以下优点:1)被测器件的直流状态能自动稳定,且易于建立测试条件; 2)环路具有较高的增益,有利于微小量的精确测量;3)可在闭环条件下实现开环测试; 4)易于实现不同参数测试的转换,有利于实现自动测试。鉴于运放辅助放大器测试方法所具有的优越性,该方法已被国际电工委员会(IEC)确定为运算放大器测试标准。 我测试中心基于LTX—77 测试系统开发的通用运放测试包也是参考了该标准而设计的(可参考由胡浩同志编写的《运放测试包规范》)。图 1 为运放的辅助放大器测试方法的基本原理图。 图中运放A 为辅助放大器,DUT 为被测运放。辅助放大器应满足以下要求:a.开环增益大于60Db; b.输入失调电流和输入偏值电流应很小; 李雷 第 2 页2008-9-10

运放参数解释

运放带宽相关知识! 一、单位增益带宽GB 单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 二、运放的带宽是表示运放能够处理交流信号的能力(转) 对于小信号,一般用单位增益带宽表示。单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。 对于大信号的带宽,既功率带宽,需要根据转换速度来计算。 对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。 1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。 2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。 3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。 就是Gain Bandwidth=放大倍数*信号频率。 当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。 在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。 也就是在设计电路时要同时满足增益带宽和功率带宽。 运放关于带宽和增益的主要指标以及定义 开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽

(完整版)集成运算放大器练习题

集成运算放大器测试题 指导老师:高开丽班级:11机电姓名: _____________ 成绩: 一、填空题(每空1分,共20分) 1、集成运放的核心电路是__________ 电压放大倍数、_________ 输入电阻和_______ 输出电阻的电路。(填“低”、“高”) 2、集成运由_____________ 、______________ 、________________ 、___________ 四个部分组成。 3、零漂的现象是指输入电压为零时,输出电压_________________ 零值,出现忽大忽小得现象。 4、集成运放的理想特性为:________________ 、______________ 、_________ 、_____________ 。 5、负反馈放大电路由__________________ 和__________________ 两部分组成。 6、电压并联负反馈使输入电阻__________ ,输出电阻___________ 。 7、理想运放的两个重要的结论是_______________ 和_____________ 。 &负反馈能使放大电路的放大倍数________________ ,使放大电路的通频带展宽,使输出信号波形的非线性失真减小,__________ 放大电路的输入、输出电阻。 二、选择题(每题3分,共30分) 1、理想运放的两个重要结论是() A 虚断VI+=VI-,虚短i l+=il- B 虚断VI+=VI-=O ,虚短i l+=il-=O C 虚断VI+=VI-=O ,虚短i I+=iI- D 虚断i I+=iI-=0 ,虚断VI+=VI- 2、对于运算关系为V0=10VI的运算放大电路是() A反相输入电路B同相输入电路C电压跟随器D加法运算电路 3、电压跟随器,其输出电压为V0,则输入电压为() A VI B - VI C 1 D -1 4、同相输入电路,R仁10K,Rf=100K ,输入电压VI为10mv,输出电压V0为 () A -100 mv B 100 mv C 10 mv D -10 mv

通用集成运算放大器测试方法

通用集成运算放大器电路测试方法 作者:李雷 一、器件介绍 集成运算放大器(简称运放)是模拟集成电路中较大的一个系列,也是各种电子系统中不可缺少的基本功能电路,它广泛的应用于各种电子整机和组合电路之中。本文主 要介绍通用运算放大器的测试原理和实用测试方法。 1.运算放大器的分类 从不同的角度,运算放大器可以分为多类: 1.从单片集成规模上可分为:单运放(如:OP07A)、双运放(AD712)、四运放(LM124)。 2.从输出幅度及功率上可分为:普通运放、大功率运放(LM12)、高压运放(OPA445)。 3.从输入形式上可分为:普通运放、高输入阻抗运放(AD515、LF353)。 4.从电参数上可分为:普通运放、高精密运放(例如:OP37A)、高速运放(AD847)等。 5.从工作原理上可分为:电压反馈型运放、电流反馈型运放(AD811)、跨倒运放(CA3180)等。 6.从应用场合上可分为:通用运放、仪表运放(INA128)、音频运放(LM386)、视频运放(AD845)、隔离运放(BB3656)等。 2.通用运放的典型测试原理图(INTERSIL公司)

