大学物理讲稿(第12章波动学基础)第一节

大学物理讲稿(第12章波动学基础)第一节
大学物理讲稿(第12章波动学基础)第一节

第12章波动学基础

振动的传播就是波.机械振动在弹性介质中的传播形成机械波,水波和声波都属于机械波.但是,并不是所有的波都依靠介质传播,光波、无线电波可以在真空中传播,它们属于另一类波,称为电磁波.微观粒子也具有波动性,这种波称为物质波或德布罗意波.各类波虽然其本源不同,但都具有波动的共同特性,并遵从相似的规律.我们就从机械波开始讨论.

§12.1 机械波的产生和传播

一、机械波产生的条件

当用手拿着绳子的一端并作上下振动时,绳子将形成一个接着一个的凸起和凹陷,并由近及远地沿着绳子传播开去,这一个接着一个的凸起和凹陷沿绳子的传播,就是一种波动.显然,绳子上的这种波动,是由于绳子上手拿着的那一点上下振动所引起的,对于波动而言,这一点就称为波源.绳子就是传播这种振动的弹性介质.

我们可以把绳子看作一维的弹性介质,组成这种介质的各质点之间都以弹性力相联系,一旦某质点离开其平衡位置,则这个质点与邻近质点之间必然产生弹性力的作用,此弹性力既迫使这个质点返回平衡位置,同时也迫使邻近质点偏离其平衡位置而参与振动.另外,组成弹性介质的质点都具有一定的惯性,当质点在弹性力的作用下返回平衡位置时,质点不可能突然停止在平衡位置上,而要越过平衡位置继续运动.所以说,弹性介质的弹性和惯性决定了机械波的产生和传播过程.

在波的传播过程中,虽然波形沿介质由近及远地传播着,而参与波动的质点并没有随之远离,只是在自己的平衡位置附近振动.所以,波动是介质整体所表现的运动状态,对于介质的任何单个质点,只有振动可言.

应该特别指出的是,弹性介质是产生和传播机械波的必要条件,而对于其他类型的波并不一定需要这个条件.光波和无线电波都属于电磁波,是变化的电场和变化的磁场互相激发而产生的波,可以在真空中产生和传播.实物波或德布罗意波反映了微观粒子的一种属性,即波动性,代表了粒子在空间存在的概率分布,并非某种振动的传播,更无需弹性介质的存在.

二、横波和纵波

在波动中,如果参与波动的质点的振动方向与波的传播方向相垂直,这种波称为横波;如果参与波动的质点的振动方向与波的传播方向相平行,这种波称为纵波.

上面所说的凸起(称为波峰)和凹陷(称为波谷)沿绳子的传播,就是横波.纵波的产生和传播可以通过下面的实验来观察.将一根长弹簧水平悬挂起来,在其

一端用手压缩或拉伸一下,使其端部沿弹簧的长度方向振动.由于弹簧各部分之间弹性力的作用,端部的振动带动了其相邻部分的振动,而相邻部分又带动它附近部分的振动,因而弹簧各部分将相继振动起来.弹簧上的纵波波形不再像绳子上的横波波形那样表现为绳子的凸起和凹陷,而表现为弹簧圈的稠密和稀疏,如图12.1所示.图中弹簧圈的振动方向与波的传播方向相平行.对于纵波,除了质点的振动方向平行于波的传播方向这一点与横波不同外,其他性质与横波无根本性的差异,所以对横波的讨论也适用于纵波,对纵波的讨论也适用于横波.

说明:1)有的波既不是纯粹的纵波,也不是纯粹的横波,如液体的表面波.当波通过液体表面时,该处液体质点的运动是相当复杂的,既有与波的传播方向相垂直的方向上的运动,也有与波的传播方向相平行的方向上的运动.这种运动的复杂性,是由于液面上液体质点受到重力和表面张力共同作用的结果.

2)介质的弹性和惯性决定了机械波的产生和传播过程.弹性介质,无论是气体、液体还是固体,其质点都具有惯性.至于弹性,对于流体和固体却有不同的情形.固体的弹性,既表现在当固体发生长变(或体变)时能够产生相应的压应力和张应力,也表现在当固体发生剪切时能够产生相应的剪应力.所以,在固体中,无论质点之间相对疏远或靠近,还是相邻两层介质之间发生相对错动,都能产生相应的弹性力使质点返回其平衡位置.这样,固体既能够形成和传播纵波,也能够形成和传播横波.流体的弹性只表现在当流体发生体变时能够产生相应的压应力和张应力,而当流体发生剪切时却不能产生相应的剪应力.这样,流体只能形成和传播纵波,而不能形成和传播横波.

三、波射线和波振面

波射线和波振面都是为了形象地描述波在空间的传播而引入的概念.从波源沿各传播方向所画的带箭头的线,称为波射线,用以表示波的传播路径和传播方向.波在传播过程中,所有振动相位相同的点连成的面,称为波振面.显然,波在传播过程中波振面有无穷多个.在各向同性的均匀介质中,波射线与波振面相垂直.

波振面有不同的形状.一个点波源在各向同性的均匀介质中激发的波,其波振面是一系列同心球面.波振面为球面的波,称为球面波;波振面为平面的波,称为平面波.当球面波传播到足够远处,若观察的范围不大,波振面近似为平面,可以认为是平面波.图12.2(a)和(b)分别表示了球面波的波振面和平面波的波振面,图中带箭头的直线表示波射线.在二维空间,波振面退化为线:球面波的波振面退化为一系列同心圆,平面波的波振面退化为一系列直线.

四、描述波动的几个物理量

波速 u 、波长λ、波的周期T 和频率 v 是描述波的四个重要物理量.这四个物理量之间存在一定的联系.

