上转换发光材料报告

上转换发光材料报告
上转换发光材料报告

关于上转换发光材料的报告

上转换发光,即:反-斯托克斯发光(Anti-Stokes),由斯托克斯定律而来。斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的、频率高的材料激发出波长长的、频率低的光。比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。其原理有激发态吸收(ESA)、能量传递上转换(ETU)和光子雪崩(PA)三种。

上转换纳米颗粒通常由无机基质及镶嵌在其中的稀土掺杂离子组成。尽管理论上大多数稀土离子都可以上转换发光,而事实上低泵浦功率(10W/cm2)激发下,只有和作为激活离子时才有可见光被观察到,原因是这些离子具有较均匀分立的能级可以促进光子吸收和能量转移等上转换所涉及的过程。为了增强上转换效率,通常作为敏化剂与激活剂一同掺杂,因其近红外光谱显示其有较宽的吸收域。作为一条经验法则,为了尽量避免激发能量因交叉弛豫而造成的损失,在敏化剂-

激活剂体系中,激活剂的掺杂浓度应不超过2%。

上转换过程的发生主要依赖于掺杂的稀土离子的阶梯状能级。然而基质的晶体结构和光学性质在提高上转换效率方面也起到重要作用,因而基质的选择至关重要。用以激发激活离子的能量可能会被基质振动吸收。基质晶体结构的不同也会导致激活离子周围的晶体场的变化,从而引起纳米颗粒光学性质的变化。优质

的基质应具备以下几种性质:在于特定波长范围内有较好的透光性,有较低的声子能和较高的光致损伤阈值。此外,为实现高浓度掺杂基质与掺杂离子应有较好的晶格匹配性。综上考虑,稀土金属、碱土金属和部分过渡金属离子的无机化合物可以作为较理想的稀土离子掺杂基质。

尽管目前UC颗粒已有许多合成方法,为了得到高效的UC发光产品,许多研究仍致力于探寻合成高晶化度的UC颗粒。具有较好晶体结构的纳米颗粒,其掺杂离子周围有较强的晶体场,且因晶体缺陷而导致的能量损失较少。考虑到生物领域的应用,为与生物(大)分子结合,纳米颗粒应同时具备小尺寸和良好分散性的特点。传统的合成上转换纳米颗粒的方法中,为了得到高晶化度、高分散度、特定的晶相和尺寸的产物,总体上对反应条件有较高的要求,如高温和长反应时间,而这可能导致颗粒的聚集或颗粒尺寸变大。对此,我们最近研究找到了较温和的反应条件,在此条件下合成的纳米颗粒有小尺寸和较好的光学性质。严格控制掺杂浓度,还可以得到不同晶相和尺寸的纳米颗粒。

二、上转换材料光学性质

与传统典型的发光过程(只涉及一个基态和一个激发态)不同,上转换过程需要许多中间态来累积低频的激发光子的能量。其中主要有三种发光机制:激发态吸收、能量转换过程、光子雪崩。这些过程均是通过掺杂在晶体颗粒中的激活离子能级连续吸收一个或多个光子来实现的,而那些具有f电子和d电子的激活离子因具有大量的亚稳能级而被用来上转换发光。然而高效率的上转换过程,只能靠掺杂三价稀土离子实现,因其有较长的亚稳能级寿命。

稀土离子的吸收和发射光谱主要来自内层4f电子的跃迁。在外围5s和5p

的电子的屏蔽下,其4f电子几乎不与基质发生相互作用,因此掺杂的稀土离子

的吸收和发射光谱与其自由离子相似,显示出极尖锐的峰(半峰宽约为10~20nm)。而这同时就对激发光源的波长有了很大的限制。

镧系金属离子通常有一系列尖锐的发射峰,因此为光谱的解析提供了特征性较强的图谱,避免了发射峰重叠带来的影响。发射峰波长在根本上不受基质的化学组成和物理尺寸的影响。通过调节掺杂离子的成分和浓度,可以控制不同发射峰的相对强度,从而达到控制发光颜色的目的。

与传统的反斯托克斯过程(如双光子吸收和多光子吸收过程)不同,上转换发光过程是建立在许多中间能级态的基础上的,因此有较高的频率转换效率。通常,上转换过程可以由低功率的连续波激光激发,而与之鲜明对比的是"双光子过程"需要昂贵的大功率激光来激发。

由于内层4f电子跃迁的上转换发光过程不涉及到化学键的断裂,UC纳米颗粒因而具有较高的稳定性而无光致褪色和光化学衰褪现象。许多独立的研究表明,稀土掺杂的纳米颗粒在经过数小时的紫外光和红外激光照射后并未有根本的变化。

UC纳米颗粒的上转换发光具有连续性,而不会出现"闪光"现象。虽然单个离子会观测到"闪光",而由于UC纳米颗粒中含有大量稀土离子,近期实验已经证

实在连续的红外激光激发下其UC纳米颗粒不会出现"闪光"现象。

由于f-f电子跃迁禁阻,三价稀土金属离子通常具有长发光寿命。时控发光检测技术即利用了这个光学特性,能够尽量避免因生物组织、某些有机物种或其

它掺杂物的多光子激发过程而产生的短寿命背景荧光的干扰。与传统的稳定态发光检测技术相比,由于信号/噪声比显著增大,其检测灵敏度大大提高。

以上主体材料、敏化剂、激活剂任意百分比组合都行,但是一般情况下NaYF4、NaGdF4约占75%左右转化效率比较高而激活剂一般比较低大约在2%左右。因为太密集的激活剂会引起激活剂光子本身的猝灭效应所以光转化效率降低。

三、上转换材料的应用

目前的主要应用为红外光激发发出可见光的红外探测,生物标识,和长余辉发光的警示标识,防火通道指示牌或者室内墙壁涂装充当夜灯的作用,上转换材料还可以用作生物监测,药物治疗,CT、MRI标记等。上转换发光在上转换激光器、光纤放大器、三维立体显示和防伪领域都具有很好的应用前景。上转换研究的一个主要应用,是以它作为泵浦机制来实现篮、绿和紫波段的激光器。上转换激光器以其体积小、可产生可见光波长的激光倍受重视。

