哪些因素影响了光伏电站的发电效率

哪些因素影响了光伏电站的发电效率
哪些因素影响了光伏电站的发电效率

哪些因素影响了光伏电站的发电效率?

光伏电站的发电量由三个因素决定:装机容量、峰值小时数、系统效率。当电站的地点和规模确定以后,前两个因素基本已经定了,要想提高发电量,只能从“系统效率”上下功夫了!

那光伏电站的系统效率应该是多少呢?引用王斯成老师ppt中的一个表格来说明一下。

从这张表中可以看出,虽然不同国家的水平会有所差异,但随着技术的进步和经验的积累,在世界范围内,光伏电站的系统效率是不断提升的。我国的光伏电站基本都是2010s建成地,理论上,80%的系统效率应该是一个平均水平。

然而,大量的实际调研数据证明,我国建成的光伏电站的系统效率都处于一个非常低的水平。分布式电站由于之前大部分是以金太阳工程的形式建设的,装有防逆流装置,弃电情况较多,暂不讨论;据介绍,我国西部大型地面电站的平均系统效率仅能达到74%左右。

哪些因素影响了电站的系统效率,动了我们的发电量?我把这些因素分为三类:自然因素、设备因素、人为因素。

一、自然因素对系统效率的影响

1、温度折减

我觉得,对系统效率影响最大的自然因素就是温度。温度系数是光伏组件非常重要的一个参数。一般情况下,晶硅电池的温度系数一般是-0.35~-0.45%/℃,非晶硅电池的温度系数一般是-0.2%/℃左右。而光伏组件的温度并不等于环境温度。下图就是光伏组件输出功率随组件温度的变化情况。

在正午12点附近,图中光伏组件的温度达到60摄氏度左右,光伏组件的输出功率大约仅有85%左右。

除了光伏组件,当温度升高时,逆变器等电气设备的转化效率也会随温度的升高而降低。

温度造成的折减,可以根据光伏组件的温度系数和当地的气温进行估算。

2、不可利用太阳光

我们获得的总辐射量值,是各种辐射强度的直接辐射、散射辐射、反射辐射的总和,但并不是所有的辐射都能发电的。比如,逆变器需要再辐照度大于50W/m2时才能向电网供电,但辐照度在100W/m2以下时输出功率极低。

即使在阳光好的西部地区,这部分虽然算到总辐射量数据中、但无法利用的太阳能辐射,也能达到2~3%。

二、设备因素对系统效率的影响

我觉得设备因素是影响光伏系统效率的最主要原因。

1、光伏组件的匹配度

标称偏差也是光伏组件一个重要参数,一般±3%内是可以接受的。这说明,虽然组件的标称参数是一样的,但实际上输出特性曲线是有差异的,这就造成多个组件串联时因电流不一致产生的效率降低。目前,像天合、英利等组件厂家,一般采用正偏差来降低由于功率的不匹配性带来的损失。

2、逆变器、箱变的效率

虽然逆变器技术规格书中的欧洲效率是考虑了不同负载率后的加权转换效率,但实际使用中,很少有逆变器能达到现在普遍使用的98.5%。逆变器在DC变AC的过程中,加权效率能达到97.5%应该就不错了。

不同逆变器的MPPT跟踪效果也是不一样的。当最大功率点电压随着辐照度变化时,逆变器需要不断改变电压值以找到最大功率点电压,由于跟踪的滞后性也会造成能量损失。目前,有的逆变器厂家采用多路MPPT的方式,来减少此项损失。

在最大直流输入电压范围内,尽量的多串联组件提高电压、降低电流,可以提高逆变器的转化效率,同时降低线损。

箱变将在将升压的过程中,必然会有能量损失,这项根据箱变的参数来确定,一般1.5%左右。

3、直流线损、交流线损

一个1MW单元的面积大约3.5~4公顷。要将这么大面积光伏组件发出的电送到一处地方,就需要很长的直流线路。减少线损的办法有两个:选用好的电缆,提高电压。一般情况下,直流线损可以按2~3%来估算。

交流线路短,线损相对较少,一般可以按1%来进行估算。

4、设备故障

设备故障和检修时造成系统效率低的一个重要原因。下图统计了光伏电站故障原因,其中一半都是来自于设备。

三、人为因素对系统效率的影响

1、设计不当

设计不当造成发电量损失最严重的一项就是“间距设计不当”。由于目前光伏电站大都采用竖向布置,下沿的少量遮挡往往会造成整个组串输出功率极具下降。据统计,在一些前后间距偏小的电站,前后遮挡造成的发电量损失甚至能达到3%。另外,山地电站除了考虑前后遮挡以外,还要考量东西方向高差所带来的遮挡。在坡度比较大,而东西间距较小的电站,此项折减可达到2%。

除了间距以外,我还经常看到在光伏电站场区内,设计有较高的建(构)筑物,对周围的光伏阵列造成遮挡。

2、清洁不及时

在西北地区,一次沙尘暴可能会造成发电量直接降低5%以上;在东部,严重的雾霾天气时光伏电站几乎没有出力。下图是清洗前后光伏电站的出力对比。

可以看出,辐照度越大、阳光的穿透力越强,灰尘造成的损失越少。

除了灰尘,积雪如果不及时清除,也会对发电量造成较大的损失。

除了上述原因以外,光伏组件的衰减过快也是造成发电量达不到预期的重要原因。一般厂家承诺头两年衰减不超过2%,10年不超过10%,25年不超过20%。10年和20年的情况我不清楚,据了解,头两年衰减在2%的光伏组件比较少。

总结一下,光伏电站系统效率损失的原因可以归纳成以下几条:

自然原因:温度折减、不可利用太阳光;