波速u 是单位时间内振动传播的距离.波速也就是波面向前推进的速率. 波长λ:波在传播过程中,沿同一波射线上相位差为2π的两个相邻质点的运动状态必定相同,它们之间的距离为一个波长.(横波、纵波的情况下)

周期T :一个完整的波(即一个波长的波)通过波射线上某点所需要的时间 频率 v :频率表示在单位时间内通过波线上某点的完整波的数目.

根据波速、波长、波的周期和频率的上述定义,我们不难想象,每经过一个周期,介质质点完成一次全振动,同时振动状态沿波射线向前传播了一个波长的距离;在1s 内,质点振动了v 次,振动状态沿波射线向前传播了v 个波长的距离,即波速,所以

T

u λ=νλ= (12.1) 在固体中横波的波速为

ρ

=G u (12.2) 式中G 是固体材料的剪切模量,ρ是固体材料的密度.纵波在固体中的传播速率为 ρ

=Y u (12.3) 式中Y 是固体材料的杨氏模量.在流体中只能形成和传播纵波,其传播速率可以表示为

ρ

=B u (12.4) 式中B 是流体的体变模量,定义为流体发生单位体变需要增加的压强,即 V

V P B /??-= 式中负号是由于当压强增大时体积缩小,即△V 为负值.

式(12.2)、式(12.3)和式(12.4)表明,波在弹性介质中的传播速率决定于弹性介质的弹性和惯性,弹性模量是介质弹性的反映,密度则是介质质点惯性的反映.

说明:因为在一定的介质中波速是恒定的,所以波长完全由波源的频率决定:频率越高,波长越短;频率越低,波长越长.而对于频率或周期恒定的波源,因为波速与介质有关,则此波源在不同介质中激发的波的波长又由介质的波速决定.

作业(P127):12.10

大学物理下册波动光学习题解答杨体强

波动光学习题解答 1-1 在氏实验装置中,两孔间的距离等于通过光孔的光波长的100倍,接收屏与 双孔屏相距50cm 。求第1 级和第3级亮纹在屏上的位置以及它们之间的距离。 解: 设两孔间距为d ,小孔至屏幕的距离为D ,光波波长为λ,则有=100d λ. (1)第1级和第3级亮条纹在屏上的位置分别为 -5150==510m 100D x d λ=?? -42503==1.510m 100 D x d λ=?? (2)两干涉条纹的间距为 -42=1.010m D x d λ?=?? 1-2 在氏双缝干涉实验中,用0 6328A =λ的氦氖激光束垂直照射两小孔,两小孔的间距为1.14mm ,小孔至屏幕的垂直距离为1.5m 。求在下列两种情况下屏幕上干涉条纹的间距。 (1)整个装置放在空气中; (2)整个装置放在n=1.33的水中。 解: 设两孔间距为d ,小孔至屏幕的距离为D ,装置所处介质的折射率为n ,则两小孔出射的光到屏幕的光程差为 21()x n r r nd D δ=-= 所以相邻干涉条纹的间距为 D x d n λ?=? (1)在空气中时,n =1。于是条纹间距为 943 1.5 632.8108.3210(m)1.1410 D x d λ---?==??=?? (2)在水中时,n =1.33。条纹间距为 9 43 1.563 2.810 6.2610(m)1.1410 1.33 D x d n λ---???=?==??? 1-3 如图所示,1S 、2S 是两个相干光源,它们到P 点的距离分别为1r 和2r 。路径1S P 垂直穿过一块厚度

为1t 、折射率为1n 的介质板,路径2S P 垂直穿过厚度为2t ,折射率为2n 的另一块介质板,其余部分可看做真空。这两条路径的光程差是多少? 解:光程差为 222111[r (n 1)t ][r (n 1)t ]+--+- 1-4 如图所示为一种利用干涉现象测定气体折射率的原理性结构,在1S 孔后面放 置一长度为l 的透明容器,当待测气体注入容器而将空气排出的过程中幕上的干涉条纹就会移动。由移过条纹的根数即可推知气体的折射率。 (1)设待测气体的折射率大于空气折射率,干涉条纹如何移动? (2)设 2.0l cm =,条纹移过20根,光波长为 589.3nm ,空气折射率为1.000276,求待测气体(氯气)的折射率。 1-5 用波长为500 nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上。在观察反射光的干涉现象中,距劈尖棱边1=1.56 cm 的A 处是从棱边算起的第四条暗条纹中心。 (1)求此空气劈尖的劈尖角θ; (2)改用600 nm 的单色光垂直照射到此劈尖上,仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹? (3)在第(2)问的情形从棱边到A 处的围共有几条明纹,几条暗纹?

大学物理物理知识点总结!!!!!!word版本

B r ? A r B r y r ? 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?△,2r x =?+△路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?、r ?、s ?的含义(?≠?≠?r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=??? ??+??? ??== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=? 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动