二、电参数的测试方法以及注意事项 一般来说集成运算放大器的电参数分为两类:直流参数和交流参数。直流参数主要包括:失调电压、偏置电流、失调电流、失调电压调节范围、输出幅度、大信号电压增益、电源电压抑制比、共模抑制比、共模输入范围、电源电流十项。交流参数主要包括:大信号压摆率、小信号过冲、单位增益带宽、建立时间、上升时间、下降时间六项。而其中电源电流、偏置电流、失调电流、失调电压、输出幅度、开环增益、电源电压抑制比、共模抑制比、大信号压摆率、单位增益带宽这十项参数反映了运算放大器的精度、 速度、放大能力等重要指标,故作为考核运放器件性能的关键参数。 通常运算放大器电参数的测试分为两种方法:一种是单管测试法,另一种是带辅助放大器的测试方法。尽管单管测试法外围线路较为简单,但由于不同运放各项电参数差异很大,不利于计算机测试系统实现自动测试,故在生产测试中较少采用(有兴趣的人员可参考北京市半导体器件研究所李铭章教授编写的《运算放大器电参数测试方法》)。 为了能采用统一的测量线路实现自动测试,发展了利用辅助放大器进行测试的新方法。 该测试方法具有以下优点:1)被测器件的直流状态能自动稳定,且易于建立测试条件; 2)环路具有较高的增益,有利于微小量的精确测量;3)可在闭环条件下实现开环测试; 4)易于实现不同参数测试的转换,有利于实现自动测试。鉴于运放辅助放大器测试方法所具有的优越性,该方法已被国际电工委员会(IEC)确定为运算放大器测试标准。 我测试中心基于LTX—77 测试系统开发的通用运放测试包也是参考了该标准而设计的(可参考由胡浩同志编写的《运放测试包规范》)。图 1 为运放的辅助放大器测试方法的基本原理图。 图中运放 A 为辅助放大器,DUT 为被测运放。辅助放大器应满足以下要求:a.开环增益大于60Db; b.输入失调电流和输入偏值电流应很小;

运算放大器地全参数选择

运算放大器的参数指标 1.开环电压增益Avd 开环电压增益(差模增益)为运算放大器处于开环状态下,对小于200Hz的交流输入信号的放大倍数,即输出电压与输入差模电压之比。它一般为104~106,因此它在电路分析时可以认为无穷大。 2.闭环增益A F 闭环增益是运算放大器闭环应用时的电压放大倍数,其大小与放大电路的形式有关,与放大器本身的参数几乎无关,只取决于输入电组和反馈电阻值的大小。 反相比例放大器,其增益为 A F=- RI RF 3.共模增益Avc和共模抑制比 当两个输入端同时加上频率小于200Hz的电压信号Vic时,在理想情况下,其输出电压应为零。但由于实际上内部电路失配而输出电压不为零。此时输出电压和输入电压之比成为共模增益Avc。 共模抑制比Kcmr= Avc Avd 共模增益 运算放大器的差模增益, 通常以对数关系表示:Kcmr=20log Avc Avd 共模增益 运算放大器的差模增益 共模抑制比一般在80~120Db范围内,它是衡量放大器对共模信号抑制能力高低的重要指标。这不仅是因为许多应用电路中要求抑制输入信号中夹带的共模干扰,而且因为信号从同相端输入时,其两个输入端将出现较大的共模信号而产生较大的运算误差。