设备原因:光伏组件的匹配度、逆变器、箱变的效率、直流线损、交流线损、设备故障

人为原因:设计不当、清洁不及时

光伏组件衰减速度超出预期

光伏发电系统的效率最优化研究

光伏发电系统的效率最优化研究 在能源枯竭与环境污染问题日益严重的当今世界,光伏发电成为可再生能源领域中最清洁、最现实、最有大规模开发利用前景的发电方式之一。然而,光伏电池的输出特性具有强烈的非线性,且受外界环境因素影响大,所以如何有效的利用太阳能,提高太阳能利用效率,成为太阳能利用中一个迫切需要解决的问题。本文以光伏发电系统为研究对象,以最大限度利用太阳能为主要目标,展开了光伏发电系统效率最优化的理论和实验研究。 具体说来,本文的主要研究内容可归纳如下: 一、概述了光伏发电系统的组成,根据不同场合的需要,对光伏发电系统进行了分类,并介绍了目前我国光伏发电技术的应用。在此基础上,详细分析了光伏电池板的工作原理,采用MATLAB对同一光照强度下的光伏电池模型进行仿真,并将具有强寻优能力的仿真软件1st0pt率先用在光伏电池模型的仿真上,得出光照强度不断变化条件下的电流—电压,功率—电压的二维曲线,并且得出电流—电压—光照和功率—电压—光照的三维曲线。仿真曲线很直观地表示出电池的输出电流和电压的对应关系,同时也表明:光伏电池既非恒压源,也非恒流源,它不可能为负载提供任意大的功率;光伏电池特性具有强烈的非线性,并且其输出功率受到日照等周围环

境因素的影响。 二、在实验室现有的110W。光伏电池的基础上,分别对光照不变和光照变化条件下的光伏电池进行实验测试,并将实验数据拟合成曲线,从而得到110W。光伏电池的实际输出特性曲线,实际输出曲线不仅很好地表明了光伏电池输出特性强烈的非线性,而且对以后的仿真研究有很大的实际价值,为实验验证打下了基础。 三、分析比较了几种传统光伏发电系统效率优化方法的优缺点。定电压跟踪法实现比较简单、稳定,然而其控制精度差,必须人工干预才能良好运行;电导增量法可以使输出端电压比较平稳,然而整个系统比较复杂,费用较高;功率回授法实现比较方便,但是稳定性及可靠性不理想,实际使用中不常用;扰动观察法控制简单,容易实现,但可能会发生振荡和误判现象。在实验室110W_p光伏电池参数的基础上,采用扰动观察法,对光伏发电系统进行仿真研究,仿真结果表明采用扰动观察法会导致在最大功率点附近产生功率损失。 四、提出了一种基于遗传算法的光伏发电系统的效率优化算法,尝试将遗传算法用在光伏发电系统优化问题中。遗传算法将问题的求解表示成“染色体”,将其置于问题的“环境”中,根据适者生存的原则,从中选择出适应环境的“染色体”进行复制,即再生,通过交叉、变异两种基因操作产生出新一代更适合环境的“染色体”群,这样一代代不断改进,最后收敛到

探讨光伏发电环保意义及发展建议

探讨光伏发电环保意义及发展建议 摘要:光伏发电在解决我国无电地区电力建设和电力规模的并网发电的市场中都将扮演重 要的角色,应当予以高度重视。在原材料和市场两头在外的情况下,目前国内光伏发电产业有盲目增长的趋势。无论是离网光伏电站的后期运行维护的问题,还是并网光伏发电市场拉动的问题,都有赖于《可再生能源法》的全面实施。本文主要分析了光伏发电的概念及关于光伏发电对于环保的重要性。 关键词:光伏发电;优点;发展前景;问题;建议 Abstract: (pv) power in solving in our area with no electric power electric power construction and power of the size of the grid generation market will play heavy To role, should pay serious attention. In the raw materials and market two head out, the current domestic (pv) power industry have blind growth trend. Whether from the nets photovoltaic power station’s later operation and maintenance problems, or grid (pv) power market pull the question, depends on the renewable energy law of the overall implementation. This paper mainly analyses the concept and photovoltaic energy about (pv) power to the importance of environmental protection. Keywords: photovoltaic power; Advantages; Development prospects; Problem; suggest 什么是光伏发电系统呢?白天,在光照条件下,太阳电池组件产生一定的电动势,通过组件的串并联形成太阳能电池方阵,使得方阵电压达到系统输入电压的要求。再通过充放电控制器对蓄电池进行充电,将由光能转换而来的电能贮存起来。晚上,蓄电池组为逆变器提供输入电,通过逆变器的作用,将直流电转换成交流电,输送到配电柜,由配电柜的切换作用就能进行供电了。我国是发展中大国,同时是资源消耗大国,而人均资源储量又偏低。快速的工业化进程和巨大的消费需求使我国资源的对外依赖性逐步加强,环境污染也愈发严重。与此同时,我国很多居住在偏远地区的人们还存在着用电困难的问题。这些客观条件迫使我们更加努力寻找和开发新能源,而太阳能光伏发电就是其中之一。 1、太阳能光伏发电系统的组成 太阳能光伏发电系统主要由光伏电池组件、光伏系统电池控制器、蓄电池和交直流逆变器构成,核心元件是光伏电池组件。其中光伏电池组件:将太阳的光能直接转化为电能。交直流逆变器:用于将直流电转换为交流电的装置。此外逆