大学物理公式汇总

大学物理公式汇总 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

目录 1. 质点的运动及其规律 (4) 1.1 质点运动的描述 (4) 1.2 圆周运动 (4) 1.4 牛顿定律 (4) 1.4.1 牛顿三定律 (4) 1.4.2 几种常见的力 (5) 2. 动量守恒定律和能量守恒定律 (5) 2.1 质点和质点系的动量定理动量守恒定律 (5) 2.2 动能定理保守力与非保守力能量守恒定律 (5) 3. 刚体与流体 (6) 3.1 刚体的定轴转动 (6) 3.1.2 刚体绕定轴转动的角速度和角加速度 (6) 3.1.3 力矩转动定律转动惯量 (6) 3.2 刚体定轴转动的角动量角动量定理角动量守恒定律 (7) 4. 机械振动与机械波 (7) 4.1 简谐运动旋转矢量简谐运动的能量 (7) 4.1.1 简谐运动 (7) 4.1.2 旋转矢量 (8) 4.1.3 弹簧振子的能量 (8) 4.2两个同向同频率简谐运动的合成 (8) 4.4 机械波 (9) 4.4.1 机械波的形成波长周期和波速 (9) 4.4.2 平面简谐波的波函数 (9) 4.5 惠更斯原理波的衍射和干涉 (9) 4.5.2 波的干涉 (9) 5. 气体动理论和热力学 (10) 5.1 平衡态理想气体物态方程热力学第零定律 (10) 5.1.1 气体的物态参量 (10) 5.1.3 理想气体物态方程 (10) 5.2 气体分子热运动及其统计规律 (10) 5.2.2 气体分子速率分布律 (10) 5.3 理想气体的压强公式平均平动动能与温度的关系 (11) 5.4 能量均分定理理性气体的内能 (11) 5.5 准静态过程热力学第一定律 (11) 5.6 理想气体的等值过程和绝热过程 (11) 5.6.1等体过程 (11) 5.6.2等压过程 (12) 5.6.3等温过程 (12) 5.6.4绝热过程 (12) 5.7 循环过程热力学第二定律 (12) 5.7.2 热机和制冷机 (12) 5.7.3 卡诺循环 (13)

大学物理知识点总结汇总

大学物理知识点总结汇总 大学物理知识点总结汇总 大学物理知识点总结都有哪些内容呢?我们不妨一起来看看吧!以下是小编为大家搜集整理提供到的大学物理知识点总结,希望对您有所帮助。欢迎阅读参考学习! 一、物体的内能 1.分子的动能 物体内所有分子的动能的平均值叫做分子的平均动能. 温度升高,分子热运动的平均动能越大. 温度越低,分子热运动的平均动能越小. 温度是物体分子热运动的平均动能的标志. 2.分子势能 由分子间的相互作用和相对位置决定的能量叫分子势能. 分子力做正功,分子势能减少, 分子力做负功,分子势能增加。 在平衡位置时(r=r0),分子势能最小. 分子势能的大小跟物体的体积有关系. 3.物体的内能

(1)物体中所有分子做热运动的动能和分子势能的总和,叫做物体的内能. (2)分子平均动能与温度的关系 由于分子热运动的无规则性,所以各个分子热运动动能不同,但所有分子热运动动能的`平均值只与温度相关,温度是分子平均动能的标志,温度相同,则分子热运动的平均动能相同,对确定的物体来说,总的分子动能随温度单调增加。 (3)分子势能与体积的关系 分子势能与分子力相关:分子力做正功,分子势能减小;分子力做负功,分子势能增加。而分子力与分子间距有关,分子间距的变化则又影响着大量分子所组成的宏观物体的体积。这就在分子势能与物体体积间建立起某种联系。因此分子势能分子势能跟体积有关系, 由于分子热运动的平均动能跟温度有关系,分子势能跟体积有关系,所以物体的内能跟物的温度和体积都有关系:温度升高时,分子的平均动能增加,因而物体内能增加; 体积变化时,分子势能发生变化,因而物体的内能发生变化. 此外, 物体的内能还跟物体的质量和物态有关。 二.改变物体内能的两种方式 1.做功可以改变物体的内能.

大学物理波动学公式集

大学物理波动学公式集波动学 1.定义和概念 简谐波方程:x处t时刻相位 振幅 简谐振动方程:ξ=Acos(ωt+φ) 波形方程:ξ=Acos(2πx/λ+φ′) 相位Φ——决定振动状态的量 振幅A——振动量最大值决定于初态x0=Acosφ 初相φ——x=0处t=0时相位(x0,V0)V0= –Aωsinφ 频率ν——每秒振动的次数 圆频率ω=2πν决定于波源如:弹簧振子ω=m k/ 周期T——振动一次的时间单摆ω=l g/ 波速V——波的相位传播速度或能量传播速度。决定于介质如:绳V=μ / T光速V=C/n 空气V=ρ / B 波的干涉:同振动方向、同频率、相位差恒定的波的叠加。 光程:L=nx(即光走过的几何路程与介质的折射率的乘积。 相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2)。 拍:频率相近的两个振动的合成振动。 驻波:两列完全相同仅方向相反的波的合成波。 多普勒效应:因波源与观察者相对运动产生的频率改变的现象。 衍射:光偏离直线传播的现象。 自然光:一般光源发出的光 偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光。 部分偏振光:各振动方向概率不等的光。可看成相互垂直两振幅不同的光的合成。 方法、定律和定理 x 旋转矢量法:

如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为φ以ω逆时针旋转的矢量A ?在x方向的投影。 相干光合成振幅: A= φ?++cos 2212221A A A A 其中:Δφ=φ1-φ2–λπ2(r 2–r 1当φ1-φ2=0时,光程差δ=(r 2–r 1) 惠更斯原理:波面子波的包络面为新波前。(用来判断波的传播方向) I **布儒斯特定律: 当入射光以I p 入射角入射时则反射光为垂直入射面振动的完全偏振光。I p 称布儒斯特角,其满足: tg i p = n 2/n 1 公式 振动能量:E k =mV 2/2=E k (t) E= E k +E p =kA 2/2 E p =kx 2/2= (t) *波动能量:2221 A ρωω= I=V A V 222 1 ρωω=∝A 2 *驻波: 波节间距d=λ/2 基波波长λ0=2L 基频:ν0=V/λ0=V/2L; 谐频:ν=nν0 *多普勒效应: 机械波ννs R V V V V -+='(V R ——观察者速度;V s ——波源速度)