随着80年代半导体激光器的迅速发展和稀土离子掺杂的玻璃光纤质量的提高,以半导体激光器作共振泵浦的上转换光纤激光器的研究以其转换效率高、激光阈值低、体积小、结构简单可靠等优良性引起了重视。随着科学技术的发展,人们已经不满足于现有的信息成果。在显示领域中,由于经济、科技、教育、交通等领域的需要,以实现逼真及大容量信息显示的三维立体显示越来越适应人们的要求,并要求显示器能够显示更多、更快和更复杂的立体图像。上转换三维立体显示器正是适应这种要求而产生的,它不仅可以再现各种实物的立体图像,而且可以随心所欲的显示各类计算机处理的高速动态立体图像。

四、上转换发光材料的研究前景

目前半导体激光器 GaAlAs,AlGaIn和InGaAs的激光发射波长分别集中于800~980nm,670~690nm和940~990nm,处在Er3+,Tm3+,Pr3+,离子的主吸收离子带上,因此这些离子作为上转换的激活离子得到了广泛研究。此外,由于Yb3+离子在980nm附近有较大的吸收截面,与大功率近红外导体激光器的发射波长相匹配,因而Yb3+离子作为上转换发光的敏化离子受到了格外的重视。上转换材料的基质材料主要有BaY2F6,CaF2,LiYF4,ZBLAN等玻璃材料和YAG等晶体材料,这些材料均具有较低的声子能量(一般小于550nm-1),且具有易制成光纤、透光范围宽等优点。

目前氟化物基质材料研究的主要是XLnF4 和LnF3,其中最为常见的NaYF4 和 LaF3,声子能均小于400cm,有利于提供合适的晶体场,降低无辐射跃迁的几率,同时激活剂容易进行掺杂。稀土离子在氟化物中具有较长的寿命,形成更多的亚稳能级,产生丰富的能级跃迁。掺杂离子对上转换的发光扮演着极为关键的角色,当前研究主要集中在Er、Tm、Ho掺杂。稀Yb的激发光波长是980nm,吸收截面大,是最为常用且有效的上转换敏化剂。当Yb和其它稀土离子共掺杂到材料中,激发Yb离子,能量传递引起光子叠加效应使得上转换发光效率大大提高。稀土纳米颗粒的发光不具有量子尺寸效应,相对于尺寸较大的化合物,纳米微粒具有更大的比表面积,因此处于表面的激活离子比例也高于相应的体相材料。由于纳米颗粒的边界阻断作用,能量的共振传递也只发生在单个微粒内部,所以高的猝灭浓度使其性能降低。在稀土纳米颗粒外部包覆同质稀土层、二氧化硅以及聚合物是有效提高上转换发光效率以及量子产率的方法,同时多层结构还可以丰富发光色彩。异质壳稀土上转换纳米颗粒包覆异质壳主要是为了获取水溶性、稳定性和分散性更好的材料,同时还可以使其表面富有功能基团。

当有机配体是高能的C/H 或者C/C,振动就会对镧系离子的发光造成严重猝灭。不同有机配体对稀土纳米颗粒的下转换发光略有影响,但对上转换发光的影响尚未有报道。异质材料对上转换氟化物纳米颗粒的包覆主要是二氧化硅、聚乙烯吡咯烷酮、聚丙烯酸、聚乙烯亚胺、聚丙烯胺、聚赖氨酸、聚乙二醇衍生物等等,包覆后上转换荧光有小幅度增强或者没有明显变化。将Yb、Er、Tm同时掺杂到NaYF4纳米颗粒中,在单一波长980nm的激发下可以得到多色荧光材料。通过调节掺杂离子的浓度和种类,可以精确控制激发强度平衡,从而实现从近红外到可见的复合多色光。此外,在B2NaYF4BYb、Tm外面包覆 B2NaYF4BYb、Er结构的纳米颗粒也可以获得从近红外到可见的上转换发光。这种三明治结构的B2NaYF4BYb、Tm、B2NaYF4、BYb、Er、B2NaYF4BYb、Tm不仅光谱丰富,而且与单纯的B2NaYF4BYb、Tm以及B2NaYF4BYb、Er相比,其量子产率和荧光效率都有所提高。

五、总结

离子上转换发光材料的研究是发光材料研究中的一个热点。就目前而言,其上转换发光的机理、稀土离子的掺杂方案、基质材料、上转换发光效率和上转换激光器件结构等仍然是研究人员所关注的焦点。

上转换发光材料应用范围广,发展前景大,是一种很具有发展潜力的发光材料。

发光材料

上海理工大学 目录 一、引言 (1) 二、发光现象及其原理 (1) 2.1荧光现象 (1) 2.2 LED现象 (2) 2.3白炽灯现象 (2) 2.4 HID现象 (2) 2.5有机发光原理 (2) 三、发光材料的应用 (3) 3.1光致发光材料 (3) 3.2阴极射线发光材料 (4) 3.3电致发光材料 (4) 3.4辐射发光材料 (4) 3.5光释发光材料 (5) 3.6热释发光材料 (5) 3.7高分子发光材料 (5) 3.8纳米发光材料 (6) 四、结束语 (6) 五、参考文献 (7)

发光材料 一、引言 众所周知[1],材料、能源和信息是21世纪的三大支柱。发光材料作为人类生活中最为重要的材料之一,有着极其重要和特殊的地位。随着科学技术的进一步发展,发光材料广泛运用于化工、医药食品、电力、公用工程、宇航、海洋船舶等各个领域。各种新型高科技在运用于人类日常生活中,势必都需要用到部分不同成分和性质的发光材料。 从20世纪70年代起,科学家们发现将稀土元素掺入发光材料,可以大大提高材料的光效值、流明数和显色性等性能,从此开启了发光材料发展的又一个主要阶段。世界己经离不开人造光源,荧光灯作为最普遍的人造光源之一己在全世界范围内开始应用,据统计全世界60%以上的人工造光是由荧光灯提供的,而大部分荧光灯就是利用稀土三基色荧光粉发光的。 二、发光现象及其原理 不同发光材料的发光原理不尽相同,但是其基本物理机制是一致的:物质原子外的电子一般具有多个能级,电子处于能量最低能级时称为基态,处于能量较高的能级时称为激发态;当有入射光子的能量恰好等于两个能级的能量差时,低能级的电子就会吸收这个光子的能量,并跃迁到高能级,处于激发态;电子在激发态不稳定,会向低能级跃迁,并同时发射光子;电子跃迁到不同的低能级,就会发出不同的光子,但是发出的光子能量肯定不会比吸收的光子能量大。 2.1荧光现象 荧光发光的主要原理:紫外线的光子的能量比可见光的能量大;当荧光物质被紫外线照射时,其基态电子就会吸收紫外线的光子被激发而跃迁至激发态;当它向基态跃迁时,由于激发态与基态间还有其他能级,所以此时释放的光子能量就会低于紫外线的能量,而刚好在可见光的范围内,于是荧光物质就会发出可见光,这种光就叫做荧光。常见的日光灯发 1