分布式光伏电站发电效率提升策略研究 刘大玮

分布式光伏电站发电效率提升策略研究刘大玮 发表时间:2019-05-17T17:04:58.690Z 来源:《电力设备》2018年第32期作者:刘大玮 [导读] 摘要:随着我国现代经济的快速发展,我国电力企业的建设日趋完善。 (中国恩菲工程技术有限公司北京 100038) 摘要:随着我国现代经济的快速发展,我国电力企业的建设日趋完善。在电力企业的建设和发展中,分布式光伏发电厂的建设也在不断增加。由于分布式光伏发电厂运行过程中影响其运行效率的因素很多,在这种情况下,有必要加强提高其运行效率的策略研究。为此,本文研究了提高分布式光伏发电厂效率的策略。首先,分析了影响分布式光伏发电厂效率的因素。其次,总结了提高分布式光伏发电厂效率的方法和策略。希望在本研究的帮助下,为提高分布式发电厂的效率提供参考建议。 关键词:分布式;光伏电站;发电效率;提升策略 引言 分布式光伏发电厂是现代电力企业建设和发展中经常采用的一种输电建设模式。在这种模式的应用下,可以有效地将光能转化为电能。然而,在实际生产和供电中,影响分布式光伏发电厂效率的原因很多。在这种情况下,电力的传输和生产受到阻碍。有必要对提高供电效率进行研究。本文重点研究了提高分布式光伏发电厂发电效率的策略,对提高电力企业整体供电能力具有重要意义。 1、影响分布式光伏电站效率的因素 1.1自然因素 分布式光伏电站在运行过程中主要是利用太阳光照,因此,只有太阳光照的强度足够,才能保证分布式光伏电站具有良好的发电能力。但是在实际运行的过程中,分布式光伏电站的电力生产总是受到各种自然因素的影响,使得其无法有效地接收太阳光,比如,灰尘覆盖、雨雪天气、阴天等,这些因素的存在会阻挡太阳光,降低了分布式光伏电站的发电效率。电力企业的管理人员应该采取相应的措施,降低这些因素对分布式光伏电站发电效率的影响。 1.2设备因素 分布式光伏电站主要是由各种设备组合而成的,因此,在电力生产过程中,如果有一个设备发生了故障,就会使整个电力生产体系受到影响,并且导致电力供应不足。影响分布式光伏电站生产输送效率的一个重要因素是设备自身。很多电力设备会受电力转换系统以及光伏电池板的影响,比如,单晶硅大规模生产转化率为19.8%~21%,而实际工程中大多在17.5%;多晶硅大规模生产转化率为18%~18.5%,而实际工程中大多在16%;砷化镓太阳能电池组的转化率比较高,约23%。分布式光伏电站建设过程中,需要合理的选择电力设备,使其能够满足光伏电站发电的基本要求。 2、提升分布式光伏电站发电效率的策略 2.1加大科研力度 从光伏发电站规划、设计及并网全过程来说,主要存在的问题包括无序建设和并网困难等。为顺利推动光伏发电并网,提升电网运行水平,必须加大科研力度。以安徽省金寨县为例,其为最早推行光伏扶贫的地区,光伏电站数量较多,总装机量很大。据相关统计,截止到2020年,其光伏电站总容量将会达到320万千瓦。当地电力公司将其作为研发项目试点,主要研究课题包括分布式发电集群规划软件;分布式电源灵活并网与即插即用关键技术;分布式发电群控群调系统以及分布式发电集群实时仿真测试平台。从实际应用效果来说,此科研项目能有效解决光伏脱网问题,使用户光伏发电量增加,平均提升30%;村集体光伏发电量也有所增加,平均提升10%;修通网损降低3%,进而达到预期效果。借鉴于此,若想着力解决光伏发电并网大电网所面临的各类问题,必须要不断加大科研项目的研究。 2.2加强电能以及电能质量的控制 从光伏发电系统运行实际来说,发电具有不确定性,使实际功率输出时,极易产生波动,影响用户用电。以逆变器为例,其实际应用时,极易产生谐波,使配电系统谐波持续增加。因此,必须不断提升对配电系统电能的把控力度。除此,还需做好电能质量把控,进而提升光伏发电并网运行质量。不确定性是光伏发电的主要特点,且功率输出极易产生波动,给接入电网系统中的用电用户,造成很大程度上的影响,引发电能质量问题。逆变器谐波的出现,使配电系统谐波系统运行水平不断提高。光伏发电通过单相电源并网,使配电系统受到影响,三相不平衡问题更明显。必须加大关于配电系统电能质量相关问题的研究,提升电能质量监控水平。 2.3光伏电站设计标准化 要想提升分布式光伏电站的发电效率,设计电站时就应该做到标准化。只有通过标准化的电力设计,才能整体提升分布式光伏电站的发电效率。进行光伏电站标准化设计时,首先应该对电站的电力生产过程进行优化,从而提升光伏电站的发电效率。比如,根据太阳光在不同时节的强度进行分析,将光伏电站的运行和太阳光的变化相匹配,并且在进行光伏电站的设计过程中,应该对电力系统的电压进行合理的设计,这样能够保证光伏电站在生产电力的过程中具有较高的效率。 2.4选择正确的电力设备 分布式光伏电站运行过程中提高发电效率的一项重要措施就是选择正确的设备型号,电力设备的型号关系到分布式光伏电站中的电力输送以及发电能力转换。因此,在分布式光伏电站的建设过程中,需要合理地选择电力设备型号。目前,分布式光伏电站中的电力设备型号主要有1MW方阵、MPPT逆变器等,不同型号的设备在光伏电站中都有不一样的发电效率。因此,分布式光伏电站应该重视设备型号的选择,保证设备型号能够符合光伏电站的发电要求,从而提升分布式光伏电站的发电效率。 2.5分布式光伏电站的施工规范化 分布式光伏电站在建设施工过程中,需要进行规范化的施工,通过合理的施工技术保证光伏电站能够达到设计方案的要求。分布式光伏电站建设过程中涉及的建设项目比较多,因此,在施工过程需要对不同的施工项目进行不同的管理措施,这样能够最大程度保证光伏电站建成之后,电力系统的运行效率得到提高。特别是分布式光伏电站的运行中心,需要进行规划化的施工,保证光伏电站建成之后,控制中心能够充分发挥控制调度的作用,从而提升分布式光伏发电系统的运行效率。 2.6进行定期维护 分布式光伏电站运行过程中,需要进行定期的维护。分布式光伏电站的运行接收太阳光主要靠太阳能电池接收板,但是随着时间的不断推移,电池板上方就会被灰尘或者积雪等覆盖,影响分布式光伏电站系统的运行。除此之外,影响光伏电站发电效率的因素还有很多,