大学物理学知识总结

大学物理学知识总结 第一篇 力学基础 质点运动学 一、描述物体运动的三个必要条件 (1)参考系(坐标系):由于自然界物体的运动是绝对的,只能在相对的意义上讨论运动,因此,需要引入参考系,为定量描述物体的运动又必须在参考系上建立坐标系。 (2)物理模型:真实的物理世界是非常复杂的,在具体处理时必须分析各种因素对所涉及问题的影响,忽略次要因素,突出主要因素,提出理想化模型,质点和刚体是我们在物理学中遇到的最初的两个模型,以后我们还会遇到许多其他理想化模型。 质点适用的范围: 1.物体自身的线度l 远远小于物体运动的空间范围r 2.物体作平动 如果一个物体在运动时,上述两个条件一个也不满足,我们可以把这个物体看成是由许多个都能满足第一个条件的质点所组成,这就是所谓质点系的模型。 如果在所讨论的问题中,物体的形状及其在空间的方位取向是不能忽略的,而物体的细小形变是可以忽略不计的,则须引入刚体模型,刚体是各质元之间无相对位移的质点系。 (3)初始条件:指开始计时时刻物体的位置和速度,(或角位置、角速度)即运动物体的初始状态。在建立了物体的运动方程之后,若要想预知未来某个时刻物体的位置及其运动速度,还必须知道在某个已知时刻物体的运动状态,即初台条件。 二、描述质点运动和运动变化的物理量 (1)位置矢量:由坐标原点引向质点所在处的有向线段,通常用r 表示,简称位矢或矢径。 在直角坐标系中 zk yi xi r ++= 在自然坐标系中 )(s r r = 在平面极坐标系中 rr r = (2)位移:由超始位置指向终止位置的有向线段,就是位矢的增量,即 1 2r r r -=?

位移是矢量,只与始、末位置有关,与质点运动的轨迹及质点在其间往返的次数无关。 路程是质点在空间运动所经历的轨迹的长度,恒为正,用符号s ?表示。路程的大小与质点运动的轨迹开关有关,与质点在其往返的次数有关,故在一般情况下: s r ?≠? 但是在0→?t 时,有 ds dr = (3)速度v 与速率v : 平均速度 t r v ??= 平均速率 t s v ??= 平均速度的大小(平均速率) t s t r v ??≠ ??= 质点在t 时刻的瞬时速度 dt dr v = 质点在t 时刻的速度 dt ds v = 则 v dt ds dt dr v === 在直角坐标系中 k v j v i v k dt dz j dt dy i dt dx v z y x ++=++= 式中dt dz v dt dy v dt dx v z y x = == ,, ,分别称为速度在x 轴,y 轴,z 轴的分量。

大学物理上公式集(必备)

大学物理上公式集 概念(定义和相关公式) 1. 位置矢量:r ,其在直角坐标系中: k z j y i x r ++=;2 2 2 z y x r ++=角位置:θ 2. 速度:dt r d V =平均速度:t r V ??= 速率:dt ds V =(τ V V =)角速度:dt d θω= 角速度与速度的关系:V=rω 3. 加速度:dt V d a =或22dt r d a = 平均加速度:t V a ??= 角加速度:dt d ωβ= 在自然坐标系中n a a a n +=ττ其中dt dV a =τ (= rβ),r V n a 2=(=r 2 ω) 4. 力:F =ma (或F =dt p d ) 力矩:F r M ?=(大小:M=rFcos θ方向:右手螺旋法则) 5. 动量:V m p =,角动量:V m r L ?=(大小:L=rmvcos θ方向:右手螺旋法则) 6. 冲量:?=dt F I (=F Δt);功:? ?= r d F A (气 体对外做功:A=∫PdV )

7. 动能:mV 2/2 8. 势能:A 保= – ΔE p 不同相互作用力势能形式不同且零点选择不 同其形式不同,在 默认势能零点的情况下: 机械能:E=E K +E P 9. 热量:CRT M Q μ = 其中:摩尔热容量C 与过程有关,等容热容 量C v 与等压热容量C p 之间的关系为:C p = C v +R 10. 压强: ω n tS I S F P 3 2 =?== 11. 分子平均平动能:kT 2 3=ω;理想气体能:RT s r t M E )2(2 ++=μ 12. 麦克斯韦速率分布函数:NdV dN V f =)((意义:在V 附近单位速度间隔的分子数所占比率) mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2- (万有引力) →r Mm G - =E p r r Qq ?420 πε(静电力) →r Qq 0 4πε

大学物理_刘果红_波动学基础

波动学基础 前言:许多振动系统都不是孤立存在的,它们的周围常有其它物质。当某个系统振动时,它将带动周围同它有一定联系的物体随之一起振动,于是该物体的振动就被周围的物质传播开来,形成波动过程。即:波动是振动的传播过程。 波可分为两大类:机械波、电磁波。这两类波虽本质不同,但都有波动的共同特征:具有一定的传播速度,都伴随着能量的传播,且都能产生反射、折射、干涉等现象 一、机械波的产生与传播 1、产生机械波的条件 (1)、波源——是一个在一定条件下的振动系统,是波动能量的供给者。 (2)、弹性媒质——是一种用弹性力相互联系着的质点系,它是形成机械波、传播机械波所不可缺少的客观物质。 2、波动的形成过程 首先有一振动系统——波源,在它周围有彼此以弹性力相联系的弹性媒质。波动形成时有三个要点: A、波动的传播是由近及远的(相对于波源而言),即有先后次序。 B、传播的是振动状态或周相,质点本身不向前运动。 C、波动在传播时,具有空间周期性和时间周期性 3、机械波与机械振动的关系 波动是振动的传播过程,而振动是产生波动的根源,这是两者的联系。 振动研究的是振动质点离开平衡位置的位移是如何随时间作周期性变化的,即y =f (t);波动研究的是弹性媒质中不同位置彼此以弹性力相联系的质点群,它们的位移(相对自己的平衡位置)随时间作周期性变化的情况,即y =f (,t)。对平面谐波而言,讨论的是波线上各质点的运动情况,故有y =f (x,t),这是两者的区别。 4、机械波的类型与波速 波动按其振动方式的不同,可分为两大类: 横波——波的传播方向与质点振动方向垂直。其图象的外形特征是有突起的波峰和凹下的波谷。各质点的振动情况形成一个具有波峰和波谷的正弦或余弦波形。 纵波——波的传播方向与质点振动方向相同。其外形特征是具有稀疏和稠密的区域,即各质点的振动形成一个具有密集和稀疏相间的完整波。若将纵波中各质点的位移逆时针转过90度,讨论情况就与纵波一致了。