上转换发光机理与发光材料整理

上转换发光机理与发光材料 一、背景 早在1959年就出现了上转换发光的报道,Bloemberge在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年,Auzel在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb3+离子时,Er3+、H03+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。 二、上转换发光机理 上转换材料的发光机理是基于双光子或者多光子过程。发光中心相继吸收两个或多个光子,再经过无辐射弛豫达到发光能级,由此跃迁到基态放出一可见光子。为了有效实现双光子或者多光子效应,发光中心的亚稳态需要有较长的能及寿命。稀土离子能级之间的跃迁属于禁戒的f-f 跃迁,因此有长的寿命,符合此条件。迄今为止,所有上转换材料只限于稀土化合物。 三、上转换材料 上转换材料是一种红外光激发下能发出可见光的发光材料,即将红外光转换为可见光的材料。其特点是所吸收的光子能量低于发射的光子能量。这种现象违背了Stokes定律,因此又称反Stokes定律发光材料。 1、掺杂Yb3+和Er3+的材料Yb3+(2F7/2→2F5/2)吸收近红外辐射,并将其传

递给Er3+,因为Er3+的4I11/2能级上的离子被积累,在4I11/2能级的寿命为内,又一个光子被Yb3+吸收,并将其能量传递给Er3+,使Er3+离子从4I11/2能级跃迁到4F7/2能级。快速衰减,无辐射跃迁到4S3/2,然后由 4S 3/2能级产生绿色发射( 4S 3/2 → 4I 15/2 ) ,实现以近红外光激发得到绿 色发射。 2、掺杂Yb3+和Tm3+的材料 通过三光子上转换过程,可以将红外辐射转换为蓝光发射。第一步传递之后,Tm3+的3H5能级上的粒子数被积累,他又迅速衰减到3F4能级。在第二部传递过程中,Tm3+从3F4能级跃迁到3F2能级,并又快速衰减到3H4。紧接着,在第三步传递中,Tm3+从3H4能几月前到1G4能级,并最终由此产生蓝色发射。 3、掺杂Er3+或Tm3+的材料 仅掺杂有一种离子的材料,是通过两步或者更多不的光子吸收实现上转换过程。单掺Er3+的材料,吸收800nm的辐射,跃迁至可产生绿色发射的4S3/2能级。单掺Tm3+的材料吸收650nm的辐射,被激发到可产生蓝色发射的1D2能级和1G4能级。 四、优点 上转换发光具有如下优点:①可以有效降低光致电离作用引起基质材料的衰退;②不需要严格的相位匹配,对激发波长的稳定性要求不高;③输出波长具有一定的可调谐性。 五、稀土上转换材料的应用 随着频率上转换材料研究的深入和激光技术的发展,人们在考虑

上转换发光材料

>>更多... 相似文献(10 条) 相似文献
1. 期刊论文 上转换激光和上转换发光材料的研究进展 - 人工晶体学报 2001, 30(2) 2. 学位论文 上转换发光材料的合成、表征及发光性质的研究 2008 3. 期刊论文 戊二醛修饰上转换发光材料 Na[Y0.57Yb0.39Er0.04]F4 的制备与表征 - 北京科技大学 学报 2009, 31(8) 4. 期刊论文 Na2SiF6 对 Er3+, Yb3+共掺杂上转换发光材料颗粒度的影响 - 中国稀土学报 2003, 21(z1) 5. 学位论文 稀土掺杂氟化物上转换发光材料的制备及光谱特性研究 2006 6. 期刊论文 上转换发光材料表面修饰羧基的制备与表征 - 功能材料 2007, 38(1) 7. 学位论文 Bi<,2>O<,3>与 NaYF<,4>体系的上转换研究 2006 8. 学位论文 氟氧玻璃上转换发光材料的制备与表征 2005 9. 期刊论文 SiO2 包覆上转换发光材料 Na(Y0.57Yb0.39Er0.04)F4 的研究 - 发光学报 2006, 27(3)
10. 学位论文 高效蓝绿光上转换发光材料的荧光特性与机理研究 2003
相关博文(19 条) 相关博文
1. 上转换提高硅太阳能电池效率 2. 上转换稀土发光材料 经典文献 3. 加州笔记之四十七 增强型电致发光材料 4. 中科院院士--曹镛教授 5. 中国电子书面临“套牢”风险? 6. 中国电子书面临“套牢”风险? 7. 太阳电池技术和产业化趋势分析 8. 详解全新戴尔家用产品 9. [转载]中国香港任咏华教授获世界杰出女科学家奖 10. 最先维持至有效期届满的两件 OLED 中国实用新型专利