在常温(25℃)下当输入电压为零时,其输出电压不为零。此时将其折算到输入端的电压称为输入失调电压。它一般为±(0.2~15)mV 。这就是说,要使放大器输出电压为零,就必须在输入端加上能抵消Vio 的差值输入电压。 5. 输入偏置电流 在常温(25℃)下输入信号为零(两个输入端均接地)时,两个输入端的基极偏置电流的平均值称为输入偏置电流,即 I IB =2 1( I IB -+ I IB+) 它一般在10nA~1uA 的范围内,随温度的升高而下降,是反映放大器动态输入电阻大小的重要参数。 6. 输入失调电流I IO 输入失调电流可表示为 I IO =︱I IB -- I IB+∣ 在双极晶体管输入级运算放大器中,I IO 约为(0.2~0.1)I IB -或(0.2~0.1)I IB+。当I IO 流过信号源内阻时,产生输入失调电压。而且它也是温度的函数。 7. 差模输入电阻R ID 在一般应用电路中,输入阻抗是指差模输入电阻R ID 。它一般为100K Ω~1M Ω,高输入阻抗运算放大器的差模输入电阻可达1013Ω。 8. 温度漂移 输入失调电压、输入失调电流和输入偏置电流等参数均随温度、时间和电源等外界条件的变化而变化。其中输入偏置电流的变化是造成放大器温度漂移的主要原因。对于双极晶体管输入级运算放大器,输入偏置电流随温度上升而变小,数量级为nA 级。

第4章集成运算放大电路课后习题及答案

第4章集成运算放大电路 —一填空题 1、集成运放内部电路通常包括四个基本组成部分,即____________ 、 ______________ 、 ____________ 和___________________ 。 2、为提高输入电阻,减小零点漂移,通用集成运放的输入级大多采用_______________________ 电路;为了减小输出电阻,输出级大多采用 _____________________ 电路。 3、在差分放大电路发射极接入长尾电阻或恒流三极管后,它的差模放大倍数A ud将 , 而共模放大倍数A uc将______ ,共模抑制比K CMR将_________ 。 4、差动放大电路的两个输入端的输入电压分别为“I8mV和U i2 10mV,则差模 输入电压为__________ ,共模输入电压为 ___________ 。 5、差分放大电路中,常常利用有源负载代替发射极电阻R e,从而可以提高差分放大电 路的______________________ 。 6、工作在线性区的理想运放,两个输入端的输入电流均为零,称为虚______ ;两个输入 端的电位相等称为虚__________ ;若集成运放在反相输入情况下,同相端接地,反相端又称 虚___________ ; 即使理想运放器在非线性工作区,虚 _______ 结论也是成立的。 7、共模抑制比K CMR等于 _________________ 之比,电路的K CMR越大,表明电路___________ 越强。 答案:1、输入级、中间级、输出级、偏置电路;2、差分放大电路、互补对称电路;3、不变、减小、增大;4、-18mV, 1mV ;5、共模抑制比;6、断、短、地、断;7、差模电压放大倍数与共模电压放大倍数,抑制温漂的能力。 二选择题 1、集成运放电路采用直接耦合方式是因为_________ 。 A ?可获得很大的放大倍数 B.可使温漂小C.集成工艺难以制造大容量电容