大学物理物理知识点总结

y 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

大学物理波动学公式集复习课程

大学物理波动学公式 集

大学物理波动学公式集 波动学 1. 定义和概念 简谐波方程: x 处t 时刻相位 振幅 ξ=Acos(ωt+φ-2π x/λ ) 简谐振动方程:ξ=Acos(ωt+φ) =Acos(2πx/λ+φ′) 相位Φ——决定振动状态的量 振幅A ——振动量最大值 决定于初态 x0=Acos φ 初相φ——x=0处t=0时相位 (x 0,V 0) V 0= –A ωsin φ 频率ν——每秒振动的次数 圆频率ω=2πν 决定于波源如: 弹簧振子ω= m k / 周期T ——振动一次的时间 单摆ω=l g / 波速V ——波的相位传播速度或能量传播速度。决定于介质如: 绳V= μ/T 光速V=C/n 空气V=ρ /B 波的干涉:同振动方向、同频率、相位差恒定的波的叠加。 光程:L=nx(即光走过的几何路程与介质的折射率的乘积。 相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2)。 拍:频率相近的两个振动的合成振动。

驻波:两列完全相同仅方向相反的波的合成波。 多普勒效应:因波源与观察者相对运动产生的频率改变的现象。 衍射:光偏离直线传播的现象。 自然光:一般光源发出的光 偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光。 部分偏振光:各振动方向概率不等的光。可看成相互垂直两振幅不同的光的合成。 2. 方法、定律和定理 ① 旋转矢量法: 如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为φ以ω逆时针旋转的矢量A 在x方向的投影。 相干光合成振幅: A= φ?++cos 2212221A A A A 其中:Δφ=φ1-φ2–λπ2(r 2–r 1当φ1-φ2=0时,光程差δ=(r 2–r 1 ② 惠更斯原理:波面子波的包络面为新波前。(用来判断波的传播方向) ③ 菲涅尔原理:波面子波相干叠加确定其后任一点的振动。 ④ *马吕斯定律:I 2=I 1cos 2θ ⑤ *布儒斯特定律:

大学物理波动学公式集

大学物理波动学公式集 波动学 1.定义和概念 简谐波方程: x 处t 时刻相位 振幅 ξ ) 简谐振动方程:ξ=Acos( ωt+φ) 波形方程:ξ=Acos(2πx/λ+φ′) 相位Φ——决定振动状态的量 振幅A ——振动量最大值 决定于初态 x0=Acos φ 初相φ——x=0处t=0时相位 (x 0,V 0) V 0= –A ωsin φ 频率ν——每秒振动的次数 圆频率ω=2πν 决定于波源如: 弹簧振子ω=m k / 周期T ——振动一次的时间 单摆ω=l g / 波速V ——波的相位传播速度或能量传播速度。决定于介质如: 绳V=μ/T 光速V=C/n 空气V=ρ/B 波的干涉:同振动方向、同频率、相位差恒定的波的叠加。 光程:L=nx(即光走过的几何路程与介质的折射率的乘积。 相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2)。 拍:频率相近的两个振动的合成振动。 驻波:两列完全相同仅方向相反的波的合成波。 多普勒效应:因波源与观察者相对运动产生的频率改变的现象。 衍射:光偏离直线传播的现象。 自然光:一般光源发出的光 偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光。 部分偏振光:各振动方向概率不等的光。可看成相互垂直两振幅不同的光的合成。 2.方法、定律和定理 ①旋转矢量法: 如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为φ以ω逆时针旋转的矢量A 在x方向的投影。 相干光合成振幅: A=φ?++cos 2212221A A A A

其中:Δφ=φ1-φ 2–λπ 2(r 2–r 1当φ1-φ2=0时,光程差δ=(r 2–r 1 ②惠更斯原理:波面子波的包络面为新波前。(用来判断波的传播方向) ③菲涅尔原理:波面子波相干叠加确定其后任一 点的振动。 ④*马吕斯定律:I 2=I 1cos 2 θ ⑤*布儒斯特定律: 当入射光以I p 入射角入射时则反射光为垂直入射面振动的 完全偏振光。I p 称布儒斯特角,其满足: tg i p = n 2/n 1 3. 公式 振动能量:E k =mV 2/2=E k (t) E= E k +E p =kA 2 /2 E p =kx 2 /2= (t) *波动能量:222 1A ρωω= I=V A V 2 221ρωω=∝A 2 *驻波: 波节间距d=λ/2 基波波长λ0=2L 基频:ν0=V/λ0=V/2L; 谐频:ν=nν0 *多普勒效应: 机械波ννs R V V V V -+='(V R ——观察者速度;V s ——波源速度) 对光波ν νr r V C V C +-= '其中V r 指光源与观察者相对速度。 杨氏双缝: dsin θ=kλ(明纹) θ≈sin θ≈y/D 条纹间距Δy=D/λd 单缝衍射(夫琅禾费衍射): asin θ=kλ(暗纹) θ≈sin θ≈y/f 瑞利判据: θmin =1/R =λ/D (最小分辨角) 光栅: dsin θ=kλ(明纹即主极大满足条件) tg θ=y/f d=1/n=L/N (光栅常数)