发光材料技术应用及发展前景

发光材料技术应用及发展前景 CRT显像管:我们家庭所用的电视以及绝大多数的电脑终端显示器所用的显像管确实是CRT技术,阴极射线管(CRT)的特点是色彩鲜艳丰富,制备工艺成熟,成本低廉,然而由于CRT技术设备的电视机及其他显示器的体积庞大,而且也专门繁重,专门是大尺寸的显示器,如29in电视机的厚度超过70cm,质量超过50kg。差不多不能满足人们的要求,基于CRT 的缺点,人们又采纳了一些新技术来使CRT平板化,其中比较成熟的技术是低压荧光管(VFD)技术,以VFD技术为基础的显示器的体积明显降低,厚为1cm,质量也大为减轻,另一种相对成熟的技术而且具有庞大进展潜力的的技术是场发射(FED)技术。以场发射技术为基础制备的显示器厚度只有几毫米。 VFD低压荧光管:在29世纪60年代,电子运算机市场获得急速的扩大,为习惯运算器的数码显示需求,产生了真空荧光平板显示器VFD,随着各种技术的进展,是VFD进入高密度显示领域,目前具有数字显示,图像显示画面显示功能的VFD差不多广泛运用在各种仪器显示包括汽车家电通信设备以及大显示屏幕显示器等领域。然而由于VFD技术受到彩色化功耗大辨论率低腔体中真空的保持等咨询题的限制,近几年的市场份额有下降得趋势 FED场发射显示技术 FED技术是继VFD后,针对CRT平板化的又一次新的努力 图2各类电视机功耗的比较 OLED前景展望: 从目前显示技术的进展趋势来看,OLED无疑是会带来显示产品集体换代的一项新技术。现在要紧的技术突破还在于大尺寸工艺,色彩,

以及使用寿命。只是目前萎靡的液晶市场或许会激发厂商们尽早提速OLE D大面积进入市场的决心,提速OLED的研发及生产工艺的改进或许差不多在厂商们的打算之内。所以我们不能希望OLED不久会以一种低价格的姿势进入市场,任何一种革命性的新技术均随着市场及技术的成熟才慢慢地平易近人,这段时刻往往需要几年,OLED的前景是十分让人看好的。 CES 2009展索尼首发21英寸OLED电视,辨论率为1366×768 OLED超薄柔软可卷曲的特性使其的应用方向更广,超低的功耗更符合目前时代进展的需求,在今后我们将会看到更多的地点显现OLED 的身影。相信5年内,壁画般的显示产品也将会在市场内显现,拭目以待吧。 液晶显示器件(LCD)是个人应用显示器中最有进展潜力的显示器件。反射型液晶显示 器件的功耗每平方厘米在一微瓦以下,是目前世界上最省电的显示器。 由于液晶产业的进展,应用显示器的地点也就越来越多,如个人计时用的各种电子表 、电子钟、万年历;个人通信用的"BP"机、"老大大";个人学习用的运算器、电子字典、 电子翻译器、电子课本;个人工作用的电子记事簿、PDA、掌上微机;个人娱乐用的电子游 戏机、电子照相机、电子摄像机、液晶小电视等。液晶显示产业的进展,将给个人大量、 广泛地使用显示器带来一次革命。而个人大量应用显示器,可随时、随处获得信息,这又 将大大推动世界信息产业的进展。我国的液晶产业应着重进展个人应用的液晶显示器,在 个人应用显示器上与世界各国展开竞争。另外,由于液晶显示器的工作电压低、无辐射、

发光材料

发光材料 连新宇豆岁阳董江涛陈阳郭欣高玮婧 北京交通大学材料化学专业100044 摘要:本文简要介绍了发光材料的发光机理,并根据机理分类介绍了几种典型的发光材料。补充介绍了新型发光材料并对发光材料的现状进行了介绍对其应用和发展前景做了展望。 关键词:发光材料分类新型展望 1 引言 发光材料已成为人们日常生活中不可缺少的材料,被广泛地用在各种显示、照明和医疗等领域,如电视屏幕、电脑显示器、X射线透射仪等。目前发光材料主要是无机发光材料,从形态上分,有粉末状多晶、薄膜和单晶等。最近,有机材料在电致发光上获得了重要应用。[1] 2 发光材料 发光是一种物体把吸收的能量,不经过热的阶段,直接转换为特征辐射的现象。发光现象广泛存在于各种材料中,在半导体、绝缘体、有机物和生物中都有不同形式的发光。 发光材料分为有机和无机两大类。通常把能在可见光和紫外光谱区发光的无机晶体称为晶态磷光体,而将粉末状的发光材料称为荧光粉。[2] 常用的发光材料按激发方式分为: (1) 光致发光材料,由紫外光、可见光以及红外光激发而发光,按照发光性能、应用范 围的不同,又分为长余辉发光材料、灯用发光材料和多光子发光材料。 (2) 阴极射线发光材料,由电子束流激发而发光的材料,又称电子束激发发光材料。 (3) 电致发光材料,由电场激发而发光的材料,又称为场致发光材料。 (4) X射线发光材料,由X射线辐射而发光的材料。 (5) 化学发光材料,两种或两种以上的化学物质之间的化学反应而引起发光的材料。 (6) 放射性发光材料,用天然或人造放射性物质辐照而发光的材料。 2.1光致发光材料 2.1.1光致发光材料的定义 发光就是物质内部以某种方式吸收能量以后,以热辐射以外的光辐射形式发射出多余的能量的过程。用光激发材料而产生的发光现象,称为光致发光。光致发光材料一个主要的应用领域是照明光源,包括低压汞灯、高压汞灯、彩色荧光灯、三基色灯和紫外灯等。其另一个重要的应用领域是等离子体显示。

发光材料技术应用及发展前景精编版

发光材料技术应用及发 展前景 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

发光材料技术应用及发展前景 CRT显像管:我们家庭所用的电视以及绝大多数的电脑终端显示器所用的显像管就是CRT技术,阴极射线管(CRT)的特点是色彩鲜艳丰富,制备工艺成熟,成本低廉,但是由于CRT技术设备的电视机及其他显示器的体积庞大,而且也很沉重,尤其是大尺寸的显示器,如29in电视机的厚度超过70cm,质量超过50kg。已经不能满足人们的要求,基于CRT的缺点,人们又采用了一些新技术来使CRT平板化,其中比较成熟的技术是低压荧光管(VFD)技术,以VFD技术为基础的显示器的体积明显降低,厚为1cm,质量也大为减轻,另一种相对成熟的技术而且具有巨大发展潜力的的技术是场发射(FED)技术。以场发射技术为基 础制备的显示器厚度只有几毫米。 VFD低压荧光管:在29世纪60年代,电子计算机市场获得急速的扩大,为适应计算器的数码显示需求,产生了真空荧光平板显示器VFD,随着各种技术的发展,是VFD进入高密度显示领域,目前具有数字显示,图像显示画面显示功能的VFD已经广泛运用在各种仪器显示包括汽车家电通信设备以及大显示屏幕显