光伏并网项目的效率及损耗

将各种损耗都算进来后光伏并网电站系统效率通常为多少呢? 光伏组件虽然使用寿命可达25-30年,但随着使用年限增长,组件功率会衰减,会影响发电量。另外,系统效率对发电量的影响更为重要。 1组件的衰减 1,由于破坏性因素导致的组件功率骤然衰减,破坏性因素主要指组件在焊接过程中焊接不良、封装工艺存在缺胶现象,或者由于组件在搬运、安装过程中操作不当,甚至组件在使用过程中受到冰雹的猛烈撞击而导致组件内部隐裂、电池片严重破碎等现象; 2,组件初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定,一般来说在2%以下; 3,组件的老化衰减,即在长期使用中出现的极缓慢的功率下降现象,每年的衰减在0.8%,25年的衰减不超过20%;25年的效率质保已经在日本和德国两家光伏公司的组件上得到证实。2012年以后国内光伏组件已经基本能够达到要求,生产光伏组件的设备及材料基本采用西德进口。 2系统效率 个人认为系统效率衰减可以不必考虑,系统效率的降低,我们可以通过设备的局部更新或者维护达到要求,就如火电站,水电站来说,不提衰减这一说法。 影响发电量的关键因素是系统效率,系统效率主要考虑的因素有:灰尘、雨水遮挡引起的效率降低、温度引起的效率降低、组件串联不匹配产生的效率降低、逆变器的功率损耗、直流交流部分线缆功率损耗、变压器功率损耗、跟踪系统的精度等等。 1)灰尘、雨水遮挡引起的效率降低 大型光伏电站一般都是地处戈壁地区,风沙较大,降水很少,考虑有管理人员人工清理方阵组件频繁度一般的情况下,采用衰减数值:8%; 2)温度引起的效率降低 太阳能电池组件会因温度变化而输出电压降低、电流增大,组件实际效率降低,发电量减少,因此,温度引起的效率降低是必须要考虑的一个重要因素,在设计时考虑温度变化引起的电压变化,并根据该变化选择组件串联数量,保证组件能在绝大部分时间内工作在最大跟踪功率范围内,考虑0.45%/K的功率变化、考虑各月辐照量计算加权平均值,可以计算得到加权平均值,因不同地域环境温度存在一定差异,对系统效率影响存在一定差异,因此考虑温度引起系统效率降低取值为3%。 3)组件串联不匹配产生的效率降低 由于生产工艺问题,导致不同组件之间功率及电流存在一定偏差,单块电池组件对系统影响不大,但光伏并网电站是由很多电池组件串并联以后组成,因组件之间功率及电流的偏差,对光伏电站的发电效率就会存在一定的影响。组件串联因为电流不一致产生的效率降低,选择该效率为2%的降低。 4)直流部分线缆功率损耗 根据设计经验,常规20MWP光伏并网发电项目使用光伏专用电缆用量约为350km,汇流箱至直流配电柜的电力电缆(一般使用规格型号为ZR-YJV22-1kV-2*70mm2)用量约为35km,经计算得直流部分的线缆损耗3%。 5)逆变器的功率损耗 目前国内生产的大功率逆变器(500kW)效率基本均达到97.5%的系统效率,并网逆变器采用无变压器型,通过双分裂变压器隔离2个并联的逆变器,逆变器内部不考虑变压器效率,即逆变器功率损耗可为97.5%,取97.5%。 6)交流线缆的功率损耗 由于光伏并网电站一般采用就地升压方式进行并网,交流线缆通常为高压电缆,该部分

光伏电站理论发电量计算及影响因素

光伏电站理论发电量计算及影响因素 一、光伏电站理论发电量计算 1、太阳电池效率η 的计算 在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。 其中,At 为太阳电池总面积(包括栅线图形面积)。考虑到栅线并不产生光电,所以可以把At 换成有效面积Aa (也称为活性面积),即扣除了栅线图形面积后的面积,同时计算得到的转换效率要高一些。Pin 为单位面积的入射光功率。实际测量时是在标准条件下得到的:Pin 取标准光强:AM 1.5 条件,即在25℃下,Pin= 1000W / m 2。 2、光伏系统综合效率(PR) η 总=η 1×η2×η3 光伏阵列效率η1:是光伏阵列在1000 W/m2 太阳辐射强度下实际的直流输出功率与标称功率之比。光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。 逆变器转换效率η2:是逆变器输出的交流电功率与直流输入功率之比,取逆变器效率97%计算。 交流并网效率η3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV 高压端,主要是升压变压器和交流线缆损失,按96%计算。 3、理论发电量计算 太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为 1000W/m2的光照条件下,1000Wp 太阳电池1 小时才能发一度电。而实际上,同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。计算日发电量时,近似计算: 理论日发电量=系统峰值功率(kw)x等效日照小时数(h)x系统效率 等效峰值日照小时数h/d=(日太阳辐照量kW.h/m2/d)/1kW/m2 (日照时数:辐射强度≥120W/m2的时间长度)

100kW光伏发电方案.docx

100kW光伏发电方案

100kWp 屋顶分布式光伏发电 建设方案

目录 一、项目建设背景及意义 (3) 1.1 项目名称 (3) 1.2 项目背景 (3) 1.3 建设意义 (3) 二、相关技术规范和标准 (4) 三、设计方案 (5) 3.1.系统概述 (5) 3.2.光伏阵列方案 (6) 3.3.光伏逆变器及并网方案 (6) 3.4.监控装置 (6) 3.5.综述 (6) 3.6.原理图 (7) 四、设计计算及设备选型 (8) 4.1 并网逆变器设计 (8) 4.2.光伏阵列设计 (9) 4.3. 光伏阵列汇流箱 (10) 4.4. 交流配电柜 (12) 4.5. 系统接入电网设计 (13) 4.6. 系统监控装置 (13) 4.7.系统防雷接地装置 (14) 五、系统主要设备配置清单 (15) 六.经济效益 (16) 七.服务与支持 (17)

一、项目建设背景及意义 1.1 项目名称 项目名称: 100kWp 分布式光伏发电项目 1.2 项目背景 1.2.1. 国家大力支持发展清洁能源(包括光伏发电),促进节能减排,绿色环保工作。 1.2.1.1.《国务院关于促进光伏产业健康发展的若干意见》(国发[2013]24号) 1.2.1.2. 国家能源局《关于进一步落实分布式光伏发电有关政策的通 知》 (国能新能 [2014]406 号) 1.2.1.3. 湖北省发改委《关于对新能源发电项目实行电价补贴有关问 题的通知》 (鄂价环资〔 2015〕90 号文件) 1.2.2. 政府出台一系列的补贴政策及相关并网服务政策。 1.2.3. 光伏发电项目的设备成本大幅度降低,推动光伏发电项目的发展。 1.2.4. 分布式光伏发电项目具有较好的投资价值,减少用户的电力增容压力。 1.3 建设意义 1.3.1.符合国家产业政策 1.3. 2.优化能源和电力结构 1.3.3.响应国家号召,支持政府完成节能减排目标

光伏电站发电量计算方法

一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出和计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 光伏电站在做前期可行性研究的过程中,需要对拟建光伏电站的发电量做理论上的预测,以此来计算投资收益率,进而决定项目是否值得建设。一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出和计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 一、计算方法 1)国家规范规定的计算方法。 根据最新的《光伏发电站设计规范 GB50797-2012》第条:发电量计算中规定:1、光伏发电站发电量预测应根据站址所在地的太阳能资源情况,并考虑光伏发电站系统设计、光伏方阵布置和环境条件等各种因素后计算确定。 2 、光伏发电站年平均发电量Ep计算如下: Ep=HA×PAZ×K 式中: HA——为水平面太阳能年总辐照量(kW·h/m2); Ep——为上网发电量(kW·h);

PAZ ——系统安装容量(kW); K ——为综合效率系数。 综合效率系数K是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数; 2)光伏方阵的倾角、方位角修正系数;