集成运放的主要参数以及测试方法

集成运放的性能主要参数及国标测试方法 集成运放的性能可用一些参数来表示。 集成运放的主要参数: 1.开环特性参数 (1)开环电压放大倍数Ao。在没有外接反馈电路、输出端开路、在输入端加一个低频小信号电压时,所测出输出电压复振幅与差动输入电压复振幅之比值,称为开环电压 放大倍数。Ao越高越稳定,所构成运算放大电路的运算精度也越高。 (2)差分输入电阻Ri。差分输入电阻Ri是运算放大器的主要技术指标之一。它是指:开环运算放大器在室温下,加在它两个输入端之间的差模输入电压变化量△V i与由它所引起的差模输入电流变化量△I i之比。一般为10k~3M,高的可达1000M以上。 在大多数情况下,总希望集成运放的开环输入电阻大一些好。 (3)输出电阻Ro。在没有外加反馈的情况下,集成运放在室温下其输出电压变化与输出电流变化之比。它实际上就是开环状态下集成运放输出级的输出电阻,其大小反映 了放大器带负载的能力,Ro通常越小越好,典型值一般在几十到几百欧。 (4)共模输入电阻Ric。开环状态下,两差分输入端分别对地端呈现的等效电阻,称为共模输入电阻。 (5)开环频率特性。开环频率特性是指:在开环状态下,输出电压下降3dB所对应的通频带宽,也称为开环-3dB带宽。 2.输入失调特性 由于运算放大器输入回路的不对称性,将产生一定的输入误差信号,从而限制里运算放大器的信号灵敏度。通常用以下参数表示。 (1)输入失调电压Vos。在室温及标称电源电压下,当输入电压为零时,集成运放的输出电位Vo0折合到输入端的数值,即: Vos=Vo0/Ao 失调电压的大小反映了差动输入级元件的失配程度。当集成运放的输入端外接电阻比较小时。失调电压及其漂移是引起运算误差的主要原因之一。Vos一般在mV级,显然它越小越好。 (2)输入失调电流Ios。在常温下,当输入信号为零时,放大器两个输入端的基极偏置电流之差称为输入失调电流。即: Ios=Ib- — Ib+ 式中Ib-、Ib+为放大器内两个输入端晶体管的基极电流。Ios一般在零点几微安到零点零几微安数量级,其值越小越好。失调电流的大小反映了差动输入级两个晶体管B值的失配程度,当集成运放的输入端外接电阻比较大时,失调电流及其漂移将是运算误差的主要原因。(3)输入失调电流温漂dIos。温度波动对运算放大器的参数是有影响的。如温度变化时,不仅能使集成运放两输入晶体管的基极偏置电流Ib-、Ib+发生变化,而且两者的变化率也不相同。也就是输入失调电流Ios将随温度而变化,不能保持为常数。一般 常用的集成运放的dIos指标如下: ●通用I型低增益运放。在+25℃~+85℃范围约为5~20nA/℃,-40℃~+25℃范围约为 20~50nA/℃。 ●通用Ⅱ型中增益运放。dIos约为5~20nA/℃。 ●低漂移运放。dIos约为100PA/℃ (4)输入失调电压温漂dVos。在规定的工作温度范围内,Vos随温度的平均变化率,即:dVos=△Vos/△T一般为1~50uV/℃,高质量的低于0.5uV。由于该指标不像Vos可

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

第一章 集成运算放大器测试题

第一章 集成运算放大器自测题 一、填空题 二、分析计算题 1、某运算放大器电路如图1所示,运算放大器为理想的,且电阻值R 为已知,设输入信号为s v 。试问: (1)当输入信号s v 仅接在端口A 处,端口B 接地,试求该放大器的电压增益 s o v v G = ,从A 点看进去的输入阻抗i R ,输出阻抗o R 分别为多少? (2)当输入信号s v 仅接在端口B 处,端口A 接地,试求该放大器的电压增益 s o v v G = ,从B 点看进去的输入阻抗i R ,输出阻抗o R 分别为多少? (3)当输入信号s v 跨接在端口A 、B 处时,且要求s v 信号A 端为正,B 端为负,

试求该放大器的电压增益s o v v G =,从A 、B 点看进去的输入阻抗i R ,输出阻抗o R 分别为多少? R 20o v 2、在图2所示的运算放大器电路中,假设运算放大器试理想的,并且各电阻为已知值。 (1)试写出输出函数的表达式(要求有过程)。 (2)试求图中所示的输入阻抗i R 和输出阻抗o R 。 1 v 2 v o 3、米勒积分器电路如图3(a )所示,且初始输入电压和输出电压均为0,时间常数为mS RC 1==τ 。若输入的波形如图3(b )所示,试画出输出的波形(要求坐标对齐并标明数值)。 o v 图3 i v 4、图4所示的电路为浮动负载(两个连接端都没接地的负载提供电压),这在电 源电路中有很好的应用性,假设运算放大器是理想的。 (1)当节点A 输入峰峰值为1V 的正弦波i v 时,试画出节点B 、节点C 对地时