大学物理上下册常用公式

大学物理上下册常用公式 Prepared on 22 November 2020

大学物理第一学期公式集 概念(定义和相关公式) 1. 位置矢量:r ,其在直角坐标系中:k z j y i x r ++=;222z y x r ++=角位置: θ 2. 速度:dt r d V = 平均速度:t r V ??= 速率:dt ds V = (τ V V =)角速度: dt d θω= 角速度与速度的关系:V=rω 3. 加速度:dt V d a = 或2 2dt r d a = 平均加速度:t V a ??= 角加速度:dt d ωβ= 在自然坐标系中n a a a n +=ττ其中dt dV a =τ(=rβ),r V n a 2= (=r 2 ω) 4. 力:F =ma (或F = dt p d ) 力矩:F r M ?=(大小:M=rFcos θ方向:右手螺旋 法则) 5. 动量:V m p =,角动量:V m r L ?=(大小:L=rmvcos θ方向:右手螺旋法则) 6. 冲量:? = dt F I (=F Δt);功:? ?= r d F A (气体对外做功:A= ∫PdV ) 7. 动能:mV 2/2 8. 势能:A 保= – ΔE p 不同相互作用 力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下: 机械能:E=E K +E P 9. 热量:CRT M Q μ = 其中:摩尔热容量C 与过程有关,等容热容量C v 与等压热容 量C p 之间的关系为:C p = C v +R mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2- (万有引力) →r Mm G - =E p r r Qq ?42 0πε(静电力) →r Qq 04πε

大学物理论文(波动与光学)

波动与光学 (感谢老师这学期为我们的付出,敬佩老师的教学态度,经此我们学到了很多东西,真的很感谢) 对于光的认识简史:光是人类和生物生存和发展所必需的,人们对于它的认识却经历了漫长而曲折的过程。最早的人们认为光是由微粒构成的,牛顿就是微粒说的创始人和坚持者,而惠更斯明确的提出了光是一种波,直至19世纪托马斯—-菲涅耳从实验和理论上建立了光的波动理论。但他们的认识持有机械论的观点。19世纪中叶光的电磁理论的建立使人们对于光的认识更近一步,但关于介质的问题仍是矛盾重重,有待解决。终于于19世纪末迈克尔逊实验及爱因斯坦的相对论得出结论:光是一种电磁波,它的传播不需要任何介质。 首先我们从简单的波动与振动讲起,这是光的波动说的理论基石。关于振动的理论描述我们有它的简谐振动函数x=Acos(ωt+φ) A Φω是描述简谐运动的三个特征量,通过微分关系我们可以分别得到速度与加速度的公式。由于简谐运动于匀速圆周运动有许多相似之处,所以在许多方面我们应用参考圆来研究他们的运动。由简谐运动的动力学方程得k=mω2从这里我们可以对简谐运动下一个动力学定义:质点在与平衡位置成正比而反向的合力的作用下的运动叫简谐运动,由此还可以推出T A 的公式,对于简谐振动的能量我们经过一系列的微分与动力学方程推导我们得到机械能=势能与动能之和而他们的平均值各占一半。而实际问题中常会遇到几个简谐运动的合成。我们讨论同意直线相同频率的简谐运动的合成。经过矢量图法我们可以推得A的合成与φ的函数关系公式。 波动。一定扰动的传播称为波动。再此主要研究机械波的一些相关性质的理论。如声波,地震波,水波等。虽然各类波的性质不同但他们在形式上由许多相同的特征规律。我们所讲的简谐波的传播是需要介质的,他的传播形式都要经过介质的传播,这一点是不同于光的。描述波的运动需要波函数,由于简谐波上的任意质元都在做简谐运动因而简谐波是有周期的,一个周期所传播的距离称为波长λ=uT波形曲线可以详细描述波的运动。弹性介质中波是靠质元的弹性力来传播的,可以说弹性越强波的传播就越大,而质元的质量越大就越不容易被带动,这些都有定量的公式来表述的。能量密度ω与与密度振幅频率有一定的函数关系。对于波来说更重要的是它传播能量的本领,可以用波强I来表示I=wu 。实际上波在介质的传播中介质总要吸收一部分能量,这叫做波的吸收。对于波的传播方向的规律惠更斯原理有:介质中任意波面上的各点都可以看做发射子波的波源,其后任意时刻这些子波的包迹就是新的波振面。两列频率以及振幅相同而传播方向相反的简谐波叠加形成新的波,所形成的新的波并不是简谐波。 前面我们对于经典机械波理论有了简单的认识,后来的托马斯杨等人就是建立它的基础上产生了波动学说,就此从波的角度进行进一步的阐述。 众所周知的托马斯杨的双缝干涉实验使光的波动说又向前进了一大步(1)光的波动性的确定: 1801年,托马斯·杨用强烈的单色光照射到开有窄缝的不透光的遮光板上,通过窄缝的光又照射到置与单缝之后的开有两条窄缝的不透光的遮光板上。从双缝通过的两列光波就是同频率的,巧妙地获取了相干光源。从双缝后的光屏上明、暗相间的条纹,终于实现了证明光具有波动性的光的干涉实验。 1804年,菲涅耳用一束光照射到开有小孔的不透光的遮光板上,在遮光板之后的毛玻璃屏上,看见了除中央为亮的亮斑,周围是明、暗相间的圆环。成功地实现了光的衍射。之后,夫琅和费单缝衍射实验又问世。以上光的干涉和衍射现象,从实验的角度有力证明光是