示器等领域。但是由于VFD技术受到彩色化功耗大分辨率低腔体中真空的保持等问题的限制,近几年的市场份额有下降得趋势 FED场发射显示技术 FED技术是继VFD后,针对CRT平板化的又一次新的努力 SID2007概况 每年5月,由显示协会(SID)组织的世界规模的讨论会与展览会在美国西海岸的一个城市举行,今年的第45届SID年会在美国加州长滩(Long Beach)会议中心举行。会议共收到论文摘要702篇,其中有489篇入选本届讨论会。489篇论文中有279篇在67场专题报告会中口述,其余210篇于5月23号下午集中在一个大厅中,以张贴形式发表,作者与读者进行面对面讨论。令人鼓舞的是全部论文中有24%的作者是学生。提交论文的国家和地区数为21,论文数分布如下:韩国23%,美国22%,日本19%,台湾地区16%,德国4%,我国大陆地区在会上发表的论文数为4篇。 这次论文报告会共举行了67场,按专题区分分布如下:LCD 22场;OLED 12场;显示器件制造工艺 5场;PDP 4场;显示电子学 4场;背光源 4场;投影显示 3场; 2场,三维显示 2场;标准与计量 2场,医用显示 2场;电子纸 2场;其它专题各1场(共13场)。

上转换发光材料

上转换发光材料 上转换发光的概念: 上转换发光是在长波长光激发下,可持续发射波长比激发波长短的光。本质上是一种反-斯托克斯(Anti-Stokes)发光,即辐射的能量大于所吸收的能量。斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。 上转换发光技术的发展: 早在1959年就出现了上转换发光的报道,Bloembergc在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年Auzcl在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。整个60-70年代,以Auzal 为代表,系统地对掺杂稀土离子的上转换特性及其机制进行了深入的研究,提出掺杂稀土离子形成亚稳激发态是产生上转换功能的前提。迄今为止,上转换材料主要是掺杂稀土元素的固体化合物,利用稀土元素的亚稳态能级特性,可以吸收多个低能量的长波辐射,从而可使人眼看不见的红外光变成可见光。 80年代后期,利用稀土离子的上转换效应,覆盖红绿蓝所有可见光波长范围都获得了连续室温运转和较高效率、较高输出功率的上转换激光输出。1994年Stanford大学和IBM公司合作研究了上转换应用的新生长点——双频上转换立体三维显示,并被评为1996年物理学最新成就之一。2000年Chen 等对比研究了Er/Yb:FOG氟氧玻璃和Er/Yb:FOV钒盐陶瓷的上转换特性,发现后者的上转换强度是前者的l0倍,前者发光存在特征饱和现象,提出了上转换发光机制为扩散.转移的新观点。近几年,人们对上转换材料的组成与其上转换特性的对应关系作了系统的研究,得到了一些优质的上转换材料。 上转换发光的机理:

发光材料与LED综述

功能材料课报告 发光材料与LED 摘要:发光材料是一种功能材料,广泛应用于我们日常生活中,例如电视机、日光灯、发光二极管等。本文就应用于LED的两种发光方式,光致发光和电致发光,作了简单的介绍和说明,并着重介绍了LED的原理、发展历史、优点以及应用。在未来的几十年里,发光材料将继续快速向前发展,给我们的生活带来更大的变化。 关键词:发光材料;光致发光;电致发光;LED

功能材料是指通过光、电、磁、热、化学、生化等作用后具有特定功能的材料。随着时代的发展,人类将进入一个信息时代。为了解决生产告诉发展以及由此所产生的能源、环境等等一系列问题,更需要用高科技的方法和手段来生产新型的、功能性的产品,以获得各种优良的综合性能。近年来新型功能材料层出不穷,得到了突破性的进展,功能材料正在渗透到现代生活和生产的各个领域。 本文所论述的发光材料即为在不同的能量激发方式下可以发出不同波长的可见光的一种功能材料。 一.概述 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光;另一类是物体受激发吸收能量而跃迁至激发态,在返回到基态的过程中以光的形式放出能量。热辐射发光最常见的例子是太阳和白炽灯,而后一种发光方式应用也很广泛,比如阴极射线管、日光灯、发光二极管等,如图1。 图1 两种发光方式的典型例子:白炽灯和日光灯 按照激发能量方式的不同,发光材料的分类如下: 1.紫外光、可见光以及红外光激发而发光的为光致发光材料; 2.电子束流激发而发光的为阴极射线发光材料; 3.电场激发而发光的为电致发光材料; 4.X射线辐射而发光的为X射线发光材料; 5.用天然或人造放射性物质辐射而发光的为放射性发光材料。