3)光伏发电系统可用率; 4)光照利用率; 5)逆变器效率; 6)集电线路、升压变压器损耗; 7)光伏组件表面污染修正系数; 8)光伏组件转换效率修正系数。 这种计算方法是最全面一种,但是对于综合效率系数的把握,对非资深光伏从业人员来讲,是一个考验,总的来讲,K2的取值在75%-85%之间,视情况而定。 2)组件面积——辐射量计算方法 光伏发电站上网电量Ep计算如下: Ep=HA×S×K1×K2 式中: HA——为倾斜面太阳能总辐照量(kW·h/m2); S——为组件面积总和(m2) K1 ——组件转换效率; K2 ——为系统综合效率。

光伏电站系统效率分析

光伏电站系统效率分析 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

系统效率分析 运行期光伏电站的生产工艺流程为:通过太阳辐照,经直流发电单元(将太阳能转化成直流电能,再经逆变产生交流电),出口电压为,再经35kV升压箱变,将电压升至35kV后,由35kV集电线路汇集至电站35kV汇集站,再经110kV 汇集站,电压升至110kV后,然后输送至220kV升压站,经220kV主变压器二次升压后,通过220kV架空线路送入系统电网。其发电工艺流程如下: 图运行期光伏电站的生产工艺流程图 结合光伏电站的运行特点其系统损耗主要为以下几方面组成: (1)入射角造成的不可利用的太阳辐射损耗; (2)灰尘、植被等遮挡损耗 (3)温度影响损耗 (4)光伏组件不匹配造成的损耗 (5)直流线路损耗 (6)逆变器损耗 (7)交流线路损耗 (8)变压器损耗 (9)系统故障及维护损耗 结合XX项目实施的实际情况,参考《XX光伏发电项目招商文件》中评分标准的要求,技术方案中系统能力先进性(5分),81%得1分,系统效率最高值得5分;因此系统效率即使是重要的招商得分项,同时该参数又直接影响发电量和效益测评即投标申报电价,为科学合理的控制和了解本项目地的系统效率水平,使其尽可能向可操作、可实现的最高效率努力,系统效率基本取值分析如下: (1)不可利用的太阳辐射损耗 根据项目地的地理位置、气候气象和太阳辐射数据当地的气象和太阳辐射特点,结合项目地太阳入射角的分析计算,并兼顾山地的地形条件在冬至日真太阳时9:00~15:00的阵列布置原则而确定的日照利用边界,经分析,本次由于

最新影响光伏发电的十大因素

影响光伏电站发电量的十个因素众所周知,光伏电站发电量计算方法是理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率,但是由于各种原因影响,光伏电站实际发电量却没这么多,实际年发电量=理论年发电量*实际发电效率。影响光伏发电量的主要因素有: 1、太阳辐射量 在太阳电池组件的转换效率一定的情况下,光伏系统的发电量是由太阳的辐射强度决定的。光伏系统对太阳辐能量的利用效率只有10%左右(太阳电池效率、组件组合损失、灰尘损失、控制逆变器损失、线路损失、蓄电池效率)光伏电站的发电量直接与太阳辐射量有关,太阳的辐射强度、光谱特性是随着气象条件而改变的。 2、太阳电池组件的倾斜角度 对于倾斜面上的太阳辐射总量及太阳辐射的直散分离原理可得:倾斜面上的太阳辐射总量Ht是由直接太阳辐射量Hbt天空散射量Hdt 和地面反射辐射量Hrt部分组成。Ht=Hbt+Hdt+Hrt 3、太阳电池组件的效率 太阳能光伏电池主流的材料是硅,因此硅材料的转化率一直是制约整个产业进一步发展的重要因素。硅材料转化率的经典理论极限是29%。而在实验室创造的记录是25%,正将此项技术投入产业。实验室已经可以直接从硅石中提炼出高纯度硅,而无需将其转化为金属硅,再从中提炼出硅。这样可以减少中间环节,提高效率。 4、组合损失

凡是串连就会由于组件的电流差异造成电流损失; 凡是并连就会由于组件的电压差异造成电压损失; 组合损失可以达到8%以上,中国工程建设标准化协会标准规定小于10%。 注意: (1) 为了减少组合损失,应该在电站安装前严格挑选电流一致的组件串联。 (2) 组件的衰减特性尽可能一致。根据国家标准GB/T--9535规定,太阳电池组件的最大输出功率在规定条件下试验后检测,其衰减不得超过8%。 (3) 隔离二极管有时候是必要的。 5、温度特性 温度上升1℃,晶体硅太阳电池:最大输出功率下降0.04%,开路电压下降0.04%(-2mv/℃),短路电流上升0.04%。为了避免温度对发电量的影响,应该保持组件良好的通风条件。 6、灰尘损失 电站的灰尘损失可能达到6%!组件需要经常擦拭。 7、MPPT跟踪 最大输出功率跟踪(MPPT)从太阳电池应用角度上看,所谓应用,就是对太阳电池最大输出功率点的跟踪。并网系统的MPPT功能在逆变器里面完成。 8、线路损失

分布式光伏发电项目系统效率测试方法

附件十一 光伏电站系统效率保证协议 (发包方)与(承包方)经友好协商,一致同意将以下内容作为光伏发电项目总承包合同技术协议的补充协议。 一、光伏电站系统效率要求 发包方要求光伏电站的系统效率(Performance Ratio,即PR值)≥80%。 二、光伏电站系统效率测试方法 1. 目的 光伏电站系统效率测试(PR性能测试)用于证明光伏电站的整体转换效率能够满足电站设计转换效率的要求。 本测试方法是参照《Functional test,Seven day performance test criteria and procedure》,如有不明确的地方,以《Functional test,Seven day performance test criteria and procedure》为准。 2. 最小辐照度要求 测试期间的最小辐照度要求:每15分钟记录一个数据,至少获得40个光伏阵列倾斜面的太阳辐照度采样值数据,并且所测数据不小于600瓦每平方米。如果在测试初期最小辐照度要求不能达到上述要求,应该延长测试周期直至满足最小辐照度要求,或者由合同双方来确定测试周期。 简言之,在测试周期内,至少获得40个数据,每个数据持续15分钟,并且每个数据均满足辐照度大于600瓦每平方米的要求。 3. 性能测试方 合同双方应指定一个经双方认可的性能测试方(独立第三方)来负责测试事宜。性能测试方应起草一份详细的测试方案,并至少在测试开始前30天将方案提交给业主,经业主审核同意后才能实施。性能测试方应保证测试的权威性、公正性。 4. 一般测试条件 测试应该从测试周期第一天的零点开始,到测试周期最后一天的零点结束,