(完整版)大学物理波动光学的题目库及答案

一、选择题:(每题3分) 1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若 A 、 B 两点相位差为3π,则此路径AB 的光程为 (A) 1.5 λ. (B) 1.5 λ/ n . (C) 1.5 n λ. (D) 3 λ. [ ] 2、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中 (A) 传播的路程相等,走过的光程相等. (B) 传播的路程相等,走过的光程不相等. (C) 传播的路程不相等,走过的光程相等. (D) 传播的路程不相等,走过的光程不相等. [ ] 3、如图,S 1、S 2是两个相干光源,它们到P 点的距离分 别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1 的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一 介质板,其余部分可看作真空,这两条路径的光程差等于 (A) )()(111222t n r t n r +-+ (B) ])1([])1([211222t n r t n r -+--+ (C) )()(111222t n r t n r --- (D) 1122t n t n - [ ] 4、真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径 传播到B 点,路径的长度为l .A 、B 两点光振动相位差记为?φ,则 (A) l =3 λ / 2,?φ=3π. (B) l =3 λ / (2n ),?φ=3n π. (C) l =3 λ / (2n ),?φ=3π. (D) l =3n λ / 2,?φ=3n π. [ ] 5、如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为 (A) 4πn 2 e / λ. (B) 2πn 2 e / λ. (C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ ] 6、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1 <n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2 . (C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). [ ] 7、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2> n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2. (C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2). P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 1 n 1 3λ n 3 n 3

大学物理学振动与波动习题问题详解

大学物理学(上)第四,第五章习题答案 第4章振动 P174. 4.1 一物体沿x轴做简谐振动,振幅A = 0.12m,周期T = 2s.当t = 0时,物体的位移x = 0.06m,且向x轴正向运动.求:(1)此简谐振动的表达式; (2)t= T/4时物体的位置、速度和加速度; (3)物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.[解答](1)设物体的简谐振动方程为 x = A cos(ωt + φ), 其中A = 0.12m,角频率ω = 2π/T= π.当t = 0时,x = 0.06m,所以 cosφ = 0.5, 因此 φ= ±π/3. 物体的速度为 v = d x/d t = -ωA sin(ωt + φ). 当t = 0时, v = -ωA sinφ, 由于v > 0,所以sinφ < 0,因此 φ = -π/3. 简谐振动的表达式为 x= 0.12cos(πt –π/3). (2)当t = T/4时物体的位置为 x= 0.12cos(π/2–π/3) = 0.12cosπ/6 = 0.104(m). 速度为 v = -πA sin(π/2–π/3) = -0.12πsinπ/6 = -0.188(m·s-1). 加速度为 a = d v/d t = -ω2A cos(ωt + φ) = -π2A cos(πt - π/3) = -0.12π2cosπ/6 = -1.03(m·s-2). (3)方法一:求时间差.当x = -0.06m 时,可得 cos(πt1 - π/3) = -0.5, 因此 πt1 - π/3 = ±2π/3. 由于物体向x轴负方向运动,即v < 0,所以sin(πt1 - π/3) > 0,因此 πt1 - π/3 = 2π/3, 得t1 = 1s. 当物体从x = -0.06m处第一次回到平衡位置时,x = 0,v > 0,因此 cos(πt2 - π/3) = 0, 可得πt2 - π/3 = -π/2或3π/2等. 由于t2 > 0,所以 πt2 - π/3 = 3π/2, 可得t2 = 11/6 = 1.83(s). 所需要的时间为 Δt = t2 - t1 = 0.83(s). 方法二:反向运动.物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间就是它从x= 0.06m,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此 cos(πt - π/3) = 0, 可得πt - π/3 = π/2, 解得t = 5/6 = 0.83(s). [注意]根据振动方程 x = A cos(ωt + φ), 当t = 0时,可得 φ = ±arccos(x0/A),(-π < φ≦π), 初位相的取值由速度决定. 由于 v = d x/d t = -ωA sin(ωt + φ), 当t = 0时, v = -ωA sinφ, 当v > 0时,sinφ < 0,因此 φ = -arccos(x0/A); 当v < 0时,sinφ > 0,因此

大学物理学知识总结

大学物理学知识总结 第一篇 力学基础 质点运动学 一、描述物体运动的三个必要条件 (1)参考系(坐标系):由于自然界物体的运动是绝对的,只能在相对的意义上讨论运动,因此,需要引入参考系,为定量描述物体的运动又必须在参考系上建立坐标系。 (2)物理模型:真实的物理世界是非常复杂的,在具体处理时必须分析各种因素对所涉及问题的影响,忽略次要因素,突出主要因素,提出理想化模型,质点和刚体是我们在物理学中遇到的最初的两个模型,以后我们还会遇到许多其他理想化模型。 质点适用的范围: 1.物体自身的线度l 远远小于物体运动的空间范围r 2.物体作平动 如果一个物体在运动时,上述两个条件一个也不满足,我们可以把这个物体看成是由许多个都能满足第一个条件的质点所组成,这就是所谓质点系的模型。 ~ 如果在所讨论的问题中,物体的形状及其在空间的方位取向是不能忽略的,而物体的细小形变是可以忽略不计的,则须引入刚体模型,刚体是各质元之间无相对位移的质点系。 (3)初始条件:指开始计时时刻物体的位置和速度,(或角位置、角速度)即运动物体的初始状态。在建立了物体的运动方程之后,若要想预知未来某个时刻物体的位置及其运动速度,还必须知道在某个已知时刻物体的运动状态,即初台条件。 二、描述质点运动和运动变化的物理量 (1)位置矢量:由坐标原点引向质点所在处的有向线段,通常用r 表示,简称位矢或矢径。 在直角坐标系中 zk yi xi r ++= 在自然坐标系中 )(s r r = 在平面极坐标系中 rr r = : (2)位移:由超始位置指向终止位置的有向线段,就是位矢的增量,即