y发光材料的应用

第二章稀土发光材料的制备及应用 近几十年来,稀土发光材料在国内外得到惊人的发展,形成了相当大的生产规模和客观的市场,其产值和经济效益都很高[1-3]。到 90 年代,依然以一定的速度增长。国内外在稀土新材料方面几乎每隔 3~5 年就有一次突破,而稀土发光材料则是这宝库中五光十色的瑰宝。据美国商业信息公司最近统计,在美国稀土各应用高技术领域中,光存储器的年增长率达 50%,灯用稀土荧光粉 20%,名列第二位,电视荧光粉为 3.4%,仅电视用荧光粉1998 年在美国的消费量居稀土消费量第五位,为 104.3 吨,价值 2700 万美元,到 1995 年达 131.5 吨。我国彩电荧光粉及紧凑型荧光灯用稀土荧光粉在 80年代增长速率更快,工业生产规模相当可观,且有部分出口。这表明,稀土发光材料的发展及在稀土各应用领域中占有举足轻重地位。随着新型平板显示器、固态照明光源的发展,对新型高效发光粉体的需求日益增多。由于纳米材料具有其他大颗粒材料所不具有的结构及各种性质如电性质、光性质等,研究纳米稀土发光材料已成为目前引人注目的课题。以钒酸盐、磷酸盐为基质的纳米稀土发光材料都是很具有研究意义及应用价值的稀土荧光粉,比如纳米级 YVO4:Eu,作为一种很好的红光粉体,已经广泛应用于荧光灯以及彩色显像管(CRT)中[4-6]。另外,近来的研究表明纳米级 Y(V,P)O4:Eu,YPO4:Tb在真空紫外区(VUV)有较好的吸收,是很有前途的等离子体平板显示器(PDPs)用的发光材料[7-11]。在纳米尺度的YBO3:Eu3+中,由于表面Eu3+对称性低,使得5D0-7F2 的跃迁几率增加,这改善了YBO3:Eu3+体材料中色纯度低的问题[12 ]。总之,随着科技的发展和人们生活的需要,稀土发光材料的研究面临着新的挑战:这主要包括激发波长的变化,如PDP用荧光粉需真空紫外激发,固态照明用荧光粉需近紫外激发;材料尺寸形态的变化等。这就要求人们改善材料的发光性质或开发新的发光体系。§2-1影响发光的主要因素 目前,稀土掺杂发光体系主要包括:稀土氧化物、硼酸盐、钒酸盐、磷酸盐、铝酸盐等体系,不同的体系有着不同的应用背景。比如说,Eu3+、Tb3+掺杂的硼酸盐、磷酸盐体系可用作PDP荧光材料[13,14];Eu2+、Dy3+共掺的铝酸盐体系可用作长余辉材料[15]。 影响稀土掺杂发光材料发光性质的因素有很多,主要包括基质晶格、发光中 心在基质晶格中所处的格位及周围环境、材料的尺寸和形状等[16,17]。因此,基质材料、激活剂的选择,合成方法、合成条件的选择,材料的后处理工艺等是获得新型高效发光材料的关键[18-20]。§2-1-1基质晶格对发光性质的影响 一般说来,对于给定的某发光中心,在不同基质中它的发光行为是不同的,因为发光中心的直接环境发生了改变。如果理解了基质晶格是如何决定发光中心的发光性质的,那么就可以非常容易地预测所有发光材料。 共价键效应:共价键越强,电子间的相互作用越弱,因为这些电子被分散到更宽阔的轨道上。因此,电子跃迁的能级差由共价键的性质决定。共价键越强,多重项之间的能量间距越小,电子跃迁所需能量越低。这就是电子云膨胀(nephelauxetic希腊语,云膨胀的意思)效应。化学键的共价性越强,则成键原子(离子)双方的电负性差异就越小,这使得两原子之间的电荷迁移态跃迁向低能量区域移动[21,22]。举个例子,氟化物YF3中Eu3+的吸收带要比Y2O3中的处在能量更高的位置,这是因为Y2O3的共价性要比YF3的强。 晶体场效应:基质晶格影响离子的发光性质的另一个因素是晶体场,晶体场就是给定离子的

稀土上转换发光材料应用文章

稀土上转换发光及其光电产品推荐 目录 一、什么是上转换发光? 二、镧系掺杂稀土上转换发光的发光原理 三、稀土上转换发光材料的应用 四、相关光电产品推荐 五、几个容易混淆的“上转换”概念 一、什么是上转换发光? 斯托克斯(Stokes)定律认为材料只能受到高能量的光激发,发射出低能量的光,即经波长短、频率高的光激发,材料发射出波长长、频率低的光。而上转化发光则与之相反,上转换发光是指连 续吸收两个或者多个光子,导致发射波长短于激发波长的发光类型,我们亦称之为反斯托克斯 (Anti-Stokes)。 Figure 1.常规发光和上转换发光能级跃迁图Figure 2.样品被绿光激光激发之后产生荧光 (左边样品为Stokes emission,右边样品为Anti-stokes emission) 上转换发光在有机和无机材料中均有所体现,但其原理不同。 有机分子实现光子上转换的机理是能够通过三重态-三重态湮灭(Triplet-triplet annihilation,TTA),典型的有机分子是多环芳烃(PAHs)。 无机材料中,上转换发光主要发生在镧系掺杂稀土离子的化合物中,主要有NaYF4、NaGdF4、LiYF4、YF3、CaF2等氟化物或Gd2O3等氧化物的纳米晶体。NaYF4是上转换发光材料中的典型基质材 料,比如NaYF4:Er,Yb,即镱铒双掺时,Er做激活剂,Yb作为敏化剂。本应用文章我们着重讲讲稀 土掺杂上转换发光材料(Upconversion nanoparticles,UCNPs)。 二、镧系掺杂稀土上转换发光的发光原理 无机材料有三个基本发光原理:激发态吸收(Excited-state absorption, ESA),能量传递上转换(Energy transfer upconversion, ETU)和光子雪崩(Photon avalanche, PA)。