光伏电站发电量的计算方法(20201111091945)

光伏电站发电量计算方法 ①理论发电量 1)1MW屋顶光伏电站所需电池板面积一块235MW的多晶电池板面积 1.65*0.992=1.6368 m2, 1MW 需要1000000/235=4255.32 块电池,电池板总面积 1.6368*4255.32=6965 m 2)年平均太阳辐射总量计算 由于太阳能电池组件铺设斜度正好与当地纬度相同,所以在计算辐照量时可以直接采 用表中所列数据(2月份以2 8天记)。 年平均太阳辐射总量=工(平均日辐照量X当月天数) 结算结果为 5 5 5 5. 3 3 9 MJ/ (m 2 a)。 3)理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率=5555.339*6965*17.5% =6771263.8MJ=6771263.8*0.28KWH=1895953.86KWH =189.6 万度 ②系统预估实际年发电量 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时 要考虑到0 . 9 5的影响系数。 随着光伏组件温度的升高,组f: I二输出的功率就会下降。对于晶体硅组件,当光伏组件内部的温度达到5 0-7 5 C时,它的输出功率降为额定时的8 9%,在分析太阳 电池板输出功率时要考虑到0. 8 9的影响系数。 光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%的影响, 在分析太阳电池板输出功率时要考虑到0. 9 3的影响系数。 由于太阳辐射的不均匀性,光伏组件的输出几乎不可能同时达到最大功率输出, 此光伏阵列的

大型光伏电站系统效率计算方法优化分析

大型光伏电站系统效率计算方法优化分析 曹晓宁康巍连乾钧 光伏产业近年来继风力发电后发展最快的行业,据不完全统计,目前全世界范围内光伏发电系统的装机容量已超过40GWp,而且在持续高速增长。近几年我国光伏产业发展速度迅猛,2010年国内光伏发电新增装机容量达到520MWp,大大的超过了2009年的228MWp,而2011年国内光伏发电新增装机容量预计达到2GWp。对于大批进入运营阶段的光伏电站,电站运行状况的检测和运行维护工作将成为研究重点。 系统效率是表征光伏电站运行性能的最终指标,对于一个投入运行的光伏电站,在电站容量和光辐照量一致的情况下,系统效率越高就代表发电量越大。因此系统效率的准确性重要,本文就系统效率的计算方法的优化进行讨论。 一、系统效率的定义 一个发电系统的年发电量衡量这个系统优劣的最直接的标准,在进行一个发电系统的设计时,都要对发电系统的年发电量进行估算,作为后期运行维护的参考标准。进行发电量的估算首先要算出并网光伏发电系统的总效率,并网光伏发电系统的总效率由太阳电池阵列的效率、逆变器的效率、交流并网效率三部分组成。 太阳电池阵列效率η1,太阳电池阵列在太阳辐射强度下,实际的直流输出功率与理论功率之比。太阳电池阵列在能量转换与传输过程中的损失包括:组件匹配损失、表面尘埃遮挡损失、光谱失配损失、温度的影响以及直流线路损失等。 逆变器转换效率η2,逆变器输出的交流电功率与直流输入功率之比。包括逆变器转换的损失、最大功率点跟踪(MPPT)精度损失等。 并网效率η3,即从逆变器输出汇流并入南区10kV变电站400V低压母线段的传输效率,其中最主要的是升压变压器的效率和交流电气连接的线路损耗。 综上,光伏电站系统的总效率为η=η1*η2*η3,在进行光伏电站的设计和设备选型时,可针对性的进行优化设计,提高光伏电站的系统效率。 二、系统效率的算法 对于一个光伏电站,进行系统效率的测算时,通常是用实际计量的发电量与理论发电量相比得到,具体如下所示。

光伏项目建设的必要性和意义上传用

.光伏项目建设的必要性和意义(上传用)

————————————————————————————————作者:————————————————————————————————日期: 2

光伏项目建设的必要性和意义 1 开发太阳能资源是改善生态、保护环境、适应持续发展的需要 开发太阳能资源是改善生态、保护环境、适应持续发展的需要在全球能源形势紧张、全球气候变暖严重威胁经济发展和人们生活健康的天,世界各国都在寻求新的能源替代战略,以求得可持续发展和在日后的发展中获取优势地位。环境状况已经警示我国所能拥有的排放空间已经十分有限了,再不加大清洁能源和可再生能源的份额,我国的经济和社会发展就将被迫减速。 提高可再生能源利用率,尤其发展太阳能发电是改善生态、保护环境的有效途径。 太阳能光伏发电以其清洁、源源不断、安全等显著优势,成为关注重点,在太阳能产业的发展中占有重要地位。 我国在近二十几年,随着人口和经济的持续增长,能源消费量也在不断增长。同时,矿物能源的消费会产生大量的污染物:CO,SO2,CO2 和NOx 是大气污染的主要污染源之一。我国在新世纪将面临能源与环境问题的严峻挑战,开发和利用拥有巨大资源保障、环境友好的替代能源是事关我国国民经济可持续发展、国家能源安全和社会进步的重大课题。 太阳能光伏发电不产生燃煤发电带来的污染物排放问题。同时,电池板可循环使用,系统材料可再利用,光伏的能源投入可进一步降低,是一项新型的绿色环保项目。大力发展太阳能发电事业,可以减轻矿物能源燃烧给环境造成的污染,保护环境,有利于建设环境和谐的社会。 中国是世界上最大的发展中国家,经济高速发展,中国能源消耗增长速度居世界首位,加剧了中国能源替代形势的严重性和紧迫性。中国电力科学院的研究表明,在考虑到充分开发煤电、水电和核电的情况下,2010 年和2020 年电力供需的缺口分别为6.4%和10.7%(胡学浩. 我国能源中长发展战略研究专题报告[R]2004.) ,这个缺口正是需要用可再生能源发电进行补充的。而太阳能光伏发电可能在未来中国的能源供应中占据主要位置。 3