的电压波形,并画出o v 的波形。 (2)电压增益 i o v v 为多少? C B 图4 i v 5、图5为实用的单电源供电的自举式同相交流电压放大器电路,假设运算放大器是理想的。已知Ω===K R R R 10431,Ω=K R 502,Ω=M R 15。 F C C C μ10321===,V V CC 15+=。问: (1)放大器的各信号端口的直流电位为多少?电容321C C C 、、的作用是什么? (2)交流放大倍数 i o v v 为多少,输入阻抗 i R 为多大? o 6、在图6所示的电路中,比较器的输出电压的最大值为V 10±。试画出个电路 的电压传输特性曲线。 1 o v 图6 2 o v (a) (c) v 2(b) v 33 o i v

MOS运放性能参数仿真规范

CMOS运放性能参数仿真规范 (保密文件,内部使用) 芯海科技有限公司 版权所有侵权必究

目 录 22 4其它..................................................................223.3.4其它性能的仿真测试.. (22) 3.3.3最坏情况仿真测试 (21) 3.3.2极限参数仿真测试 (21) 3.3.1工艺容差及温度特性的测试 (21) 3.3运放其它特性参数仿真规范 (21) 3.2.3瞬态参数仿真 (21) 3.2.2交流参数仿真 (20) 3.2.1直流参数仿真 (20) 3.2跨导运放(OTA)性能参数仿真规范 (19) 3.1.4瞬态参数仿真 (18) 3.1.3交流参数仿真 (17) 3.1.2共模输入范围的仿真 (16) 3.1.1直流参数仿真 (16) 3.1全差分运放性能参数仿真规范 (13) 3.2.3瞬态参数仿真 (8) 3.2.2交流参数仿真 (5) 3.2.1直流参数仿真 (5) 3.2双端输入、单端输出运放性能参数仿真规范 (5) 3.1MOS 运算放大器技术指标总表 (5) 3CMOS 运放仿真规范.......................................................42概述...................................................................41前言...................................................................4MOS 运放性能参数仿真规范..................................................表目录 5 表1 MOS 运算放大器技术指标总表.............................................图目录 10图10 共模抑制比仿真电路...................................................10图9 闭环频响曲线.........................................................9图8 幅频、相频曲线图......................................................9图7 开环增益仿真电路......................................................8图6 输出摆幅与负载电阻的关系曲线............................................8图5 输出动态范围的仿真电路.................................................7图4 共模输入范围输出结果参考图..............................................7图3 共模电压输入范围的仿真电路..............................................6图2 Vos 温度特性参考图.....................................................6图1 输入失调电压仿真电路...................................................

集成运算放大器IC的主要参数【经典】

集成运算放大器IC的主要参数 本节以《中国集成电路大全》集成运算放大器为主要参考资料,同时参考了其它相关资料。 集成运放的参数较多,其中主要参数分为直流指标和交流指标。 其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。 主要交流指标有开环带宽、单位增益带宽、转换速率SR、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。 这里重点描述——直流指标 输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。 输入失调电流IIO:输入失调电流定义为当运放的输出直流电压为零时,其两输入端偏置电流的差值。输入失调电流同样反映了运放内部的电路对称性,对称性越好,输入失调电流越小。输入失调电流是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电流大约是输入偏置电流的百分之一到十分之一。输入失调电流对于小信号精密放大或是直流放大有重要影响,特别是运放外部采用较大的电阻(例如10k?或更大时),输入失调电流对精度的影响可能超过输入失调电压对精度的影响。输入失调电流越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电流的温度漂移(简称输入失调电流温漂):输入偏置电流的温度漂移定义为在给定的温度范围内,输入失调电流的变化与温度变化的比值。这个参数实际是输入失调电流的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。输入失调电流温漂一般只是在精密运放参数中给出,而且是在用以直流信号处理或是小信号处理时才需要关注。

相关文档
最新文档