发光材料与应用

发光材料与应用 当某种物质受到激发(射线、高能粒子、电子束、外电场等)后,物质将处于激发态,激发态的能量会通过光或热的形式释放出来。如果这部分的能量是位于可见,紫外或是近红外的电磁辐射,此过程称之为发光过程。 或者说,发光就是物质在热辐射之外以光的形式发射出多余的能量,这种发射过程具有一定的持续时间。 能够实现上述过程的物质叫做发光材料。在实际应用中,将受外界激发而发光的固体称为发光材料。它们可以晶体,非晶,纳米晶,薄膜等形态使用,主要组分是稀土金属的化合物和半导体材料,与有色金属关系很密切。 在高激发密度下,许多物质能产生发光,但并不是这些能发光的物质都成为发光材料。通常人们所说的发光材料基本上指该种材料主要用于发光方面的应用,或者是在某种场合下主要作为发光材料应用。 发光材料—把某种形式的激发能量转化为发光能,因此对于一个有效的发光材料应具备如下的要求: 1.能够有效地吸收激发能量; 2.能够把吸收的激发能量有效的传递给发光中心; 3.发光中心具有高的辐射跃迁效率。 发光材料的构成主要有以下三种形式: 1.由多晶或单晶形态的基质材料和激活剂(发光中心)组成,也可能加入起到能量传递作用的敏化剂; 2.只有基质材料,利用某种本征缺陷作为发光中心; 3.只有基质材料,利用本征激子态或带边电子态产生发光。 基质:某种绝缘体或半导体材料,形成基本的能带结构。对于激发能量的吸收起到主要作用。 激活剂:掺杂进入机制的某种离子或基团,通常是高效的发光中心,例如稀土离子,过渡族金属离子等。激活剂可以在基质形成的能带结构的禁带中形成鼓励的能级系统,通过这些能级产生发光所需的基态和激发态。 敏化剂:掺杂进入机制的某种离子,起到能量传递作用。某能量从吸收处传递到发光中心。 发光材料的种类很多。 按材料的性质来说,可以分为有机发光材料和无机发光材料。常见的有机发光材料又可以根据结构的不同分为有机小分子发光材料、有机高分子发光材料和有机配合物发光材料三种。 按发光性能来说,可以分为光致发光材料、电致发光材料、射线致发光材料、等离子体发光材料和化学发光材料。其中电致发光材料又分为无极电致发光材料和有机/高分子电致发光材料。 无机荧光材料的代表为稀土离子发光及稀土荧光材料,其优点是吸收能力强,转换率高,稀土配合物中心离子的窄带发射有利于全色显示,且物理化学性质稳定。由于稀土离子具有丰富的能级和4f电子跃迁特性,是稀土成为发光宝库,为高科技领域特别是信息通讯领域提供了性能优越的发光材料。 与无机发光材料相比,有机发光材料具有许多不可比拟的优越性,主要表现在下述三个方面:1.有机材料可以获得在可见光谱范围内的金色发光,特别是无机材料难以获得的蓝光。2.可以直接用十几伏甚至几伏的直流低压驱动,可以与

发光材料-分类

现代发光材料原理和应用 摘要长余辉蓄能发光材料是光致发光(Photoluminescence)材料的一种,可以通过环境光,如日光、灯光等任何一种光能激发。光照撤除后,受环境温度的扰动,束缚于陷阱的电子跳出陷阱落到基态,释放的能量激发发光中心形成发光。公司的注册专利技术Luminova和Superluminova材料在制表业应用广泛。主题索引发光材料环境温度专利技术温度CE荧光灯 夜光材料的发光原理 物质发光现象一般分为两类:一类是物质受热,产生热辐射而发光,另一类是物质受激发吸收能量而跃迁至激发态(非稳定态)再返回到基态的过程中,以光的形式释放能量。手表上使用荧光涂层正是利用了第二类的原理,即荧光材料受激后发光。当然,除此之外诸如日常使用的荧光灯、电视机和计算机上的荧光屏等都是第二类发光原理。 发光材料种类 传统荧光涂层材料可分为自发光型和蓄光型两种。自发光型荧光剂多是靠自身携带的微量放射性物质释放射线激发荧光剂发光。而储光型荧光剂则基本不含有放射性物质,但需要事先吸收并储备足够强度的外界光照,将自身电子由低能级跃迁到高能级并储存起来。当周边环境黑暗时,自身再逐步缓慢释放吸收来的能量,此时电子由高能级向低能级跃迁,荧光剂开始发光。由于蓄光型自身不携带射线激发材料,所以余辉持久度暂时不如自发光型。 早期几种常见的荧光涂层材料 早期比较常见的荧光涂层是利用放射性的镭盐做激发剂,由于自身具有放射性,在使用上收到逐步限制,现在已经开始逐渐淘汰。目前激发材料一般为含有氚(3H或T)、钷(Pm)以及放射性硫酸镭(Ra)的荧光剂,而荧光剂多为硫化锌、硫化钙或硫化锶以及其他锌化亚硫酸盐。氚(3H或T)和钷(Pm)虽然依旧具有放射性,但对人体的潜在损害要小许多。 氚(3H或T)是氢的同位素,原子核由一个质子和两个中子组成,带有放射性,会发生β衰变,半衰期为12.43年。尽管氚(3H或T)也是制造热核武器的材料,但其β衰变中只会释放出高速移动的电子,不会穿透人体,只有大量接触并吸入氚(3H或T)才会对人体造成伤害。使用氚(3H或T)的荧光剂正是利用β衰变中释放出的高速电子来激发发光物质。另外,与氚(3H或T)相近的荧光放射性激发剂还有钷(Pm),半衰期为17.7年。 现代无放射荧光材料 自90年代后,随着科技的发展进步,出现了不含有放射性物质的新型长余辉储光型稀土基碱土铝酸盐荧光材料。它从本质上不同于传统的硫化物型和放射线激发型夜光材料,完全不含任何有害元素,化学性质更稳定、亮度高、余辉时间长。长余辉蓄能发光材料是光致发光(Photoluminescence)材料的一种,可以通过环境光,如日光、灯光等任何一种光能激

上转换发光材料综述

Upconversion DOI:10.1002/anie.201005159 Upconverting Nanoparticles Markus Haase and Helmut Sch?fer* Angewandte Chemie Keywords: doping ·nanoparticles ·nonlinear optics ·photon upconversion ·surface chemistry 5808 https://www.360docs.net/doc/e514867089.html, 2011Wiley-VCH Verlag GmbH &Co.KGaA,Weinheim Angew.Chem.Int.Ed.2011,50,5808–5829