1 2r r r -=? 位移是矢量,只与始、末位置有关,与质点运动的轨迹及质点在其间往返的次数无关。 路程是质点在空间运动所经历的轨迹的长度,恒为正,用符号s ?表示。路程的大小与质点运动的轨迹开关有关,与质点在其往返的次数有关,故在一般情况下: s r ?≠? 但是在0→?t 时,有 ds dr = (3)速度v 与速率v : 平均速度 t r v ??= ( 平均速率 t s v ??= 平均速度的大小(平均速率) t s t r v ??≠ ??= 质点在t 时刻的瞬时速度 dt dr v = 质点在t 时刻的速度 dt ds v = 则 v dt ds dt dr v === " 在直角坐标系中

大学物理公式大全

大学物理第一学期公式集 概念(定义和相关公式) 1.位置矢量:r ,其在直角坐标系中: k z j y i x r ++=; 2 22z y x r ++=角位置:θ 2.速度: dt r d V =平均速度:t r V ??= 速率: dt ds V = ( τ V V =) 角速度:dt d θω= 角速度与速度的关系:V=rω 3.加速度:dt V d a = 或 22dt r d a = 平均加速度: t V a ??= 角加速度: dt d ωβ= 在自然坐标系中n a a a n +=ττ其中dt dV a =τ(=rβ), r V n a 2 = (=r 2 ω) 4.力:F =ma (或F =dt p d ) 力矩:F r M ?=(大小:M=rFcos θ方向:右手螺 旋法则) 5.动量:V m p =,角动量:V m r L ?=(大小:L=rmvsin θ 方向:右手螺旋法则) 6.冲量:? = dt F I (=F Δt);功:??=r d F A (气体对外做功:A= ∫PdV ) 7.动能:mV 2/2 8.势能:A 保= – ΔE p 不同相互作用力势 能形式不同且零点选择不同其形式 不同,在默认势能零点的情况下: 机械能:E=E K +E P 9.热量:CRT M Q μ =其中:摩尔热容 量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2- (万有引力) →r Mm G - =E p r r Qq ?420πε(静电力) →r Qq 04πε

大学物理上册复习提纲

《大学物理》上册复习纲要 第一章 质点运动学 一、基本要求: 1、 熟悉掌握描述质点运动的四个物理量——位置矢量、位移、速度和加速度。会处理两类问题:(1)已知运动方程求速度和加速度;(2)已知加速度和初始条件求速度和运动方程。 2、 掌握圆周运动的角速度、角加速度、切向加速度和法向加速度。 二、内容提要: 1、 位置矢量: k z j y i x r ++= 位置矢量大小: 2 22z y x ++= 2、 运动方程:位置随时间变化的函数关系 t z t y t x t )()()()(++= 3、 位移?: z y x ?+?+?=? 无限小位移:k dz j dy i dx r d ++= 4、 速度: dt dz dt dy dt dx ++= 5、 加速度:瞬时加速度: dt z d dt y d dt x d dt dv dt dv dt dv z y x 222222++=++= 6、 圆周运动: 角位置θ 角位移θ? 角速度dt d θω= 角加速度22dt d dt d θ ωα== 在自然坐标系中:t n t n e dt dv e r v a a a +=+=2 三、 解题思路与方法: 质点运动学的第一类问题:已知运动方程通过求导得质点的速度和加速度,包括它沿各坐标轴的分量;

质点运动学的第二类问题:首先根据已知加速度作为时间和坐标的函数关系和必要的初始条件,通过积分的方法求速度和运动方程,积分时应注意上下限的确定。 第二章 牛顿定律 一、 基本要求: 1、 理解牛顿定律的基本内容; 2、 熟练掌握应用牛顿定律分析问题的思路和解决问题的方法。能以微积分为工具,求解一维变力作用下的简单动力学问题。 二、 内容提要: 1、 牛顿第二定律: m = 指合外力 合外力产生的加速度 在直角坐标系中: x x ma F = y y ma F = z z ma F = 在曲线运动中应用自然坐标系: r v m ma F n n 2 == dt dv m ma F t t == 三、 力学中常见的几种力 1、 重力: mg 2、 弹性力: 弹簧中的弹性力kx F -= 弹性力与位移成反向 3、 摩擦力:摩擦力指相互作用的物体之间,接触面上有滑动或相对滑动趋势产生的一种阻碍相对滑动的力,其方向总是与相对滑动或相对滑动的趋势的方向相反。 滑动摩擦力大小: N f F F μ= 静摩擦力的最大值为:N m f F F 00μ= 0μ静摩擦系数大于滑动摩擦系数μ 第三章 动量守恒定律和能量守恒定律 一、 基本要求: 1、 理解动量、冲量概念,掌握动量定理和动量守恒定律,并能熟练应用。 2、 掌握功的概念,能计算变力作功,理解保守力作功的特点及势能的概念。 3、 掌握动能定理、功能原理和机械能守恒定律并能熟练应用。 4、 了解完全弹性碰撞和完全非弹性碰撞的特点。 二、 内容提要 (一) 冲量

相关文档
最新文档