影响光伏发电量的因素讲课稿

影响光伏发电量的因 素

影响光伏发电量的因素 并网光伏电站进行发电量测算时,除考虑当地光辐照度、日照时间、环境温度等因素外,还要考虑光照入射角对不同种类电池转换效率的影响、电池板不匹配损耗、组件连接损耗、电池衰减损耗、组件遮挡损耗、温度影响、电气设备损耗、设备故障维护损耗等。⑴ 1.电池板温度和辐射量对光伏发电量影响 电池板温度由低到高依次为冬、春、秋、夏季,辐射量由小到大依次为冬、夏、春、秋季。板温和辐射量对发电量的影响较为复杂,二者既相互制约,又共同发挥作用。不同季节发电量受板温和辐射量影响趋势和幅度也有所不同,总体表现出双向变化趋势,即辐射量正向变化,板温负向变化,但局部变化以及板温对光伏发电量的影响更为复杂。两种因素的影响是同时存在的其影响并非是线性的。[2] 2.光伏阵列组件间距对单位面积发电量的影响 随着组件间距的增加,日发电量呈先增后减的趋势,且存在一个发电量最大值点,该点所对应的组件间距即为最优选择。⑷ 3.光谱响应对发电量影响: 1)同一块组件,在光谱存在较大差异的不同地区,对组件输出功率有较大差异。 2)单晶硅太阳电池的量子效率优于多晶硅太阳电池,特别是在310?550 nm 波段。在该波段,单晶硅太阳电池的量子效率甚至比多晶硅电池高约20% 以上。 3)在空气稀薄、300?500 nm波段辐照度相对较强的西北地区,同效率的单

晶硅组件发电量明显高于多晶硅组件,平均高 1.50%。因此,在进行西北地区组件选型经济分析时,应充分考虑单晶硅组件发电量较高的事实。 4)在进行光伏电站的建设前,应对当地太阳光谱进行测试,作为组件选型的参考依据之一。⑺ 4光照入射角对不同种类电池转换效率的影响 光照入射角包括方位角和倾角,参阅有关文献,多个光照倾角下各类电池组件实际转换效率对比试验,得出结论为:倾角对晶硅电池和非晶硅电池转换效率影响趋势一致,但受倾角影响的转换效率变化幅度晶硅电池弱于非晶硅电池。选用合适的可调光伏支架不仅可确保并网光伏系统最大限度发挥发电功能和投资效益,还可有效降低离网光伏系统中固定倾角光伏支架带来的夏冬季发电量大幅差距。⑹5电池板不匹配损耗 该类损耗影响发电量约1.3%。并网光伏电站的电池方阵进行电池组件串、并联时,理想状态是将工作电流基本相同的串联在一起,再将组件串中工作电压基本相同的并联在一起。但在实际安装时很难做到,而且每一组件,其最佳工作电压和电流不一定完全相同,造成整个方阵的总功率小于各个组件的功率之和。 6组件连接损耗 该类损耗影响发电量约2%电池组件间及到接线盒使用导线连接,接线较细,且连接点众多,导线电阻损耗及连接点接触不良都会产生损耗。 7电池衰减损耗 该类损耗影响发电量每年减少约1%多晶硅光伏组件的老化衰减,主要是由于电池的缓慢衰减以及封装材料的性能退化所造成,导致组件主材性能退化的主要原

光伏建设项目建设的必要性和意义

光伏发电项目建设的必要性和意义 中国的环境现状和发展趋势 大规模、无节制地开发利用化石燃料不仅加速了这些宝贵资源的枯竭,而且造成日益严重的环境问题。过度的排放日益引起全球关注,解决这些问题已不再是各国自身的事情,控制和减少排放已经成为全球各国的目标和义务,责任的分担已经成为各国政府讨价还价的政治问题。随着全球能耗的快速增长,环境将进一步恶化,减排的纷争将更加激烈。 我国目前的能源将近 70%由煤炭供给,这种过度依赖化石燃料的能源结构已经造成了很大的环境、经济和社会负面影响。大量的煤炭开采、运输和燃烧,对我国的环境已经造成了极大的破坏。初步估算煤炭发电造成的污染的经济损失以及由此引致的环境污染治理成本高达 1606 亿元。大力开发利用可再生能源是保证我国能源供应安全和可持续发展的必然选择。 我们的环境状况已经警示我国所能拥有的排放空间已经十分有限了,再不加大清洁能源和可再生能源的份额,我国的经济和社会发展就将被迫减速。 2.2 开发利用太阳能资源符合能源产业发展方向 我国是世界上最大的煤炭生产和消费国,能源将近 76%由煤炭供给,这种过度依赖化石燃料的能源结构已经造成了很大的环境、经济和社会负面影响。大量的煤炭开采、运输和燃烧,对我国的环境已经造成了极大的破坏。大力开发太阳能、风能、生物质能等可再生能源利用技术是保证我国能源供应安全和可持续发展的必然选择。

我国在能源领域将实行的工作重点和主要任务是首先加快能源结构调整步伐,努力提高清洁能源开发生产能力。以太阳能发电、风力发电、太阳能热水器、大型沼气工程为重点,加快可再生能源的开发。 要使光伏发电成为战略替代能源电力技术,必须搞大型并网光伏发电系统,而这个技术已经实践证明是切实可行的。 2.3 开发利用可再生能源是必由之路 面对我国能耗高速增长的形势,考虑到我国探明的煤炭资源、石油资源、天然气资源将在未来的不同年限中用尽枯竭;因此从现在开始必须加速开发新能源和可再生能源以取代日益减少的化石能源,做到未雨绸缪。 由于经济发展迅猛,中国在 2001 年以后,电力需求以每年超过 20%的速度增长,2003 年全国出现电力供应严重不足的现象,2004 年缺电形势更加紧张,24 个省拉闸限电,电力供应的紧张情况在今后若干年内不会缓解。 根据中国电力科学院预测,我国电力供应缺口 2010 年约为 37GW,2020 年预计为 102GW。按照目前的经济发展趋势和中国的资源情况,2010 年和 2020 年的电力供应单靠传统的煤、水、核是不够的,缺口只能由可再生能源发电来填补。 2.4 国家光伏政策 近年来国家在大力发展新能源方面给出很多支持政策,仅光伏事业的发展就出台了如下政策: 《中华人民共和国可再生能源法》