1.Introduction In linear optics it is assumed that optical properties are independent of the intensity of the incident light.The expression “nonlinear optics”is usually used to describe all other phenomena for which the optical properties of the material depend on the radiant flux density of the exciting light.Nonlinear optics,an integral part of contemporary optics,is based on a number of nonlinear phenomena and processes.Photon upconversion (UC)is one such phenom-enon and is characterized by the conversion of long-wave-length radiation,for instance infrared or near infrared (NIR)radiation,to short-wavelength radiation,usually in the visible range.The upconversion process proceeds by different mechanisms,which are summarized and discussed in detail in several review articles [1–3]and can be roughly divided into three classes:APTE effect (for addition de photon par transferts d ’energie),later also named ETU for energy-transfer upconversion,[4,5]excited-state absorption (ESA),and photon avalanche (PA).It is worth mentioning that the expression “upconversion”is sometimes used to describe the consequence of these mechanisms,that is,the conversion from long-wavelength to short-wavelength radiation,and sometimes for a specific mechanism itself. All three mechanisms are based on the sequential absorption of two or more photons by metastable,long-lived energy states.This sequential absorption leads to the population of a highly excited state from which upconversion emission occurs.In the case of ESA,the emitting ions sequentially absorb at least two photons of suitable energy to reach the emitting level (Figure 1).In ETU,one photon is absorbed by the ion,but subsequent energy transfer from neighboring ions results in the population of a highly excited state of the emitting ion (Figure 1).Energy-transfer steps between two ions,both in excited states,leading to emission lines at short wavelength were first mentioned by Auzel in 1966.[6,7] ETU and ESA should not be confused with two other nonlinear optical processes,simultaneous two-photon absorp-tion (STPA)[1,8–10]and second-harmonic generation (SHG),which is efficient if coherent excitation sources with suffi-ciently high power are used.[11–14]Several early reviews focused on the synthesis and application of upconversion phosphors.[4,5,15,16] Important requirements for photon upconversion,such as long lifetimes of the excited states and a ladder-like arrange-ment of the energy levels with similar spacings,are realized for certain ions of the d and f elements.A large number of suitable hosts doped with transition-metal ions (3d,4d,5d)have been reported to show upconversion,for example Ti 2+-,[17,18]Ni 2+-,[19–22]Mo 3+-,[23,24]Re 4+-,[23,25,26]or Os 4+-doped solids.[27–30]Actinide-doped materials have also been inves-U pconversion (UC)refers to nonlinear optical processes in which the sequential absorption of two or more photons leads to the emission of light at shorter wavelength than the excitation wavelength (anti-Stokes type emission).In contrast to other emission processes based on multiphoton absorption,upconversion can be efficiently excited even at low excitation densities.The most efficient UC mechanisms are present in solid-state materials doped with rare-earth ions.The development of nanocrystal research has evoked increasing interest in the development of synthesis routes which allow the synthesis of highly efficient,small UC particles with narrow size distribution able to form transparent solutions in a wide range of solvents.Meanwhile,high-quality UC nanocrystals can be routinely synthesized and their solu-bility,particle size,crystallographic phase,optical properties and shape can be controlled.In recent years,these particles have been discussed as promising alternatives to organic fluorophosphors and quantum dots in the field of medical imaging. From the Contents 1.Introduction 5809 2.Selection of Suitable Dopants and Host Materials 5810 3.Synthesis,Growth,and Properties of Rare-Earth-Doped Nanocrystals 58124.Surface Functionalization by Modification of the Ligand Shell and the Particle Surface 58205.Application of Upconversion Nanocrystals 58206.Conclusions and Outlook 5822 Figure 1.UC processes for lanthanide-doped crystals:a)excited-state absorption,b)energy-transfer upconversion.d :photon excitation,a :energy transfer,c :emission.Reproduced from reference [47]by permission of The Royal Society of Chemistry. [*]Prof.Dr.M.Haase,Dr.H.Sch?fer Inorganic Chemistry I,University of Osnabrück Barbarastrasse 7,49069Osnabrück (Deutschland)E-mail:helmut.schaefer@uos.de 5809 Angew.Chem.Int.Ed.2011,50,5808–5829 2011Wiley-VCH Verlag GmbH &Co.KGaA, Weinheim

发光材料综述

结构与物性结课作业 发 光 材 料 综 述 学院:物理与电子工程学院 专业:材料物理13-01 学号:541311020102 姓名:陈强

发光材料综述 摘要: 能够以某种方式吸收能量,将其转化成光辐射(非平衡辐射)物质叫做发光材料。发光是辐射能量以可见光的形式出现。辐射或任何其他形式的能量激发电子从价带进入导带,当其返回到价带时便发射出光子(能量为 1.8~3.1eV)。如果这些光子的波长在可见光范围内,那么,便产生了发光现象。 0引言 发光材料是国家重要战略能源,在人们的日常生活中也占据着重要地位,被广泛应用于各个领域,因此对发光材料的研制和运用受到越来越多的关注。 本文基于发光材料研究现状,分析发光材料种类和制备方式,并介绍几种不同发光材料在生活中的应用,以期推动我国发光材料研究探索,为国家建设和人们生活水平提高提供助力。发光材料是人类生活重要材料之一,在航天科技、海洋运输、医学医疗、出版印刷等各个领域被广泛应用,具有极为重要的战略地位。 随着科学技术的发展,发光材料研究已经成为了我国科学界广泛关注的焦点,其运用技术直接关系到人们日常生活质量和国防建设,因此如何推动发光材料研制,将其更加安全、合理、高效的应用于生产生活中,成为了亟待解决的问题。 1发光材料分类 发光材料按激发的方式可分为以下几类: 1.1光致发光材料 用紫外、可见及红外光激发发光材料而产生的发光称为光致发光,该发光材料称为光致发光材料。 光致发光过程分为三步:①吸收一个光子;②把激光能转移到荧光中心;③

由荧光中心发射辐射。 发光的滞后时间约为10-8s的称为荧光,衰减时间大于10-8s的称为磷光。 光致发光材料一般可分为荧光灯用发光材料、长余辉发光材料和上转换发光材料。 按发光驰豫时间分类,光致发光材料分为荧光材料和磷光材料。 图1 1.2电致发光材料 所谓电致发光是在直流或交流电场作用下,依靠电流和电场的激发使材料发光的现象,又称场致发光。这种发光材料称为电致发光材料,或称场致发光材料。 1. 本征式场致发光 简单地说,本征式场致发光就是用电场直接激励电子,电场反向后电子与中心复合而发光的现象。 2. 注入式发光 注人式场致发光是由Ⅱ- Ⅳ族和Ⅲ - Ⅴ族化合物所制成的有 p - n 结的二极管,注人载流子,然后在正向电压下,电子和空穴分别由 n 区和 p 区注人到结区并相互复合而发光的现象。又称p-n结电致发光 目前大概可以有以下几种材料: 1.2.1直流电压激发下的粉末态发光材料 目前常用的直流电致发光材料有Zn S:Mn,Cu,其发光亮度大约为350 cd/m。

相关文档
最新文档