提高光伏电站发电效率的措施

提高光伏电站发电效率的措施 发表时间:2017-12-11T16:42:24.317Z 来源:《防护工程》2017年第19期作者:张树宏 [导读] 随着我国经济高速发展, 能耗大幅增加, 能源和环境对可持续发展的约束越来越严重。 大唐山西新能源有限公司山西太原 030032 摘要:随着我国经济高速发展, 能耗大幅增加, 能源和环境对可持续发展的约束越来越严重, 发展可再生能源发电、特别是太阳能光伏发电将成为减少环境污染的重要措施, 同时也是保证我国能源供应安全和可持续发展的必然选择。本文以某能源股份有限公司已投产运行的20 MW 光伏地面电站为例,运用理论分析和实证分析相结合的方法,找出影响光伏电站发电效率的因素,并与电站的实际发电数据相结合,提出提升光伏地面电站的途径。 关键词:光伏;电站;发电效率 引言 光伏发电是将太阳能直接转化为电能的过程,生产过程不产生任何有害物质及噪声,工程建设对当地大气环境、声环境、电磁环境无影响,对环境影响很小。光伏发电是环境效益最好的电源之一,是我国鼓励和支持开发的可持续发展的新能源。光伏发电站的建设代替燃煤电站的建设,将减少对周围环境的污染,并起到利用清洁可再生资源、节约不可再生的化石能源、减少污染及保护生态环境的作用,具有明显的社会效益和环境效益。 1光伏发电项目发电效率的影响因素分析 影响光伏发电项目发电效益的因素众多,主要可以分为自然因素、设备因素及政策因素等。 1.1自然因素。1)太阳辐射量的影响。太阳电池组件的光电转换效率在一定的情况下,太阳的辐射强度决定了光伏系统的发电量。光伏系统对太阳辐射能量的利用效率仅有10%左右,光伏电站的发电量取决于太阳辐射强度,太阳的辐射强度及光谱特性是随着气象条件的变化而改变的。2)太阳的方向角因素影响。从倾斜面上的太阳辐射总量和太阳辐射的直散分离原理可推断出:倾斜面上的太阳辐射总量是由天空散射量、直接太阳辐射量和地面反射辐射量三部分组成。每天,太阳光照与太阳能光伏电池板之间的角度随时间的变化在不断变化,这也将直接影响组件的功率输出。在黎明时,“组件”的输出功率为零值,随时间推移逐渐上升,并随着太阳入射角的变化,相同纬度的条件下,阵列朝向东方的组件产生的功率将会是朝正南方向的84%。3)温度因素影响。光伏组件的输出功率随着组件温度的升高而相应减小。温度每上升1 ℃,晶体硅太阳电池的最大输出功率将下降 0.04%,开路电压也随之下降 0.04%。而短路电流将上升。夏季当太阳光直射光伏组件时,组件内部温度将会达到50 一70 ℃。对多晶硅组件而言,温度的升高将导致组件功率下降至实际功率的90%。4)冬季及降雪的影响。冬季漫长且降雪较多,堆积在电池组件上的厚雪无法自行融化,将使项目发电量大幅降低,甚至直接降为0。因此,降雪成为影响冬季光伏电站收益的重要因素。 1.2设备因素。1)组件匹配及线路因素影响。光伏系统的直流、交流回路的线损要控制在5%以内。为此,设计上要求采用导电性能好的导线,且导线需要有足够的直径。施工绝不允许有偷工减料。并且系统维护时要特别注意接插件以及接线端子是否牢固。凡是并连就会由于组件的电压差异造成电压损失;凡是串连就会由于组件的电流差异造成电流损失。2)直流转换为交流因素的影响。太阳能光伏电池组件产生的直流电必须经过光伏逆变器才能转换成一定标准的交流电输入电网。在这个转换过程当中也将损失部分能量,同时直流电从组件传到逆变器的线路时,也将损失部分能量。目前,太阳能光伏发电系统中使用的逆变器的峰值效率一般都在98%左右,这是光伏逆变器生产厂商给出的峰值效率,一般是在工厂相当良好的环境控制条件下测得的。然而控制器的充电回路、放电回路压降均不得超过系统电压。目前主流逆变器标称效率在80%~ 95%之间。 2提升光伏电站发电效率的途径 根据理论计算及实际运行经验,通过以下途径可提升光伏电站发电效率。 2.1设计标准化。设计标准化对光伏电站的主要损耗进行了针对性的优化设计,提高了系统效率,比如将各个月份的太阳辐射量与系统效率分布的匹配优化,或者组件与逆变器容量和工作电压的匹配优化等,如此标准化设计也便于运维制度的统一运行,同时,运维经验可以进行复制推广,有利于运维方案的改善和提高。 2.2做好关键设备选型。关键设备奉行质量第一的原则,同时兼顾成本控制。特别要注意光伏组件的性能与安全,建议使用一流品牌;支架关注其可靠性,需要耐得住环境的腐蚀;汇流箱则关注断路器选型和过载能力;而逆变器则重点看它的逆变效率和电能质量,一般来说,一个电站尽量不要超过2 种品牌。组串式逆变器是多路MPPT 的技术方案,不仅可以提高发电量,而且不需要建设逆变器房,对于设计、施工都是比较大的简化。相对集中式逆变器,智能光伏电站解决方案每台逆变器(28 kW)有3 路MPPT 跟踪,1 MW 方阵36台逆变器共108 路MPPT,管理更加精细,能有效应对组串失配,而传统集中式方案1 MW 方阵2 台逆变器共2 路MPPT,组串失配对发电量影响非常大。通过大量项目案例分析总结,多路MPPT 减少组串失配损失4%以上。减少系统自耗电,也是提升系统发电量的一个方面。智能光伏电站系统构成简单,自耗电少,相比复杂的传统方案,能减少逆变系统损失1%以上。 2.3规范化的施工和运维管理。项目建设过程施行三位一体的管理制度,由业主、施工单位与监理单位协同合作,保证项目的进度和质量。通过远程监控中心检测光伏电站的太阳辐射量、发电量、系统效率、关键设备的性能指标等,可以总结系统效率的规律和影响因子。有必要建立区域性维护中心,由一支独立、专业的检修队伍直接对口各项目公司电站,并专一负责电站的抢修及春、秋检。 2.4及时清扫灰尘及降雪。灰尘及降雪是影响发电效率较大且运营维护中可控的自然因素。电站运行中及时组织运行人员清扫灰尘和积雪。在光伏电站裸露地面种植苜蓿等植被,不可种植植被区域洒水碾压使地表结皮,防止扬尘。及时清扫组件表面灰尘,组件表面灰尘可见时即组织人工清扫。购置扫雪除尘车辆1 台,可洒水及扫雪。冬季雪停立即组织清扫,提升发电利用小时数,提电站高运行效率。 3结语 环翠山光伏电站结合运行实际,提出设计标准化、施工规范化、做好关键设备选型和运维管理以及及时清扫灰尘等提升发电效率的对策和措施,为大同地区光伏电站建设和运营提供借鉴和参考。

相关文档
最新文档